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ABSTRACT 

 
Electroencephalography (EEG) involves the usage of electrodes placed on the human 

scalp to record electrical impulses generated by the brain. One of the many components 

that are present in EEG signals is the Visually Evoked Potential (VEP), whereby brief 

electrical impulses are generated as a result of the presence of visual stimuli. The aim 

of this project is to analyse EEG signals that contain VEP using the least-mean squares 

(LMS) method and differentiate between alcoholic and non-alcoholic subjects based 

on the resultant error signal. This LMS method is a form of adaptive filter that 

minimizes the mean square of the cost function for every iteration it undergoes and is 

widely used in many signal imaging applications due to its simplicity in 

implementation and low computational complexity. The EEG recording with VEP 

components is already available so the scope of the project only covers the adaptation 

of the LMS adaptive filter and the analysis of the VEP EEG error signals for 5 

alcoholic and non-alcoholic subjects. The analysis of the results indicate that there is 

a certain range of standard deviation values in which it is possible to classify the 

condition of the subject into either alcoholic or non-alcoholic condition. 

  

vii 
 



 

ACKNOWLEDGEMENT 

 
I would like to extend my deepest gratitude and appreciation to everyone who has been 

responsible for assisting me in my final year project over the course of 8 months. 

 

I would like to acknowledge my supervisor, Dr. Vijanth, for assisting me and 

providing guidance in completing my project. I would also like to mention Hussam, 

who gave me some advice regarding my project. 

 

I am deeply indebted towards my family, for giving me their full support during 

times of doubt. Though there were many difficulties in finishing this particular project, 

I managed to overcome the problems and complete the project successfully. This is 

due in no small part to the people who have supported me through the good times and 

the bad times. 

 

Thank you. 

  

viii 
 



 

CHAPTER 1  

INTRODUCTION 

 

 

1.1 Background of Study  

Our brain processes and transmits information using billions of neurons. Each neuron 

produces a miniscule amount of voltage when sending signals, usually measured in 

microvolts. To record this electrical activity of the human brain, the 

electroencephalogram (EEG) is used [1]. Also called electroencephalography, this 

method of measurement is just one of the many medical imaging techniques. This 

measurement technique is a non-invasive procedure that can be done frequently 

without any risk to the subject [2]. 

 

A single neuron does not generate sufficient voltage to be detected by electrodes. Thus, 

EEG recordings often display the summation of the synchronous activity of a large 

group of neurons, usually numbered in the millions. A typical human brain contains a 

hundred billion neurons [3]. One of the main intentions of using the EEG is to study 

the condition of the brain for clinical and physiological purposes.  

 

EEG is carried out by first applying electrolyte on the scalp and then placing electrodes 

on the scalp to record any electrical impulses generated by nerves in the brain. The 

arrangement and placement of electrodes has to follow certain systems, one of them 

being the 10-20 system which includes 21 electrodes as shown in Figure 1.  

 
 Figure 1. The 10-20 system [2] 
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The purpose of the electrolyte is to transform the current flow in the brain into electron 

flow that can be read by the electrodes. There are two types of electrodes: needle and 

surface. Needle electrodes are implanted on the surface of the brain during surgery and 

are able to read intracranial EEG. Surface electrodes, on the other hand, are placed on 

the scalp and are able to read scalp EEG. 

 

Once the electrodes have recorded the electrical signals, amplifiers are used to boost 

the amplitude of the readings in order to increase the accuracy by which the readings 

can be converted into digital signals. This conversion is carried out by an analog-to-

digital converter and the output from this converter goes to a computer where the data 

can be stored and displayed [2]. Filters are also used together with amplifiers in order 

to remove artefacts from the signal or to obtain a desired component. Common filters 

include Butterworth, Chebyshev and Fast Fourier Transform (FFT). The gain of the 

common filters can be seen in Figure 2. 

 

 
 

 

 

Figure 2. Signal Processing Filters [3] 
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There are a number of frequency bands in EEG signals:- 

i) Delta (<4 Hz): deep sleep stage for adults 

ii) Theta (4-8 Hz): infants and children, sleep stage for adults 

iii) Alpha (8-14 Hz): relaxed state for adults 

iv) Beta (14-30 Hz): ranges from state of calm to state of tension 

v) Gamma (>30 Hz): not of clinical/physiological interests, normally filtered 

These frequency bands can be seen in Figure 3. 

