Physical Properties Analysis of Aqueous Blends of Potassium Carbonate and Piperazine as

CO₂ Capture Solvent

By

Naathiya Mannar

15341

Dissertation submitted in partial fulfilment of the requirement for the Bachelor of Engineering (Hons) (Chemical)

September 2014

Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan.

Physical Properties Analysis of Aqueous Blends of Potassium Carbonate and Piperazine as CO₂ Capture Solvent

By

Naathiya Mannar 15341

Dissertation submitted in partial fulfilment of

the requirement for the

Bachelor of Engineering (Hons)

(Chemical)

September 2014

Approved by,

(Dr. Bhajan Lal)

FYP Supervisor

UNIVERISITI TEKNOLOGI PETRONAS

TRONOH, PERAK

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgments, that the original work contained herein have not been undertaken or done by unspecified sources or persons.

NAATHIYA A/P MANNAR

ABSTRACT

It is widely known that carbon dioxide (CO_2) is one of the major greenhouse gas (GHG) contributors. It is very important for the industries, such as oil and gas, to reduce the amount of emission to the atmosphere. There have been many researches and studies conducted in order to come up with the most effective absorber for CO_2 capture. Potassium carbonate is being looked into by the industry as a potential solvent for absorption of CO₂ to replace alkanoamines due ti its ability to resist oxidation degradation, low volatility due to its ionic structure and low binding energy. The introduction of promoter like piperazine to potassium carbonate helps to further enhance the CO₂ solubility effect by acting as catalyst to speed up the absorption process. In this project, the physical properties of aqueous blend solution of piperazine activated potassium carbonate are studied. The properties are measured over the wide range of temperature of (20-80) °C. The objectives of this project are; 1. To study on the effect of the temperature change on the properties of the blends (PC+PZ); 2. To study on effect of concentration change on the properties of the blends (PC+PZ). 3. To compare the results with the conventional blend solvent, Methyl-Diethanolamine (MDEA). This project is an experimental based project and the time period given, the experimental work covers the physical properties analysis which consists of determination of the density and viscosity over various concentrations and temperature of the blends. Based on the observation of this project, the density and viscosity of piperazine activated aqueous potassium carbonate increases as the concentration of piperazine increases. It is also been notices that the density and viscosity decreases with the increasing temperature.

TABLE OF CONTENTS

ABSTRACT III
LIST OF TABLES V
LIST OF FIGURES VII
CHAPTER 1:INTRODUCTION1
1.1 BACKGROUND OF STUDY1
1.1.1 Sources of Carbon Dioxide1
1.1.2 Carbon Dioxide Removal by Absorption/ Stripping
1.1.3 Solvent
1.1.3.1 Potassium Carbonate/Piperazine for Carbon Dioxide
Capture
1.2 PROBLEM STATEMENT
1.3 OBJECTIVES
1.4 SCOPE OF STUDY
CHAPTER 2:LITERATURE REVIEW7
2.1 PROPERTIES OF SOLVENT FOR CO ₂ ABSORPTION
2.1.1 Potassium Carbonate
2.1.1.1 Physical/Chemical Properties of Potassium Carbonate
2.1.2 Piperazine
2.1.1.1 Physical/Chemical Properties of Piperazine
2.1.3 Amine-Promoted Potassium Carbonate
CHAPTER 3: METHODOLOGY 11
3.1 RESEARCH METHODOLOGY 11
3.1.1 Chemicals and Equipments used
3.2 PROJECT ACTIVITIES
3.2.1 Preparation of Solution
3.2.2 Concentration of the Blends14
3.3 PHYSICAL PROPERTIES MEASUREMENT

3.4 GANTT CHART AND KEY MILESTONE	16
CHAPTER 4:RESULTS AND DISCUSSION	18
4.1 Density	
4.1.1 Comparison with Literature Value	
4.2 Viscosity	
4.2.1 Comparison with Literature Value	35
CHAPTER 5: CONCLUSION AND RECOMMENDATION	37
REFERENCES	38
APPENDICES	40

List of Tables

Table 1 Annual CO ₂ Emission in the United States in Tg CO ₂ E	2
Table 2 Common Amines in Gas Treating (Kohl and Riesenfeld, 1985)	4
Table 3 Physicochemical Properties of Potassium Carbonate	8
Table 4 Physicochemical Properties of Piperazine	9
Table 5 Selected Studied of Amine-Promoted K2CO3)
Table 6 List of Chemical required. 11	1
Table 7 List of equipment required. 1	2
Table 8 Concentration of the blends 14	1
Table 9 Gantt chart and Key Milestone for FYP	5
Table 10 Density of water	8
Table 11 Density of Potassium Carbonate	9
Table 12 Density of Piperazine 20	0
Table 13 Density of 5wt% Potassium Carbonate + w%Piperazine	1
Table 14 Density of 10wt% Potassium Carbonate + w%Piperazine	2
Table 15 Density of 15wt% Potassium Carbonate + w%Piperazine	3
Table 16 Density of 20wt% Potassium Carbonate + w%Piperazine	1
Table 17 Density of 25wt% Potassium Carbonate + w%Piperazine	5
Table 18 Comparison values between the literature values and the experimental	
values	5
Table 19 Viscosity of water. 2'	7
Table 20 Viscosity of Potassium Carbonate	3
Table 21 Viscosity of Piperazine 29	9
Table 22 Viscosity of 5wt% Potassium Carbonate + w%Piperazine)

values	35
Table 27 Comparison values between the literature values and the experimental	
Table 26 Viscosity of 25wt% Potassium Carbonate + w%Piperazine	34
Table 25 Viscosity of 20wt% Potassium Carbonate + w%Piperazine	33
Table 24 Viscosity of 15wt% Potassium Carbonate + w%Piperazine	32
Table 23 Viscosity of 10wt% Potassium Carbonate + w%Piperazine	31

List of Figures

Figure 1 CO ₂ Emission from Fossil Fuel Combustion in the U.S., Total Emission:
5564.2 Tg CO ₂ Eq
Figure 2 Absorber/Stripper Process Flow sheet 4
Figure 3 Structures of Piperazine in the Presence of CO ₂
Figure 4 Plot of density of water against Temperature range (20-60°C) 18
Figure 5 Plot of Density of Potassium Carbonate against Temperature range (20-60°C)
Figure 6 Plot of Density of Piperazine against Temperature range (20-60°C) 20
Figure 7 Plot of Density of 5wt% Potassium Carbonate + w% Piperazine against
Temperature range (20-60°C)
Figure 8 Plot of Density of 10wt% Potassium Carbonate + w% Piperazine against
Temperature range (20-60°C)
Figure 9 Plot of Density of 15wt% Potassium Carbonate + w% Piperazine against
Temperature range (20-60°C)
Figure 10 Plot of Density of 20wt% Potassium Carbonate + w% Piperazine against
Temperature range (20-60°C)
Figure 11 Plot of Density of 20wt% Potassium Carbonate + w% Piperazine against
Temperature range (20-60°C)
Figure 12 Plot of viscosity of water against Temperature range (20-60°C)
Figure 13 Plot of viscosity of potassium carbonate against Temperature range (20-
60°C)
Figure 14 Plot of viscosity of piperazine against Temperature range (20-60°C) 29

