Structural Integrity of an Onshore Oil & Gas Platform due to Increasing Seismic Effect in Malaysia

By

Sharveen Nair 14504

Dissertation submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons) (Civil)

MAY 2014

Universiti Teknologi PETRONAS Bandar Seri Iskandar II 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Structural Integrity of an Onshore Oil & Gas Platform due to Increasing Seismic Effect in Malaysia

by

Sharveen Nair 14504

A project dissertation submitted to the Civil Engineering Programme Universiti Teknologi PETRONAS in partial fulfillment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CIVIL ENGINEERING)

Approved by,

(Dr. Ibrisam Akbar)

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK

Sept 2014

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

SHARVEEN NAIR 14504 CIVIL ENGINEERING

ABSTRACT

The increasing seismic activity form the Sumatran fault line raises uncertainties as most of the current structure in Malaysian Oil and Gas Industry are designed for seismic hazard in Zone 1 (Ground Acceleration = 0.075g) according to Uniform Building Code 1997 (UBC 1997) due to the factor that Malaysia is in the low seismic hazard zone. This study is to determine and compare the connection design for steel structure if the seismic zone in Malaysia increases from Zone 1 to Zone 2A (0.015g) and Zone 2B (0.2g). This study is carried out by simulating and modelling the existing Packinox gas vessel steel support structure in StaadPro V8i. By manipulating the seismic ground acceleration coefficient, the most critical joint resulting from the increasing ground acceleration factor is obtain. These critical forces induced on the joints are then used to design a simple bolted connection and used to compare the difference in the connection for higher seismic zones. As a result, it was found that the increasing ground acceleration factor from zone 1 to zone 2A does not effect the most joints with increase up to 9.42% and 5.23% for axial and tie force respectively. However, for Zone 2B, there are significant increase in the forces induced at the critical joints with increase up to 38.35% and 12.61% for axial force and tie force respectively.

ACKNOWLEDGEMENT

I take this opportunity to express my gratitude and regards to Universiti Teknologi PETRONAS (UTP) for providing me with all the facilities to complete my project within stipulated time. Next, I would like to direct my highest gratitude to Dr. Ibrisam Akbar, for his cordial support, valuable information and guidance, which helped me in completing this project through various stages during my final semester.

My gratitude is also extended to FYP 1 and 2 coordinator, Dr. Nurul Izma Bt Mohammed and Dr. Muhammad Raza Ul Mustafa for their effort in assisting me in all the possible way I am obliged to the following for their respective professionalism and contribution towards my project :

- Sadaqat Ullah Khan, PhD scholar, Universiti TEKNOLOGI PETRONAS
- Mohammad Fitry bin Mohd Shukor, Bachelor of Civil Engineering (Hons) Universiti TEKNOLOGI PETRONAS

Lastly, I thank almighty, my family and friends for their constant encouragement without which this project completion would not be possible.

TABLE OF CONTENT

<u>ABSTRA</u>	<u>CT</u> iv
ACKNO	WLEDGEMENT
LIST OF	FIGURESvii
LIST OF	TABLESix
СНАРТИ	CR 1 : INTRODUCTION Error! Bookmark not defined
1.1 P	roject Background1
1.2 P	roblem Statement1
1.3 0	bjective2
1.4 So	cope of Study2
СНАРТЕ	CR 2 : LITERAURE REVIEW
2.1 G	eological Background3
2.2 Se	eismicity in Peninsular Malaysia4
2.3 A	ssessment of Possible Ground Movements6
2.4 R	esponse of Structures to Earthquake7
2.5 C	onnection Failure due to seismic activity8
2.6 St	eel Connections
2.7 C	onclusion of Literature Review8
СНАРТЕ	CR 3 : METHODOLOGY
3.1 P	roject sequenceg
3.1.1	Structure Design and Load Assigning in StaadPro10
3.1.4	Structural Analysis
3.1.5	Determine the critical joint for the increased seismic activity
3.1.6	Develop a connection design17
3.1.7	Recommendations to improve the structural integrity for connections18
3.2 K	ey Milestone
СНАРТИ	ER 4 : RESULTS AND DSCUSSION
4.1 R	esults
4.1.1	End Beam Forces
4.1.2	Connection Design27
4.2 D	iscussion28

REFERE	NCE	v
СНАРТЕ	R 5 : CONCLUSION AND RECOMMENDATION	30
4.2.3	The increase in size of bolts	
4.2.2	Connection design	29
4.2.1	Increase in Force from Zone 1, 2A and 2B	

LIST OF FIGURES

Figure 1: Existing Packinox Support Structure
Figure 2: Plate Boundaries Movements
Figure 3: Tectonic Plates around Malaysia
Figure 4: Flow Chart of the Study
Figure 5: Modelled Section
Figure 6: 4 views of the Modelled Structure
Figure 7: Changing the Seismic Parameters in StaadPro V8i
Figure 8: Unity Check is performed to analyse member or connection failure
Figure 9: Member and Joint displacement and reactions
Figure 10: Critical End Beam Forces
Figure 11: Key Milestones
Figure 12: Column-Beam Joints and Number
Figure 13: UB 254 x 102 x 25 and Column connection members
Figure 14: Difference in Axial Force for UB254 x 102 x 25 when the Seismic Zone
changes from Zone 1 to Zone 2A and 2B22
Figure 15: Difference in Tie Force for UB254 x 102 x 25 when the Seismic Zone
changes from Zone 1 to Zone 2A and 2B23
Figure 16: UB 305 x 102 x 28 and Column connection members
Figure 17: Difference in Axial Force for UB305 x 102 x 28 when the Seismic Zone
changes from Zone 1 to Zone 2A and 2B25
Figure 18: Difference in Tie Force for UB305 x 102 x 28 when the Seismic Zone
changes from Zone 1 to Zone 2A and 2B26
Figure 19: Percentage Difference in Axial Force for Changes from Zone 1 to 2A and 2B 28
Figure 20: Percentage Difference in Axial Force for Changes from Zone 1 to 2A and 2B. 29