 

 

 

The term visually evoked potential (VEP), which refers to electrical potentials, is an 

offshoot of EEG and is initiated by brief visual stimuli. These potentials are recorded 

from the scalp overlying the visual pathway and cortex [6].  

 

VEPs are used primarily to measure the functional integrity of the visual pathways 

from the retina via the optic nerves to the visual cortex of the brain. Optical 

abnormalities which affect a person’s visual cortex can be identified by examining the 

VEP. The most commonly used stimuli to initiate VEPs are normally in the form of 

flash lights or patterned shapes. However, VEP waveforms have low amplitude and 

are therefore distinguished from EEG signals by a train of stimuli and signal averaging. 

Figure 3. EEG Frequency Bands [5] 

3 
 



 

 
 

 

1.2 Problem Statement  

VEP components are found in EEG signals whenever a visual stimuli is presented to a 

subject. The response of the subject depends upon the condition the subject is in. Thus, 

it is possible to differentiate between the VEP EEG signals of alcoholic and non-

alcoholic subjects using an adaptive algorithm. 

 

1.3 Objectives and Scope of Study 

There are two objectives for the project:- 

• To adapt a least-mean squares (LMS) adaptive filter to analyse the VEP EEG 

signals for alcoholic and non-alcoholic subjects. 

• To differentiate between alcoholic and non-alcoholic subjects based on their 

resultant error signal from the LMS adaptive filter. 

 

The scope of the project covers the adaptation of the LMS adaptive filter using 

MATLAB. The EEG data is readily available so analysis of the VEP EEG signal can 

be carried out once adaptation of the LMS adaptive filter has been completed. The 

visual stimuli is in the form of a single object shown to subjects. The error signals for 

5 alcoholic and 5 non-alcoholic subjects will be analysed in order to properly 

differentiate between both conditions. Only nodes FPZ, FP1, FP2, OZ, O1 and O2 are 

covered in the analysis. 

 

Figure 4. Example of VEP [7] 
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CHAPTER 2 

 LITERATURE REVIEW 

 
 
Many methods have been used in imaging for the purposes of extraction of the desired 

signals, each with their own advantage and disadvantage. In this section, two different 

aspects that are related to the project will be analysed. The first one is about the 

methods used to extract VEP from EEG signals. The second one concerns the diverse 

applications of the LMS adaptive filter in imaging. 

 

The oldest method for VEP extraction was carried out way back in 1951 and involved 

the repetitive recording and summation of EEG signals within a certain time period 

after visual stimulus [7]. This cancels out the EEG activity, resulting in the formation 

of the VEP signals. This technique is known as ‘signal averaging’. 

 

One of the recent methods is to use Partial Least Squares (PLS) regression for a single 

trial extraction of a VEP [8]. As a result of averaging signals from all trials, information 

that exist in each trial will be lost. Thus, by using the single trial estimation scheme, it 

is possible to preserve the unique characteristics of each trial. The PLS regression 

works by estimating a pair of uncorrelated variables that produce the maximum 

covariance with independent variable A and dependent variable B. The results of the 

evaluation indicate that for the real EEG signals, around half of the subjects have mean 

peak estimation close to the ensemble averaging. The artificial EEG signals, 

meanwhile, were compared to another method known as Generalized Eigenvalue 

Decomposition (GEVD) which involves the alteration of the input signal to reduce the 

colored noise. It was found that the PLS-based P100 estimations are comparable to the 

GEVD ones in term of latencies. Further comparisons can be seen in Table 1. 

 

Table 1. Statistical values for artificial PLS-based EEG signals and GEVD [8] 
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An imaging method employs the usage of a linear Multi-Layer Perceptron (MLP) for 

identifying the harmonic contents [9]. Artificial sinusoidal signals were inputted into 

the neural network and the analysed signals were taken as the output and compared 

against other measured signals. The results obtained illustrate the accuracy and 

efficiency of the MLP in classifying the signals based on frequency features. Besides 

that, the MLP is also able to acclimatize and compensate for conditions with high 

noise. 

