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ABSTRACT

FPGA based Object tracking implementation is one of the most recent video

surveillance applications in embedded systems. In general, FPGA implementation is

more efficient than general purpose computers in attaining high throughput due to its

parallelism and execution speed. The system need to be designed on a standard frame

rate in such a way to achieve optimal performance in real time environment. Optimal

design of a system is dependent on minimizing the cost, area (device utility) and

power while achieving the required speed. Past research work that investigated object

tracking systems' implementation on FPGA achieved a significantly high throughput

but have shown high device utilization. This research work aims at optimizing the

device utilization under real time constraints. The Adaptive Hybrid Difference

algorithm (AHD), which is used to detect the moving objects, was chosen to be

implemented on FPGA due to its computation ability and efficiency with regard to

hardware implementation. AHD can work at various lighting conditions automatically

by determining the adaptive threshold in every period of time. Compared to other

tracking algorithms based on segmentation, subtractions of pixels are done between

number of frames and the results are accumulated. Therefore the logic circuit required

by AHD is simple but the process of accumulating the results through different time

frames could potentially slow the system. To overcome this bottleneck, a system

based on AHD algorithm has been proposed, designed and implemented to obtain the

minimal logic utilization under real time computation requirement. Pipelining, line

buffers and parallelization have been used to develop the internal design in order to

increase the throughput. System frequency is set to provide data synchronization

between the memory and processing units. With the 640x480 frame size, the proposed

system has achieved a frame rate of 32.55 fps with device utilization of 1,821 out of

33,216 logic elements and 74,192 bits out of 483,840 bits of the device's internal

memory. The resource usage of the proposed design is less than what have been

achieved by the entire work in the literature.
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ABSTRAK

FPGA yang berasaskan implementasi penjejakan objek merupakan salah satu aplikasi

video pemantauan yang paling terkini dalam sistem berprogram. Secara umumnya,

implementasi FPGA adalah lebih cekap daripada komputer kegunaan am dalam

mencapai daya pemprosesan yang tinggi kerana keselarian dan kelajuan

pelaksanaannya. Sistem ini perlu direka mengikut kadar piawaian yang sedemikian

untuk mencapai prestasi yang optimum dalam dunia sebenar. Reka bentuk sistem

yang optimum adalah bergantung kepada minima kos, kawasan (utiliti peranti) dan

kuasa ketika mencapai kelajuan yang diperlukan. Berdasarkan penyelidikan yang

sebelum ini, FPGA yang berasaskan implementasi penjejakan objek mencapai daya

pemprosesan yang sangat tinggi tetapi menggunaan peranti yang banyak.

Penyelidikan ini bertujuan untuk mengoptimumkan penggunaan peranti di bawah

kekangan masa sebenar. Kerja-kerja penyelidikan ini bertujuan untuk

mengoptimumkan penggunaan peranti di bawah kekangan masa sebenar. Algoritma

Perbezaan Adaptive Hibrid (AHD), yang digunakan untuk mengesan objek yang

bergerak, telah dipilih untuk diimplementasikan pada FPGA berdasarkan keupayaan

pengkomputeran dan kecekapan dalam mengimplementasikan peranti keras. Jika

dibandingkan dengan algoritma penjejakan menggunakan segmentasi yang lain,

operasi penolakan piksel antara bilangan bingkai telah dilakukan dan keputusan

berjaya dikumpulkan. Oleh itu litar logik yang diperlukan oleh AHD adalah ringkas

tetapi proses mengumpulkan keputusan dalam jangka masa yang berbeza

menyebabkan sistem menjadi perlahan. Untuk mengatasi masala hini, satu sistem

yang mengunakan algoritma AHD telah dicadang, direka dan diimplementasikan

untuk meminimumkan penggunaan logik bergantung kepada keperluan

pengkomputeran dalam masa sebenar. Penggunaan teknik-teknik khas seperti saluran

maklumat dan keselarian telah dipertimbangkan untuk meningkatkan daya

pemprosesan. Frekuensi sistem telah ditetapkan untuk menyelaraskan data antara

memori dan unit pemprosesan.Dengan bingkai saiz 640 x 480, sistem yang

dicadangkan telah mencapai kadar bingkai 32.55 rps dengan penggunaan peralatan

vin



1,821 daripada 33,216 elemen logik dan 74,192 bit daripada 48,384 bit memori

dalaman peranti. Penggunaan sumber untuk sistem yang dicadangkan dalam

penyelidikan ini adalah berbandiguranh daripada apa yang telah dicapai oleh

penyelidikan-penyelidikan sebelum ini.
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CHAPTER 1

INTRODUCTION

1.1 Video Surveillance Systems and Image Processing

Video surveillance systems are systems that use video cameras for security and

safety purposes such as tracking suspects and detecting dangers. The vital need of

guard use started with the Second World War. However, using cameras for security

systems were not significantly popular until the electronic technology ofthe tube-type

camera has been developed by 1960s to 1970s. Years later, during 1980s and early of

1990s, solid state cameras that use a Charged Coupled Device (CCD) image sensor

were introduced to the world. Gradually, CCD cameras started to be used for security

systems instead of tube cameras. The drawbacks of tube sensor that affects image

quality and overall performance with repeated usage has encouraged the use of solid

state sensors. In contrast with the solid state sensors, metal oxide semiconductor

(MOS) and complementary MOS (CMOS) sensor cameras are stable and not effected

by aging. Moreover, producing these cameras with affordable prices had rapidly

spread using the video for surveillance systems. Thus, as a result, the first closed-

circuit television (CCTV) surveillance was introduced by 1995, which uses cameras

to transmit a video to set of monitors in a specific place. Since computer technology

has integrated with video surveillance technology, the golden age of surveillance

systems with the use of CCD and CMOS cameras flourished between 2001 and 2005.

Nowadays, by the advance of digital image transmission and digital storage

production, concurrent with the improvement of Internet video transmission

protocols, video surveillance systems have spread and occupied a vital role in the

current security industry [1].



The use of digital surveillance systems has led to the conversion of the video

stream into a sequence of digital images or frames. A digital image is represented by

two dimensional function f(x,y), where x and y are the plan coordinates of the image.

The function's value at any coordination is a finite discrete quantity that represents

the intensity ofthat point of the image, which is called a pixel [2].

Based on digital imaging, the trend nowadays is to process pixels' values to

perform a specific task over videos rather than using videos for general monitoring.

Many of image processing algorithms have been developed to apply specific

surveillance tasks on videos through the time such as detecting and tracking moving

or specific objects, shape, face and color recognition and catch over-speeding

vehicles. With the use of digital image processing, the goal of surveillance has been

enhanced from general observation to understanding what is happening in the scene

[3]. This saved effort and cost of employing people to monitor videos. From the other

side, it reduces chances of mistaking the danger and helps to detect the cause of

danger immediately.