LIST OF TABLES

Table 1: Frequency and intensity of felt earthquakes recorded from 1874 to 2010	5
Table 2: Load Cases In Staad Pro	11
Table 3: Unit weight of Materials	11
Table 4: Classification of wind loads	13
Table 5: Design wind speed	13
Table 6: Classification of earthquake loads	14
Table 7: Structural System and Numerical Coefficient	14
Table 8: Project Gantt Chart	19
Table 9: Comparision for end beam axial forces for Seismic Zone 1, 2A and 2B	
for UB254 x 102 x 25	22
Table 10: Comparision for maximum end beam tie forces for Seismic Zone 1, 2A	
and 2B for UB254 x 102 x 25	
Table 11: Comparision for end beam axial forces for Seismic Zone 1, 2A and 2B	
for UB305 x 102 x 28	
Table 12: Comparision for maximum end beam tie forces for Seismic Zone 1, 2A	
and 2B for UB305 x 102 x 28	
Table 13: Connection Design for Connection at Joint 31	
Table 14: Connection Design for Connection at Joint 47	27

CHAPTER 1 INTRODUCTION

1.1 Project Background

Steel are widely used in the oil and gas industry in Malaysia. These structure are commonly used as support structures for gas equipment or vessels. Steel support structures are preferred in this industry due to its many advantages such as its strength/ weight ratio, ductility and speed of erection. As most of the equipment and vessel frequently undergo modification, usage of steel structure would make easier for structural modification.

The Packinox project is a framed steel structure to support a large gas vessel. Recently, the gas vessel is not adequate to accommodate the production and is proposed to change to a larger vessel. The new vessel which is larger and taller requires modification to the existing support structure. A portion of the existing structure is removed and new structure is to be erected. Modification to the existing structure should be made without interfering or reducing the overall structures integrity or strength. The new portion also should take into account of wind and seismic loads. The exiting structure is as in Figure 1.

Figure 1: Existing Packinox Support Structure

1.2 Problem Statement

- 1.2.1 Earthquake and tremors from Sumatran Fault lines has increased the concern of the oil and gas industry in Malaysia. Recent Studies also shows that Malaysia is not immune to earthquake as its used to be. Research has shown that the effect of earthquake either originating from Malaysia or neighbouring countries could leave an impact on Malaysian structures.
- 1.2.2 Most of the current structure in Malaysian oil and gas industry has little or none seismic design specification or guidelines for earthquake-induced vibration due to the factor that Malaysia is in the low seismic hazard zone.
- 1.2.3 The increasing seismic activity resulting from the Sumatran fault line might cause Malaysia to be classified in a higher seismic activity zone.

1.3 Objective

1.1.1 To compare steel connection integrity of existing onshore oil & gas platform in Malaysia when the seismic zone increases from zone 1 to zone 2A and 2B using STAAD Pro.

1.4 Scope of Study

- 1.1.2 Framed structure from existing construction (Packinox gas vessel supporting structure)
- 1.1.3 Seismic effect Region 1, 2 and 3 of South East Asia (or Sumatera)
- 1.1.4 Connection design for bolt bonnections for simple connections

CHAPTER 2

LITERAURE REVIEW

2.1 Geological Background

The outermost layer of earth which is commonly known as lithosphere can be separated and classified into tectonic plates. These tectonic plates various from 70km to 150 km in thickness (M.C, et al., 2005). Currently there are three types of plates which are the primary, secondary and the tertiary plates. The primary plates covers most of the earth surface and the Pacific Ocean. The secondary plate are smaller than the primary and are usually not shown on maps due to the insignificant size. Lastly, the tertiary plates are commonly known as micro plates. The tertiary plates are extremely small and are usually found between the primary and secondary plates. Some of the tertiary plates are grouped together to form a secondary plate.

Earthquake occurs when there is a sudden release in energy stored due to the constant movement of the tectonic plates. The movements of the tectonic plates are relative to one another occurring along sides of the plates (Har, 2005). There are three type of tectonic plate movements which are convergent, transform and divergent where plates are moving towards, in parallel and away another plate respectively. These plate movement are as in Figure 2.

Figure 2: Plate Boundaries Movements

2.2 Seismicity in Peninsular Malaysia

Based on a seismotectonic study conducted by the Minerals and Geoscience Department of Malaysia, it was found that Malaysia is tectonically positioned in a stable Sunda Plate. Hence, Peninsular Malaysia is classified as low to medium seismicity group. Nevertheless, the previous occurrence of several large earthquakes near Sumatra should increase awareness and alertness and should serve as a sign that major earthquakes could cause significant damage although at a further distance. This is due to the characteristics of long period component of shear waves and local sites (Adnan et al.,2005).

However, most people assume that Malaysia is free from heavy damage causing or even life-threatening seismic disasters. The truth, seismic hazard in Malaysia is undeniable as there are seismic hazards originating from the increasingly seismic active Sumatran Fault line. The two most seismically active tectonic plate intersection are shown in Figure 3 which is the Sumatran subduction zone consisting of approximately 1600km long fault line and the Philippines plate have been producing consistent distant motions and have been recorded by Malaysian seismic network stations for the past years (Adnan et al.,2005). The 26th December 2004 Sumatra-Andaman earthquake originated from the Sumatra subduction zone was one of the largest tsunami generating seismic event with a 9.3 magnitude (Husen, et al.,2008).

Figure 3: Tectonic Plates around Malaysia

In 2004, Adnan et al., (2005) mentioned that the future significant earthquake would be over the Sumatra Fault and might give Peninsular Malaysia effect especially in the Western part. The return period for earthquake with magnitude above 7 and slip rate of \pm 15 is approximately 100 to 150 years. Studies made by Structural Earthquake Engineering Research (SEER), Faculty of Civil Engineering, Universiti Teknologi Malaysia has concluded that the earthquake of magnitude 7 that erupt in Sumatra Fault line will effect cities like Kuala Lumpur which are situated 350 km away.

Table 1 shows the data of experienced earthquakes in Malaysia are available from 1815 onwards but are insufficient and poorly correlated. However, since approximately 1909, information from Malaysian Meteorological Department (MMD) suggests that Peninsular Malaysia has been experiencing earthquakes of maximum intensity equivalent to VI on the Modified Mercalli Intensity Scale (MMI) (Ministry of Science, Technology and Innovation of Malaysia. (2009)).