 

The least-mean squares (LMS) method, which is the method that will be used for this 

project, has been extensively used in signal and imaging applications and can also be 

applied on VEPs. The LMS filter adapts by minimizing the error signal and fine-tuning 

the filter coefficients towards an optimum value. This goes on until steady-state 

conditions are achieved. Advantages of this method include simplicity in term of 

formulation and efficiency of computation.  

 

It has been used in power systems for frequency estimation [10]. A complex signal 

was derived from three-phase voltages and the LMS algorithm in complex form was 

applied to this signal in order to estimate the frequency of a power system. The 

complex weight vector was recursively modified for each iteration. The result of the 

LMS algorithm can be seen in Figure 5. This application displays the versatility of the 

LMS technique. 

 

 
 

 

 

Figure 5. Frequency estimation (right) of voltages (left) using LMS [10] 
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Besides that, the LMS algorithm has been employed for noise cancellation purposes 

and as an adaptive estimator of Fourier coefficients. This coefficients are used for a 

dynamic Fourier series to estimate time-varying evoked potentials [11]. Figure 6 

shows the result for the estimation of cortical somatosensory evoked potential. 

 

 

 

 

 

 

 

 

 

 
 

Finally, the LMS algorithm was derived for an optimal time-varying filter for evoked 

potential estimation [12]. It was found that many current methods were ineffective in 

extracting evoked potentials as an adaptive filter will be reduced to a processor with 

minimum-variance when the evoked potentials behave randomly for each iteration. 

Thus, a basic adaptive time-varying filter was developed based on the LMS algorithm. 

The results can be seen in Figure 7, whereby the filter was able to extract the evoked 

potentials from a simulated EEG signal. 

Figure 6. Cortical SEP estimation [11] 

Figure 7. Evoked potential (right) obtained from simulated EEG (left) [12] 
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CHAPTER 3 

 METHODOLOGY 

 

 

3.1 Project Activities 

 
Figure 8. The flow of the process 

 

The first step involves obtaining the EEG signals. As the recording for EEG data is 

already available, this task can easily be accomplished. 

 

Next, the EEG signals have to undergo filtering. Filtering of EEG signals has to be 

carried out in order to obtain the desired frequency bands. Sometimes there are EEG 

artifacts that are either physiological (due to subject) or non-physiological (due to 

environment/equipment) in nature. These artifacts have to be removed as well. For the 

purposes of VEP EEG analysis, only the frequency bands of 0-30 Hz are taken into 

account. The other frequency bands will be filtered out. 

 

For low-pass filtering, the Butterworth low-pass filter will be employed. This filter is 

designed to have a frequency response that is as flat as possible in the pass band, which 

means no ripples, and zero roll-off response in the stop band. It is fast and easy to 

implement. The main disadvantage of this filter lies in its wide transition band. An 

ideal frequency response will be a ‘brick wall’ response, as seen in Figure 9. 

EEG Signals
Butterworth 

Low-pass Filter 
<= 30Hz

LMS adaptive 
filter

Obtain error 
signals

Differentiate between conditions 
based on error signals
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The structure of a typical adaptive filter can be seen in Figure 10. The LMS algorithm 

adopts the same structure, the only difference being the adaptive algorithm employed 

which is to minimize the error signal squared [10]. As mentioned earlier, this algorithm 

is widely used due to its simplicity.  However, one of the many things that have to be 

taken into account is its convergence time which increases as the step size decreases 

[13]. For this project, the LMS filter is used to obtain the error signals of the VEP EEG 

signals of subjects under alcoholic and non-alcoholic conditions. 

 

 

 

 

 

 

 

 

 

 

The LMS algorithm is based on the stochastic gradient descent method which means 

that the filter coefficients are updated based on the error of the input signal relative to 

the desired signal at the current time. These filter coefficients are used to minimize the 

cost function. 

