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ABSTRACT 

 

Fe-based composites are found to be a promising material for automotive, process and 

chemical industries but little attention has been given to the study of their properties. 

This project aimed to study the influences of reinforcement ratios and sintering 

temperatures on particulate type composite. Pure iron and composite specimens 

containing 5, 10 and 15 wt.% of SiC particles are fabricated by powder metallurgy 

technique. The powders are compacted by Auto-Pelletizer equipment at 500MPa and 

then are sintered in Argon atmosphere for 45 minutes with heating and cooling rates of 

5°C/min and 10°C/min, respectively. The obtained Fe-SiC composites are then 

characterized for density, analysis for microhardness by Vickers Test and 

microstructural examination using Optical Microscopy. The results show that the 

hardness of the composites increased with increasing SiC content in accordance with 

the well dispersed elements observed from optical micrographs. Highest value of 

hardness; 1634HV is achieved from composite containing 15 wt.% of SiC sintered at 

900°C.  
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CHAPTER 1   

INTRODUCTION 

 

1.1      Project Background 

 1.1.1     Characteristics of Metal Matrix Composites 

Metal matrix composites (MMCs) are widely used in components of various 

pieces of industrial equipment. The purpose of producing a composite material 

is to achieve an enhanced combination of properties by combining at least two 

different material phases with dissimilar properties. Compositing makes it 

possible to create materials with properties unattainable in typical monolithic 

materials. MMCs generally combine the properties of metal matrix which are 

the ductility and toughness, with a high thermal strength reinforcing material; 

the ceramic. MMCs have been given an increasing amount of attention and 

application in recent years due to developments in processing methods and the 

increasing understanding of structure-property relationships (Franklin, 2003).  

Basically, MMCs are characterized by the type of reinforcement used. 

Commonly used composite types include continuous fibers, short fibers, 

whiskers, particulate, and flakes. The reinforcement types can be further divided 

into two categories; continuous and discontinuous form. Franklin (2003) 

describes that the continuous fiber reinforced composite has excellent axial 

strength for uniaxial load application, but there are disadvantages associated 

with the fabrication including fiber damage and microstructural non-uniformity 

(Ibrahim et.al, 1991). Short fibers, whiskers and particulates fall under the group 

of discontinuous reinforcement. Properties of the composite are affected by the 
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size, aspect ratio, and volume fraction of the reinforcement. There are many 

advantages of using discontinuous reinforcement over the continuous type 

especially in the transverse properties and cost of fabrication.  

A variety of processes have been and are being developed for the fabrication of 

MMCs including spray forming, vapor deposition, casting, powder metallurgy, 

hot press and interleave or diffusion bond. Each technique has its own 

limitations in term of component size and shape, and imposed certain 

microstructural features on the product. The most broadly used method to 

manufacture MMCs is the powder metallurgy (PM) technique. PM is an 

excellent method because it offers a means of adding possibly high volume 

percentage of hard reinforcing phases in a uniform distribution compared to 

casting or spray forming technique. 

 

 1.1.2     Development of Powder Metallurgy Technique 

Powder metallurgy components are increasingly replacing wrought materials in 

high performance applications. According to Smith (2003), the first known 

application of powder metallurgy technology, around 3000 BC, involved 

production of iron tools in ancient Egypt using a procedure that involved heating 

iron oxide and hammering the resulting sponge iron to the required shape. 

Evidence has been found for the existence of similar techniques in other parts of 

the ancient world including the discovery of the most impressive development 

of the efforts in Delhi Pillar, which weighs nearly six tonnes. Following the 

practice, there was a long period without progress until the eighteenth century 

that activities in Europe signified the initiation of modern PM technology with 

the manufacturing of platinum-arsenic alloy for building chemical vessels. 

Generally, PM technique is utilized in the fabrication of metallic materials but 

the principle of the process apply with little modification to ceramics, polymers 

and a variety of composite materials composed of metallic and non-metallic 

phases. During the past decade there have been significant advances in PM 
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technology. New types of powders especially in the form of rare composites 

with superior properties are introduced, allowing the production of larger and 

higher strength materials. Difficult to process materials, where fully dense high 

performance alloys can now be processed with uniform microstructure, and 

multiphase composite with a wide combination of properties can be 

economically synthesized with the advancement of PM technique.  

 Production of metal matrix composites through powder metallurgy technique is 

not new to the industry. The focus of the selection of suitable process for 

fabrication of MMCs is the desired kind, quantity, and the distribution of the 

reinforcement components, the matrix alloy and the application. For MMCs, PM 

is costly but is suitable for small components. Plus, PM offers unlimited addition 

of volume of reinforcement and matrices in the process. Of the PM research that 

has been completed, most relates to materials behavior and effects of various 

parameters concurrent with PM technique. Many of the researches are in any 

case worthy of study, since it has resulted in numerous interesting and useful 

findings for improving each single process involves in PM method. 
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1.2 Problem Statement 

In recent years, the development of metal matrix composite (MMCs) has been receiving 

worldwide attention on account of their superior strength and stiffness in addition to 

high wear resistance and creep resistance comparison to their corresponding wrought 

alloys. In line with this, powder metallurgy process and technology appears to build up 

a wide array of concern among researchers. A large number of research papers 

published focuses on the application of powder metallurgy towards light metal matrix 

such as Al, Ti and Mg. The cost of processing these materials is a significant constraint 

on continued growth of the market.  

It is also found that there are rare report on other metal matrix composites, especially 

Fe-based which is found to be limited. Although this composite are promising materials 

for the process industries, little attention has been given to the study of their properties. 

Fe is used in great quantities in the automotive industries as well as in ferromagnetism. 

Thus, it is an interesting idea to conduct a research to verify the suitability and introduce 

the Fe-based composite with hard particle reinforcement by application of powder 

metallurgy technique, which is the most appealing fabrication process for MMCs. 

 

1.3 Objective and Scope of Study 

Main objective of this project is directed towards the study on producing Fe-based 

composite using powder metallurgy technique. The study aims to introduce Fe as a 

possible metal matrix to be reinforced with SiC ceramic particle and to determine the 

effect of particulate SiC content towards the hardness of Fe-SiC composite. This study 

employs a complete powder metallurgy process cycle, including the powder production, 

mixing, compacting, and sintering. For this study, the scopes are restricted to ceramic 

particulate reinforced Fe metal matrix systems, with variation of the composites ratio 

and sintering temperatures. Final products will be examined by outlining the mechanical 

properties, focusing on the hardness and characterizing the microstructure by 

observation with Scanning Electron Microscopic (SEM) or Optical Microscopy (OM). 

The works will be carried out in the period of two semesters in 2010.  
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CHAPTER 2 

LITERATURE REVIEW  

 

2.1 Introduction 

Literature survey is carried out to have an overview of the production process, 

properties, and mechanical behavior of metal matrix composites (MMCs). A large 

number of papers concerning the employment of powder metallurgy technique to 

fabricate MMCs have been published. According to Zebarjad et al. (2008), the papers 

concentrated on MMCs can be categorized into some major groups as elaborated further 

in later paragraphs.  

The studies of the first group focused on manufacturing methods. The results of their 

studies showed that there are some different techniques for fabrication of MMCs. The 

methods are squeeze casting, metal spray, metal infiltration, laser deposition technology 

and mechanical milling, powder technology, and so on. Among them, powder 

metallurgy presents one of the biggest advantages, although there are a lot of problems 

concerning the distribution of the reinforcement in the composite matrix. The second 

group tried to investigate the role of reinforcement particles on formability of metal 

matrix. Their result show that the particles play like a barrier against metal flow.  

Next, the third group of researches worked on corrosion behavior of MMCs. They 

demonstrated that the weight loss of the composites in corrosive media depends 

strongly on both volume percent and particle size of reinforcement. The studies of 

another group concentrated on the role of reinforcement particles on mechanical 

properties and machinability of MMCs. They showed that both volume percent and 

particle size of reinforcement particles play an important role on mechanical behavior of 

MMCs. Finally, the last investigations concentrated on the mechanical, optical, thermal, 
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and electrical properties of the composite. The results illustrated that the mentioned 

properties vary as volume percent and particle size of reinforcement change. 