State (1909-July 2010)	Frequency of Occurrence	Maximum Intensity (MMI)
Perlis	3	V
Kedah	18	V
Penang	41	VI
Perak	24	VI
Selangor	50	VI
Negeri Sembilan	14	V
Malacca	19	V
Johor	32	VI
Pahang	35	III
Terengganu	2	IV
Kelantan	3	IV
Kuala Lumpur	38	VI

Table 1: Frequency and intensity of felt earthquakes recorded from 1874 to 2010

2.3 Assessment of Possible Ground Movements

Assessment of ground movement is important in order to understand the behaviour of the force exerted to structures. Through this assessment, design for seismic resistance structure could be developed. In order to develop a design motion for earthquake resistant, plenty of data regarding the ground motion characteristics is required. Unfortunately, this data and information in Malaysia is insufficient due to Malaysia is located in region with low seismic activity (Zaini Sooria, et al., 2012).

Alternatively, through predicting the maximum magnitude earthquake from past data, the assessment of possible ground movement in Peninsular Malaysia could be conducted. Upon obtaining the maximum magnitude earthquake, the maximum acceleration and displacement that are predicted to occur could be easily determined.

Studies from SEER group that predicted the large earthquake of magnitude 7 in the Sumatra Fault line will generate a peak ground acceleration (PGA) in Peninsular Malaysia of 70gal (0.07g). Through the probabilistic analysis for Peninsular Malaysia, it was concluded that the maximum PGA for 500 years and 2500 years are 50 gal (0.05g) and 70 gal (0.07) respectively (Adnan et al., 2005).

The assessment for low seismic activity regions such as Malaysia, it is assumed that the largest past earthquake is the minimum value for a maximum earthquake estimate (Tenhaus, at al., 2003). The larges earthquake to ever recorded in Malaysia was in 1874 with magnitude $6.5M_b$. Researchers has claimed that the Bukit Tinggi fault will be reactivated due to the occurrence of several earthquakes in the Sumatera (Shuib, 2009). Considering this fact, to estimate the maximum magnitude earthquake with a return period of 1000 years, it is predicted that earthquake with magnitude larger than $6.5M_b$ will occur. Earthquake with this intensity will cause surface rupture.

A study conducted in 2012 by Kyoto University, Japan has proposed that an earthquake with magnitude 6.5 is the maximum for Peninsular Malaysia. Based on this study also, it was estimated the Peak Ground Velocity (PGV) of 60 cm/s and Peak Ground Displacement of 150mm (Zaini Sooria, et al., 2012).

2.4 Response of Structures to Earthquake

Earthquake produces wave that causes the ground to vibrate in the horizontal direction. This results to horizontal loads applied to structures or buildings. This horizontal load is caused by the internally generated inertia produced by the vibration of the structures mass. The mass, size and shape are the main contributing factors that determines the effect of the seismic forces and also predict the performance of the structure when exposed to seismic loads.

Inertia is a force which is the product of mass and acceleration. Acceleration is the ground acceleration produced by the earthquake. Thus, the increase in weight will result in higher inertial force (Sorno, et al, 2005). The increase in height of a structure will result in higher damage as the structure undergoes resonance when the seismic loads is applies. Resonance in tall structures amplify the effect and could be destructive.

The time period for seismic load to be applied to a structure is relatively short. The longest period of earthquake vibration is only 10-20 seconds. The seismic loads also leaps from zero to maximum is seconds and sometimes even milliseconds. It is then reduced to zero and increased to maximum in the opposite direction. Thus, earthquake induces a shock effect on structures (Har, 2005).

The most effective reaction to counter the severe effect of earthquake is by ensuring the distribution of members in the structure and the continuity of vertical members. This is commonly known as the configuration of lateral force resisting members. This is important because this configuration regulates the vibration period, the damping and resonance characteristic of the structure. Hence, it results in the change in reaction of structure to seismic loads .

2.5 Connection Failure due to seismic activity

The seismic activity causes a structures joint to fail when the designed connection don't accommodate the members of the structures to move independently from each other or insufficient clearance between member such as beam and column. The rigidity of these connections connecting two members allows little or no movement between the structure causing the structure to fail in the event of earthquake.

According to John Shipp (1994), there is a wide-ranging of in structures reporting connection failures. Structure location differs up to 25 km from the epicenter. Structure height is from 1 to 22 stories, and most of the structural failures occurred in the upper half of high-rise structure and at all levels in lower structure. Connection failure ranges from less than 10% to as high as almost 100%. Shipp also concluded that connection failure occurs with or without column-flange stiffeners, structures with smaller number of frame bays and structures with moment frame girder line.

2.6 Steel Connections

There are two primary types of connection which are simple connection and moment resisting connections. Simple connections are usually pinned connections that only transfer shear force only and have approximately zero resistance to rotation. Therefore, simple connections do not transfer moments at the ultimate limit state. Simple connections are usually used for beam-to-beam, beam-to-column and bracing connections where else, the moment resisting connections are used primarily for beam-to-column and in rare cases for beam-to-beam.

2.7 Conclusion of Literature Review

The literature is analysed to determine the scope and methodology of this project:

- Peak Ground Acceleration in 500 years is 0.05g (Adnan et al.,2005). This value is within Zone 2A in accordance to UBC 1997
- The increase in weight or accleration will result in higher inertial force (Sorno, et al, 2005). Thus, the assessment will be conducted for different beam sizes.
- Earthquake with magnitude 6.5 (Zone 2A in UBC 1997) is the maximum for Peninsular Malaysia (Zaini Sooria, et al., 2012).

CHAPTER 3

METHODOLOGY

3.1 Project sequence

The summary of the project sequence are shown in Figure 4

Figure 4: Flow Chart of the Study

3.1.1 Structure Design and Load Assigning in StaadPro

StaadPro V8i is used for the purpose of analysing the structure. The new portion of the Packinox steel framed support structure is modelled by converting the structural drawing. The structure is assumed fixed at the bottom as it is an extension of the existing structure. After completing the modelling, the loads are assigned and load cases are added.