Figure 10. LMS filter structure [10] 

Figure 9. The effect of filter order on the Butterworth low-pass filter 
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From Figure 10, 𝑋𝑋𝑘𝑘 is the input data vector while 𝑦𝑦𝑘𝑘 is the desired signal. Note that 𝑘𝑘 

is the instant. To estimate the proper signal, an appropriate value of the filter 

coefficient 𝑊𝑊𝑘𝑘 can be obtained through the minimization of the squared error signal, 

𝑒𝑒𝑘𝑘. The error of the signal is calculated using the following equation: 

𝑒𝑒𝑘𝑘 = 𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑘𝑘� 

 

Two other things to factor in the calculation is the adaptation parameter, µ, and the 

gradient of the error performance surface, 𝛻𝛻𝑘𝑘. The weight vector can be computed as: 

𝑊𝑊𝑘𝑘+1 = 𝑊𝑊𝑘𝑘 + µ𝛻𝛻𝑘𝑘 

 

And the gradient can be computed from this equation: 

𝛻𝛻�𝑘𝑘 = −2𝑒𝑒𝑘𝑘𝑋𝑋𝑘𝑘 

 

Thus, it can be seen that the weight coefficients of the filter are constantly updated 

based on the error between the desired signal and the filtered signal. 

 

After adapting and applying the LMS adaptive filter on the EEG signal, the error 

signals can be obtained. The input to the filter is a single VEP EEG trial while the 

desired signal is an ensemble average of 10 VEP EEG trials. The output of the filter 

will try to mimic the desired signal as closely as possible. The difference between the 

output of the filter and the desired signal results in the error signal. 

 

Once filtering is done, the analysis of VEP EEG signals for subjects under different 

conditions can be carried out. These conditions include subjects under alcoholic and 

non-alcoholic conditions. 

 

For VEPs, the main area of concern of a subject’s brain lobes are the frontal parietal 

and occipital lobes. The parietal lobe is concerned with the processing of sensory 

information from the eyes that are obtained in other lobes. The occipital lobe, on the 

other hand, processes visual input that is sent by the retinas to the brain. These areas 

are where VEP activity is concentrated. Therefore, analysis of VEPs will be focused 

on the readings of electrodes placed at these locations. 
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3.2 Key Project Milestones 

 

 
 
 

By referring to the Project Activities process flow in Figure 9, three key project 

milestones are identified. These three milestones can be seen in Figure 11. 

 

Completing any one of these milestones represent a huge step in finishing this project. 

However, the milestones have to be carried out in the order shown in Figure 11 as the 

next step relies on the basis that the previous step has been completed. 

 

As the LMS adaptive filter plays a major role in producing the error signals and is the 

central tool used in the project, it is considered a key milestone when adaptation of it 

is done. Complete adaptation of the LMS adaptive filter represents a huge leap in the 

project progress. Obtaining the error signals of the LMS adaptive filter is one of the 

main objectives of this project, thus, it is also a key milestone. Finally, the other 

objective is the analysis for error signals of subjects under different conditions. 

Therefore, it is also a key milestone for the project. 

 
For the purposes of error-based analysis of subjects under different conditions, one 

group of data will be chosen as the control group. This control group (non-alcoholic) 

will then be compared against another group, in this case, the alcoholic group. The 

changes between these groups will be analysed to determine the effects the state of a 

subject has on VEP EEG signals.  

Adapt LMS adaptive filter

Obtain error signals

Differentiate between error signals for 
subject under different conditions

Figure 11. Key project milestones 
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3.3 Project Timeline 

Detail/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Selection of Title               
Preliminary Research               
Extended Proposal               
Proposal Defense               
Adapt LMS adaptive filter               
Interim Draft               
Interim Report               

Figure 12. FYP I Gantt-Chart 

Detail/Week 15 16 17 18 19 20 21 22 23 24 25 26 27 28 
Adapt LMS adaptive filter               
Analyse error signals               
Progress Report               
Pre-SEDEX               
Technical Paper               
Viva               
Dissertation               

Figure 13. FYP II Gantt-Chart 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 
The dataset that was used for signal analysis was taken from UCI KDD Archive that 

can be accessed online. This data arises from a large study aimed at examining 

genetic predisposition of EEG relating to alcoholism. It contains measurements from 

64 electrodes placed on scalps of the subjects which were sampled at 256 Hz for 1 

second.  