Apart from this, other related papers will also be discussed in this section. Since, 

powder metallurgy products are typically produced in sequence of powder production, 

cold compaction, and sintering operation, the best parameters of each step will be 

reviewed based on successful researches. Results from the studies are taken as the main 

reference for designing the methodology for present investigation.  

 

2.2 Material Aspects 

Metal matrix composites materials have a combination of superior properties compared 

to unreinforced matrix which are; improved wear resistance, higher elastic modulus, 

higher service temperature, increased strength, high thermal and electrical conductivity, 

low coefficient of thermal expansion and high vacuum environmental resistance. 

Properties of composites are strongly influenced by the properties of their constituent 

materials. The superior properties can be attained with the proper choice of matrix and 

reinforcement. 

 

2.2.1 Matrix Material – Why Fe? 

The main function of matrix in MMCs is to transfer and distribute the load to the 

reinforcement. This transfer of load depends on the bonding which depends on the 

type of matrix and reinforcement and the fabrication technique. Generally Al, Ti, 

Mg, Ni, Cu, Pb, Fe, Ag, Zn, Sn and Si are used as the matrix material, but Al, Ti, 

Mg are used widely. But those widely used matrix are relatively expensive in both 

the material cost and in term of fabrication. 

Pagounis et al. (1996) stated that, Fe (iron) matrix composites are a new class of 

advanced materials proposed mainly as inexpensive wear-resistant parts. It is 

interesting to use iron and its alloys as the matrix material in composite systems 

because of their low cost, the possibility of heat treatment and technological 
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effectiveness. In the other hand, iron based composites show higher hardness, 

higher compressive strength, and the elastic modulus is the highest for machinable 

and hardenable materials. 

The statements are seconded by Tanino et al. (2008), which claim that sintered 

iron-based materials has good wear resistant, improved strength and machinability 

properties. However, compared with their unreinforced alloys, iron matrix 

composites suffer from lower ductility and toughness. Though, reductions in yield 

and ultimate tensile strength which revamp the weaknesses through the addition of 

hard particle reinforcement have also been reported by several researches 

including: Mukherjee et al (1985), Bryggman et al. (1992), and Talvite et al. 

(1994). 

 

2.2.2 Reinforcing Material – Why SiC? 

Composites consist of one or more discontinuous phases embedded in a continuous 

phase (the matrix). The discontinuous phase which is usually harder and stronger 

than the continuous phase is called the reinforcement or reinforcing material.  As 

stated by Prasad (2006) in his thesis on the development and characterization of 

metal matrix composite; 

     For metal reinforcement, ceramics particle or rather, fibers or carbon fibers are 

often used. Reinforcement increases the strength, stiffness and the temperature 

resistance capacity and lowers the density of MMCs. In order to achieve these 

properties the selection depends on the type of reinforcement, its method of 

production and chemical compatibility with the matrix, sizes, shapes, surface 

morphology, structural defects, impurities and inherent properties. (p.24)  

As per quoted above, two main types of reinforcing materials that are widely used 

that are the particles and fibers. Both types of reinforcement produce reinforcing 

effects in metallic matrices by different strengthening mechanisms. Focus is given 

to the ceramic particulate type of reinforcement since it is said by Prasad (2006) as 

the most suitable material to be mixed with metal matrices.  
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Ceramic particles which have been proposed for use as reinforcements in iron-

based composites include carbides (TiC, WC, VC and SiC), oxides (Al2O3, ZrO2, 

and Y2O3), nitrides (TiN and Si3N4) and borides (TiB2 and CrB2). Zhang et al. 

(1992), verify from their research on “Damping Characteristics of Graphite 

Particulate Reinforced Aluminium Composites” that the use of graphite 

reinforcement in a metal matrix has a potential to create a material with a high 

thermal conductivity, excellent mechanical properties and attractive damping 

behavior at elevated temperatures.  

In addition to that, research conducted by Chakthin et al. (2008) on Fe-based 

composites reinforced with WC and SiC particles respectively, proves that SiC is a 

better reinforcing material. Their investigation rigidly reveals that the strengthening 

effect and phase transformation did not exist in Fe-WC compared to Fe-SiC 

composite.  

 

2.2.3 Particle Size and Volume Fraction 

 
Chawla et al. (2001), claimed that in metal matrix composites, particle reinforced 

materials are more attractive due to their cost-effectiveness, isotropic properties, 

and their ability to be processed using similar monolithic materials technique. It is 

supported by Prasad (2006) which stated that the strength of particle-reinforced 

composites is observed to be most strongly dependent on the volume fraction and 

particle size of the reinforcement. For that reason, most of the MMCs introduced 

are in the initial form of metal matrix powder embedded with particulate 

reinforcement. Properties of this type of composites are affected by the size, aspect 

ratio, and volume fraction of the reinforcement.  

Since research concerning Fe-SiC composites is off-focused, the literatures on 

effect of particle sizes and volume fractions of the material are limited. In research 

conducted by Chakthin et al. (2008) about the influence of carbides on properties 

of sintered Fe-based composites, they found that for sintered Fe-SiC composites, 

tensile strengths and hardness, superior to those of the sintered Fe material, 
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increased with decreasing carbide particle size. To further discuss this factor, 

literatures on other metal-based composites which are significant to the findings are 

referred. 

Lin et al. (2003) conducted a study about the effect of reinforcement particles on 

the strengthening mechanism for Cu-SiC composite. In the research, they designed 

three models containing different sizes of reinforcing particles: 

• Model I: The size of the reinforcing particles is approximately the size of the 

matrix particles. 

• Model II: The ratio of the reinforced particle size to the matrix particle size 

exceeds 2. 

• Model III: The reinforcing particles are much smaller than the matrix 

particles. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: Hardness versus SiC content for all three models. 
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Results as show in Figure 2.1, demonstrate that all three models can produce an 

effective strengthening mechanism with additional variable; the volume fraction. 

For Model I and III, they discovered that there is an optimum value of SiC content, 

approximately 5% of volume fraction to obtain the optimum hardness. Whereas, 

the hardness of the composite increases with the increasing of SiC content in 

Model II. This is because; SiC particles can effectively obstruct boundary slippage 

between the interfaces of Cu particles and impede the plastic flow to hamper any 

deformation.  All in all, in term of size of reinforcement particle, Model III which 

contains reinforcing particles that is much smaller than the matrix particles 

produced highest value of hardness at the same volume of SiC.  

Chawla et al. (2001), proposed that, “an increase in reinforcement volume fraction 

or decrease in particle size increase the amount of indirect strengthening, since a 

larger amount of interfacial area exists for dislocation punching to takes place” 

(p.357). It is said that the difference in strengthening between unreinforced and 

composite could be attributed primarily to load transfer to the reinforcement. Thus, 

with increasing volume fraction, more loads are transferred to the reinforcement, 

which resulted in higher strength of the composite. 

In addition to that, the findings are in line with theory of the effect of particle sizes 

and research by other authors. According to Yu et al. (2007), statistically, larger 

flaws and more defects are more likely to exist in larger particles and, therefore, 

will deteriorate the strength of composites when compared with the composites 

containing smaller particles. This is likely due to the smaller particles of 

reinforcement can be inserted into the voids among the matrix particles easily, 

increasing the density and bonding strength of MMCs. Additionally, smaller 

particles will exert more constraint on grain growth which can also contribute to 

the increase of strength. Relationship of the particle size on the mechanical 

properties of MMCs is graphically proposed by Zhang et al. (2004) as a result of 

his study which is to illustrate the relationship between reinforcement particle size 

(R) and mechanical properties (e.g. yield strength, σy).  
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The research claims that, the strengthening effect increases with increase of particle 

size of very fine and shearable inter-metallic precipitates. However, these 

precipitates are not stable at high temperatures, and once the particle size is higher 

than a certain value, they become non-shearable or “hard” particles, and the 

strengthening effect becomes weaker with increasing particle size. In the 

meantime, smaller particles are less prone to having internal defects and thus are 

more difficult to be fractured. These factors are favorable for achieving high 

strength and good fracture toughness. In addition, the ceramic particles are stable at 

high temperatures, so the strengthening effect will hold at high temperatures, 

leading to a high creep resistance when creep is dislocation controlled.  