Figure 15 Plot of Viscosity of 5wt% Potassium Carbonate + w% Piperazine against
Temperature range (20-60°C) 30
Figure 16 Plot of Viscosity of 10wt% Potassium Carbonate + w% Piperazine against
Temperature range (20-60°C)
Figure 17 Plot of Viscosity of 15wt% Potassium Carbonate + w% Piperazine against
Temperature range (20-60°C)
Figure 18 Plot of Viscosity of 20wt% Potassium Carbonate + w% Piperazine against
Temperature range (20-60°C)
Figure 19 Plot of Viscosity of 25wt% Potassium Carbonate + w% Piperazine against
Temperature range (20-60°C)

CHAPTER 1

INTRODUCTION

1.1 Background Study

It is widely known that the increase in greenhouse gas (GHG) emissions to our atmosphere is the major contributor to global climate change. As the political and environmental demand increases, efficient methods for the CO₂ removal from the atmosphere will become increasingly important. There are many type of processes generate CO₂ which results in the release of acidic contaminants, eg. H₂S, SO_x, NO_x, CO₂. According to U. S. Environmental Protection Agency (EPA), combustion of fossil fuels accounts for 96 % of the total CO₂ emission in the US, with approximately 36% of total CO₂ emissions from electricity generation in coal-fired power plants. In the year 2007, the Intergovernmental Panel on Climate Change (IPCC) stated that global average temperature is likely to increase by between 1.1 and 6.4 during the 21^{st} century.

1.1.1 Sources of Carbon Dioxide

Both natural and anthropogenic sources contribute to the ongoing emission of GHG, particularly CO_2 . While natural emission from volcanoes, forest fires and biomass decomposition are significant, they are relatively constant from year to year. Man-made CO_2 emissions from power plants, manufacturing and automobiles have increased steadily since the industrial revolution and have become a major concern and a contributing factor to global warming.

The major sources of man-made CO_2 emission showed in Table 1. Fossil fuel combustion accounts for >95% of the CO_2 emitted annually. The balance originates from processes such as iron and steel production, cement manufacturing and ammonia production.

Source	1999	2000	2001	2002
Fossil Fuel Combustion	5,488.8	5,673.6	5,558.8	5,611.0
Iron and Steel Production	64.4	65.7	59.1	54.4
Cement Manufacturing	40.0	41.2	41.4	42.9
Waste Combustion	17.6	18.0	18.8	18.8
Ammonia/Urea Production	20.6	19.6	16.2	17.7
Lime Production	13.5	13.3	12.8	12.3
Limestone/Dolomite Use	8.1	6.0	5.7	5.8
Gas Flaring	6.9	5.8	5.4	5.3
Aluminum Production	5.9	5.7	4.1	4.2
Soda Ash	4.2	4.2	4.1	4.1
Others	6.3	6.0	5.3	5.8
Total	5,676.3	5,859.0	5,731.8	5,782.4

Table 1 Annual CO_2 Emission in the United States in Tg CO_2 Eq.

Given the overwhelming percentage of emissions from fossil fuel combustion, it becomes useful to analyze this source as individual sectors for simplified classification. CO_2 emissions are shown in Figure 1 for four pointsource sectors, including electricity generation and the residential, commercial, and industrial sectors (EPA, 2004). The transportation sector is also included.

Figure 1 CO₂ Emission from Fossil Fuel Combustion in the U.S., Total Emission: 5564.2 Tg CO₂ Eq.

Another important factor to consider is the efficiency of fuels for power production. The efficiency is directly related to the amount of fuel, and thus the amount of CO_2 produced, necessary to produce given quantities of electricity. Of the three main plant types, natural gas-fired plants are the most efficient (55 to 60%) and the cleanest burning in terms of carbon, producing 0.45 kg CO_2/kW -hr (IEA, 2001). Power production from petroleum fuels gives 0.80 kg CO_2/kW -hr.

Coal-fired plants produce the most carbon, approximately 0.96 kg CO_2/kW -hr, and is only 40 to 50% efficient.

It is clear that the largest potential application for CO_2 capture is coal-fired power plants. Coal combustion is a well-established technology accounting for 50% of the power in the U.S. The abundance of coal as a natural resource makes it a cheap, readily available fuel. In short, it is the largest contributor to overall CO_2 emissions and trends suggest an expanding share of the power production market. Improvements in capture technology for coal-fired power plants will be essential for making a significant impact on U.S. CO_2 emissions; therefore, most of the research presented in this work is targeted to conditions of coal-fired power plants.

1.1.2 Carbon Dioxide Removal by Absorption/Stripping

One of the most researched, technologies for acid gas capture from waste gas streams is an absorber/stripper process that uses a circulated chemical solvent (Kohl and Reisenfeld, 1985). Processes such as this are currently used in ammonia production and natural gas treating. There are several variations of this flow sheet, including a temperature swing and an isothermal process.

In the most common absorption process, the temperature swing variation (Figure 2), a waste gas stream containing CO_2 enters the bottom of an absorber (Kohl and Reisenfeld, 1985). The CO_2 is removed and the treated gas exits the top of the column.

A CO_2 -lean solvent enters the top of the absorber and counter-currently contacts the gas phase in packing or on trays. The CO_2 is absorbed, and the rich solvent exits the absorber. The rich solvent is pre-heated in a cross exchanger and pumped to the top of a stripper. Heat, from intermediate or low pressure steam, is applied, regenerating the solvent. A concentrated CO_2 stream is recovered. Some heat is recovered from the lean solvent, though the solvent requires further cooling before its re-use in the absorber.

Figure 2 Absorber/Stripper Process Flow sheet

1.1.3 Solvents

Many solvents have been applied to gas treating, but the most effective are generally considered to be aqueous amines or hot potassium carbonate (hotpot) solvents. The variety of amines is endless, but some of the more common are shown in Table 2. Amines have an advantage over the hotpot process in that the absorption rate of CO_2 by amines is fast; however, the heat of absorption is also high. In contrast, absorption into potassium carbonate has a heat of absorption similar to physical solvents, but is limited by slow absorption rates.