 

There were two groups of subjects which were control and alcoholic. Each subject 

was exposed to either a single stimulus (S1) or to two stimuli (S1 & S2). These 

stimuli were in the form of pictures of objects chosen from the 1980 Snodgrass and 

Vanderwart picture set. When two stimuli were shown, they were presented in either 

a matched condition (S1 identical to S2) or non-matched condition (S1 differs from 

S2). The dataset contains a total of 122 subjects with 120 trials each where different 

stimuli was shown. Once one of the many files in the dataset has been imported into 

MATLAB, it can be represented in the form of a table as seen in Figure 14. 

 

 

Figure 14. The extracted data 
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As seen from Figure 14, the first four lines are header data. In the first line, the fourth 

letter indicates whether that particular data belongs to a subject from the alcoholic 

group (a) or a subject from the control group (c). The fourth line identifies the 

matching conditions which are a single object shown (S1 obj), object 1 and 2 shown 

in a matching condition (S2 match), and object 1 and 2 shown in a non-matching 

condition (S2 nomatch). Meanwhile, line 5 signifies the start of the data from 

electrode FP1. The four columns of data, from left to right, are the trial number, 

electrode position, sample number (0-255), and sensor value (in µV).  Once plotted, 

the data is represented in the form of 64 separate graphs (1 for each electrode), as 

seen in Figure 15. The graphs below are of a subject from the alcoholic group. 

 

 
Figure 15. An example of eight graphs showing the voltage reading at different 

electrode positions 
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4.1 Results 

 
As mentioned earlier, VEPs are only concerned with electrodes placed at the frontal 

parietal and occipital lobes. For this reason, only six electrodes will be analysed 

further. These six electrodes are OZ, O1, O2, FP1, FP2, and FPZ. The Z in the notation 

indicates that the electrode was placed in the middle while odd numbers mean that the 

electrodes were placed on the left side and even numbers indicate that the electrodes 

were placed on the right side. 

 

5 random subjects from both alcoholic and non-alcoholic groups were chosen. These 

subjects undergo multiple trials involving a single visual stimuli (S1). As mentioned 

earlier, a single VEP EEG trial from a subject was used as the input signal to the LMS 

adaptive filter while an ensemble average of 10 VEP EEG trials from the same subject 

was used as the desired signal. 20 iterations of LMS filtering were carried out. 

 

A Butterworth low-pass filter was used to remove frequencies above 30 Hz. The 

signals are then filtered using the LMS adaptive filter to obtain the error signals. The 

results are shown in the following figures. Figures in time domain are a combination 

of the output from all 6 nodes (FP1, FP2, FPZ, O1, O2, OZ) and result in a total of 

1536 samples. 

 

The arrangement of the nodes according to sample number is as follows: 

 

Table 2. Order of node output according to sample number 

Node Sample number 

FP1 1 to 256 

FP2 257 to 512 

O2 513 to 768 

O1 769 to 1024 

FPZ 1025 to 1280 

OZ 1281 to 1536 
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Alcoholic Subjects 

Subject 1 

 

Figure 16. The input signal (blue) and error signal (green) of alcoholic subject 1 in 

time domain 

 

Figure 17. The magnitude of error signal of alcoholic subject 1 in frequency domain 

 

Figure 16 and Figure 17 shows the time domain response and frequency domain 

response of alcoholic Subject 1 respectively. From Figure 16, it can be observed that, 

in time domain, the error signal (green) of the subject has erratic waveforms but it has 

relatively lower peak-to-peak amplitude compared to the input signal (blue). In Figure 

17, it can be seen that the harmonic components are mostly in the band of 0-30 Hz. 
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Subject 2 

 
Figure 18. The input signal (blue) and error signal (green) of alcoholic subject 2 in 

time domain 

 
Figure 19. The magnitude of error signal of alcoholic subject 2 in frequency domain 

 

Figure 18 and Figure 19 shows the time domain response and frequency domain 

response of alcoholic Subject 2 respectively. From Figure 18, it can be seen that the 

error signal (green) has none of the peaks or dips of the input signal (blue). Its-peak-

to-peak amplitude is also much reduced compared to the input signal. In Figure 19, it 

can be observed that the harmonic components of the error signal are mostly centered 

in the frequency region of 0-30 Hz. 
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Subject 3 