 

2.3 Powder Metallurgy Processes 

Apart from casting, melt infiltration, and spray-formed method, powder metallurgy 

(PM) technique is the one of the most commonly used process for the fabrication of 

discontinuous reinforced MMCs. PM technology appears to build up a wide array of 

concern among researchers. PM is costly, but suitable for small components. Prasad 

(2006) chronologically simplifies the methodology of PM process as quoted below. 

     In general process, the powders of matrix materials and reinforcement are first 

blended and fed into a mould of the desired shape. Pressure is then applied to further 

compact the powder (cold pressing). In order to facilitate the bonding between the 

powder particles, the compact is then heated to a temperature that is below the 

melting point but sufficiently high to develop significant solid-state diffusion 

(sintering). The consolidated product is then used as a MMC material after some 

secondary operation. (p.30) 

In summary, 3 main steps of PM are mixing, compaction and sintering. Since pressing 

(compaction) and sintering have the most significant effects towards the mechanical 

properties of MMCs, detail literatures on both processes will be discussed further in this 

section.  
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2.3.1 Powder Compaction 

Conventional PM technique uses cold compaction method to press the powder into 

green compact. Kim et al. (2000) claimed that non-uniformity density distribution 

of powder compacts under cold compaction has a great influence on the subsequent 

process such as sintering. The early attempts on research regarding compaction 

focused on densification and concentrated on the variation of either axial or radial 

stress with compact sectional area, height, surface area, and friction coefficient 

(Smith, 2003). Compaction as describe by Kalpakjian et al. (2006), are meant to 

obtain required shape, density and particle to particle contact and to make the part 

sufficiently strong for further processing. There are several types of cold 

compaction method utilizes in PM, namely cold isostatic pressing and cold die 

compaction.   

Research conducted by Kim et al. (2000) on the cold compaction of composite 

powders, experimented the densification behavior of mixed copper and tungsten 

powders under cold isostatic pressing and die compaction. Copper powder is regard 

as the soft metals whereas tungsten powder is the opposite. To correlate the case on 

composite, tungsten powder can be regarded as the hard particle, or ceramics. It is 

observed that, in the cold isostatic pressing, as pressure increases, copper powder 

deform markedly, but tungsten powder do not deform as much. Also, more pores 

are observed in composite powder compacts as the volume fraction increases. From 

microstructural view, it is found that the powder compacted by cold die compaction 

is less homogeneous than that by cold isostatic pressing because of deviatoric 

stress.   

Generally, density of the green compact depends on the pressure applied. As the 

compacting pressure increase, the powders become denser due to the decreasing of 

free space in between the particles. Kalpakjian et al. (2006) outlined the size 

distribution of the particles as an important factor in compaction-density 

relationship. They stated that; 
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     If all of the particles are of the same size, there always will be some porosity 

when they are packed together, theoretically a porosity of at least 24% by 

volume. Introducing smaller powder into the powder mix will fill the spaces 

between the larger particles and thus, result in a higher density of the compact. 

(p.491) 

From the statement, it is likely to conclude that the density of compacted powders 

also depends on powder sizes apart from its dependency on the compaction 

pressure applied. The suitable compacting pressure for Fe-based material as 

proposed by the same authors range between 350-800MPa and so far, research 

regarding the optimum pressure for Fe-based composite are yet to be found. 

Other than density, issues related to compaction phase includes; the sizes of 

particles and mechanism of deformation which holds major effects towards the 

strengthening behavior. As stated by Lin et al. (2003), there are two modes of 

deformation under compressive stress which are the grain deformation and 

boundary slip. When the size of the reinforcing particles is approximately the size 

of the matrix particles, boundary slips causes plastic deformation when stress is 

applied. Whereas, then the ratio of reinforcement particle size to the matrix exceeds 

two, the reinforcement particle will effectively obstruct boundary slippage at the 

interfaces between matrix which cause grain deformation to take place. Their study 

reveals that mechanism of plastic causes by grain deformation are preferable than 

boundary slips to produce an effective strengthening by reinforcement. 

 

2.3.2 Sintering 

Sintering is one of the most important processes in PM and plays the crucial role in 

the properties and cost of final products. Kalpakjian (2006) define sintering as “the 

process whereby green compacts are heated in a controlled atmosphere furnace to a 

temperature below the melting point but sufficiently high to allow bonding by 

fusion of the individual particles”. Sintering plays a major role in improving the 

density of the raw material by means of reducing porosity. It is said that, the 

changes in pore structure depend on many details, including the initial pore size 
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distribution and sintering conditions. Most of the established study on sintering 

mechanisms centered on the stages of sintering, effects of sintering time and 

temperature, and influence of additives and phases. 

Fe-SiC composites produced in the experiment conducted by Chakthin et al. (2008) 

exhibit an increasing in hardness with the increasing of sintering temperature. It is 

said that the stability of carbide particles under sintering conditions is the prime 

factor controlling properties of the sintered Fe-carbide composites. As per their 

study, it is observed that some of Sic particles decomposed into Si and C atoms that 

could diffuse into the Fe particles which resulted in growth of voids surrounding 

SiC particle as well as decreasing the particle size.  

Besides, Tanino et al. (2008) who patented a research entitled “Iron-based sintered 

material and production method thereof” claims that 

      When the heating temperature is lower than 1100°C, it is not possible to sinter 

the powder sufficiently and thus not possible to improve the quenching 

efficiency of the sintering material. It is not possible to improve the fatigue 

strength and machinability, when the heating temperature is higher than 

1170°C, and it is not possible to improve one or both of the fatigue strength and 

machinability, when the heating period is shorter than 10 minutes or longer 

than 30 minutes.  

A portion of the claims is agreed by Feng et al. (2007) when they conducted 

experiment on intensified sintering of iron powders under the action of an electric 

field. The result shows that the density of sintered compacts is lower for sample 

from 1350°C compared to samples from 1100°C where an optimum sintered 

density is obtained. This can be theoretically explained with the principle of 

sintering kinetics which stated; the higher the sintering temperature, the higher 

densification degree, but too high temperature is unfavorable for the densification 

process (Mrowee, 1980). This is due to the process of pore expansion or Ostwald 

ripening that occurs at high sintering temperature because of the effect of plastic 

deformation.  
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2.4 Mechanical Properties and Microstructure 

Focusing on strengthening effect for the present study, Chawla et al. (2001) described in 

detail about the behavior of particulate MMCs. The difference in strengthening between 

the unreinforced material and composites could be attributed primarily to load transfer 

to the reinforcement as further quoted below.  

      Under an applied load, the load is transferred from the weaker matrix, across the 

matrix/reinforcement interface, to the typically higher stiffness reinforcement. In 

this manner, strengthening takes place by the reinforcement “carrying” much of the 

applied load. Due to the lower aspect ratio of particulate materials, load transfer is 

not as efficient as in the case of continuous fiber reinforcement, but still significant 

in providing strengthening. (p.357) 

Apart from the properties discussed respectively with the contributing factors above, 

according to Prasad (2006), it is apparent that parameters controlling the mechanical 

properties of particulate reinforced composites are still not understood in any 

convincing details. Nevertheless, some of the important factors have been highlighted 

from literatures. 

• The strength of particle reinforced composites is observed to be most strongly 

dependent on the volume fraction of particle and size of the reinforcement. 