Class	Name (Abbr.)	Structure		
Primary	Monoethanolamine (MEA)	HO-CH2-CH2-N H		
Amine	Diglycolamine® (DGA) ^a	НО-СН ₂ -СН ₂ -О-СН ₂ -СН ₂ -N Н		
Secondary	Diethanolamine (DEA)	но-сн ₂ -сн ₂ но-сн ₂ -сн ₂ N-н		
Amine	Diisopropanolamine (DIPA)	CH ₃ CH ₂ CH ₂ CH ₃ CH N CH OH H OH		
Tertiary Amine	Triethanolamine (TEA)	HO-CH ₂ -CH ₂ N-CH ₂ -CH ₂ -OH HO-CH ₂ -CH ₂		
	Methyldiethanolamine (MDEA)	HO-CH ₂ -CH ₂ N-CH ₃ HO-CH ₂ -CH ₂		
Hindered Amine	Isobutanolamine (AMP)	СН ₃ н но−сн ₂ −С, н сн ₃ н		

Table 2 Common Amines in Gas Treating (Kohl and Riesenfeld, 1985)

a. Diglycolamine (DGA) is a registered trademark of Huntsman Chemical.

1.3.1.1 Potassium Carbonate/Piperazine for Carbon Dioxide Capture

This paper proposes a new blend, containing aqueous potassium carbonate and piperazine, for CO_2 capture from gas stream. The structure of PZ and its derivatives in aqueous solution with CO_2 are shown in Figure 3. Piperazine carbamate (PZCOO⁻) and piperazine dicarbamate (PZ(COO⁻)₂) are the products of the reaction with PZ. Protonated piperazine (PZH+) and protonated piperazine carbamate (H+PZCOO-) are known stable molecules at moderate pH. A diprotonated PZ exists below a pH of approximately 5.5, but conditions in this work never approach low pH, so this species is excluded from consideration.

Figure 3 Structures of Piperazine in the Presence of CO₂

The solvent holds several advantages over traditional amines. First, because PZ is a diamine, the solvent can react with two moles of CO_2 per mole of amine. Coupled with the potassium carbonate in solution, which provides an additional sink for storage of the absorbed CO_2 , the solvent has the potential for a higher CO_2 capacity than other amines. Also, the two amine functional groups will favourably affect the rate of absorption. Second, the amine has a high pKa, similar to that of MEA. A high pKa generally translates into a fast rate of absorption. Third, the large quantity of carbonate/bicarbonate in solution serves as a buffer, reducing the protonation of the amine and leaving more amine available for reaction with CO_2 .

1.2 Problem Statement

There are several critical questions been addressed to develop a better understanding of K+/PZ mixtures as applied to CO_2 . While quantifying specific performance characteristics, it becomes beneficial to further develop the underlying fundamental science.

Thus so far, studies have been published in the thermodynamics of polyamines or salt-amines mixtures. Of fundamental interest in the understanding of the thermodynamics is a description of amine specification with CO₂ and, for PZ, and identification of differences resulting from unique, heterocyclic ring structure. In promoted K_2CO_3 systems, the impact of high ionic strength on equilibrium is largely unknown. An effective thermodynamic representation of K+/PZ will improve the fundamental understanding of other amine solutions and mixtures.

1.3 Objective of Study

The objectives of this paper are:

1.3.1 To determine the physical properties, viscosity and density, of a new aqueous blend of potassium carbonate and piperazine at various temperatures.

1.4 Scope of Study

The scope of this paper encompasses, to extend of identifying the physical properties of individual solvents, PZ, K_2CO_3 and H_2O , and also the mixtures. The properties which are focused on this paper are viscosity and density. That is, the temperature range interest is from 20 to 80°C and the concentration of PZ 2 to 10 % whereas the concentration of K_2CO_3 ranges from 5 to 25%.

A basic study of the solid solubility of K+/PZ mixtures was initiated to determine viable solvent compositions. Physical properties, such as density and viscosity, are being measured and studied to improve modelling and interpretation of fluid dependent parameters.

CHAPTER 2

LITERATURE REVIEW

2.1 **PROPERTIES OF SOLVENTS FOR CO₂ ABSORPTION**

2.1.1 Potassium Carbonate

The value of potassium carbonate as a CO_2 absorbent has been recognized sin the early 1900's. The process evolved over the years into a viable commercial process, often used in treating synthesis gas (Benson and Field, 1959). The preferred embodiment is a 40 wt% K₂CO₃ solution in an isothermal absorber/stripper at 100°C and 15 to 20 atm.

Much of the commercial validation was done by Benson *et al.* (1954) and Benson *et al.* (1956). These two studies show important pilot plant characterization of hot potassium carbonate (hotpot) versus aqueous MEA and conclude that, under specific configurations, hotpot is an efficient CO_2 absorbent. The absorption of CO_2 into aqueous K₂CO₃ is commonly represented by the overall reaction

$$CO_3^{2-} + H_2O + CO_2(aq) \leftrightarrow 2HCO_3^{-}$$
 (2.1)

though the reaction is usually described in terms of two parallel, reversible reactions.

$$CO_2(aq) + OH^- \leftrightarrow HCO_3^- \tag{2.2}$$

$$HCO_3^- + OH^- \leftrightarrow CO_3^{2-} + H_2O \tag{2.3}$$

Since the reaction with hydroxide is the rate-limiting step, the reaction rate is represented as a second order rate expression.

$$r_{CO_2} = k_{OH^-}[OH^-][CO_2] \tag{2.4}$$

This reaction, though important to the solution equilibrium, is generally much slower than aqueous amines, limiting its application in processes requiring a high percentage of removal. It is often advantageous to add a promoter to increase the absorption rate. The energy required to reverse the reaction is typically less than that required for amine solvents.

2.1.1.1 Physical/Chemical Properties of Potassium Carbonate

Pure potassium carbonate is a solid at room temperature. The appearance of the substance and some physicochemical properties are mentioned in the Table 3.

Physical State	Solid (Powder)			
Colour	White			
Density	2.43 g/cm ³ (19°C)			
Melting Temperature	891°C			
Boiling Temperature	The substance decomposes at high			
	temperature			
Molecular Weight	138.2 g/mol			
Water Solubility	Very Soluble			

Table 3 Physicochemical Properties of Potassium Carbonate

Potassium carbonate dissociates completely in water into potassium (K^+) and carbonate ions (CO_3^{2-}). The dissolution in water is exothermic, so vigorous reaction can occur when potassium carbonate is added to water. The vapour pressure of the substance is very low and a melting point cannot be determined, as the substance decomposes at high temperature.

2.1.2 Piperazine

Some work has been done previously on aqueous PZ and its behaviour with CO₂. Ermatchkov *et al.* (2003) present speciation data from High Nuclear Magnetic Resonance (HNMR) experiments for 0.1 to 1.45 m PZ and CO₂ loadings of 0.1 to 1.0 mol CO₂/mol PZ. The temperature ranges from 10 to 60° C. This data set is essential for establishing a basis for a model of PZ thermodynamics, defining equilibrium constants and temperature dependences. Kamps *et al.* (2003) report total pressure data of CO₂/PZ mixtures from 40 to 120°C.