1.2 Moving Object Tracking Algorithms

Tracking moving objects is a common application of video surveillance systems

that are used for security purposes. First the algorithm must detect the moving object

(the foreground) over still objects (the background). The outcome of detecting objects

is used later for an advanced level of processing. Detection algorithms depend

basically on the key features of detection; they are motion, color, specific shape or

other features. For example with regard to motion, the detection algorithm based on

detecting moving objects are different from the ones aiming at detecting all objects

whether they are moving or still. Usually for object detection, segmentation

algorithms are used, since segmentation can detect moving or still objects over a

frame. However segmentation algorithms are also able to detect motion by tracking

objects with the same features at different positions over the frames. Another way to

detect moving objects is to use information related to movement from the first step of

the algorithm such as subtracting frames from an idle background or using objects



difference through frames. Therefore, subtraction algorithms have been developed

and used for motion detection purposes, since they depend on frames and

background's pixels intensity differences. Subtraction algorithms procedures are

simple, however through the research, background subtraction was not the preferable

algorithm among object detectionand tracking algorithms. This is because the classic

image subtraction could be affected by noise, illumination changes and object

occlusions. The background subtraction researchers have developed the classic

subtraction to avoid its drawbacks by building background models that learn by light

intensity changes with time over the background. An example of that is an algorithm

developed in 2006 by [4] called the Adaptive Hybrid Difference (AHD) algorithm

which uses 30 frames to build background model using the mean and standard

deviation values of background pixels. The AHD algorithm can achieve results with

better quality within faster time compared to other background modeling algorithms

as will be explained in section 2.2.2.

1.3 Using Field Programmable Gate Array (FPGA) for Image processing

Field programmable gatearray (FPGA) is a large integrated circuit withthe ability

of being reconfigurable. FPGAs consist of configurable logic blocks (CLB) as the

basic internal elements, programmable routing, and I/O blocks. The CLB architecture

is different from one FPGA to another. However, in common the CLB of any FPGA

consisting of one or more multiple input lookup table (LUT) and flip flop used to

register the LUT's output. Mainly, FPGAs are signifiedby the number of logic blocks

available to be configured which reach tens of thousands for a single chip. By the

advancement of VLSI industry, chips with the same size are having larger internal

hardware capabilities. With that large amount of logic blocks, an entire system can be

built on FPGA device [5]. It is important to mention here that the two leader vendors

of FPGA manufacture are Altera Corporation and Xilinx Inc. [6-8].

The nature architecture of FPGAs mentioned in the previous paragraphhas led to

advantages of using FPGA to implement hardware designs. First, being a

reconfigurable device, it saves time and cost during system's design stage. Second,



with the programmable logic blocks and programmable routing, it offers high

flexibility for system design. Third, the internal architecture of FPGAs gives it the

advantage ofparallel processing feasibility.

Large part of image processing algorithms depends on applying specific process

on all or number of pixels of the current frame in parallel. In order to save running

time which is important in real time applications that are also required for some image

processing algorithms, the use of parallel implementation with image processing is an

important issue. Thus, parallel implementation ability offered by FPGA devices was

the main reason of preferring the use of FPGA rather than general purpose computers

for implementing image processing algorithms. As a result, implementing image

processing algorithms using FPGAs has enabled faster and more effective

surveillance applications.

1.4 Problem Statement

In the section 1.3, advantages of FPGAs for implementing image processing and

surveillance systems have been highlighted. In contrast the problem statement of this

research is represented through some of the FPGAs' disadvantages. Using the

parallelism capabilities of FPGAs, many hardware systems of video surveillance

algorithms with parallel nature have been designed. However, incorrect FPGA

designs may cost extra unnecessary gates, area and power dissipation. In building a

large system, a big challenge is to achieve the optimal design, cost, and power

dissipation of the system. The power dissipation of any CMOS circuits is related to

charging and discharging capacitance on gates and metal traces. The current

dissipation in a capacitor is driven bythe following equation

/= V* C* /

where I is the current, V is voltage, C is capacitance and / is frequency.

In order to reduce the current dissipation, voltage, capacitance or frequency must be

reduced. The voltage in FPGA design is fixed, while the frequency and capacitance

can be controlled through design. For the capacitance, it is directly related to the



number of gates toggled at any time and the length of the routes between them [9].

Thus by reducing the number of gates the power could be reduced. As a result

reducing the design area could help to reduce the length of routes which will reduce

the capacitance. While reducing the frequency will decrease the power dissipation, it

will slow the system speed. Specifying design frequency depends on the system speed

that the system has to meet. In addition, the frequency usually must meet the design

requirement to synchronize data between internal logics and to match timing of the

system. For object tracking applications specifically, the speed of the system during

running time is an important factor. The applications of moving object tracking must

be able to detect immediately the suspects or dangers. Therefore, limiting system

speed to save powermust not go beyond the required speed for a real time system. To

measure the execution speed, the frame throughput which is the number of frames

processed per second, is used. The video application must work with a speed of 30

frames per second to achieve real time system's conditions. Design speed is also

affected bythe input data latency to getoutput, and by the timing between sequential

elements of design paths.

In addition to achieving optimized power, device resources and design speed,

there are other challenges in building object tracking system on FPGA. One challenge

is to work between different clock domains through the camera, the memory and the

processing units. Data synchronization for the inputs and outputs of the developed

processing unit must be fulfilled.

Since the number of frames and pixels needed during processing the object

tracking algorithms is large, there is a need to use external memory. Therefore the

design of processing unit is governed by the memory specifications. Memories differ

in the amount of data that could be read or written within a clock cycle according to

the width of data bus and whether the memory has dual or single port. Implementing

parallehzation needs data from different frames or frame locations to be ready at the

same time. For example, using a 16 bits single port memory made it necessary to look

for techniques and solutions to make the data ready for parallel execution. The speed

bottleneck between storage devices and processing unit is one of the main problems

faced while designing the tracking system on FPGA.



All of the solutions to build the design should maintain the optimization of the

device resources, power dissipation and achieve the real time speed at the same time,

which is a big challenge.

The previous works that have implemented tracking moving objects on FPGAs

using segmentation algorithms, had utilized the advantage of FPGAs' parallel

architectures to achieve high throughputs. However, the hardware usage for

implementing those algorithms is high. Another researcher [10] used the Principal

Component Analysis algorithm, but the complexity of the algorithm's steps have

generated a high logic utility with difficulty to develop that code with HDL. Results
ofbackground subtraction could be affected by noise, illumination changes and object

occlusions. Pixels could be detected wrongly when the background informationalters

as a resulFbTTighting intensity changes overtime. Using segmentation algorithms that

detect object based ontesting pixels of the current frame rather than using background

model overcomes the dynamic illumination problem. However segmentation

algorithms' procedures are more complex than subtraction in terms of the operations

required although it gives high ability of parallel implementation, the resulted
synthesized logic is high. The use ofbackground subtraction algorithms is not widely
applied for implementing moving object tracking on FPGA since the drawbacks ofthe

typical subtraction algorithms did not encourage its implementation on FPGA.

However, the simplicity of subtraction algorithms steps, and the ability of achieving

minimum cost, logic and power design are good reasons to attempt improved version

of them again.

The AHD algorithm is a subtraction based algorithm that tracks moving objects

with an enhanced subtraction algorithm which uses adaptive threshold values. Even

the steps of the algorithm are simple, computerized, and can be run automatically

without theneed to assume parameters as the case with some tracking algorithms, still

there are challenges to implement it on hardware. The algorithm requires a lot of

operations that have to be implemented for every pixel of the frame. In addition, it
needs to accumulate the results of processing pixels through 30 subsequent frames in

order to find the thresholds. It also needs to keep the differences between the current

frame and other six frames for each new frame at tracking time. Accessing this data



through the memory with limited data width port could affect processing speed. At the

meantime, the bandwidth of the memory is very critical, since it specifics the speed at

which the system should work in order to achieve the real time condition. While

parallelization could be used to speed up the system, it increases the generated logic

units used in parallel to process data. From another side, reducing the utilization of the

resources for the design would affect the speed of execution. This research has been

initiated to overcome this bottleneck and to meet real time conditions while

optimizing the resource utilization of the design.