• Dislocation strengthening will play a more significant role in MMCs than in the 

unreinforced alloy due to the increased dislocation density. 

• Greatest concern appears to be on the introduction of defects and 

inhomogeneities in the various processing stages, which has been found to result 

in considerable scatter in mechanical properties.  

Besides, the microstructural features of the fabricated composite can also assists in 

interpreting the mechanical behavior of the MMCs especially by observation of the 

distribution of materials. It is claimed by several investigators that the properties of 

composites are finally dependent on the distribution of the particles in the composite.  

The distribution of particles depends on the processing and fabrication routes involved. 
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Results obtained from Chakthin et al. (2008) revealed that there existed three different 

microstructural features in sintered Fe-SiC composites, apart from the non-melted SiC. 

It is due to the decomposition of SiC particles and the existence of different iron phases 

namely pearlite and austenite. The formation of iron-carbon phases directly contributed 

to an effective strengthening mechanism in the composite.  
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CHAPTER 3 

METHODOLOGY 

 

In order to conduct the research project, the flow of methodology is designed as follow:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 3.1: Flowchart of the methodology. 
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Throughout the stages of research, the listed steps shown in the flowchart in Figure 3.1 

were followed accordingly. Details of the flow are described in Gantt chart shown in the 

following section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1
9

 

 3.
1 

   
 G

an
tt 

C
ha

rt
 o

f t
he

 p
ro

je
ct

  

N
o.

 
D

et
a

il/
W

ee
k 

25/1 - 
29/1  

1/2 - 
5/2 

8/2 - 
12/2 

15/2 - 
19/2 

22/2 - 
26/2 

1/3 - 
6/3 

8/3 - 
12/3 

15/3 – 
19/3 

22/3 - 
26/3 

29/3 - 
2/4 

5/4 - 
9/4 

12/4 - 
16/4 

19/4 - 
23/4 

26/4 - 
30/4 

3/5 - 
7/5  

10/5 - 
14/5  

1 
S

el
ec

tio
n 

of
 P

ro
je

ct
 T

op
ic 

  
  

  
  

  
  

  

Mid Semester Break 

  
  

  
  

  
  

  
  

  
- 

R
es

ea
rc

h 
fo

r 
pr

oj
ec

t 
ba

ck
gr

ou
nd 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

- 
S

ub
m

is
si

on
 o

f 
F

or
m

01 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

2 
R

es
ea

rc
h 

w
or

k 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
- 

C
ol

le
ct

 li
te

ra
tu

re
 r

ev
ie

w 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
- 

P
re

lim
in

a
ry

 in
te

rp
re

ta
tio

n 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
- 

S
ub

m
is

si
on

 o
f 

P
re

lim
in

a
ry

 R
ep

or
t

 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

3 
P

ro
je

ct
 W

or
k 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

- 
P

re
pa

ra
tio

n 
of

 p
ow

de
r 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

- 
M

ix
in

g 
a

nd
 c

om
pa

ct
io

n  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
- 

A
na

ly
si

s 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
4 

P
ro

gr
es

s 
R

ep
or

t 
a

nd
 S

em
in

a
r

 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
- 

In
te

rp
re

ta
tio

n 
of

 d
a

ta 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
- 

S
ub

m
is

si
on

 o
f 

P
ro

gr
es

s 
R

ep
or

t
 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
- 

S
em

in
a

r 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
5 

P
ro

je
ct

 w
or

k 
co

nt
in

u
es 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

- 
S

in
te

ri
ng

 w
or

ks
 a

nd
 a

na
ly

si
s

 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
6 

In
te

ri
m

 R
ep

or
t 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

- 
E

va
lu

a
tio

n 
a

nd
 d

is
cu

ss
io

n 
of

 d
a

ta
 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

- 
S

ub
m

is
si

on
 o

f 
In

te
ri

m
 R

ep
or

t
 

  
  

  
  

  
  

  
  

  
  

  
  

  
 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

7 
O

ra
l P

re
se

nt
a

tio
n 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 



2
0

 

 3.
1 

  G
an

tt 
C

ha
rt

 (
co

nt
in

ue
) 

 

N
o.

 
D

et
a

il/
W

ee
k 

26/7 – 
30/7 

2/8 –  
6/8 

9/8 – 
13/8 

16/8 – 
20/8 

23/8 – 
27/8 

30/8 – 
3/9 

6/9 – 
10/9 

13/9 – 
17/9 

20/9 – 
24/9 

27/9 – 
1/10 

4/10 -
8/10 

11/10 – 
15/10 

18/10 – 
22/10 

25/10 – 
29/10 

1/11 – 
5/11 

8 
P

ro
je

ct
 w

or
k 

co
nt

in
u

e 
  

  
  

  
  

  

Mid Semester Break 

  
  

  
  

  
  

  
  

  
- 

A
na

ly
si

s 
a

nd
 e

va
lu

a
tio

n 
of

 d
a

ta
 g

a
th

er
ed

 
  

 
  

  
  

  
  

  
  

  
  

  
  

  
  

- R
ep

ea
t 

pr
oc

ed
ur

e 
if 

ne
ce

ss
a

ry
 (

de
fe

ct
)

 
  

  
  

  
  

  
 

  
  

  
  

  
  

  

 
 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

9 
P

ro
gr

es
s 

R
ep

or
t 

1 
  

  
  

  
 

  
  

  
  

  
  

  
  

  

 
- 

P
re

pa
ra

tio
n 

of
 r

ep
or

t
 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
- 

S
ub

m
is

si
on

 o
f 

P
ro

gr
es

s 
R

ep
or

t 
1

 
  

  
  

  
  

  
  

  
  

  
  

  
  

  

 
 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

10
 

P
ro

je
ct

 W
or

k 
co

nt
in

u
e 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
- 

F
in

a
l i

nt
er

pr
et

a
tio

n 
  

  
  

  
  

  
  

 
  

  
  

  
  

  

 
 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

11
 

P
ro

gr
es

s 
R

ep
or

t 
2 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
- 

P
re

pa
ra

tio
n 

of
 P

ro
gr

es
s 

R
ep

or
t 

2
 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
- 

S
ub

m
is

si
on

 o
f 

P
ro

gr
es

s 
R

ep
or

t 
2

 
  

  
  

  
  

  
  

  
  

  
  

  
  

  

 
 

  
  

  
  

  
  

  
  

  
  

  
  

  
 

12
 

P
ro

je
ct

 W
or

k 
co

nt
in

u
e 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
- 

P
re

pa
ra

tio
n 

of
 d

is
se

rt
a

tio
n

 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

- 
P

re
pa

ra
tio

n 
of

 p
os

te
r

 
  

  
  

  
  

  
  

  
  

  
  

  
  

  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

13
 

P
os

te
r 

E
xh

ib
iti

on
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
14

 
S

ub
m

is
si

on
 o

f 
D

is
se

rt
a

tio
n 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
15

 
O

ra
l p

re
se

nt
a

tio
n 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

K
ey

 m
ile

st
on

e 
P

ro
ce

ss 
 



21 

 

3.2 Laboratory Works 

3.2.1 Materials 

A number of 48 samples of SiC reinforced Fe composite with 0%, 5%, 10%, and 

15% weight percentage are required for the experiment. Raw materials needed 

to produce the samples are 89g of iron powder as the metallic matrix and 8g of 

Silicon Carbide (SiC) powder for the ceramic reinforcement.  

 

3.2.2 Tools and Equipments 

The following are major tools and equipments that are used in the laboratory 

experiment for the research:  

i. Weighing scale  

ii.  Marble mortar and pestle 

iii.  Auto Pelletizer  

iv. Archimedes density measuring equipment 

v. Sintering furnace 

vi. Hot mounting machine 

vii.  Grinder and polisher 

viii.  Sand papers 

ix. Scanning Electron Microscopic (SEM) tool 

x. Hardness Tester (Vickers) 
 

3.2.3 Experimental procedure 

i. 89g of Fe powder and 8g of SiC powder are prepared. 

ii.  The characteristics of the powders including the particle sizes, and density 

are   recorded. 

iii.  The weighing scale is calibrated to ensure accuracy. 

iv. The amounts of powders as tabulated in the following page are weighted 

carefully. 
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Table 3.1: Composition of composites based on weight percentage. 
 