 
Figure 20. The input signal (blue) and error signal (green) of alcoholic subject 3 in 

time domain 

 
Figure 21. The magnitude of error signal of alcoholic subject 3 in frequency domain 

 

Figure 20 and Figure 21 shows the time domain response and frequency domain 

response of alcoholic Subject 3 respectively. In Figure 20, the error signal (green) has 

extremely erratic behavior. It can be seen that at nodes FPZ (sample number 1025 to 

1280) and OZ (sample number 1281 to 1536), the error signal behaves erratically even 

though there is minimal amplitude from the input signal (blue). The peak-to-peak 

amplitude of the error signal is actually higher than that of the input signal. In Figure 

21, it can be seen that the DC component of the error signal has a very high magnitude. 

Erratic error signal 

DC 
component 
with large 
magnitude 
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Subject 4 

 
Figure 22. The input signal (blue) and error signal (green) of alcoholic subject 4 in 

time domain 

 
Figure 23. The magnitude of error signal of alcoholic subject 4 in frequency domain 

 

Figure 22 and Figure 23 shows the time domain response and frequency domain 

response of alcoholic Subject 4 respectively. It can be observed in Figure 22 that the 

error signal (green) has reduced peak-to-peak amplitude compared to the input signal 

(blue). In Figure 23, it can be seen that the harmonic components are mostly in the 

region of 0–30 Hz. 

19 
 



 

Subject 5 

 
Figure 24. The input signal (blue) and error signal (green) of alcoholic subject 5 in 

time domain 

 
Figure 25. The magnitude of error signal of alcoholic subject 5 in frequency domain 

 

Figure 24 and Figure 25 shows the time domain response and frequency domain 

response of alcoholic Subject 5 respectively. Like most of the error signals of the other 

alcoholic subjects, in Figure 24, the error signal (green) of the subject has lower peak-

to-peak amplitude compared to the input signal (blue). The harmonic components of 

the error signal, as seen in Figure 25, are located mainly in the region of 0-30 Hz. 
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Non-alcoholic Subjects 

Subject 1 

 

Figure 26. The input signal (blue) and error signal (green) of non-alcoholic subject 1 

in time domain 

 

Figure 27. The magnitude of error signal of non-alcoholic subject 1 in frequency 

domain 

Figure 26 and Figure 27 shows the time domain response and frequency domain 

response of non-alcoholic Subject 1 respectively. From Figure 26, the error signal 

(green) has none of the negative peaks of the input signal (blue). It also has 

significantly reduced peak-to-peak amplitude when compared to the input signal. The 

harmonic components of the error signal are mostly concentrated in the frequency band 

of 0-30 Hz. 
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Subject 2 

 
Figure 28. The input signal (blue) and error signal (green) of non-alcoholic subject 2 

in time domain 

 
Figure 29. The magnitude of error signal of non-alcoholic subject 2 in frequency 

domain 

Figure 28 and Figure 29 shows the time domain response and frequency domain 

response of non-alcoholic Subject 2 respectively. Like the previous subject, the error 

signal (green) has lower peak-to-peak amplitude compared to the input signal (blue), 

as seen in Figure 28. Similarly, by referring to Figure 29, the magnitude of the error 

signal is also focused in the region of 0-30 Hz. 
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Subject 3 

 
Figure 30. The input signal (blue) and error signal (green) of non-alcoholic subject 3 

in time domain 

 
Figure 31. The magnitude of error response of non-alcoholic subject 3 in frequency 

domain 

Figure 30 and Figure 31 shows the time domain response and frequency domain 

response of non-alcoholic Subject 3 respectively. From Figure 30, it can be observed 

that the error signal (green) has lower peak-to-peak amplitude compared to the input 

signal (blue). From Figure 31, the harmonic components of the error signal are found 

mainly to be residing in the frequency range of 0-30 Hz. 
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Subject 4 

 
Figure 32. The input signal (blue) and error signal (green) of non-alcoholic subject 4 

in time domain 

 
Figure 33. The magnitude of error signal of non-alcoholic subject 4 in frequency 

domain 

Figure 32 and Figure 33 shows the time domain response and frequency domain 

response of non-alcoholic Subject 4 respectively. Figure 32 illustrates how many of 

the peaks of the input signal (blue) were not carried over to the error signal (green). 