Unfortunately, most of this data are above loadings of 1.0 mol CO₂/mol PZ limiting its use in this work. Aroua and Salleh (2004) give equilibrium CO₂ partial pressure data for aqueous PZ under similar conditions (20 to 50° C and loadings > 0.8). Again, the high loading data are of limited use in modelling PZ at absorber/stripper conditions.

There is some research on PZ as a promoter in amines. Dang (2001) gives data for the absorption rate of CO₂ into PZ/MEA. The thermodynamics are represented by a simple equilibrium model based on previously determined equilibrium constants, but the work does show that PZ is an effective rate promoter for MEA. Bishnoi (2000) presents data on PZ/MDEA and rigorously models the thermodynamics and reaction rate. While information applicable to K_+/PZ is limited, the work of Bishnoi provides a foundation for the modelling and interpretation presented in this paper.

2.1.2.1 Physical/Chemical Properties of Piperazine

Physical State	Solid		
Density	$146 \text{ g/cm}^{3}(19^{\circ}\text{C})$		
Melting Temperature	108-112°C		
Boiling Temperature	145-146°C		
Molecular Weight	86.13 g/mol		

Table 4 Physicochemical Properties of Piperazine

2.1.3 **Amine-Promoted Potassium Carbonate**

The process of CO₂ removal by absorption into K₂CO₃ has been used in natural gas treating and ammonia production for many years. The process has a low heat of absorption, making solvent regeneration more energy efficient. The rate of absorption is slow and absorber performance suffers. To counteract the slow absorption rates, amines can be added in small quantities to promote the hotpot process. The following discussion summarizes important work in the development of these solvents. A list of the investigations of the more common amine-promoters is presented in Table 3.

~ [K₂CO₃] (kmol/m³ [Amine] T (°C) Amine Source Method Thermo Rates (kmol/m Shrier and 0.1 2 25 Stirred Cell Yes Yes Danakara

Table 5 Selected Studied of Amine-Promoted K₂CO₃

			(1969)			
1.0	0.4 – 1.0	11 – 25	Laddha and Danckwerts (1982)	Stirred Cell	No	Yes
0.1	2.75	100	Mahajani and Danckwerts (1982)	BaCl	Yes	No
0.1	2.75	100	Mahajani and Danckwerts (1983)	Stirred Cell	No	Yes
0.1	2	25	Shrier and Danckwerts (1969)	Stirred Cell	Yes	Yes
1.0	0.4 – 1.0	11 – 25	Laddha and Danckwerts (1982; 1982)	Stirred Cell	No	Yes
0.1	2.75	100	Mahajani and Danckwerts (1982)	BaCl	Yes	No
0.0 - 0.314	2.75	100	Mahajani and Danckwerts (1983)	Stirred Cell	No	Yes
0.6	2.0	40 - 120	Sartori and Savage (1983)	Autoclave/ Wetted- Sphere	Yes	Yes
0.3 – 0.7	5.0	50 100	Tseng <i>et al.</i> (1988)	Wetted- sphere	No	Yes
0.6	2.0	90	Bosch <i>et al.</i> (1989)	Modeling	-	-
0.1	2.75	100	Mahajani and Danckwerts (1982)	BaCl	Yes	No
0.101	2.75	100	Mahajani and Danckwerts (1983)	Stirred Cell	No	Yes
0.097	2.75	100	Mahajani and Danckwerts (1983)	Stirred Cell	No	Yes
	1.0 0.1 0.1 0.1 1.0 0.1 0.0 - 0.314 0.6 0.3 - 0.7 0.6 0.1 0.101 0.097	1.0 0.4 - 1.0 0.1 2.75 0.1 2.75 0.1 2.75 0.1 2.75 0.1 2 1.0 0.4 - 1.0 0.1 2.75 0.0 0.4 - 1.0 0.1 2.75 0.0 - 0.314 2.75 0.0 - 0.314 2.75 0.0 - 0.1 2.75 0.1 2.75 0.1 2.75 0.101 2.75 0.097 2.75	1.0 $0.4 - 1.0$ $11 - 25$ 0.1 2.75 100 0.1 2.75 100 0.1 2.75 100 0.1 2.75 100 0.1 2 25 1.0 $0.4 - 1.0$ $11 - 25$ 0.1 2.75 100 0.0 - 0.314 2.75 100 0.0 - 0.314 2.75 100 0.6 2.0 $\frac{40 - 120}{100}$ 0.3 - 0.7 5.0 $\frac{50 - 100}{100}$ 0.6 2.0 90 0.1 2.75 100 0.6 2.0 90 0.1 2.75 100 0.101 2.75 100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

CHAPTER 3

METHODOLOGY

3.1 Research Methodology

As per the studies done before based the literature review, the blends of K_2CO_3/PZ will change the physical properties towards the CO_2 absorption. The properties vary as the temperature varies. Thus, a clear understanding on the study and vital objectives must be known. As per discussed in 1.3, the main aim of this study is to determine the physical properties, viscosity and density, of a new aqueous blend of potassium carbonate and piperazine at various temperatures. The next step is to analyze the related case and study on the blending composition, density and viscosity of blends to aid in CO_2 absorption.

There is some of the parameter of individual and mixture solvents are considered. Suggested methods of carrying this study are presented in the tables below.

3.1.1 Chemicals and Equipment needed

Chemical	Purity (%)	Suggested Supplier
Piperazine	99.9	Merck, Malaysia
Potassium Carbonate	99	Merck, Malaysia

Table 6 List of Chemical required

The main reagent for this project is potassium carbonate (\geq 99%purity) and promoter piperazine (\geq 99% pure) was obtained from Benua Sains Sdn Bhd, Malaysia. Different blends of PC+PZ will be prepared using distilled water. The blending ratio of aqueous PC/PZ will be approximately 2% to 25% of mass fraction and prepared gravimetrically using and analytical balance (Mettler Toledo AS120S) with an accuracy of ±0.0001g.

Equipments for the physical properties experiment:

Measurement	Equipment	Availability
	Mettler Toledo Density Meter (DM 40)	Block 5,
		Level G
Density		
	Digital Anton Par microviscometer (Lovis-2000M)	
Viscosity		Block N, RCCO ₂ C

Table 7 List of equipment required

3.2 Project Activities

3.2.1 Preparation of solution

3.2.2 Concentration of the blends

There are 35 blends in total:

Binary Blends								
2 % Piperazine (PZ) + 98 % H ₂ O	5 % Potassium Carbonate (PC) + 95 % H ₂ O							
$4 \% PZ + 96 \% H_2O$	10 % PC + 90 % H ₂ O							
6 % PZ + 94 % H ₂ O	15 % PC + 85 % H ₂ O							
8 % PZ + 92 % H ₂ O	20 % PC + 80 % H ₂ O							
$10 \% PZ + 90 \% H_2O$	25 % PZ + 75 % H ₂ O							
Tern	ary Blends							
5 % PC + 2% PZ + 93 % H ₂ O	10 % PC + 2% PZ + 88 % H ₂ O							
$5 \% PC + 4\% PZ + 91 \% H_2O$	$10 \% PC + 4\% PZ + 86 \% H_2O$							
5 % PC + 6% PZ + 89 % H ₂ O	10 % PC + 6% PZ + 84 % H ₂ O							
$5 \% PC + 8\% PZ + 87 \% H_2O$	$10 \% PC + 8\% PZ + 82 \% H_2O$							
5 % PC + 10% PZ + 85 % H ₂ O	$10 \% PC + 10\% PZ + 80 \% H_2O$							
15 % PC + 2% PZ + 83 % H ₂ O	20 % PC + 2% PZ + 78 % H ₂ O							
15 % PC + 4% PZ + 81 % H ₂ O	$20 \% PC + 4\% PZ + 76 \% H_2O$							
15 % PC + 6% PZ + 79 % H ₂ O	20 % PC + 6% PZ + 74 % H ₂ O							
15 % PC + 8% PZ + 77 % H ₂ O	$20 \% PC + 8\% PZ + 72 \% H_2O$							
15 % PC + 10% PZ + 75 % H ₂ O	$20 \% PC + 10\% PZ + 70\% H_2O$							
25 % PC + 2	2% PZ + 73 % H ₂ O							
25 % PC + 4	% PZ + 71 % H ₂ O							
25 % PC + 6	5% PZ + 69 % H ₂ O							
25 % PC + 8	$3\% PZ + 67 \% H_2O$							
25 % PC + 10	0% PZ + 65 % H ₂ O							

Table 8: Concentration of the blends

* Percentages are the weight percentages

3.3 Physical Properties Measurement

Density

The density of different aqueous (PC+PZ) blends was measured using a digital densimeter (Mettler Toledo, DM 40) with an accuracy of $\pm 5 \times 10-5$ g·cm-3. The apparatus was calibrated each time before and after the measurement in order to obtain accurate results. Standard water of Millipore quality was used in the calibration process.

Viscosity

A digital rolling ball microviscometer (Anton Par, model Lovis-2000M / ME) with an accuracy of up to 0.5 % was used to measure the viscosity of the aqueous (PC+PZ) blends. Before filling the sample in a suitable capillary, the capillary was properly washed with acetone, and air-dried to avoid any error in the reading. Before and after each experiment, the viscometer was carefully calibrated with Millipore water. For the measurement, the capillary was filled with the sample by the help of the syringe, kept inside the viscometer until the set temperature was achieved, and finally, the measurement was started.

3.4 Gantt Chart and Key Milestone

Table 9 Gantt chart and Key Milestone for FYP

	Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Activities		1	~	5	Т	5	U	/	0		10	11	12	15	17	15	10	17	10	17	20	<u>~1</u>		23	27	23	20	21	20
Confirmation	of																												
Project																													
First meeting	with																												
supervisor																													
Preliminary pr	roject																												
works																													
Submission of	f																												
Proposal																													
Proposal Defe	ence																												
Experimental	Run																												
Data extractio	n																												
Submission of	f																												
interim report																													
Experimental	Run																												
Data extractio	n																												

Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Submission of																												
Progress report																												
Experiment Run																												
Report writing																												
Pre-SEDex																												
Submission of technical paper																												
Submission of final report																												
Oral Presentation																												
Submission of hardbound																												

Process

CHAPTER 4

RESULTS AND DISCUSSION

The physical properties such as density and viscosity of piperazine activates aqueous solution of potassium carbonate (PC+PZ) were experimentally measured for 25 various concentrations over a wide range of temperature.

4.1 Density

The measured densities of piperazine activated aqueous solution of potassium carbonate (PC+PZ) at the temperature range from (20 to 60) $^{\circ}$ C are shown below:

Tempe	erature		Density	(g/cm3)	
(°	C)	1	2	3	Avg
20	293.15	0.9981	0.9981	0.9981	0.9981
30	303.15	0.9957	0.9957	0.9957	0.9957
40	313.15	0.9923	0.9923	0.9923	0.9923
50	323.15	0.9882	0.9881	0.9882	0.9882
60	333.15	0.9829	0.9827	0.9832	0.9829

Table 10 Density of water

Figure 4 Plot of density of water against Temperature range (20-60°C)

		Density (g/cm3)										
Temperature (°C)		0% PC	5% PC	10% PC	15% PC	20% PC	25% PC					
101	iiperatare (C)	100%	95%	90%	85%	80%	75%					
		H2O	H2O	H2O	H2O	H2O	H2O					
20	293.15	0.9981	1.0411	1.0823	1.1207	1.1585	1.1967					
30	303.15	0.9957	1.0385	1.0792	1.1176	1.1551	1.1930					
40	313.15	0.9923	1.0349	1.0754	1.1131	1.1505	1.1885					
50	323.15	0.9882	1.0308	1.0705	1.1087	1.1454	1.1834					
60	333.15	0.9829	1.0246	1.0650	1.1027	1.1403	1.1777					

Table 11 Density of Potassium Carbonate

Figure 5 Plot of Density of Potassium Carbonate against Temperature range (20-60°C)

Temperature (°C)				Density ((g/cm3)		
		0% PZ	2% PZ	4% PZ	6% PZ	8% PZ	10% PZ
1 01	iiperatare (C)	100%	98%	96%	94%	92%	90%
		H2O	H2O	H2O	H2O	H2O	H2O
20	293.15	0.9981	0.9990	0.9999	1.0009	1.0020	1.0032
30	303.15	0.9957	0.9964	0.9973	0.9982	0.9992	1.0003
40	313.15	0.9923	0.9930	0.9938	0.9947	0.9956	0.9966
50	323.15	0.9882	0.9888	0.9896	0.9904	0.9912	0.9921
60	333.15	0.9829	0.9841	0.9848	0.9856	0.9864	0.9871

Table 12 Density of Piperazine

Figure 6 Plot of Density of Piperazine against Temperature range (20-60°C)

				Density	(g/cm3)							
			5% PC									
Ten	nperature (°C)	0% PZ	2% PZ	4% PZ	6% PZ	8% PZ	10% PZ					
		95%	93%	91%	89%	87%	85%					
		H2O	H2O	H2O	H2O	H2O	H2O					
20	293.15	1.0411	1.0410	1.0424	1.0433	1.0424	1.0447					
30	303.15	1.0385	1.0379	1.0392	1.0400	1.0391	1.0415					
40	313.15	1.0349	1.0342	1.0354	1.0362	1.0352	1.0379					
50	323.15	1.0308	1.0299	1.0309	1.0317	1.0306	1.0333					
60	333.15	1.0246	1.0241	1.0249	1.0262	1.0252	1.0278					

Table 13 Density of 5wt% Potassium Carbonate + w%Piperazine

Figure 7 Plot of Density of 5wt% Potassium Carbonate + w% Piperazine against Temperature range (20-60°C)