Figure 5: Modeled Section

Figure 6 : 4 views of the Modeled Structure

Loads such as Dead Load, Live Load, Seismic Load, Wind Load and Combination loads are assigned before performing the analysis. Table 2 shows the complete assigning of load

CASE	LOAD CASE	COMBINATION
NUMBER		
1	Dead Load	DEAD
2	Live Load	LIVE
3	Wind Load in X-Direction	WX
4	Wind Load in Z-Direction	WZ
5	Seismic Load in X-Direction	EQX
6	Seismic Load in Z-Direction	EQZ
7	Load Combination 1	1.4 DEAD + 1.6 LIVE
8	Load Combination 2	1.2 (DEAD + LIVE + WX)
9	Load Combination 3	1.2 (DEAD + LIVE - WX)
10	Load Combination 4	1.2 (DEAD + LIVE + WZ)
11	Load Combination 5	1.2 (DEAD + LIVE - WZ)
12	Load Combination 6	1.2 DEAD + 0.6 LIVE + 1 EQX
13	Load Combination 7	1.2 DEAD + 0.6 LIVE - 1 EQX
14	Load Combination 8	1.2 DEAD + 0.6 LIVE + 1 EQZ
15	Load Combination 9	1.2 DEAD + 0.6 LIVE - 1 EQZ

Table 2: Load Cases In Staad Pro

3.1.1.1 Dead Loads

Dead loads are permanent downwards loads acting to the structure due the self weight and non-structural support component of the structure. For this project, the unit weight of materials are as in Table 3 below :

Unit Weight of Materials	-
Soil	1.8 ton/m^3
Sand (Wet)	2.00 ton/m^3
Gravel	$1.90 ext{ ton/m}^3$
Granite in masonry	2.65 ton/m^3
Brick with cement mortar finish	$1.90 ext{ ton/m}^3$
Plain concrete	$2.30 ext{ ton/m}^3$
Reinforced Concrete	2.40 ton/m^3
Fire Proofing	0.80 ton/m^3
Steel	7.85 ton/m^3

The following dead load calculated and assigned to the StaadPro Model :

Grating	:	45 kg/m^2
Joist	:	14 kg/m^2
Beam	:	30 kg/m^2
Hand Rail	:	15 kg/m^2
Stair	:	160 kg/m ²

Stringer	:	12.8 m x 34.6 kg/m x 2	=	88.58 kg
Hand Rail	:	12.8 m x 15.0 kg/m x 2	=	38.4 kg
Stair Tred	:	(0.75 x 0.25 x 4 x 0.01		
		x 0.75 x 4) x 45 kg/m ²	=	<u>35.1 kg</u>
			=	<u>162.08kg</u>

3.1.1.2 Equipment Loads (Empty, Operating, Hydrostatic Test)

- I. Empty Weight
 - Dead Weight of the vessel and inclusive protective layers
- II. Operating Weight
 - Empty weight + weight of their maximum contents
- III. Hydrostatic Test Load
 - Weight of equipment completely filled with water.

3.1.1.3 Piping Loads

The weight of the pipe rack, pipe sleeper and other piping line and instruments

3.1.1.4 Live Loads

The live load for this structure is 200 kg/m^3 as this structure is classified for equipment support structure and accounts for floor inspection and repairs.

3.1.1.5 Wind Loads

Wind loads were designed in accordance to PTS 34.00.01.30 and BS CP 3. The classifications for wind loads and design wind speed are as Tables 4 and 5 below.

Highest Mean Hourly Wind Speed	V ₁₀ = 28.0 m/sec for 10.0m height
Topography Category	1 (Extreme exposure)
Gust Duration	10 Sec
Gust Factor	1.3
Exponent Giving Variation	1/14

Table 4: Classification of wind loads

Height from Ground, z (m)	Wind Speed, Uz (m/sec)
<3	33.4
5	34.6
10	36.4
20	38.2
30	39.4
40	40.2
50	40.8
60	41.4
70	41.8
80	42.2
90	42.6
>100	42.9

Table 5: Design wind speed

The formula given is : $Pz = A \times 0.637 \times Uz^2 \times Cfm$

Where A : Total projected Area on each direction (m^2)

Uz : Design Wind Speed at height z (m/sec)

Cfm : Shape coefficient for total multi structure.

3.1.1.6 Earthquake Loads

Earthquake loads shall be designed in accordance to UBC 1997 Volume 2. The classification of earthquake loads are as table 6 below and the structural system and numeric coeficient in table 7 :

Table 6:	Classification	of	eartho	uake	loads
I HOIC OF	Classification	•••	cur unq	uuuu	100000

Seismic Zone Factor	Z = 0.075 (zone 1)
Soil Profile	SD
Occupancy Category	Standard Occupancy
Structural System	1) Ordinary Moment resisting frame (OMRF)
	2) Ordinary braced frame

Design Base Shear

The formula given are :

$V = \begin{bmatrix} C & \times \frac{I}{R \times T} \end{bmatrix} \times W$; V \leq Vmax = (2.5 Ca \times	
$I/R) \times W$		

V	\leq	Vmin	= (().11	Х	Са	×	I)	×	W	Ι
---	--------	------	------	------	---	----	---	----	---	---	---

where ;	Total Design Base Shear	V
	Total Loads	W
	Seismic Coefficient	Cv = 0.18
		Ca = 0.12
	Seismic Importance Factor	I = 1.00
	Structure period (sec)	$T = Ct \times h^{3/4}$
	Height of Structure	h
	Numerical Coefficient	R and Ct

Table 7: Structural System and Numerical Coefficient

Structural System	Material	R	Ct
Ordinary Moment-	Steel	4.5	0.0853
Resisting frame (OMRF)	Concrete	3.5	0.0731
Ordinary Braced Frame	Steel	5.6	0.0488
	Concrete	5.6	0.0488

3.1.2 Structural Integrity and Load Checking

The assigned loads (excluding Seismic Load) is first analysed to ensure the structural integrity. The designed member are checked for failure for the assigned loads. If there is ay failure, the members and the assigned loads are checked, revised and changed to ensure the integrity of the structure.