Powder 
Quantity 

Fe SiC 
No. % Weight (g) % Weight (g) 
1 12 100 2.00 0 0.00 
2 12 95 1.90 5 0.10 
3 12 90 1.80 10 0.20 
4 12 85 1.70 15 0.30 

 

v. The powders are mixed using marble mortar and pestle to form a 

homogeneous mixture. 

vi. Using auto-pelletizer, the powders are compacted at approximately 

500MPa with dwell time of 5 minutes. 

vii.  The compact is removed from die. 

viii.  The compact is weighted, its dimension is recorded and the green density 

is determined. 

ix. The steps are repeated to produce the rest of the samples. 

x. Using a sintering furnace, 3 compacts of each composition are sintered at 

temperatures starting from 800°C, 900°C, 1000°C, and 1100°C for 45 

minutes. The heating and cooling rates of the sintering process are 

5°C/minute and 10°C/minute respectively. (Plots of the sintering 

conditions are attached in Appendix A)  

xi. The sintered compacts are weighted, their final dimensions are recorded, 

and their sintered densities are determined using Archimedes density 

measuring equipment.  

 

3.2.4  Polished specimen preparation 

The composite compacts were mounted using hot mounting machine. The 

mounting media used is Phenolic powder which was poured into the mounting 

press according to desirable mounting height. The process involved heating 

Phenolic powder above 150°C at a constant pressure about 30Mpa for a cycle 

time of 15 minutes. The mounted compacts are then cleaved off using the 
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Polisher and Grinder machine. Three grades of sand papers (260, 600, and 1200 

grit) are used to polish the compacts at 150 revs speed of the grinder plate. 

Pictures of the polished samples are attached in Appendix B. 

 

3.2.5 Analysis procedure 

Analysis of samples includes performing hardness test by applying Vickers 

Hardness Tester and characterization of microstructure using Scanning Electron 

Microscopy (SEM) tool. For the hardness test, the surface of a pallet were 

subjected to a pressure at load of 300 g with 15s dwell time by means of a 

pyramid-shaped diamond. The resulting indention then was measured under a 

microscope and the Vickers Hardness value read from a conversion table 

available at the laboratory. After that, the microscopic analysis was performed 

with assistance from laboratory technologist after completing the preparation 

and submission of samples. The SEM micrographs were then available for 

further review. However, due to low quality of images, optical microscopy 

(OM) were used instead of SEM. Referring to literature (Chakthin et al.2008), 

OM is also applicable to analyze microstructure of Fe-based materials.  
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

Project works was strictly executed based on Gantt chart and have yield reasonable 

results. Completed steps with initial and final results will be discussed chronologically 

in this chapter. 

 

4.1 Powder preparation 

Powders available at the laboratory are iron (Fe) 10µm and 850µm in size with density 

of 7.86g/cm3 and SiC 32µm to 75µm in size with density of 3.22g/cm3 respectively. 

Due to some constraint present at compaction stage that will be discussed later, Fe 

powder of 10µm in size is chosen for the research. From here, it is realized that the size 

of the reinforcement particles are larger than the size of matrix metal. This current 

condition is rarely investigated by researchers especially for the Fe-SiC composite case. 

Thus, the closest reference apart from paper by Chakthin et al. (2008) which 

specifically describe Fe-SiC composite is the research conducted by Lin et. al (2003) on 

the strengthening mechanism in Cu-SiC composite with variations in particle sizes.  

In their research, under the same condition of particle sizes, it is observed that the 

smaller matrix particle will piled up the bigger reinforcing particles, consequently 

impeding plastic deformation, thus increasing the hardness of the composite with the 

increment of SiC content. Theoretically, it is expected that strengthening effect will take 

place for the present composite system (10µm Fe reinforced with 75µm SiC). By close 

reference to the literature, setting the desired weight percentage of the composite 

samples, and performing related calculations (using equation 1, 2, and 3 as shown in 
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Appendix C) to characterize the powder in term of volume percentage and expected 

theoretical density, the results are tabulated as the following. 

Table 4.1: Percentage by weight and volume, amount of powders used and theoretical 

density 

No. Quantity 
Fe SiC Volume % Theoretical 

Density, g/cm3 % Weight (g) % Weight (g) Fe SiC 
1 12 100 2.00 0 0.00 100.0 0.00 7.86 
2 12 95 1.90 5 0.10 88.6 11.4 7.33 
3 12 90 1.80 10 0.20 78.7 21.3 6.87 
4 12 85 1.70 15 0.30 69.9 30.1 6.46 

 

From the table, note that the quantities of samples for all compositions are 12 each.  

This is because 3 samples of each composition will be sintered at a temperature at a 

time where there are 4 different temperatures designed for the test starting from 800°C 

to 1100°C. Thus, the total weight of powders required for the experiment resulted about 

89g for Fe powder and 8g for SiCp.  

 

4.2 Mixing and Compaction 

Due to the small volume of the mixtures, the powders are mixed manually using a 

marble mortar and pestle. This is because the procedure is more relevant and ensures 

higher homogeneity of mixture than using the actual mixer or blender since powders 

tends to form agglomerate and stick to the wall of the mixer, thus reducing the volume 

significantly. The process of compaction is done by using cold press machine; Auto 

Pelletizer. The mold available produced compacts with 13mm in diameter and have 

limit of 519MPa for maximum compaction pressure. From literature (Kalpakjian et al., 

2006), the suggested suitable compaction pressure for iron powder is about 350MPa to 

800MPa.  

Since there is no reference that clearly reveals the optimum compaction parameters for 

the composite, selection of suitable parameters for the research is done by performing 

several compaction tests. The variables for the test are the load, mass of powders and 
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dwell time. The pressures are ensured to be in the range suggested by literatures. 

Results from the initial compaction process tests are as follow: 

Table 4.2: Result from compaction by Auto Pelletizer. 

No. Parameters Result 
 
1 

 
Powder: 850µm 
Compaction Pressure: 
350MPa 
Dwell time: 5 min 
 

 
•  Not perfectly compacted. 
• Compact can be easily 

dissociated. 

 
2 

 
Powder: 850µm 
Compaction Pressure: 
519MPa 
Dwell time: 30 min 
 

 
• Not perfectly compacted. 
• Compact can be easily 

dissociated. 

 
3 

 
Powder: 850µm  
(reduced mass) 
Compaction Pressure: 
519MPa 
Dwell time: 30 min 
 

 
• Not perfectly compacted. 
• Compact can still be easily 

dissociated. 

 
4 

 
Powder: 10µm 
Compaction Pressure: 
400MPa 
Dwell time: 5 min 
 

 
• Not perfectly compacted. 
• Compact can still be 

dissociated. 

 
5 

 
Powder: 10µm 
Compaction Pressure: 
500MPa 
Dwell time: 5 min 
 

 
• Perfectly compacted. 
• Smooth surface.  

  

The table shows that sample 5 is the best sample to chose. The parameters are suitable 

for both; the sample and the machine. Sample 1 until sample 3 resulted in defect mainly 

due to the low pressure applied. The samples with 850µm require higher compaction 

pressure which cannot be achieved by the Auto Palletizer machine. Other compaction 
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machines which offer larger compaction pressure are available but the requirement of a 

huge amount of raw materials is another issue. Limited volume of SiC powder hinders 

the utilization of machines with large mold.  Thus, Fe powder of 850µm in size is taken 

out from the alternatives. In conclusion, for the compaction stage, the compaction 

pressure and dwell time is set to 500MPa and 5 minutes respectively.  After finalizing 

the compaction parameters, all 48 samples are compacted. The dimensions and density 

of the compacts are tabulated in Table I as attached in Appendix D.  