				Density (g/cm3)		
				10%	PC		
Ten	nperature (°C)	0% PZ	2% PZ	4% PZ	6% PZ	8% PZ	10% PZ
		90%	88%		84%	82%	80%
		H2O	H2O	86%H2O	H2O	H2O	H2O
20	293.15	1.0823	1.0822	1.0827	1.0838	1.0854	1.0853
30	303.15	1.0792	1.0786	1.0790	1.0801	1.0816	1.0813
40	313.15	1.0754	1.0745	1.0748	1.0761	1.0772	1.0770
50	323.15	1.0705	1.0700	1.0702	1.0714	1.0724	1.0722
60	333.15	1.0650	1.0645	1.0646	1.0659	1.0669	1.0668

Table 14 Density of 10wt% Potassium Carbonate + w%Piperazine

Figure 8 Plot of Density of 10wt% Potassium Carbonate + w% Piperazine against Temperature range (20-60°C)

				Density	/ (g/cm3)		
				159	% PC		
Ten	nperature (°C)	0% PZ	2% PZ	4% PZ	6% PZ	8% PZ	10% PZ
		85%	83%	81%	79%	79%	77%
		H2O	H2O	H2O	H2O	H2O	H2O
20	293.15	1.1207	1.1214	1.1213	1.1222	1.1234	1.1245
30	303.15	1.1176	1.1174	1.1173	1.1181	1.1189	1.1198
40	313.15	1.1131	1.1130	1.1130	1.1137	1.1142	1.1149
50	323.15	1.1087	1.1082	1.1082	1.1090	1.1096	1.1098
60	333.15	1.1027	1.1028	1.1040	1.1049	1.1050	1.1051

Table 15 Density of 15wt% Potassium Carbonate + w%Piperazine

Figure 9 Plot of Density of 15wt% Potassium Carbonate + w% Piperazine against Temperature range (20-60°C)

				Density	(g/cm3)		
				20%	PC		
Tem	perature (°C)	0% PZ	2% PZ	4% PZ	6% PZ	8% PZ	10% PZ
		80%	78%		74%	72%	70%
		H2O	H2O	76%H2O	H2O	H2O	H2O
20	293.15	1.1580	1.1598	1.1608	1.1616	1.1628	1.1636
30	303.15	1.1551	1.1553	1.1563	1.1570	1.1579	1.1585
40	313.15	1.1510	1.1505	1.1515	1.1519	1.1526	1.1529
50	323.15	1.1459	1.1454	1.1463	1.1464	1.1471	1.1472
60	333.15	1.1401	1.1400	1.1408	1.1410	1.1415	1.1415

Table 16 Density of 20wt% Potassium Carbonate + w%Piperazine

Figure 10 Plot of Density of 20wt% Potassium Carbonate + w% Piperazine against Temperature range (20-60°C)

				Density	(g/cm3)		
				25%	PC		
Tem	perature (°C)	0% PZ	2% PZ	4% PZ	6% PZ	8% PZ	10% PZ
		75%	73%		69%	67%	65%
		H2O	H2O	71%H2O	H2O	H2O	H2O
20	293.15	1.1967	1.1986	1.1999	1.2015	1.2023	1.2044
30	303.15	1.1930	1.1945	1.1951	1.1964	1.1969	1.1975
40	313.15	1.1885	1.1898	1.1899	1.1905	1.1906	1.1908
50	323.15	1.1834	1.1838	1.1839	1.1838	1.1839	1.1840
60	333.15	1.1777	1.1766	1.1766	1.1755	1.1765	1.1778

Table 17 Density of 25wt% Potassium Carbonate + w%Piperazine

Figure 11 Plot of Density of 20wt% Potassium Carbonate + w% Piperazine against Temperature range (20-60°C)

The graphs plotted in figures from 6 till 11 indicates that with an increase of temperature, the density decreases. However, there is an increase in densities with an increase of the piperazine concentration in each composition of potassium carbonate.

4.1.1 Comparison with literature value

To estabilish the accuracy of density meter used, the experimental data obtained for piperazine activated methyl-diethanolamine (MDEA) has been compared with the reported value by Subham Paul and Bishnupada Mandal.

The composition taken from the literature review is:

			Density (g/cm3)							
Temperature (°C)		Lit Value	Run 1	Run 2	Run 3	Average	Difference = Lit Value – Average Value			
20	293.15	1.0253	1.0332	1.0332	1.0336	1.0333	0.0078			
30	303.15	1.0203	1.0286	1.0286	1.0290	1.0287	0.0083			
40	313.15	1.0154	1.0235	1.0235	1.0239	1.0236	0.0081			
50	323.15	1.0100	1.0179	1.0179	1.0183	1.0180	0.0079			
60	333.15	1.0038	1.0118	1.0118	1.0122	1.0119	0.0081			

21 wt% MDEA+9% PZ+70% H₂O

 Table 18: Comparison values between the literature values and the experimental values.

*The literature value is sourced from *Journal Chemical Engineering*, *Data 2006*, *51*, 2242-2245. Authors*Paul S. and Mandal B.*

Average Absolute Deviation, AAD =
$$\frac{1}{N} \sum_{i=1}^{N} \frac{|\rho_{\exp t,i} - \rho_{calc,i}|}{\rho_{\exp t,i}} = 0.008 \%$$

Thus, the density data obtained in this study are in good agreement with data of Subham Paul and Bishnupada Mandal.

4.2 Viscosity

The measured viscosities of piperazine activated aqueous solution of potassium carbonate (PC+PZ) at the temperature range from (20 to 60) $^{\circ}$ C are shown below:

-	Comparatura (°C)	Viscosity (mPa/s)					
-	remperature (C)	1	2	3	Avg		
20	293.15	1.002	1.001	1.003	1.002		
30	303.15	0.798	0.798	0.798	0.798		
40	313.15	0.653	0.653	0.653	0.653		
50	323.15	0.547	0.547	0.548	0.547		
60	333.15	0.467	0.467	0.468	0.467		

Table 19 Viscosity of water

Figure 12 Plot of viscosity of water against Temperature range (20-60°C)

			Viscosity (mPa/s)							
				10%	15%	20%	25%			
Ten	nperature (°C)	0% PC	5% PC	PC	PC	PC	PC			
		100%	95%	90%	85%	80%	75%			
		H2O	H2O	H2O	H2O	H2O	H2O			
20	293.15	1.002	1.0067	1.1158	1.3031	1.5055	1.7267			
30	303.15	0.798	0.8099	0.9023	1.0555	1.2183	1.3952			
40	313.15	0.653	0.6697	0.7481	0.8763	1.0134	1.1556			
50	323.15	0.547	0.5662	0.6334	0.7421	0.8570	0.9773			
60	333.15	0.467	0.4890	0.5489	0.6401	0.7377	0.8405			

Table20 Viscosity of Potassium Carbonate

Figure 13 Plot of viscosity of potassium carbonate against Temperature range (20- 60° C)