3.1.3 Input seismic loads based on Zone 1, 2A and 2B.

The seismic conditions for the model in StaadPro V8i is changed from zone 1 to zone 2A and 2B. This is to generate new force acting on the member and joints in order to determine the end beam forces corresponding to the seismic condition. Each Zone has different seismic coefficient based on the ground acceleration. For instance, according to UBC 1997, Zone 1 has ground acceleration of 0.075g followed by 0.15g and 0.2g for Zone 2A and 2B respectively. The new critical reactions are then input in the completed connection design tool. Figure 7 shows the StaadPro interference for changing the seismic coefficient

elf Weight	Contraction of the second seco		Contraction and account of	NAMES OF TAXABLE PARTY.
pint Weights	Type: UBC 1997		Include Ac	cidental Load
ember Weights				
ioment Weights	1		¥.	1
oor Weights	Parameter	Value	Unit	
opi medina	Zoni	0.075		
	Importance factor (I) 1		
	Rw in X Direction (RWX)	3		
	Rw in Z Direction (RWZ)	3		
	Soil Profile Type (STYP	<u>1</u> 1		
	Near source factor Na (NA)	0		
	Near source factor NV (NV)	0		
	* CT Value (CT)		distant.	
	* Period in X Direction (PX)	8	seconds	
	* Period in Z Direction (PZ)	0	seconds	
	Zone Factor			

Figure 7 : Changing the Seismic Parameters in StaadPro V8i

3.1.4 Structural Analysis

After assigning all the loads and load combinations, the model is analysed again to check for errors and failures in members and joints as in Figure 8. The horizontal, vertical and rotational force and reaction are obtained across each members and joints as shown in Figure 9.

Figure 8 : Unity Check is performed to analyze member or connection failure

C Ancoucert - Autors Ancare	EP1	concell.	Node Disp	lacements	ē.				Ξ	13
	<pre>sl <l>] >] All (Summary /</l></pre>									
		Construction of Construction	Rorizontal	Vertical	Horizoetal	Resultant		Rotational		
- CH	Node	LC	1	T	I	1000	12	11	12	I
5 A	1	171	- 8.751	1.007	24%	1.575	.0.000	0.065	.0.003	-
	1	211	11348	0.001	3 339	11541	0.002	0.001	-0.005	
I The second		11405+1	18.728	.4 193	4.735	10.218	0.082	0.001	-0.008	
1 alto	1	101	1.721	-6.031	-2.439	0.848	0.000	-0.000	-0.000	
	-	211	11.305	439	1 1 3 9	11.811	0.081	-0.000	-0.005	1
	-	31406+1	19.101	-1,200	4.728	09716	0.001	-0.000	-0.065	
CTI ATIL	3	101	1696	-8.244	-2.447	0.842	0.000	-0.000	-0.008	
N X X X		211	12,959	-1.005	1.339	11.507	-0.000	0.000	-0.004	51
1 V M A	-	31406+1	18.508	2174	4717	19,212	0.000	-0.681	-0.008	
	4	101	2.671	-2.441	-2.457	0.924	0.000	6.000	-0.000	11
			110.100	a ' 1000	1 1 1 1	10.000		a	4 44 4	0.7
		chinew II	Ream Rolat	Ever Filente	comunt fie	re san	. NAME	n men	Tel	170
		ckinex21	Beam Relative	tive Displace	cement De	sait lax Relat	ive Displa	cements,		a.
	Real Real Beam	ckinex21 FFAAI	Beam Relat Relative	twe Displace	cement De ement / N	sait lax Relat	ive Displa	cements		3
	- 	clinex21 FF(Al LC 1DL	Beam Relat Relative	tve Displaci Displaci x em	ement De ement / N	sait lax Relat	ive Displa	cements,		13
	Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro R	ctinox21 > > Al LC 1DL	Beam Relat Relative Beat n 0.000 0.153	twe Displace	ement De ement / N y men 0.000 0.022	tait lax Relat nm 0.000 -0.007	Ive Displa	cements,		3
	- 	chrox21 FFA(Al LC 10.	Relative Beam Relative Beat m 0.000 0.153 0.305	tve Displace	ement / N y wa 6 000 6 022 8 027	rait lax Relat nm 0.000 -0.007 -0.007 -0.007	Ive Displa Resultant new 0.000 0.023 0.025	cements,		13
		ckinox21 FFR(AI LC 1D.	Beam Relative Dist m 0.000 0.153 0.305	Exercision Displace x E.000 E.000 E.000 E.000	ement /N y rain 0.000 0.022 0.022 0.027 0.019	sait: lax Relat 0.000 -0.007 -0.007 -0.003	0.000 0.000 0.000 0.000 0.000 0.000	cements,		12
	Ro Ro Rom T	ckinexc21 FFF(AI LC	Beam Relative Beat m 0.000 0.153 0.305 0.455 0.653	Exercision Displace * exm E.000 -E.000 E.000 E.000 E.000	00000000000000000000000000000000000000	sait lax Relat 0.000 -0.007 -0.007 -0.003 0.000	ive Displa Resultant nee 0.000 0.025 0.025 0.025 0.025 0.025	cements		100
	Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro R	tinex/1 FFAAI LC 1D. 2U.	Beam Relative Beam Relative Beat 0.000 0.153 0.355 0.455 0.455 0.613 0.000	Exer Displace Displace * * * * * * * * * * * * *	Comment De ement / M y men 0.000 0.022 0.027 0.010 0.000	sait tax Relat 0.000 -0.007 -0.007 -0.003 0.000 0.000	Ive Displa Resultant nee 0.000 0.025 0.025 0.025 0.025 0.020 0.000	cements		1001
		ckinex21 FFAAI LC 1DL 21L	Beam Relative Relative 0.000 0.153 0.455 0.613 0.000 0.153	Eve Displac Displac #em #200 #200 #200 #200 #200 #200 #200	Comment De ement / N 9 mars 0.000 0.027 0.027 0.027 0.020 0.000 0.000 0.000 0.000	1000 1000 1000 1000 1000 1000 1000 100	Ive Displa Resultant nes 0.000 0.000 0.000 0.000 0.000 0.000 0.000	cements /		111
		ctinex21 FFA	Beam Relative Relative 0.000 0.153 0.365 0.468 0.000 0.153 0.365 0.355 0.355 0.355	x een E.000 E.000 E.000 E.000 E.000 E.000 E.000 E.000 E.000	Comment De ement //W 9 mms 6 000 6 022 0 027 6 020 6 020 0 000 4 020 4 020 4 020	1000 1000	Ive Displa Resatant men 0.000 0.023 0.025 0.020 0.000 0.000 0.000 0.000 0.000 0.000	cements,		1001
Y I		cbrox21 () () () () () () () () () () () () () (Beam Relative Beam Relative Beat 0.0000 0.00000 0.00000	x eam E.000	Comment De ement /// 8000 8020 8020 8020 8020 8020 8020 8	10100 1000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	cements,		10 · 10
T _x		chrox21 () () () () () () () () () () () () () (Beam Relative Relative 0.000 0.153 0.355 0.455 0.455 0.355 0.355 0.355 0.355 0.355	Eve Displo Displace #mm E.000 E.000 E.000 E.000 E.000 E.000 E.000 E.000 E.000 E.000 E.000 E.000	Comment De ement //N 8000 8022 8020 8020 8020 8020 8020 802	sait lax Relat 1 0000 -0.007 -0.007 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.	ive Displa Resultant new 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	cements,		1 III
Y Last 1 Deployment		ctinox21 - + + +	Beam Refail Relative 544 0.000 0.153 0.005 0.458 0.000 0.153 0.355 0.458 0.000 0.153 0.355 0.458 0.000 0.153 0.355 0.458 0.000 0.153 0.355 0.4588 0.4588 0.4588 0.4588 0.4588 0.4588 0.4	x mm E.0000 E.0000 E.000 E.000 E.0000 E.000 E.000 E.000 E.000	comment De ement ∬N 0 000 0 000	teant fax Relat 0.000 -0.007 -0.007 -0.007 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	tive Displa Resultant 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000	cements		10 N