1.5 Research Objectives

This research investigates appropriate techniques and methods to build an HDL

design of the AHD algorithm on FPGA to achieve a tracking system with optimal

logic utility, power and cost in real time environment.

The main objectives of this study are:

1. To design a real time moving object tracking system using subtraction based

algorithm

2. To implement the designed moving object tracking system on FPGA.

3. To evaluate the feasibility of implementing adaptive hybrid difference algorithm on

FPGA at real time with minimum logic utility.

1.6 Research Scope

This research is meant to design and implement an optimal AHD processor

architecture on FPGA to detect the moving objects in real time environment. Thus,

non-moving objects are not subject of detection. The parameters to be optimized are

logic elements, memory blocks utilization, and throughput of the system. Because it is

difficult to estimate power dissipation and cost, they are not directly considered in the

evaluation. However they are realized as a result of logic utilization reduction since



they are proportionally related. The minimum throughput aimed to be reached is at

least 30 fps, which is the real time system throughput for video applications. System

design has considered the frame size of 640 * 480 pixels.

1.7 Contribution

The contribution of this research is AHD processor architecture that implements

tracking moving objects system on FPGA with optimized resource usage (1,821 from

33,216 of logic elements and 74,192 bits from 483,840 bits of memory on chip). The

processor achieves real time system's speed with 32.55 fps frame rate and frequency

of 20 MHz using frame of size 640 x 480 pixels. The architecture has used pipelining

technique to optimize and speed up processing time required for each pixel from 5 to

1 clock cycle. Buffering data using FIFOs and line buffers to synchronize dataflow

between memory and processing units' clock domains was used with pipelining to

achieve the maximum processing speed.

1.8 Thesis Outline

This thesis consists of six chapters, thesis overview, literature review, software

system design and implementation strategy, hardware architecture and

implementation, results and discussions, and thesis summary.

Chapter 1 describes the background of study, problem statement, objectives,

scope and contributions.

In Chapter 2 more detailed on theoretical background of tracking algorithms has

been highlighted. Algorithms were related to the literature review of the works which

developing them. The chapter then displays the literature work of implementing some

of these tracking algorithms on FPGA devices by some researchers. The study

concentrates on displaying designs and implementations, while results and evaluation

has been left to be discussed in the chapter of results and discussions.



Thesis Methodology is distributed among Chapters 3 and 4 since each is

discussing the work from a different perspective. For Chapter 3, it presents software

design and development system of the Adaptive Hybrid Difference. Through the

chapter, the software implementation of the AHD algorithm is verified and evaluated

as a pre-step before implementing it on the Hardware.

Chapter 4 illustrates in details the proposed design and implementation of the

AHD on the FPGA. An analytical study and image representation of the algorithm

from hardware perspective have been discussed. Additionally, system specifications

and key optimization parameters meant to be reached through the design have been

identified. The chapter detailed the hardware architecture of the two core units of our

design, the Threshold Definer unit and the Binary Image Builder unit. Architectures

of both units are appended with frequency and functionality explanation via the data

flow through the system. Also the pipelining and other techniques used to optimize

the system are illustrated.

Results of the hardware design and implementation have been discussed and

evaluated in Chapter 5. Systemperformance has been analyzed and a synthesis utility

of the system has been compared with other systems mentioned previously in the

literature review. Finallyan evaluation of this work is set at the end of chapter 5.

Chapter 6 summarizes the thesis in terms of achieved contributions and

recommended work. It emphasizes on the contributions of this research.



CHAPTER 2

LITERATURE REVIEW

2.1 Chapter Overview

Object tracking and detection are among the prime applications of video

surveillance systems from implementation perspective. Some of the literature has also

focused on the monitoring aspect of implementation of such systems. Recently, object

tracking and detecting algorithms have been developed in the field of video

surveillance systems. A number of algorithms [4, 11-15] have been introduced which

are applicable in software. Nowadays, the trend has shifted to the use of standalone

video surveillance systems on embedded systems instead ofpurely on software.

Research and development on software as well as on embedded system based

object tracking have been covered by many researchers [4, 11-24]. This chapter

highlights some of important research contributions from software and embedded

implementations perspectives. First, object tracking algorithms using software and

general purpose computers for implementation have been discussed. Then algorithms

that are implemented on FPGA as embedded system are exhibited and explained.

Algorithms of object tracking have been classified into four categories based on

previous research. Related literature for each class is discussed thoroughly. Section

2.3 highlights research about different tracking algorithms that were implemented

using different techniques on FPGA.



2.2 Object Detection and Object Tracking Algorithms

Object tracking is an important application used in video surveillance and image

processing systems. To track an object of interest through sequence of frames, it is

needed to detect that object within each frame. Several object detection algorithms

have been developed and research had contributed a lot in this domain. In common

the most known algorithms are categorized under point detectors, background

subtraction, segmentation and supervised learning algorithms; according to survey

study produced in [23]. A number of algorithms and approaches have been designed

and developed under each category. Some of them have been highlighted with their

scope and objectives; as described in subsections 2.2.1-2.2.4.

2.2.1 Point Detectors

Point detectors are algorithms that search for interest points through the image to

use them later for motion, tracking and stereo applications. The interest points are

detected according to their expressive texture in their respective localities. Some

researchers have introduced the point detectors algorithm using different types of

detectors, such as Moravec's detector [25], Harris detector [26], Affine Invariant

Point Detector [27] and Scale Invariant Feature Transform (SIFT) [28]. The best

algorithm is the one which can detect interest points that are unchanging to

illumination, resolution or camera location changes. In comparison with other

detectors, SIFT detector generates a greatest amount of interest points under different

transformations, since it accumulates points of interest at different scales and

resolutions. Among other detectors, it has achieved the highest performance of

interest points, and the most robust results to image deformations [29]. This is

because SIFT accumulates the interestpoints through different resolutions and scales

of the scene. However, it is also more complex than other methods. The algorithm

steps required to regenerate the image with different scales using Gaussian filters and

later the histogram information is needed to allocate the obtained points from different

scale images in the correct location. To use such an algorithm for real time object

tracking, the consumed execution time must be considered.
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Algorithm

Point detectors

Table 2.1: Summary ofpoint detectors algorithms

Used in

Motion, tracking

and stereo

applications.

Representative work

• Moravec's detector

(Moravec, 1979)

• Harris detector (Harris

and Stephens, 1988)

• Affine Invariant Point

Detector (Lowe, 2004)

• Scale Invariant Feature

Transform (SIFT)

(Mikolajczyk and

Schmid, 2002)

Comment

SIFT algorithm achives

the higiest performance

under different

transformations and

obtains the most robust

results among other point

detectors, however it

consumes high

computation time due to

its steps.