From observations, the average values for green densities are about 80% of theoretical 

value (sample calculations are attached in Appendix B). These high values of green 

densities which appear as a result of low porosity are the implication of the multi-sizes 

particles used where Fep is approximately 5 times smaller than SiCp. The smaller size of 

Fe particles filled up the gaps between the larger reinforcement particles, leading to a 

smaller volume of gaps within the compacts. In addition to that, Lin et al. (2003) 

verified that under the condition where the reinforcement particle size to the matrix 

particle exceeds 2, many matrix particles surrounds and piled up reinforcing particles. 

Moreover, large reinforcing particle also have a large contact area with the matrix, so 

reinforcing particles can impede the sliding of matrix particles under compressive 

stress, which is likely to reduce the size of gaps between the particles.   

 

4.3 Sintering 
 

The green compacts were sintered at 800oC, 900oC, 1000oC and 1100oC for 45 minutes 

in Argon atmosphere to avoid surface contamination. The heating and cooling rates of 

sintering process were set according to literature; 5oC/min and 10oC/min respectively. 

The dimensions of the sintered compacts are neglected due to the observation of the 

undersized difference between the green and sintered compacts which are 

approximately 0.001%. Thus, the shrinkage ratio is insignificant. Sintered density 

measured by Archimedes instrument are tabulated and attached in Appendix E. Plots of 

the experimental data, comparing the green and sintered densities for all sintering 

temperature and composition of SiC are shown in the next pages for further analysis.  
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Figure 4.1: Green and sintered density of composites sintered at 800°C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.2: Green and sintered density of composites sintered at 900°C. 
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Figure 4.3: Green and sintered density of composites sintered at 1000°C. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.4: Green and sintered density of composites sintered at 1100°C. 
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Figure 4.5: Sintered density versus amount of SiC of composites for all sintering 

temperatures. 
 

It was clearly observed from the figures shown that the presence of SiCp reinforcements 

caused density reduction. The plot shows a trend such that the increment of volume of 

reinforcing particles reduced the sintered density of the composite. This trend obeyed 

the rules of mixture which is based on the assumption that “a composite property is the 

volume weighed average of the matrix and reinforcement properties”, Kopeliovich 

(2010). Thus, with an increasing volume of reinforcement which possesses lower 

density than the matrix, the density of the composite is likely to be reduced accordingly. 

Comparing the green and sintered density, it is clearly shown in the figures that all 

density increased after sintering and the sintered density increased with increasing 

sintering temperature due to the improvement of densification at higher temperatures.  

In addition, evaluation on the average sintered density versus theoretical density reveals 

that the composites produced in this research owned about 87% of the theoretical 

density (sample calculations attached in Appendix C). This result might be due to the 

earlier step which is the compaction phase. The compaction pressure applied in the 

experiment is not the highest pressure recommended, thus the green density produced is 

not having an optimum green properties. The conditions of having non-optimum green 
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compacts draw in demands for higher sintering temperature or sintering time. 

Consequently, the sintered density will not achieve its optimum value due to the lacking 

properties of green compacts. 

Apart from that, Figure 4.5 clearly shows that the highest values for sintered densities 

for all mixtures are obtained at the same sintering temperature which is at 900oC. 

However, after that temperature, the density drops or remains relatively constant with 

increasing of temperature. This finding is comparable to result obtained in the 

experiment conducted by Feng et al. (2007), where they found that density of sintered 

Fe compacts is lower for sample from 1350°C compared to samples from 1100°C. 

Whereas, this present study appeared to obtain a lower sintering temperature as an 

optimum temperature which produced the optimum sintered density. It can be said that 

the densification degree is higher for samples sintered at 900°C compared to samples 

sintered at higher temperatures (1000°C and 1100°C).  

The results can be analyzed further with reference to the mechanism of plastic 

deformation. Plastic flow is accelerated at high temperature, which enhances the 

densification process as indicated by Bingham plastic model. As a result, parts of 

atomic group in the powders fill into the neighboring pores by plastic flow. However, 

an expansion of pores called Ostwald ripening might occur at these high sintering 

temperatures (Randall, 1998). In this case, a certain small pores formed at grain 

boundaries through vacancy diffusion will deform and even gather together to form big 

pores because of the effect of plastic deformation. When the sizes of these big pores are 

greater than a critical size, they will grow and merge each other, and then their irregular 

shape change into spherical shape which will consequently reduce the density of the 

samples sintered at high temperature (1000°C and 1100°C).  

Besides, according to sintering kinetics as presented by Mrowee (1980), “the higher 

sintering temperature, the higher the densification degree, but too high a sintering 

temperature is unfavorable to enhance the densification degree”. This is due to the 

evolution of pores and decomposition of elements available in the composite mixtures. 

As proven by Chakthin et al. (2008), the decomposition of SiC particles in the 

composites resulted in growth of the voids surrounding the reinforcement particles. 
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They observed that the decomposition of SiC particles was thermally activated at higher 

sintering temperatures which encourage the growth of voids since the decomposition 

also initiated the reduction of the SiC particle size.  

 

4.4 Microhardness  

Microhardness test was performed using Vickers Test equipment with 300g load at 15s 

dwell time after the samples have been polished. 5 readings are taken in random area on 

the samples and the average value is calculated. The results for the test are tabulated in 

Table III (Appendix F). The simplified table is shown below.  

Table 4.3: Summary of micro-Vicker Test for all samples 

0 5 10 15 
800 552.98 976.56 1073.38 1157.93 
900 718.72 1264.63 1390.37 1634.42 
1000 844.08 1233.12 1061.72 1322.64 
1100 959.48 1246.00 1287.90 1329.15 

 

From the data, it is observed that all Fe-SiC samples are able to provide strengthening 

as the values of HV obtained are higher than HV of the pure Fe samples. Besides, 

researches conducted by Bell and Dunford (1980) and Fabregue D. et al. (2010), reveals 

that HV for sintered pure iron compacts are 220HV and 400HV. With comparison to 

those literatures, it is safe to say that the data obtained from present hardness tests are 

valid because they are extremely greater than the previous findings. The significant 

improvement of hardness might be due to the different ratio of Fe and SiC sizes used; 

where in this research, SiC particles is larger than Fe, whereas in most of the literatures, 

Fe is smaller than reinforcement particles. The maximum hardness, 1634.42HV is 

achieved from the composite reinforced with 15% of SiC particle sintered at 900°C. To 

further analyze the data, the graphs of hardness value versus the composition of SiC are 

plotted as shown in the following pages.  

Tsinter (°C) 
wt% SiC 
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Figure 4.6: Hardness (HV) versus amount of SiC of compacts sintered at 800°C. 

 

Figure 4.7: Hardness (HV) versus amount of SiC of compacts sintered at 900°C. 
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Figure 4.8: Hardness (HV) versus amount of SiC of compacts sintered at 1000°C. 
 

 

Figure 4.9: Hardness (HV) versus amount of SiC of compacts sintered at 1100°C. 
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Figure 4.10: Hardness (HV) versus amount of SiC of compacts sintered for all sintering 

temperatures. 

 

In general, Figure 4.6 to 4.9 show that hardness increased with increasing fraction of 

reinforcement which complies with most of the cited literatures. Since hardness 

determines the degree of deformation of materials, the increasing of HV demonstrate 

that obstruction of plastic deformation occur in the Fe-SiC system. Considering the size 

of SiC particles which are larger than the matrix, it can effectively obstruct boundary 

slippage at the interface between Fe particles, causing grain deformation to dominate 

the plastic deformation. With this mechanism, SiC particles are capable to strengthen 

Fe-SiC composite when its surface is compressed or indented. Thus, increasing volume 

of SiC indicates more strongly impeded plastic flow, causing the hardness of Fe-SiC to 

increase with the amount of reinforcing particle (Lin et al., 2004). 