		Viscosity (mPa/s)						
Ten	nperature (°C)	0% PZ	2% PZ	4% PZ	6% PZ	8% PZ	10% PZ	
1 011	iiperatare (C)	100%	98%	96%	94%	92%	90%	
		H2O	H2O	H2O	H2O	H2O	H2O	
20	293.15	1.0020	1.0038	1.1128	1.1975	1.3386	1.5090	
30	303.15	0.7980	0.7938	0.8724	0.9311	1.0318	1.1487	
40	313.15	0.6530	0.6480	0.7071	0.7496	0.8231	0.9072	
50	323.15	0.5470	0.5434	0.5886	0.6199	0.6795	0.7474	
60	333.15	0.4670	0.4655	0.5010	0.5247	0.5770	0.6236	

Table 21 Viscosity of Piperazine

Figure 14 Plot of viscosity of piperazine against Temperature range (20-60°C)

		Viscosity (mPa/s)						
				5%]	PC			
Tem	nperature (°C)	0% PZ	2% PZ	4% PZ	6% PZ	8% PZ	10% PZ	
		95%	93%		89%	87%	85%	
		H2O	H2O	91%H2O	H2O	H2O	H2O	
20	293.15	1.0067	1.1141	1.1984	1.3759	1.5408	1.7077	
30	303.15	0.8099	0.8893	0.9483	1.0804	1.1639	1.3131	
40	313.15	0.6697	0.7293	0.7735	0.8748	0.9358	1.0457	
50	323.15	0.5662	0.6131	0.6463	0.7257	0.7722	0.8538	
60	333.15	0.4890	0.5260	0.5509	0.6146	0.6558	0.7141	

Table 22 Viscosity of 5wt% Potassium Carbonate + w%Piperazine

Figure 15 Plot of Viscosity of 5wt% Potassium Carbonate + w% Piperazine against Temperature range (20-60°C)

		Viscosity (mPa/s)								
			10% PC							
Tem	perature (°C)	0% PZ	2% PZ	4% PZ	6% PZ	8% PZ	10% PZ			
		90%	88%		84%	82%	80%			
		H2O	H2O	86%H2O	H2O	H2O	H2O			
20	293.15	1.1158	1.2255	1.3602	1.4923	1.6898	1.9217			
30	303.15	0.9023	0.9837	1.0818	1.1771	1.2812	1.4839			
40	313.15	0.7481	0.8100	0.8844	0.9375	1.0255	1.1841			
50	323.15	0.6334	0.6826	0.7399	0.7939	0.8557	0.9694			
60	333.15	0.5489	0.5861	0.6310	0.6724	0.7007	0.8117			

Table 23 Viscosity of 10wt% Potassium Carbonate + w%Piperazine

Figure 16 Plot of Viscosity of 10wt% Potassium Carbonate + w% Piperazine against Temperature range (20-60°C)

		Viscosity (mPa/s)						
				15%	PC			
Ten	nperature (°C)	0% PZ	2% PZ	4% PZ	6% PZ	8% PZ	10% PZ	
		85%	83%		79%	79%	77%	
		H2O	H2O	81%H2O	H2O	H2O	H2O	
20	293.15	1.3031	1.4559	1.5445	1.7534	1.8554	1.9564	
30	303.15	1.0555	1.1803	1.2310	1.3843	1.4535	1.5350	
40	313.15	0.8763	0.9702	1.0076	1.1248	1.1589	1.2086	
50	323.15	0.7421	0.8156	0.8435	0.9350	0.9630	1.0154	
60	333.15	0.6401	0.6977	0.7192	0.7927	0.8264	0.8525	

Table 24 Viscosity of 15wt% Potassium Carbonate + w%Piperazine

Figure 17 Plot of Viscosity of 15wt% Potassium Carbonate + w% Piperazine against Temperature range (20-60°C)

		Viscosity (g/cm3)						
				20%	PC			
Ten	nperature (°C)	0% PZ	2% PZ	4% PZ	6% PZ	8% PZ	10% PZ	
		80%	78%		74%	72%	70%	
		H2O	H2O	76%H2O	H2O	H2O	H2O	
20	293.15	1.5055	1.5008	1.7190	1.7888	1.8541	1.9956	
30	303.15	1.2183	1.2072	1.3703	1.4125	1.4565	1.5865	
40	313.15	1.0134	0.9959	1.1213	1.1316	1.1500	1.2364	
50	323.15	0.8570	0.8392	0.9381	0.9451	0.9648	1.0120	
60	333.15	0.7377	0.7201	0.7992	0.8005	0.8094	0.8699	

Table 25 Viscosity of 20wt% Potassium Carbonate + w%Piperazine

Figure 18 Plot of Viscosity of 20wt% Potassium Carbonate + w% Piperazine against Temperature range (20-60°C)

		Viscosity (g/cm3)								
			25% PC							
Tem	nperature (°C)	0% PZ	2% PZ	4% PZ	6% PZ	8% PZ	10% PZ			
		75%	73%		69%	67%	65%			
		H2O	H2O	71%H2O	H2O	H2O	H2O			
20	293.15	1.7267	1.7322	1.8214	1.8860	2.0115	2.0986			
30	303.15	1.3952	1.3915	1.4568	1.4986	1.5984	1.6984			
40	313.15	1.1556	1.1473	1.1790	1.1998	1.2987	1.3648			
50	323.15	0.9773	0.9655	1.0005	1.0130	1.0987	1.1056			
60	333.15	0.8405	0.8427	0.8521	0.8406	0.9546	0.9648			

Table 26 Viscosity of 25wt% Potassium Carbonate + w%Piperazine

Figure 19 Plot of Viscosity of 25wt% Potassium Carbonate + w% Piperazine against Temperature range (20-60°C)

4.2.1 Comparison with literature value

To estabilish the accuracy of viscometer used, the experimental data obtained for piperazine activated methyl-diethanolamine (MDEA) has been compared with the reported value by Subham Paul and Bishnupada Mandal.

The composition taken from the literature review is:

21	wt%	MDEA+9%	PZ+70%	H_2O
----	-----	---------	--------	--------

		Viscosity (mPa/s)							
Temperature (°C)		Lit Value	Run 1	Run 2	Run 3	Average	Difference = Lit Value - Average		
20	293.15	4.8140	3.9419	4.0092	4.0078	3.9863	0.1719		
30	303.15	3.4520	2.7593	2.8049	2.8079	2.7907	0.1916		
40	313.15	2.5200	2.2585	2.0679	2.0685	2.1316	0.1541		
50	323.15	1.8990	1.5512	1.5731	1.5829	1.5691	0.1737		
60	333.15	1.3890	1.2409	1.2406	1.2509	1.2441	0.1043		

 Table 27: Comparison values between the literature values and the experimental values.

*The literature value is sourced from *Journal Chemical Engineering*, *Data 2006*, *51*, 2242-2245. Authors*Paul S. and Mandal B*.