Figure 9 : Member and Joint displacement and reactions

3.1.5 Determine the critical joint for the increased seismic activity

The analysis is repeated for structure under seismic Zones 1, 2A and 2B. For each analysis, the most critical joint and the forces on the joint is determined. The difference of the force induced on the joints are recorded for connection design.

3.1.6 Develop a connection design

The connection is design based on the forces imposed on the most critical joint. The connection design for seismic zone 1 is used as the baseline for existing structure to be compared to connection design for the increasing ground acceleration factor.

The larges positive and negative values from the StaadPro V8i End Force Beam is considered for the critical values. These end beam force acting on the joint in the X, Y and Z directions for the linear force and rotational force in the rX, rY and rZ direction are obtained to design the connection. The Figure 10 shows the forces extracted from StaadPro V8i

Figure 10 : Critical End Beam Forces

These values are used to design steel bolt connections based on the BS 5950. There are 14 checks that has to be complied in order for the connection to be in accordance of the BS 5950.

3.1.7 Recommendations to improve the structural integrity for connections

Propose recommendations to improve the structural integrity for connections for the steel structure if the connections fails. The structural recommendations are also based on the type of connection failure.

3.2 Key Milestone

The Figure 12 shows the key milestone that are to be achieved by the specific dates. This Milestone assists the author keep track on the progress of the project.

Figure 11 : Key Milestones

3.3 Gantt Chart

The project Gantt chart in Table 7 describes in detail the process of the study being carried out by the author. The dateline for project completion and submission are included in the Gantt Chart.

No	Week Number/	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Work Details														
1	Topic Selection														
2	Research Work (Literature Review)														
2	Submission of Extended Proposal						•								
3	Proposal Defence										•				
4	Structural Design and Load Assigning														
5	Submission of Interim Report													•	
6	Structural Integrity and Load Checking														
7	Seismic Load for Zone 1 (Project Baseline)														
				-		-									
No	Week Number/	15	16	17	18	19	20	21	22	23	24	25	26	27	28
	Work Details														
8	Seismic Load for Zone 2A & 2B														
9	Connection Design Tool Development														
10	Submission of Progress Report							•							
11	Connection Design & Results interpretation														
12	Preparation of Final Report														
13	Pre-SEDEX										•				
14	Submission of Final Report													•	
15	Submission of Technical Paper													•	
16	VIVA														•
17	Submission of Dissertation														•

Table 8: Project Gantt Chart

CHAPTER 4

RESULTS AND DSCUSSION

4.1 Results

The analysis for the critical connection is done focusing on column-beam connections as it is crucial for lateral loads . Below are the figure for the Column-beam Joints for the Packinox gas vessel steel support structure.

Figure 12 : Column-Beam Joints and Number

4.1.1 End Beam Forces

For the Packinox gas vessel steel support structure, there are two main Universal Beams used which are UB254 x 102 x 25 and UB305 x 102 x 28. The axial forces and maximum tie forces along the beams are tabulated in the sections below.

4.1.1.1 Universal Beam (UB) 254 x 102 x 25

Figure 13 shows the UB254 x 102 x 25 and the corresponding column attached. There are 8 column and beam connections for this beam size.

Figure 13 : UB 254 x 102 x 25 and Column connection members

Table 9 compares the end beam axial forces for UB254 x 102 x 25 for different seismic zones. The tabulated results compared the forces produced when the ground seismic acceleration increases from 0.075g to 0.15g and 0.2g.

Joint	Zone 1 (0.075g) kN	Zone 2A (0.15g) kN	Percentage Increase From Zone 1 to 2A	Zone 2B (0.2g) kN	Percentage Increase From Zone 1 to 2B
1	23.552	24.315	3.14%	26.331	10.55%
6	20.096	20.744	3.12%	24.948	19.45%
31	55.064	57.16	3.67%	65.174	26.75%
34	-1.04	-1.311	20.67%	-5.523	81.17%
44	-20.858	-22.607	7.74%	-33.831	38.35%
45	38.749	36.988	4.76%	34.251	-13.13%
94	32.428	35.801	9.42%	36.4	10.91%
95	-41.247	-41.961	1.70%	-44.554	7.42%

Table 9 : Comparison for end beam axial forces for Seismic Zone 1, 2A and 2B forUB254 x 102 x 25

Figure 14 show the increase in Axial Force for UB254 x 102 x 25. The difference in forces range from 0kN to 4kN when the seismic zone changes from Zone 1 to 2A and 3kN to 13kN for changes from Zone 1 to 2B.

Figure 14 : Difference in Axial Force for UB254 x 102 x 25 when the Seismic Zone changes from Zone 1 to Zone 2A and 2B

Table 10 compares the maximum end beam tie forces for UB254 x 102 x 25 for different seismic zones. The tabulated results compared the forces produced when the ground seismic acceleration increases from 0.075g to 0.15g and 0.2g.