Besides, the decomposition of SiC particles might have took place in the composite, 

especially at high sintering temperatures. Research conducted by Zhang et al. (2008) on 

properties of Fe based Cu coated SiC reveals that the coating layer can suppress 

reaction between Fe and SiC until 1250°C. This statement gives the idea that without 
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the coating, as in the present study, interface reaction can take place or the 

decomposition of SiC particles might have thermally activated at temperature lower 

than 1250°C. During the sintering process, some SiC particles decomposed into Si and 

C atoms that could diffuse into the Fe particles. Possible reactions are as shown below: 

4Fe + SiC � Fe3C + Fe(Si)                (Eq. 1) 

5Fe + 2SiC � Fe3Si + Fe2Si + 2C              (Eq. 2) 

Equation 1 shows the formation of iron-carbon phase in the composite. The 

development of this phase into ferrite and pearlite structures lead to an effective 

strengthening mechanism. Iron containing up to 0.51% carbon start solidification with 

formation of crystals of ferrite at 723°C which then transformed to austenitic phase 

(Kopeliovich, 2010). During cooling, pearlite which is an alternate layer of ferrite and 

cementite are formed as the result of decomposition of austenite Fe-C structures. The 

formation of pearlite phase provides another strengthening mechanism in the Fe-SiC 

composite (Chakthin et al., 2008). Additionally, both equation 1 and 2 illustrates the 

possibilities of strengthening by dispersion hardening of Si into the Fe matrix that might 

also contributed to the increasing hardness of the composite (Libardi et al., 2006).  

Meanwhile, Figure 4.10 reveals that the values of HV for compacts sintered at 1000°C 

and 1100°C are situated in between 800°C and 900°C. In other words, the hardness for 

composites sintered at 1000°C and 1100°C are lower than hardness of composites 

sintered at 900°C. The result indicates that the claim about increasing sintering 

temperature will improve hardness of composite is not typically appropriate for this 

study. The lower hardness in the composites is most likely attributed to the porosity 

inside the material (Pagounis et al., 1996). As what have been mentioned in the 

discussion for sintered density earlier, at higher sintering temperature, the occurrence of 

Ostwald ripening is possible. A certain small pores formed at grain boundaries through 

vacancy diffusion can deform and even merge each other. The initially irregular pores 

become rounded and change size. The expansion of pores reduces the density of the 

composites which consequently leads to the decrement of hardness.  
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From the image of micrographs, the distribution of elements in the composites can be 

clearly observed. Analysis made by Chakthin et al. (2008) on the microstructure of 

sintered Fe-SiC composites is referred to characterize the elements shown in the 

micrographs. It is agreed that there existed three different microstructural features in the 

sintered Fe-SiC composites, namely; ferritic iron, lamellar structure of pearlite phase, 

and porosity as labeled in the figure shown below: 

 

Figure 4.11: Micrograph from optical microscope. 

From this information, further observations on the micrographs revealed that SiC 

particles are uniformly distributed in the composites as the images in Table 4.4 show 

that the elements dispersed evenly in the compacts. It is found that the size of the 

particles has decreased from the initial uniform size. This indicates that decomposition 

of SiC particles has taken place during sintering of the composites. Decomposition of 

SiC particles resulted in growth of the voids surrounding the particles which can be 

clearly observed in micrograph for composites with 15% SiC reinforcement sintered at 

900°C. The lower part of the image shows the existence of big voids between two 

decomposed SiC particles. 

Besides, the decomposition of SiC particles also lead to the formation of Fe-C phases in 

the composites which are the ferrite and pearlite structures. The formation of these two 

structures provided another mechanism of strengthening inside the composites as what 

have been discussed in the earlier section. It is observed that pearlite zone is lesser in 

Pores 

Ferrite 

SiC 
Pearlite 

   100µm 
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composites sintered at 1000°C and 1100°C compared to the other two lower 

temperatures. This condition is most likely due to the retardant of decomposition of the 

austenite or due to formation of another iron-carbon phase called bianite. As claimed by 

Herring (2009), pearlite and bainite transformations compete with one another, and the 

formation of bianite is typified by intermediate hardness and good toughness. This 

claimed is relevant to this condition, where it is discovered earlier that the hardness of 

the composites sintered at 1000°C and 1100°C are lower than composites sintered at 

900°C which contains more pearlite zones. 

Apart from that, it is observed that the size of voids increased with increasing sintering 

temperatures from 900°C to 1100°C. This is due to expansion behavior of pores where 

larger pore growing at the expense of smaller pores. At high temperatures, plastic flow 

is accelerated. This caused a certain small pores which formed at grain boundaries 

through vacancy diffusion to deform and gather to form big pores because of the effect 

of plastic deformation as mentioned and discussed thoroughly in section 4.4 earlier.  
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CHAPTER 5 

CONCLUSION & RECOMMENDATION 

 

In this research project, powder metallurgy technique was successfully utilized to 

fabricate Fe-SiC composites. Results obtained are valid and comparable to literatures. 

Besides, the objectives set up for this research has been accomplished which are 

basically to produce Fe-SiC composite and to investigate the effect of SiC contents as 

well as variation of sintering temperatures towards the properties of the composites. The 

following conclusions have been drawn from this study: 

• Fe-SiCp composites have been successfully fabricated with fairly uniform 

distribution of SiC particles. 

• Addition of SiC particles improved hardness and offered weight saving to Fe-

sintered materials. 

• Strengthening mechanisms were provided by impedance of plastic deformation 

by SiC particles and formation of iron-carbon phases. 

• Optimum density and hardness can be obtained at 900°C. Sintered density and 

hardness increased from 800°C to 900°C. However, higher temperatures caused 

pore expansion and lowered the densification degree. 

Nevertheless, it is recommended for future investigations to examine the elements and 

phases exist in Fe-SiC composites thoroughly to provide further details on the 

microstructural behavior and strengthening effects.  Besides, it is essential to identify 

the optimum parameters such as the compaction pressure and most suitable sintering 

atmosphere to improve the properties of the composites.  
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APPENDIX A – Details of Sintering Conditions  

Plots of sintering conditions for 800°C and 900°C 
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Plots of sintering conditions for 1000°C and 1100°C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 

 

APPENDIX B – Figures of Final Samples 

Pictures of the mounted and polished samples 

 

 

 

 

 
 
                   Top view 
 

 

 

 

 

              Orthogonal view 
 

 

 

 

 

          Side view 

 

 

Mounted and polished samples. 
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APPENDIX C – Calculations for Density of Composites 

Equations and sample calculations: 

1. Weight percentage, %wt 

 

 

Where:  fw is the weight fraction. 

M f is the mass of ceramic reinforcement. 

Mm is the mass of metal matrix.   

Then,  %wt = f w x 100% 

 

e.g.  fw =       0.10 g   

         (0.10 + 1.90)g 

      = 0.05 

        %wt = 0.05 x 100 = 5% 

 

2. Volume percentage, %vol from %wt 

 

 

 

 

 

 

 

 

 

 

 

Where:  f is the volume fraction. 

ρf  is the density of ceramic reinforcement.  

ρm  is the density of metal matrix.  
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Then,  %vol = f x 100% 

 

e.g.  f  =             (0.05/3.22) 

          (0.05/3.22) + (0.95/7.86) 

    =    0.1138 

      %Vf  =    0.1138  x 100 = 11.38% 

      %Vm =    100 – 11.38 = 88.62% 

 

 

3. Theoretical density, ρth 

 ρth = (ρw x %volw) + (ρm x %volm) 

 Where:  ρw is the density of ceramic reinforcement. 