2.2.2 Background Subtraction

Background Subtraction algorithms are simple in implementation but at the same

time their results could be affected by noise, illumination changes and object

occlusions. It is used to detect temporal changes on the scene through the time-

information via stream of frames. Usually the background subtraction is not used in

its simple form. In order to take the benefit of simplicity of the background

subtraction and to avoid the affected results, other techniques have been combined

with it to get more accurate results. The research started on this algorithm since late

70s [30] until now, but it only became popular when [20] introduced their work in

1997. They have proposed to model each pixel of the background with a single 3D

Gaussian. Model parameters, the mean and the covariance values, are obtained from

the gradual changes on the colors through consecutive frames. Next, these values are

used to build the background model that is used to determine the foreground by

comparing the pixels ofeach frame's with its background model values.

However, the model uses a Single Gaussian Mixture Model (SGM), which still

has drawbacks especially for outdoor uses. Repetitive object motions, shadows and

reflectance can cause multiple colors for one location. Thus, other researchers have

introduced background models such as Wall flower [31], Mixture of Gaussians
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(MOG) or Gaussians Mixture Model (GMM), Eigen background [32] and Dynamic

texture background [33].

In [34], an adaptive background subtraction algorithm, which is an improvement

of Mixture of Gaussians model, was developed. In contrast with Mixture of

Gaussians, the numbers of components are not fixed. For each pixel the number of

components is adapted automatically according to the current scene. Thus a training

set is used to estimate the background model by estimating the density function. The

training set can adapt changing of illumination that happens gradually, sudden

changes or even when a new object enter or leave the scene. By discarding old

samples and adding new ones to the training set every chosen period of time, the

changes are adapted. The developed model by [34] can work faster than the normal

GMM and achieve slightly improved results. However, the computational effort of the

improved GMM is still large to be applied in real-time applications. Furthermore it is

not suitable for limited resource systems such as embedded systems. Tracking quality

is slightly improved than GMM but basically GMM gives low quality for tracking

rigid objects [4]. The execution time of the adaptive background subtraction is

increased according to the complexity of the scene as when new objects enter or leave

the frame.

When the density function is highly complex, the model can't be built by the

parametric model approach. Thus a non-parameter background modeling can be used

instead. In [35], non-parametric background modeling using adaptive kernel density

estimation for motion based modeling is introduced. To adapt changingcharacteristics

during the running time, optical flow is utilized as a feature to detect changes. The

algorithm is better than GMM in adapting changes and working under challenge

conditions for online video tracking, however computational time is still not reduced.

A more simple and common background subtraction method is Image difference.

The target frame is subtracted from the near previous frame, while the moving pixel is

detected if the difference exceeded a given threshold. Such an algorithm is efficient

and fast, however it suffers from two common drawbacks: foreground aperture and

ghosting. Ghosting is caused by objects move so fast so that the foreground ofthe old

position is caught as background for the current frame. On the other hand, if the
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object moves too slowly, aperture of foreground will result [12]. In order to overcome

ghosting and aperture problems, [36] have used double differences of t-1 and t-2 and

made logical AND, while the threshold is determined at time t and t-1. Double

differences methods work well with small depth field images, while producing less

performance with the large field depths. However, Image difference algorithms can't

be run automatically since the threshold parameters are set manually.

In [12], inter frame differencing algorithm with improvements on calculating the

threshold to solve the known image difference's problems is presented. The algorithm

was developed especially for detecting objects in outdoor night environment.

Obtained detected objects by it are more accurate compared with those obtained by

other algorithms applied for the same scene. However, the algorithm still cannot work

automatically since a lot of required main parameters are set manually or by using

histograms. Additionally, it is not guaranteed to work effectively under different

environment such as day time or indoor conditions.

In [4], a method called Adaptive Hybrid Difference (AHD) that works in real time

was developed which is an improvement over the previous methods. The GMM

method is better in the quality of the image built by the tracking while the image

difference method is better in terms of execution time. AHD method is based on the

process of image difference method. At the same time, an adaptive threshold

technique has been designed to calculate the threshold automatically rather than

specifying thresholds manually. This has made the algorithm robust for real time and

can be run automatically. Using hybrid difference strategy in the algorithm improves

the quality of the obtained tracking image. The authors of [4] carried out a test for

GMM and AHD methods on tracking object images of vehicles in the highway road.

The results indicated that AHD runs faster than GMM and obtains a higher quality
tracking image.
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Table 2.2: Summary of background subtraction algorithms

Algorithm Used in Representative work Comment

Background Detecting Single Gaussian SGM is affected by repetitive object

subtraction. objects. Mixture Model (SGM)

(Wrenetal. 1997) [20].

motions, shadows and reflectance.

Detecting Gaussians Mixture GMM computational steps are complex

objects. Model (GMM). while it achieves low quality for rigid

objects.

Detecting Adaptive background Works faster than GMM and achieves

objects. subtraction (Zivkovic slightly improved results. However, the

2004) [34]. computational effort is large to be

applied in real-time applications.

Detecting Non-parametric Adapts changes and works under

objects background modeling challenging conditions better than

(Mittal et al. 2004) [35] GMM, however the computational time

is still high

Detecting Image difference. Consumes low computational effort,

moving efficient and fast, however it suffers

objects. from foreground aperture and ghosting.

Detecting Double differences • Overcomes ghosting and aperture.

objects. method (Cucchiara et • Works well with small depth field

al. 1999) [36]. images but not with the large field

depths.

• Cannot be run automatically.

Detecting Inter frame • Overcomes image difference's

objects in differencing (Huang et problems. Achieves more accurate

outdoor al. 2008) [12]. results than others.

night • Cannot be run automatically.

places. • Not guaranteed to work effectively

under different conditions.

Tracking Adaptive Hybrid Works automatically at real time

vehicles Difference (AHD) (Shi conditions. Runs faster than GMM and

in the et al. 2007) [4]. obtains a higher quality than image

highways differences algorithms.
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2.2.3 Segmentation

The segmentation process is to partition the image into perceptually similar

regions. Image segmentation algorithms that are relevant to object tracking have been

widely proposed using different techniques. There is no common standard

classification of object segmentation algorithms followed by segmentation

researchers. One classification based on the concept of space and time [15], defined

three groups, temporal, spatial and spatio-temporal.

For spatio-temporal segmentation algorithms, in 2004 [37] have worked in

dividing the frame image into perceptual regions using spatial and temporal edge

information. This algorithm requires complex computation for finding the required

edge-motion parameters and edge detection.

Algorithms based on space or spatial segmentation algorithms are also categorized

into, pixel classification, edge based, region based and model based. Pixel

classification methods use threshold to group the related pixels into one segment as

outlined by [38]. The work of [39] has presented edge detection methods, such as

sobel filtering for segmentation, by identifying the regions surrounded by the edges.

Region growing algorithm as presented in [39] is an example of region based

segmentation and it is popular among segmentation algorithms. It divides the image

into cells of network and starts searching for coherent pixels to combine them

together, then the segmented pixels within each cell are grouped with other coherent

segments from neighboring cells.

Segmentations based on region growing are working well for simple objects, but

for complex objects, the output segments after the segmentation process still need to

go through a grouping operation to connect segmented parts belonging to the same

object.