Joint	Zone 1 (0.075g), kN	Zone 2A (0.15g), kN	Percentage Increase From Zone 1	Zone 2B (0.2g),kN	Percentage Increase From Zone 1 to 2B
1	10.20	20.46	5 220/	10.24	0.26%
L	-19.39	-20.40	3.23%	-19.54	-0.20%
6	10.338	10.338	0.00%	12.83	19.42%
31	-7.07	-7.17	1.39%	-7.08	0.14%
34	-0.895	-0.895	0.00%	-0.895	0.00%
44	-1.064	-1.064	0.00%	-1.064	0.00%
45	16.109	16.109	0.00%	16.109	0.00%
94	12.79	12.79	0.00%	12.922	1.02%
95	-19.39	-20.46	5.23%	-19.34	-0.26%

Table 10 : Comparison for maximum end beam tie forces for Seismic Zone 1, 2A and
2B for UB254 x 102 x 25

Figure 15 show the increase in Tie Force for UB254 x 102 x 25. The difference in forces range from 0kN to 2kN when the seismic zone changes from both Zone 1 to 2A and 2B.

Figure 15 : Difference in Tie Force for UB254 x 102 x 25 when the Seismic Zone changes from Zone 1 to Zone 2A and 2B

4.1.1.2 Universal Beam (UB) 305 x 102 x 28

Figure 16 shows the UB305 x 102 x 28 and the corresponding column attached. There are 6 column and beam connections for this beam size

Figure 16 : UB 305 x 102 x 28 and Column connection members

Table 1 compares the end beam axial forces for UB305 x 102 x 28 for different seismic zones. The tabulated results compared the forces produced when the ground seismic acceleration increases from 0.075g to 0.15g and 0.2g.

Joint	Zone 1 (0.075g) kN	Zone 2A (0.15g) kN	Percentage Increase From Zone 1 to 2A (%)	Zone 2B (0.2g) kN	Percentage Increase From Zone 1 to 2B (%)
44	-20.858	-22.607	7.74%	-33.831	38.35%
45	38.749	36.988	4.76%	34.251	-13.13%
46	50.474	54.878	8.03%	73.352	31.19%
47	106.092	106.377	0.27%	129.736	18.22%
94	32.428	35.801	9.42%	36.4	10.91%
95	-41.247	-41.961	1.70%	-44.554	7.42%

Table 11 : Comparison for end beam axial forces for Seismic Zone 1, 2A and 2B for UB305 x 102 x 28

Figure 17 show the increase in Axial Force for UB305 x 102 x 28. The difference in forces range from 0kN to 5kN when the seismic zone changes from Zone 1 to 2A and 4kN to 24kN for changes from Zone 1 to 2B

Figure 17 : Difference in Axial Force for UB305 x 102 x 28 when the Seismic Zone changes from Zone 1 to Zone 2A and 2B

Table 12 compares the maximum end beam tie forces for UB305 x 102 x 28 for different seismic zones. The tabulated results compared the forces produced when the ground seismic acceleration increases from 0.075g to 0.15g and 0.2g.

Joint	Zone 1 (0.075g), kN	Zone 2A (0.15g), kN	Percentage Increase From Zone 1 to 2A (%)	Zone 2B (0.2g),kN	Percentage Increase From Zone 1 to 2B (%)
44	19.348	19.348	0.00%	21.298	9.16%
45	40.779	40.779	0.00%	42.657	4.40%
46	65.95	65.95	0.00%	69.72	5.41%
47	-105.97	-105.97	0.00%	-113.76	6.85%
94	-0.965	-1.062	9.13%	-1.169	17.45%
95	1.725	1.949	11.49%	2.198	21.52%

Table 12 : Comparison for maximum end beam tie forces for Seismic Zone 1, 2A and
2B for UB305 x 102 x 28

Figure 18 show the increase in Tie Force for UB305 x 102 x 28. The difference in forces range from 0kN to 2kN when the seismic zone changes from both Zone 1 to 2A and 2B

Figure 18 : Difference in Tie Force for UB305 x 102 x 28 when the Seismic Zone changes from Zone 1 to Zone 2A and 2B

4.1.2 Connection Design

4.1.2.1 Universal Beam (UB) 254 x 102 x 25

Table 13 show the connection design for the largest increase in axial and tie force for UB254 x 102 x 25. The table shows the requirement for bolt connection for the connection under Seismic Zone 1, 2A and 2B.

Parameters	Zone 1	Zone 2A	Zone 2B
Seismic Ground	0.075g	0.15g	0.2g
Acceleration			
Max Axial Force	55.064	57.16	65.174
Max Tie Force	10.338	10.338	11.83
Type of Connection	Double Angle Web Cleat Single Line of Bolt		
Number of Bolts	2 with Grade 8.8 on S275 member		
Size of Bolts	M12	M12	M16

Table 13 : Connection Design for Connection at Joint 31

4.1.2.2 Universal Beam (UB) 305 x 102 x 28

Table 14 show the connection design for the largest increase in axial and tie force for UB305 x 102 x 28. The table shows the requirement for bolt connection for the connection under Seismic Zone 1, 2A and 2B.

Table 14 : Connection D	esign for Connection	at Joint 47
-------------------------	----------------------	-------------

Parameters	Zone 1	Zone 2A	Zone 2B
Seismic Ground	0.075g	0.15g	0.2g
Acceleration			
Max Axial Force	106.092	106.377	129.736
Max Tie Force	-105.97	-105.97	-113.76
Type of Connection	Double Angle Web Cleat Single Line of Bolt		
Number of Bolts	3 with Grade 8.8 on S275 member		
Size of Bolts	M12	M12	M16

4.2 Discussion

4.2.1 Increase in Force from Zone 1, 2A and 2B

Based on the tabulated results, it was found that the end beam forces for Zones 1 to 2A has insignificant changes. This is because the critical forces in all 12 joints are generated by the Load Combination 1 (refer Table 2). As this load combination does not include seismic loads, the increasing ground acceleration has an insignificant effect on the structure and joints. Figure 19 and 20 shows the percentage difference for the force generated from Zone 1 to 2A and 2B. The percentage of axial forces increases ranging from 0% to 9.42% and 0% to 5.23% in tie force

For Zone 2B, there is a significant increase in the force induced at the joins as most of the end beam forces are generated by Load Combinations 6, 7, 8 and 9 (refer table 2). Thus, the increase in the ground acceleration will effect the connection design. The percentage of axial forces increases ranging from 7.42% to 38.35% and 0% to 12.61% when the seismic conditions changes from Zone 1 to Zone 2B.