   ρm is the density of metal matrix.  

 
      e.g.    ρth  = ( 3.22g/cm3  x 0.1138) + ( 7.86g/cm3 x 0.8862) 
 
      = 7.33 g/cm3 
 

 

4. Evaluation on green density with theoretical density 

 

% difference = Theoretical density – Green Density x 100% 

   Theoretical density 

 

e.g.  5% SiC  

 % difference = 7.33 g/cm3 – 5.827 g/cm3 x 100 

    7.33 g/cm3 

         = 20.5% 

  % density     = 100% - 20.5% 

            = 79.5% from theoretical density 

      



50 

 

5. Evaluation on sintered density with theoretical density 

 

% difference = Theoretical density – Sintered Density x 100% 

           Theoretical density 

 

e.g.  5% SiC  

 % difference = 6.412 g/cm3 – 7.33 g/cm3 x 100 

    7.33 g/cm3 

                     = 12.5% 

 % density      = 100% - 12.52% 

            = 87.5% from theoretical density 
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APPENDIX D – Table of Dimensions and Green Density of Compacts 

Table I: Dimensions and green density of compacts.  

Label 
% 
SiC m powder Tsinter (°C) 

d 
(mm) 

h 
(mm) 

m compact 
(g) 

v compact 
(mm3) 

ρ 
green(g/cm3) 

1 0 2 g Fe 800 13.04 2.32 1.962 0.310 6.332 
2 13.04 2.29 1.966 0.306 6.419 
3 13.04 2.31 1.970 0.309 6.377 
4 900 13.04 2.31 1.965 0.309 6.370 
5 13.04 2.29 1.973 0.306 6.442 
6 13.04 2.29 1.972 0.306 6.448 
7 1000 13.04 2.29 1.968 0.306 6.426 
8 13.04 2.29 1.984 0.306 6.487 
9 13.04 2.30 1.980 0.307 6.455 
10 1100 13.04 2.28 1.970 0.304 6.470 
11 13.04 2.28 1.959 0.304 6.434 
12 13.04 2.28 1.963 0.304 6.447 
16 5 1.9 Fe + .1 SiC 800 13.04 2.47 1.925 0.330 5.828 
17 13.04 2.52 1.945 0.336 5.787 
18 13.04 2.56 2.000 0.341 5.857 
19 900 13.04 2.47 1.907 0.330 5.781 
20 13.04 2.54 1.975 0.340 5.815 
21 13.04 2.57 1.985 0.343 5.791 
22 1000 13.04 2.52 1.975 0.337 5.861 
23 13.04 2.55 1.962 0.340 5.769 
24 13.04 2.53 1.966 0.338 5.819 
25 1100 13.04 2.47 1.915 0.330 5.798 
26 13.04 2.36 1.819 0.315 5.779 
27 13.04 2.50 1.971 0.334 5.903 
31 10 1.8 Fe + .2 SiC 800 13.04 2.71 1.932 0.362 5.338 
32 13.04 2.65 1.955 0.353 5.531 
33 13.04 2.71 1.980 0.362 5.471 
34 900 13.04 2.67 1.942 0.356 5.453 
35 13.04 2.56 1.831 0.342 5.356 
36 13.04 2.72 1.983 0.363 5.466 
37 1000 13.04 2.66 1.948 0.355 5.484 
38 13.04 2.63 1.926 0.351 5.483 
39 13.04 2.66 1.943 0.356 5.463 
40 1100 13.04 2.70 1.959 0.361 5.426 
41 13.04 2.70 1.944 0.361 5.385 
42 13.04 2.61 1.881 0.349 5.390 
46 15 1.7 Fe + .3 SiC 800 13.04 2.88 1.962 0.385 5.101 
47 13.04 2.80 1.928 0.374 5.156 
48 13.04 2.85 1.954 0.381 5.134 
49 900 13.04 2.86 1.951 0.382 5.108 
50 13.04 2.84 1.950 0.379 5.141 
51 13.04 2.83 1.956 0.378 5.181 
52 1000 13.04 2.85 1.948 0.381 5.112 
53 13.04 2.84 1.963 0.380 5.169 
54 13.04 2.81 1.944 0.376 5.174 
55 1100 13.04 2.86 1.950 0.382 5.105 
56 13.04 2.82 1.948 0.377 5.166 
57 13.04 2.82 1.927 0.377 5.117 
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APPENDIX E – Table of Sintered Density of Compacts 

Table II : Sintered density obtained from Archimedes density measuring instrument.  

Label % 
SiC 

m powder Tsinter 
(°C) 

ρ 
green(g/cm3) 

avg (g/cm3) ρ 
sintered(g/cm3) 

avg (g/cm3) 

1 0 2 g Fe 800 6.332   6.722   
2 6.419   6.718   
3 6.377 6.376 6.702 6.714 
4 900 6.370   7.029   
5 6.442   7.205   
6 6.448 6.420 7.255 7.163 
7 1000 6.426   6.958   
8 6.487   7.063   
9 6.455 6.456 6.976 6.999 
10 1100 6.470   7.054   
11 6.434   6.985   
12 6.447 6.450 6.991 7.010 
16 5 1.9 Fe + .1 SiC 800 5.828   5.964   
17 5.787   6.057   
18 5.857 5.824 6.09 6.037 
19 900 5.781   6.259   
20 5.815   6.335   
21 5.791 5.796 6.342 6.412 
22 1000 5.861   6.302   
23 5.769   6.206   
24 5.819 5.816 6.243 6.250 
25 1100 5.798   6.310   
26 5.779   6.212   
27 5.903 5.827 6.235 6.252 
31 10 1.8 Fe + .2 SiC 800 5.338   5.616   
32 5.531   5.643   
33 5.471 5.447 5.574 5.611 
34 900 5.453   5.665   
35 5.356   5.542   
36 5.466 5.425 5.724 5.644 
37 1000 5.484   5.658   
38 5.483   5.332   
39 5.463 5.477 5.670 5.553 
40 1100 5.426   5.544   
41 5.385   5.623   
42 5.390 5.400 5.517 5.561 
46 15 1.7 Fe + .3 SiC 800 5.101   5.39   
47 5.156   5.417   
48 5.134 5.130 5.316 5.400 
49 900 5.108   5.831   
50 5.141   5.538   
51 5.181 5.144 5.450 5.516 
52 1000 5.112   5.428   
53 5.169   5.317   
54 5.174 5.152 5.448 5.398 
55 1100 5.105   5.279   
56 5.166   5.626   
57 5.117 5.129 5.413 5.409 
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APPENDIX F – Table of Hardness (HV) of Compacts 

Table III : HV values measured from Vickers Hardness Test.  

 

Label % SiC m powder Tsinter (°C) HV HV avg 
1 0 2 g Fe 800 552.00   
2 555.73   
3 551.21 552.98 
4 900 687.54   
5 699.72   
6 768.90 718.72 
7 1000 888.81   
8 832.65   
9 810.78 844.08 
10 1100 992.34   
11 936.00   
12 950.10 959.48 
16 5 1.9 Fe + .1 SiC 800     
17     
18 809.42 809.42 
19 900 1215.26   
20 1370.04   
21 1208.58 1264.63 
22 1000 1375.44   
23 1005.10   
24 1318.82 1233.12 
25 1100 1234.88   
26 1170.12   
27 1333.00 1246.00 
31 10 1.8 Fe + .2 SiC 800 1005.67   
32 1213.00   
33 1001.47 1073.38 
34 900 1418.30   
35 1253.10   
36 1499.70 1390.37 
37 1000 1220.50   
38 1313.45   
39 1268.61 1267.52 
40 1100  1386.24   
41  1167.50   
42 1309.96 1287.90 
46 15 1.7 Fe + .3 SiC 800 1150.86   
47  1257.93   
48 1065.00 1157.93 
49 900 1627.83   
50 1659.03   
51 1616.40 1634.42 
52 1000  1422.64   
53 1326.94   
54 1218.34 1322.64 
55 1100 1256.68   
56 1222.57   
57 1508.20 1329.15 

 


	estimations_of_composite_materials_prope