In [14], a grouping algorithm for tracking complex objects through a video stream

has been proposed. Image segmentation stage is done first by applying the region

growing algorithm on each frame. Using the region growing algorithm achieves

robustness among a noise that could occur when motion dependent algorithms are

used instead. In the next stage, some features such as: size, position and color are
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extracted for each segment. These features are used to match segments in the current

frame with the corresponding segments from previous frames. In order to match the

corresponding segments via frames, the Manhattan-distance method is applied

whereas segments are matched with those having the minimum Manhattan distance

[13, 22]. Extracting a Motion vector for each segment is an important step that the

grouping algorithm depends on. The motion vector shows the pattern that has been

followed by a segment during the time. It is determined by the distance between the

segment in the current frame and its' matched segments in the two successive frames.

The grouping algorithm searches among the frames for the segments that have the

same motion vector and have an overlap of their bounding boxes. At the end, the

grouped segments arejudgedto be belonging to the same moving object.

Later on, researchers of [14] have extended their presented algorithms that have

been implemented on PC, by implementing the algorithms on FGPA in [22], as

explained in section 2.3.2.

Temporal segmentation extracts objects depending on time information.

Therefore, frame differences with consecutive frame or with a predefined background

are considered according to [15] as temporal segmentation. However in this research

the temporal segmentation will be categorized under background subtraction

algorithms as defined by subsection 2.2.2, rather than segmentation since it depends

basically on subtraction operations between frames. Generally, the segmentation

follows parallel joining operations or scan searching for kind of similarity between

neighbor pixels that are not shared the same way in background subtraction

algorithms.

The high parallel computation calculations required by the segmentation has made

it strongly attractive for VLSI implementations. However, the degree of complexity,

and hence the hardware cost, must be taken into account for implementation. In

addition to parallel operations, segmentation can detect moving as well as still objects

in contrast with background subtraction which only catches the moving objects.

Additional operations are required in segmentation to distinguish moving from still

objects in subsequent steps of implementation.
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Table 2.3: Summary of segmentation algorithms

Algorithm Used in Representative work Comment

Spatio- Detecting Spatio-temporal Requires complex computations.

temporal objects. segmentation (Papadimitr

segmentation. et al. 2004) [37].

Spatio Detecting Pixel classification (Jahne The threshold used in the

segmentation. objects. 2005) [38]. algorithm depends strongly on

image contrast and sometimes

small noise-like pixel groups

concedered as objects [15]

Spatio Detecting Edge detection using sobel Edge based algorithms are very

segmentation. objects. filtering (Braunal et al.

2001) [39].

sinsitive to the noise [15].

Spatio Detecting Region growing (Braunal Works well for simple objects,

segmentation. and 2001etal.)[39]. but for complex objects,

tracking segments need to go through a

objects. grouping operation to connect

the related segments.

Spatio Detecting Grouping method based on Effective algorithm however

segmentation. and feature matching for segmentation algorithms

tracking tracking and recognition of consumes high computations

moving complex objects (Nagaoka since they need additional

objects. etal.2009)[14]. operations for grouping and for

diffrentiation between moving

and still objects.

2.2.4 Supervised Learning

One of tracking algorithms was used by some researchers for supervised learning

to learn different object views from a set of examples. The latter one generates a

function that maps input into desired output. The learning examples consist ofpairs of

object features and associated object classes which are quantities information

supposed to be defined manually. This technique is excluded from our interest for two

reasons. First, learning examples quantities information are supposed to be defined
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manually, which makes implementing an automatic real time algorithm not possible.

Second, complete set of templates need to be stored in the processor that implements

the supervised learning, which requires large sized storage [23].

Research covering object tracking via the supervised learning includes different

supervised learning types such as, Support Vector Machines [40], Neural Networks

[41] and Adaptive Boosting [42].

Table 2.4: Summary ofsupervised learning algorithms

Algorithm Used in Representative work Comment

Supervised Detecting • Support Vector Machines Cannot be run automatically

learning. objects. (Joachims et al. 1999) [40]. since the learning examples

• Neural Networks (Rowley et information supposed to be

al. 1998) [41]. defined manually. In

• Adaptive Boosting (Tieu et addition implementing the

al. 2004) [42]. algorithm requires a large

sized storage.

2.3 Implementation of Object Tracking Algorithms on FPGA

Using independent specific task systems for surveillance systems instead of

general purpose computers in order to save power and resources is highly demanded.

Thus, many researchers in both embedded systems and surveillance applications area

were motivated to design and implement object tracking and detection on embedded

systems such as FPGA. A number of implementation strategies have been proposed

for object tracking using FPGA; some of them are highlighted in subsections 2.3.1-

2.3.5. Research works are listed under subsections according to the used tracking
algorithm.

2.3.1 Image Segmentation based on Color Threshold
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One of the research works on object tracking implementation on FPGA is

presented in [11]. This research introduced a design and implementation of real time

system for remote object tracking algorithm on FPGA. Image segmentation algorithm

is used to detect moving objects by applying a color threshold on each pixel. Thus, the

tracking depends on the color of objects.

The block diagram for the complete system of [11] is shown in Figure 2.1.
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and labellingtog ""!'§

Object
recognition

Figure 2.1: Block diagram of object tracking system using color threshold

segmentation [11].

As the Figure illustrating, input data from the camera to the FPGA is done in four

processes. In the first process, the pixel stream is converted to a modified YUV color

space to overcome the RGB intensity interdependence that causes unreliable results in

case of any diagonal movement. The second is the segmentation process using color

threshold values that categorizes each pixel into a color class. In the next process, a

morphological filter is applied on the categorized pixels using windowing scan to

remove any mislabeled pixel that is not part of the object. The last step is to construct

bounded boxes around the detected objects and extract some useful object

characteristics such as position, size and area.

In addition, some optimization techniques have been used. Furthermore, solutions

to overcome the use of floating point, division and multiplication operations during

the color conversion and threshold comparison stages were presented.
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Special application is developed to simulate the system. The application is a

simple arcade game in which user arms' movements are used as tracking objects.

Each user holds a fluorescent colored marker that is used as the input data for the

color segmentation.

The system works with 27 MHz frequency on image size of 768 * 288 pixels

while using (10 %) of the logic utilities. It has achieved throughput of 25 fps using
Xilinx XC2S200 device.

Table 2.5: Summary of image segmentation based on color threshold on FPGA.

Algorithm

Image

Segmentation

based on

Color

Threshold

(Johnston et

al. 2005) [11].

Used in

Detecting

and tracking

moving

objects

according to

specific input

colors.

Atchived Results

System Frequency: 27 MHz

Frame Size: 768 *288 pixels

Logic Elements: 798 LEs

Throughput: 25 fps

On chip memory used:

114,688 bits

Comments

• Does not meet the speed of

real time system speed (30

fps).

• Consumes high resources

of memory on chip space.

2.3.2 Image Segmentation and Pattern Matching

In the same area with a different technique, [21, 22, 43] have proposed a novel

algorithm for object tracking based on FPGA. The algorithm that has been used is

based on image segmentation and pattern matching. Also the FPGA/ASIC

implementation architecture was presented. By using the segmentation, all objects in

the image whether still or moving are detectable. The used segmentation algorithm

has been described previously in section 2.2.3by [14] which was developed by some

of those researchers. After detecting objects of each frame, specific features -such as

position, size, color and area- for objects through all frames are extracted. Then,

features from the current frame are used to obtain the pattern matching with

corresponding objects from the previous frame. The proposed architecture for

implementing the algorithm on FPGA/ASIC is shown in Figure 2.2.
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As shown in Figure 2.2, the hardware architecture consists of four main blocks.