Figure 19 : Percentage Difference in Axial Force for Changes from Zone 1 to 2A and 2B

Figure 20 : Percentage Difference in Axial Force for Changes from Zone 1 to 2A and

4.2.2 Connection design

Joint 31 has is the most effected joint when the seismic ground acceleration increases from Zone 1 to 2B for UB254 x 102 x 25. The largest difference in axial force is from Zone 1 to Zone 2B at joint 31 with and increase of 8.01kN. For tie force, the most significant difference is also at joint 31 with increase of 1.5 kN. Thus, by analysing that joint, the connection integrity of the structure could be determined.

Joint 47 has is the most effected joint when the seismic ground acceleration increases from Zone 1 to 2B for UB305 x 102 x 28. The largest difference in axial force is from Zone 1 to Zone 2B at joint 47 with and increase of 23.4kN. For the force, the most significant difference is also at joint 47 with increase of 7.81 kN. Thus, by analysing that joint, the connection integrity of the structure could be determined.

4.2.3 The increase in size of bolts

In accordance to BS 5950, UB254 x 102 x 25 and UB 305 x 102 x 33 requires 2 and 3 bolts respectively. Thus, by varying the size of the bolts, the connection integrity was determined. For Zone 1 and 2A, M12 bolts were sufficient for the joint. However, the diameter of bolt increases form M12 to M16 when the seismic Zone changes from Zone 1 to 2B

CHAPTER 5

CONCLUSION AND RECOMMENDATION

Based on the literature, it was found that the maximum magnitude earthquake in Peninsular Malaysia is of magnitude 6.5 with PGV and PGD of 60 cm/s and 150mm respectively. According to the Modified Mercalli scale, ground velocity of 60 cm/s is categorized under severe shaking and with moderate to heavy damage. The ground acceleration is predicted to be between 0.34 g to 0.65 g. If an earthquake with this parameters occur in Peninsular Malaysia, structures will be damaged as structures in Malaysia is not catered to withstand earthquake of this intensity.

Based on the study, it was found that the packinox gas vessel support steel structure has the an insignificant changes in the end beam forces when the seismic conditions changes from Zone 1 to Zone 2. However, if seismic conditions changes to Zone 3, there will be a large difference in the forces in the end beam generated by the ground acceleration. This caused the current bolt connection to be insufficient and to fail. For Zone 1 and 2A, Grade 8.8 M12 bolts were required and M16 for Zone 2B.

For future recommendations, this project could be improved by investigating or analyzing ways to rectify or modify the connections that are predicted to fail when the seismic conditions changes from Zone 1 to Zone 2B. Seismic retrofitting is a method of modifying existing structure to improve the resistance to seismic activities, ground acceleration/motions and soil failure due to earthquakes. The understanding in seismic retrofication could improve the safety of Malaysian Oil and Gas Structure in the occurrence of devastating seismic activities.

REFERENCE

Adnan, A., Abas, R., & Hendriyawan. (2005). Earthquake Induced Energy : Sources and Hazard Analysis for Structural Earthquake Resistant Design in Peninsular Malaysia. The ingenieur, 21-25.

M.C, H., Onn, L. W., Chiang, J., Kong, S. T., Fatt, A. G., Chiew, L. K., et al. (2005). Position Paper on Issues Related to Earthquake. The Institution of Engineers, Malaysia. Kuala Lumpur: The Institution of Engineers Malaysia.

Har, N. P. (2005). The Effects of Earthquake Related Tremors on Buildings in Malaysia. Kuala Lumpur: Web Structures.

Husen, H., Majid, T., Nazri, F., Arshad, M., & Faisal, A. (2008). Development of Design response Spectra Based on Various Attenuation Relationship at Specific Location. The International Conference on Construction and Building Technology, (pp. 511-518). Kuala Lumpur.

Sooria, S. Z., Sawada, S., & Goto, H. (2012). Proposal for Seismic Resistant Design in Malaysia : Assessment of Possible Ground Motions in Peninsular Malaysia. Kyoto University, Department of Urban Management.

Shuib, M. K. (2009). The Recent Bukit Tinggi Earthquake and their Relationship to Major Geological Structures. Geological Society of Malaysia. Bulletin 55.

Adnan, A., Hendriyawan, Marto, A., & Irsyam, M. (2005). SEISMIC HAZARD ASSESSMENT FOR PENINSULAR MALAYSIA USING GUMBEL DISTRIBUTION METHOD. Jurnal Teknologi, 57-73.

Sarno, L. D., Elnashai, A., & Nethercot, D. (2005, May). Seismic Retrofitting of Framed Structures with Stainless Steel. Journal of Construction Steel Research, 93-104.

Megawati, K., Pan, T., & Koketsu, K. (2004). Response spectral attenuation relationship for Sumatra-subduction earthquakes and the seismic hazard implications to Singapore and Kuala Lumpur. Soil Dynamics and Earthquake Engineering, 11-25.

Ministry of Science, Technology abd Innovation of Malaysia. (2009). Seismic and Tsunami Hazard and Risks Study in Malaysia : Final Report. Inter Agency Committe and Tsunami Risk Management, Academy of Science Malaysia, Kuala Lumpur.

Minerals and Geoscience Department Malaysia. (2006). Study on the Seismic and Tsunami Hazard and Risks in Malaysia; Report on Geological and Seismotectonic information in Malaysia. Kuala Lumpur.

Tenhaus, P., & Campbell, K. (2003). Seismic Analysis Hazard. In W. Chen, & C. Scawthorn, Earthquake Engneering Handbook (p. Chapter 8). London: CRC Press.

John shipp (1994). Northridge Earthquake, 17 January, 1994: Seismic Performance of Steel. American Iron and Steel Institute 1994 General Meeting