The peak-to-peak amplitude of the error signal is greatly reduced when compared to 

the input signal. From Figure 33, it can be observed, like many other error signals in 

frequency domain, that the harmonic components are mostly in the band of 0-30 Hz. 
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Subject 5 

 
Figure 34. The input signal (blue) and error signal (green) of non-alcoholic subject 5 

in time domain 

 
Figure 35. The magnitude of error signal of non-alcoholic subject 5 in frequency 

domain 

Figure 34 and Figure 35 shows the time domain response and frequency domain 

response of non-alcoholic Subject 5 respectively. From Figure 34, the error signal 

(green) has noticeably lower peak-to-peak amplitude compared to the input signal 

(blue) but there are some spikes and dips. Like the previous subjects, the harmonic 

components of the error signal are concentrated in the region of 0-30 Hz, as seen in 

Figure 35. 
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When comparing alcoholic subjects with non-alcoholic subjects, it can be observed 

that the error signals in time domain from the alcoholic subjects are slightly more 

erratic than the error signals from the non-alcoholic subjects. Besides that, the error 

signals of the alcoholic subjects have a marginally higher peak-to-peak amplitude 

compared to the non-alcoholic subjects. These differences could be attributed to the 

genetic predisposition of the subject. It can also be observed that alcoholic subjects 

have a higher magnitude in frequency domain compared to the non-alcoholic subjects. 

 

Table 3. Standard deviation and mean of the error signals for alcoholic and non-
alcoholic subjects 

 
Subject 

Alcoholic Non-alcoholic 
Standard 
Deviation Mean Standard 

Deviation Mean 

1 2.9170 0.0957 1.1408 -0.2833 
2 3.1606 -0.1135 2.0394 -0.0163 
3 4.1219 -1.5487 2.1415 -0.0166 
4 3.0430 -0.2285 1.8497 -0.0020 
5 2.7081 0.5157 2.6922 -0.1384 

 

Table 3 details the standard deviation and mean of the error signals from all the 

alcoholic and non-alcoholic subjects. Note that each condition has their own separate 

5 subjects, e.g. Subject 1 for alcoholic condition and Subject 1 for non-alcoholic 

condition are not the same person. The same goes for all the other subjects. 

 

It can be observed that the error signals from alcoholic subjects have a generally higher 

standard deviation as compared to the error signals from the non-alcoholic subjects. 

However, there is only a slight difference in standard deviation between alcoholic 

Subject 5 and non-alcoholic Subject 5. 
 
Meanwhile, when comparing alcoholic and non-alcoholic subjects in terms of mean of 

the error signal, there is not enough observable difference to properly differentiate 

between both conditions. Based on this observation, it is safe to conclude that using 

the mean of the error signal from the LMS adaptive filter is not suitable enough to 

differentiate between subjects under alcoholic and non-alcoholic conditions. 
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4.2 Discussion 
The computation time needed for the LMS algorithm was very short; the filtering of 

the EEG signal was completed in a matter of seconds. This is one of the benefits of 

using LMS adaptive filter as it will be very useful in situations where time is a 

constraint. The speed can be adjusted by changing the step size of the filter. A smaller 

step size increases the time taken for the filter to converge on a set of coefficients but 

increases its accuracy. On the other hand, a larger step size reduces the time taken but 

a step size that is too large may cause the filter to diverge, becoming unstable and 

unable to converge. For this filter, a miniscule step size was chosen to maximize 

accuracy. 

 

The similarity shared by the error response obtained from both alcoholic and non-

alcoholic subjects is a reduction in amplitude in time domain compared to the input 

signal. This is due to the adaptive filter filtering the input signal using coefficients that 

are iteratively updated based on the LMS algorithm in order to obtain the desired 

signal.  