The blocks, ordered according to their functionality are: image segmentation cell-

network, feature extraction, pattern matching and estimated position calculation

block. The image segmentation cell-network block is responsible for extracting all

objects in the frame. The feature extraction block extracts object features for each

segmented object that has been detected. Next, the pattern matching block searches

for the most similar objects in subsequent frames using extracted features information.

The estimated position calculation block estimates positions of objects in the next

frame by performing specific calculations.
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Figure 2.2: Block diagram ofFPGA/ASIC implementation architecture for object

tracking system using segmentation and pattern matching [22].

The image segmentation algorithm used in [22] is implemented by region growing

algorithm. Since the region growing algorithm follows a sequential method, a pipeline
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processing is used to improve the throughput. The data flow of thepipeline processing

is illustrated in Figure 2.3. The pipelining saves the running time by executing the

pattern matching process for one object while starting the segmenting for the next

object at the same time.
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Figure 2.3: Data flow ofthe pipeline processing architecture ofobject tracking system

using segmentation and pattern matching [22].

The system works with 20 MHz frequency on image size of 80x60 pixels while

using 56% of the logic utility of Altera Startix EP1S60 device. For one frame, it

requires 13,745 cycles + 10 cycles * N to execute, where N is the number ofdetected

objects [22, 43].
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Table 2.6: Summary of image segmentation and pattern matching algorithm on FPGA

Algorithm Used in Atchived Results Comments

Image Detecting System Frequency: 20 MHz • Achieves high speed,

segmentation and tracking Frame Size: 80 * 60 pixels since it can detect up to

and pattern moving Logic Elements: 31,987 LEs 220 objects at real time.

matching objects. Throughput: 13,745 + 10 x • Consumes high device

(Yamaoka, et N2 (N is number of detected resources.

al. 2006) [22]. objects)

On chip memory used:

144,256 bits

2.3.3 Image Gravity Center and Matched Filter for Planer Motion Tracking

A planar motion tracking is one kind of tracking applications types; authors of

[18] have presented the implementation of planar motion tracking algorithm on a

CMOS image detector and an FPGA. The proposed system has been developed to

track the planer motion within 1MHz sampling rate. The tracking planar motion was

detected using two vision algorithms; Image gravity center and matched filter.

In [17], researchers have introduced a solution for the same problem (planar

motion tracking) using vision chip instead of FPGA. The proposed vision chip

consists of image elements containing a photo detector and a computer with a

memory. The image element is then connected with its neighboring image elements

from the four sides using links. Thus, the chip works as a full parallel computer that is

distributed among an array of image detectors. Even though the local operations are

executed in a very fast speed using the parallel computing, implementing global

operations -such as Fourier transform and Hough transform- in the parallel computing

system are difficult to be performed. Another disadvantage of implementing the

tracking system on a vision chip is the need to mix the analog circuit for capturing the

images and the digital circuit for the computation. When any analog and digital

mixing is done on LSI, interference between analog and digital circuits could occur.

In [18], the planar motion tracking implementation on FPGAs was compared with

the implementation using the vision chip by [17]. By implementing the planar motion
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tracking on a CMOS camera and a FPGA, the digital and analog circuits are

separated. From another side, both local and global operations are realizable within

the FPGA scope. The developed architecture on the FPGA of the system is shown in

Figure 2.4. Images are captured by the CMOS and sent to the Channel link transceiver

block on the FPGA board via low-voltage differential signaling (LVDS) which is a

high speed interface connection. In the Main FPGA block, the images are processed

using inner logical circuits that implement at real time and use the DDR-SDRAMs

memory if necessarily. A PCI (Peripheral Component Interconnect) bridge is used to

provide the communication between the FPGA and the PCI bus that is connected to a

PC and to control software.

CMOS

highspeed
image sensor

MI-MV13

data control

FPGA

for sensor

control

m
Channel

link

transceiver

CMOS camera head

FPGA

for PCI bridge

Main FPGA

Xilinx Virtex Pro 6000
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Channel

iink

transceiver

VT

DOR-^DRAM

(1GByte)
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PC

ITL-HSC-PGI64 j
driver j
and ]

control software !

PCI bus

\|*——""j,/
PC

main

memory

Figure 2.4; TheArchitecture block diagram for implementation ofplanar motion tracking on

CMOS image detector and FPGA [18].

The main FPGA blockcontains logic circuits to compute the image gravity center

algorithm. To achieve an implementation at the real time, numbers of logic circuits

are chosen to match the amount of data raw (pixels that have been sent by the camera

each clock cycle). The matched filter algorithm can detect the translation between two

images robustly, even with the background and illumination changes. It consists of

two global operations: 2DFFT and 2D-IFFT. The Fourier transform implementation is

more complex and it needs more time to be executed. By using the benefits of

parallelism and pipelining of the FPGA, the computation time has been reduced to

meet the real time condition.
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The implemented algorithm has achieved 1545.44 fps of throughput for frame of

64><64 pixels, using 44% of logic utility of Xilinx Vertex Pro 6000 device, with a

speed of 66 MHz.

Table 2.7: Summary of matched filter algorithm on FPGA

Algorithm Used in Atchived Results Comments

Matched Filter Motion System Frequency: 66 MHz • Achieves high speed.

(Kazuhiro et Tracking. Frame Size: 64 x 64 pixel • To overcome the complex

al. 2006) [18]. Logic Elements: 30,140 LEs computations needs,

Throughput: 1545.44 fps heavy device resources

have been consumed.

2.3.4 Color Detection and Binarization Using HW/SW co-design

Other researchers have presented the object tracking algorithms based FPGA

using a mixed hardware/software solution [24]. The systems presented previously

(subsections 2.3.1-2.3.3) are stand alone and provide a real time execution while

accommodating complex algorithms. Instead of using only the hardware part of the

FPGA, a built-in coprocessor have been built on the FPGA itself. In [24], researchers

have designed a hardware/software system to implement skin color detection and

tracking system. The system detects the skin color based on a specific color, and then

it controls the motion of the camera to track the suspected object. Figure 2.5 shows

the hardware and software architecture design and the distribution of functions among

the hardware and the software sides.
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Figure 2.5: Hardware and software integrated architecture of skin color detection

system proposed [24].

Image capture, Image display, memory access, Image processing and motor

control blocks are all implemented on the hardware part of the FPGA. Image

processing unit is responsible for transferring the image color from RGB into HSV

space to enhance the image brightness. Another function is to find the histogram

equalization of the HSV image that includes histogram statistics and probability

distribution processes. Color detection and binarization stage compares the HSV data

that fall into a range of threshold color value. To reduce the noise of the image, the

image dilation technique has been used. The coordinates of the object are then

specified. In the software system part, the transferring of captured images into a BMP

format and storing them in the SD card are managed. Also when a suspected skin

color is detected, an alarm speaker on the board is turned on and a sound file from the

SD card is read. All software functions are processed through the Nios II processor

that is embedded on the FPGA chip as shown in Figure 2.6.

The hardware/software co-design system achieved realistic results since it needs

16.8 ms of time to catch the suspected object of a frame till it gets its location and

triggers the alarm. The implementation is done on Altera Cyclone II 2C35 device with
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a frame size 800 * 525 pixels and 25 MHz clock rate using 19,085 LE (54%) -for the

HW part -. The system have achieved throughput of 37.3 fps.