Average Absolute Deviation, AAD =
$$\frac{1}{N} \sum_{i=1}^{N} \frac{|\eta_{\exp t,i} - \eta_{calc,i}|}{\eta_{\exp t,i}} = 0.07 \%$$

Thus, the viscosity data obtained in this study are in good agreement with data of Subham Paul and Bishnupada Mandal.

The measured values of the density of the aqueous blends of (PC+PZ) at various temperatures from 298.15 to 333.15 K are presented in Table 12 till Table 16. It was found that with increasing mass fraction of potassium carbonate and piperazine in the blend, the density increased; however, the density decreased with increasing temperature. This could be due to the wider spaces between the blend molecules at higher temperatures. This density trend is similar to that previously reported work.

The data for the viscosity of different concentrations of aqueous (PC+PZ) blends in the temperature range of 298.15 to 333.15 K are listed in Table 21 and 25. After analysis of results, it was noticed that the viscosity decreased with increasing temperature. This could be due to a decrease in the internal resistance of the molecules with increasing temperature, which allows the solution molecules to flow easily, thereby reducing the viscosity. However, with increasing concentration of potassium carbonate and piperazine in the aqueous solutions, the viscosity tended to increase. The higher concentrated solutions had a higher viscosity than the lower ones, which may be due to the increased molecular resistance in the more concentrated solutions.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The physical properties of piperazine activated aqueous solution of potassium carbonate which is density and viscosity were measured at a wide range of temperature (20 to 80) °C. Density and viscosity tend to decrease with increasing temperature. The comparison between experimental and literature data were done in order to measure the accuracy and validate the equipment and methods used in this projects. The smaller the AAD value calculated, the accurate the data measured from the experimental work.

5.2 Recommendation

- 1. To further conduct the CO_2 solubility test with the piperazine activated aqueous solution of potassium carbonate.
- 2. To study the feasibility of having the blend PC/PZ as the CO_2 removal agent in the gas processing plant.

REFERENCES

IEA Greenhouse Gas R&D Programme, (2001). Putting Carbon Back into the ground.

- Intergovernmental Panel on Climate Change, (2007). *Climate Change* 2007 *Synthesis Report.* Geneva, Switzerland.
- U.S. Environmental Protection Agency, (2004). Inventory of U.S Greenhouse Gas Emissions and Sinks: 1990-2002. Washington, D.C.
- Al-Ghawas, H. A., D. P. Hagewiesche, G. Ruiz-Ibanez and O. C. Sandall (1989).
 Physicochemical Properties Important for Carbon Dioxide Absorption in Aqueous Methyldiethanolamine. J. Chem. Eng. Data 34(4): 385-391.
- Aroua, M. K. and R. M. Salleh (2004). Solubility of CO2 in Aqueous Piperazine and Its Modelling Using the Kent-Eisenberg Approach. *Chem. Eng. Tech.* 27(1): 65-70.
- Bishnoi, S. and G. T. Rochelle (2000). Absorption of Carbon Dioxide into Aqueous Piperazine: Reaction Kinetics, Mass Transfer and Solubility. *Chem. Eng. Sci.* 55(22): 5531-5543.
- Bishnoi, S. and G. T. Rochelle (2002b). Thermodynamics of Piperazine/Methyldiethanolamine/ Water/Carbon Dioxide. Ind. Eng. Chem. Res. 41(3): 604-612.
- Benson, H. E., J. H. Field and R. M. Jimeson (1954). Carbon Dioxide Absorption Employing Hot Potassium Carbonate Solutions. *Chem. Eng. Prog.* 50: 356 364.
- Benson H.E., Field J.H., and Haynes W.P., *Improved process for CO2 absorption* uses ht carbonate solutions, Chem. Eng. Prog 52 (1956), 433-438.
- Dang, H. (2001). CO2 Absorption Rate and Solubility in Monoethanolamine/ Piperazine/Water. M.S. Thesis. The University of Texas at Austin.

- Ermatchkov, V., A. Perez-Salado Kamps and G. Maurer (2003). Chemical Equilibrium Constants for the Formation of Carbamates in (Carbon Dioxide + Piperazine + Water) from 1H-NMR-Spectroscopy. J. Chem. Thermodyn. 35(8): 1277-1289.
- Kohl, A. L. and F. C. Riesenfeld (1985). Gas Purification. Houston, Gulf Publishing
- Muhammad, A. Mutalib, M. I. A. Murugesan, T. Shafeeq, A. Thermophysical properties of Aqueous Piperazine and Aqueous (N Methyldiethanolamine+Piperazine) Solutions at Temperatures (298.15 to 38.15 K) *K. J. Chem. Eng. Data* 2009, 54, 2317-2321.
- Murshid, G., Shariff, A. M., Lau, K. K., Bustam, M. A., & Ahmad, F. (2011).
 Physical properties of piperazine (PZ) activated aqueous solutions of 2amino-2-hydroxymethyl-1, 3-propanediol (AHPD+ PZ). *Journal of Chemical* & Engineering Data, 57(1), 133-136.
- Paul, S. Mandal, B. Density and Viscosity of Aqueous Solutions of (N Methyldiethanolamine + Piperazine) and (2-Amino-2-methyl-1-propanol +Piperazine) from (288 to 333K). *K. J. Chem. Eng. Data* 2006, 5, 1808-1810.
- Yunus, N. M. Mutalib, M. I. Man, Z. Bustam, M. A. Murugesan, T. Thermophysical properties of 1-alkylpyridinum bis-(trifloromethylsulfonym) imide ionic liquids. J. Chem. Eng Thermodyn. 2010, 42, 491-495.

APPENDICES

Appendix 1 Reference of Density and Specific Weight of Water at 0 - 100°C

Temperature	Density	Specific Weight
- <i>t</i> -	- ρ -	- Y -
(°C)	(kg/m ³)	(KN/m ³)
0	999.8	9.806
4	1000	9.807
10	999.7	9.804
20	998.2	9.789
30	995.7	9.765
40	992.2	9.731
50	988.1	9.690
60	983.2	9.642
70	977.8	9.589
80	971.8	9.530
90	965.3	9.467
100	958.4	9.399

Appendix 2 Graph of Density of Water vs Temperature

Water

Density and Temperature

Temperature	Dynamic Viscosity	Kinematic Viscosity
- t -	- µ -	- V -
(°C)	(Pa s, N s/m²) x 10 ⁻³	(m²/s) x 10 ⁻⁶
0	1.787	1.787
5	1.519	1.519
10	1.307	1.307
20	1.002	1.004
30	0.798	0.801
40	0.653	0.658
50	0.547	0.553
60	0.467	0.475
70	0.404	0.413
80	0.355	0.365
90	0.315	0.326
100	0.282	0.29

Appendix 3 Reference of Dynamic and Kinematic Viscosity vs Temperature