 
Generally, when error signal of all the subjects was transformed from the time domain 

to the frequency domain, the harmonic components are concentrated in the region of 

0-30 Hz. This is due to the input VEP EEG signals going through a Butterworth low-

pass filter before being used as input signals to the LMS adaptive filter. As explained 

earlier, this is because most of the important brain activities are focused in this 

frequency band. Frequencies that are above this range are irrelevant to the current 

objective of this project. 

 

Based on the results, the standard deviation of the error signal for each subject was 

obtained. From this, it can be seen that there is a certain range of values whereby the 

condition of a subject could be confidently classified. For example, for values of 

standard deviation below 2, it can be deducted as most likely belonging to a subject 

with a non-alcoholic condition. On the other hand, for values of standard deviation 

above 3, it can assumed that these belong to a subject with an alcoholic condition. 

However, for values of standard deviation between 2 and 3, it can be harder to classify 

a subject into alcoholic or non-alcoholic conditions.  
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CHAPTER 5 

 CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

 
The study of VEPs contained in EEG signals has numerous applications, from 

detecting disorders in the visual pathways to studying the reaction of the visual cortex 

to visual stimuli. An example would be a situation where a doctor who is treating a 

patient requires information regarding the brain activity of the patient in response to 

visual stimuli. A fast and accurate depiction of the evoked potentials present in the 

patient’s brain activity would be vital in this case.  

 

VEPs are produced when a visual stimuli is presented a subject. The waveform of the 

VEP depends on what stimuli is presented and the condition of the subject. For this 

project, the stimuli is kept constant while the condition of the subject is manipulated 

into alcoholic and non-alcoholic. One way to differentiate between subjects under 

these two conditions is to analyse the error response of the subjects. The LMS adaptive 

filter was used to obtain the error response of the subjects under different conditions 

as it is simple to implement and has low computational complexity. 

 

From the results obtained, it can be seen that the waveform of the error response from 

the alcoholic subjects has a slightly more erratic behaviour, marginally higher peak-

to-peak amplitude, and higher magnitude when compared to the non-alcoholic subject. 

Error signals from alcoholic subjects also have generally higher standard deviation 

compared to non-alcoholic subjects.  

 

As a conclusion, it has been proven that it is possible to differentiate between subjects 

under alcoholic and non-alcoholic conditions based on their error response using LMS 

adaptive filter within a certain range of values. Further study may be necessary to 

further improve the definition of the range of values of standard deviation that define 

whether a subject is under alcoholic or non-alcoholic conditions. 
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5.2 Recommendations 
 

The LMS algorithm is not perfect and there are many ways to improve it. As mentioned 

earlier, the step size used for the LMS adaptive filter affects the convergence time. A 

compromise between two opposing aspects, fast convergence rate and low 

maladjustment is necessary [13]. One method that can be used to overcome this is by 

using time-varying step size can be implemented [10]. This solution works by using 

large step size values when the optimal solution is still far away from being achieved, 

thus increasing the rate of convergence. Once the optimal solution is near, the step size 

values are reduced to small values in order to reduce inaccuracies. Therefore, better 

performance can be produced. 

 

The differences in standard deviation of error signal between alcoholic and non-

alcoholic subject require a larger sample size to obtain a more defined range. With a 

higher sample size, it would be easier get a clearer picture of the values of standard 

deviation that belong to subjects under alcoholic and non-alcoholic conditions. 

 

Another possible usage for the LMS algorithm that was adapted during the course of 

this project is the extraction of VEP components from EEG signals. This is possible if 

the desired signal is an EEG signal containing VEP components while the input signal 

to the filter has all the other components in the desired signal minus the VEP 

components. Since the output of the filter will try to mimic the desired signal as 

possible in terms of correlated variables, the error signal from the filter will be the VEP 

signal itself without any background EEG noise. However, both the input signal and 

desired signal must have some correlation with each other in terms of components for 

this to work. Simulations aimed at accomplishing this was done and it was found that 

it is possible to do so if both the input signal and desired signal were created artificially. 

Unfortunately, application of this adaptive filter on real signals turn out to be 

unsuccessful due to the lack of a proper input signal that is correlated to the desired 

signal. 
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