Table 2.8: Summary of color detection and binarization using HW/SW co-design

Algorithm Used in Atchived Results Comments

Color detection Detecting System Frequency • The system achieves real time

and binarization object 25MHz speed with realistic results.

using HW/SW co- according to Frame Size: • The software part is embedded on

design (Yuan-Pao, a specific 800x525 pixel the FPGA chip itself while the

etal.2010)[24]. skin color Logic Elements: 19,085 LE is used for the HW

and then 19,085 LEs part only, which means additional

tracking that Throughput: device resources were used.

object. 37.3 fps However, for comparison,

detection and tracking functions

which are implemented on the

HW part only are considered.

• High logic resources were used.

2.3.5 Principal Component Analysis based Planar Motion Tracking

Recently, researchers of [10] presented an architecture and implementation of

moving object tracking algorithm on FPGA using Principal Component Analysis

(PCA). The PCA is a method that basically works by reducing the redundant

information and keeping the fundamental ones. The parallehzation concept has been

used to implement the deferent stages of the PCA, such as computing the correlation

matrix, matrix digitahzation using the Jacobi method and subspace projection of

images. The main contribution of the work in [10] is to implement the complete PCA

algorithm on FPGA. Other PCA based FPGA researchers have divided the PCA's

implementation between FPGA and general purpose computer or microprocessor. The

need to separate the PCA's implementation is because of its complex mathematical

operations and the large amount of data needed during the execution time. The

architecture Block diagram of the PCA implementation on FPGA is shown in Figure

2.6.
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on FPGA for PCA algorithm [10].

The architecture consists of many blocks according to the system functionality.

The CMOS sensor controller block is used to implement the desired configuration of

the CMOS sensor, such as setting the exposure time. Another Block is the Image

Capture Controller that receives the frames from the camera and at the same time it

can use by the user to specify the sensor's area of interest within the frame. Also the

Image Capture Controller block sends the captured frames to the External Memory

Controller block, where they are stored in the memory. To test and watch results, the

Communications Controller with PC block controls the communication between the

FPGA and the PC, where the results can be seen. Finally, the Head Controller block is

playing the main block role that connects other blocks and synchronizes the entire

system to make it work correctly and at the maximum speed [10].

In [10], the implemented system has achieved a throughput of 121 fps with 100

MHz frequency for 256 * 256 pixels' frame size. The synthesized logic utility was

86% logic resources of the Xilinx XC2VP7 device.
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Table 2.9: Summaryofprincipalcomponent analysis on FPGA

Algorithm Used in Atchived Results Comments

Principal Motion System Frequency: 20 MHz • Achieves real time speed.

component tracking. Frame Size: 256x256 pixel • Algorithm's steps are

analysis (Bravo et Logic Elements: 8,450 LEs complex.

al. 2010) [10]. Throughput: 121 fps • Memory on chip utilization

Memory on chip used: is high.

737,280 bits

2.3.6 Summary of Object Tracking Algorithms Implemented on FPGA

Implementation work of different object tracking algorithms with different

designs on FPGA have been discussed in subsections 2.3.1-2.3.5. Table 2.10

summarizes the discussed implementation work in terms of the usage and achieved

results. As has been mentioned in section 1.2, object tracking is the algorithm used to

detect objects through sequence of frames according to a specific feature. The feature

of detection could be motion, color, shape or other. Thus, any motion, color, or shape

tracking is indeed an object tracking while any object tracking is not necessarily a

motion tracking. In this research, motion is the feature used for object tracking. The

work listed in Table 2.10, with the exception of the one using HW/SW co-design

algorithm, were applied to detect and track moving objects. For HW/SW co-design

algorithm, the detection and tracking is based on a specific skin color rather than

motion. So the comparison between the works of this research that investigates

implementing optimal design of moving tracking algorithm on FPGA is going to be

done with the works presented in Table 2.10, as shown later in section 5.8.

Some work have implemented more steps or used more complex algorithms to

define motion detection and tracking. As an example, the work presented in

subsection 2.3.2, segmentation and pattern matching algorithm, extracts features from

each detected object like area, location and color. As was mentioned in section 2.2.3,

the work in[14], and in section 2.3.2, the extracted features are used for two reasons,

first to group segments that belong to the same object and second to determine the

moving from the still objects. In contrast to subtraction algorithms, segmentation
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algorithms detect all objects in the scene whether they are moving or still. There for,

additional steps are required after detection to differentiate the still from the moving

objects. For subtraction algorithms, moving objects are determined with less

computational effort. After defining the background model, by subtracting frames, the

moving detection results are ready. The comparison at the end of this work is done

between different algorithms implemented with different designs on FPGA while all

of them are aiming to achieve moving object tracking system.

Table 2.10: Summary of object tracking algorithms implemented on FPGA

Algorithm Used in LEs

Used

Internal

Memory
Bits Used

Frame

Size

(pixel)

Frame

Rate

(fps)

System

Speed

(MHz)

Segmentation
based on Color

Threshold

Detecting and
tracking moving
objects according
to specific input

colors.

798 114,688 768 x 288 25.00 27

Segmentation
and Pattern

Matching

Detecting and
tracking moving

objects.

31,987 144,256 80*60 40.18

(for 220
objects)

20

Matched

Filter

Motion Tracking. 30,140 124/144

(86%)
Block

RAMs

64x64 1545.44 66

HW/SW co-

design
Detecting and
tracking object
according to a

specific skin color.

19,085 N/A 640 x 480 37.30 25

Principal
Component

Analysis

Motion tracking. 8,450 737,280 256x 256 121.00 100

2.4 Chapter Summary

Different tracking algorithms are summarized during this chapter. Some of the

algorithms are implemented on software like region growing algorithm, background

subtraction using Gaussian Mixture Model, temporal average model or Non-
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parameter, background image difference and Adaptive Hybrid Difference. Latest

research work is mainly focused on implementation of object tracking systems on

FPGA. According to specifications of this research, the interest is going to be on

background subtraction and segmentation algorithms. In orderto implement an object

tracking algorithm on an embedded system at real time with limited resources and

small power consumption, some characteristics have to be met. The algorithm has to

be run automatically without manual inputs to meet the automatic system

requirements. Another concern is the degree of complexity in order to be able to

execute the algorithm using hardware languages. On the other hand, the execution

time should meet the real time execution conditions. The complexity of the algorithm

and the amount of storage needed must fit the available limited resources for the

embedded systems. Most of the tracking algorithms that meet these requirements are

found within background subtraction and segmentation algorithms. A number of

research works have presented design and architecture of proposed tracking systems

on FPGA device during sections 2.3.1-2.3.5. Each work has presented a solution

using different tracking algorithm and different implementation techniques. The logic

element utilization consumed by other researchers were 798 LEs, 6,320 LEs, 8,450

LEs, 19,085 LEs, 30,140 LEs and 31,987 LEs for the work presented in sections

2.3.1-2.3.5, respectively. The utilizations of logic resources in the most of the

mentioned cases are high. The goal of this research is to achieve a design for tracking

system on FPGA that work at real time with optimized device resources of logic

elements and internal memory.
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CHAPTER 3

SOFTWARE SYSTEM DESIGN AND IMPLEMENTATION STRATEGY

3.1 Chapter Overview

This chapter highlights the design and development of the software for

implementation of the Adaptive Hybrid Difference (AHD) algorithm. AHD has been

selected from a number of tracking algorithms which have been discussed in Chapter

2. AHD algorithm has been used for tracking moving objects on FPGA for many

reasons that will be thoroughly discussed. Thus, the aim of software design and its

implementation is to verify the AHD algorithm through software implementation

tools before its implementation on the hardware. An analytical study based on the

software implementation will be presented. Additionally, the results and evaluations

obtained by software implementation have been used in comparison of performance

between AHD based software and FPGA based implementations. Moreover, the

software system has been built to check the feasibility of computerizing the tracking

algorithm on software and hardware.

3.2 Software Design

The proposed software design is based on Adaptive Hybrid Difference (AHD)

algorithm. AHD algorithm has been proposed by [4] for vehicle tracking applications

using Desktop computers in a sequential manner. In this research AHD algorithm has

been extended to make it executable in parallel fashion using FPGA for the purpose of

detecting the moving object in such a way to optimize the system performance in real

experimental environment. The selected performance parameters in this work include

throughput, utilization of block RAMS, and logic elements which are effected



directly, with the systems' frequency, the power dissipation of the design, as
explained in section 1.4. Optimizing the design area and cost are also realized as a
result of optimizing the synthesized hardware. Therefore, the core objective is to
implement the algorithm with the aim of optimizing the values of the specified
performance parameters, throughput and resource utilization.

The main steps for the AHD algorithm are illustrated in Figure 3.1 which is

composed mainly of two components:

1. Hybrid Difference Strategy.

2. Adaptive Threshold Initialization.

Begin

Adaptive threshold initialization

Read the

current frame

Read the k-th

frame

Hybrid difference strategy

Build the binary image

Read the foreground; t=t+l

Y N
End

Figure 3.1: Flow diagram of AHD algorithm [4].
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The parameter tmaxis the maximum number of the captured frames. AHD

algorithm uses background subtraction to track moving objects. Instead of using the

classic image difference to subtract the current frame from the previous one or from

the ideal background, it uses hybrid difference (HD) strategy. The algorithm works on

finding the adaptive threshold {AT) during a previous tracking time. Thus, at the real

time of execution, the result of hybrid difference for a pixel from the current frame is

compared with a pre-calculated adaptive threshold value. The comparison leads to

decide whether this pixel is moving or still. According to that process, a binary image

for the moving objects within the frame is built. The detailed discussions on above

mentioned steps are thoroughly highlighted in the following paragraphs and sub

sections.

3.2.1 Hybrid Difference Strategy

As in most of image processing algorithms, frame representation is based on

matrix model that is used in the applied process operations. A single frame (n x m

pixels) of a video stream can be represented by matrix G of n x m size. G'{i,j) is the

pixel value of position (i,j) in the tth frame, wherezW,...,^ , j=l,..., m and t= 0,1,

2,..,.

The pixel difference is calculated by the D4 distance equation

D'k{iJ) =\G'(hj)-G!-k(i,j)\

whereD'k(i,j) is the absolute value of the pixel difference between t'h and (t-k)'h

frames. Where k is called the near k frame and it is an improved technique that is used

instead of (t-1)th frame.

The parameter k specifies the quality of tracking. If A; is too small, the difference

value is also reduced and the result is similar to the one of Classical image difference

method. If k becomes large, the tracking sensitivity will be high even it can mistake

some background as foreground. Therefore, the best setting of k can be reached by

testing video and trying different values ofk until the clearest and best binary image is
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obtained. The k value depends on some factors relating to the nature of the

application. Some of the factors are the speed of the tracked moving objects, the

environment of the application whether in day or night; indoor or outdoor, the

distance between the camera and the objects, and the zoom level. All of these factors

govern the selected k values. In this work, k value was set to 6 for the chosen test

environment, as has justified in Appendix B.

3.2.2 Adaptive Threshold Initialization

The trackingresult depends on the threshold (7). When Tis small, the background

pixels could be easily detectedas foreground. If Tis too large, the tracked foreground

may be unclear. T is usually set manually by experience, but in AHD the method

should run automatically in the application ofreal-time tracking video.

AT is the boundary between background and foreground pixels, which is used to

optimize the HD values. In the initialization of AHD algorithm, anAT is generated by

tracking a video without foreground (moving objects). Supposing that the change of

the pixel value follows the Gaussian distribution, ni} and ai} are the mean and the

standard deviation ofD1 (i,j), which can be approximated by fi'y and a\}.

Ntt (3.2)

cr.; = 1_l
(3.3)

9 „^nS(^(^)-^):

Where N is the number of frames used to set the adaptive threshold. N should be

large enough (iv>30)to make the estimation of ^ ando-J-[4]. However, the larger

Ms, the more is the time cost of initialization.

Therefore, the AT can be calculated by

T9=[Mi-*'9,M'9+vll (3.4)
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Therefore, a binary image can be built by

B'(iJ) = <
i if(vD's(i,j)zrJ)

s-l

0 if(vD'a(i,J)eTs)
(3.5)

where i =1,..., n; j =l,...,m; t =1, 2,...,p

p is a natural number and denotes the total number of frames

The AT initialization is the first step of AHD algorithm, it uses N frames to

generatey.\} , a'tj and Tij. The hybrid difference strategy and the building of the binary

image are run in the next level at the real time of tracking.

3.3 Software Selection

Verifying the algorithm using software is required before its implementation on

the hardware. Usually, MATLAB is the commonly used software tool in image

processing, testing and simulation. Analyzing the algorithm has led to the suitable

verification tool.

According to the AHD algorithm, the adaptive threshold needs the mean and the

standard deviation to be calculated for all pixels through 30 frames. This step is

performed at the initial time and the threshold values are stored in a lookup table.

Equation (3.5) illustrates the way to build the binary image, which will be applied

on each pixel of the frame. Hybrid difference values for pixels in the same position

through the current frame to the previous k frames are calculated to decide if the pixel

is still or moving one. Ifk - 6 and t is the current frame, then HD values for pixels in

frames (t-1, t-2,..., t-6) are required. In the next step, a comparison operation is

applied to test if all HD values are not belonging to the threshold interval specified by

equation (3.4), if so the pixel is considered as a moving pixel. If at least one of the HD
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values was located within the threshold interval, then the pixel is judged to be a still

one.

For software testing, a video with 120*160 pixels is fit to reduce the number of

processing pixels, at the same time, keeping an acceptable resolution that is needed by
the algorithm. With 120x160 frame size and with k=6, the hybrid difference need to
be calculated 120 x 160 x 6 =115,200 times. The comparison operation is also

repeated in worst case for the same number of times 115,200 x 2 = 230,400 times.
Thus, to build a binary image for a single frame using software utilizes 230,400
operations. Furthermore, additional time is required to retrieve and store the required

data.

The execution complexity of initiating the adaptive threshold is 0(n ), since the

mean value is needed to be used in standard deviation calculations. For building the

binary image at tracking time, the consumption is O(n). The execution time for the
algorithm on MATLAB have taken long time with Intel(R) Core (TM) 2 Quad CPU,
2.66 GH, 3.46 GB ofRAM and 210 GB free hard disk space. Therefore, verifications

need faster programming tool like C, which will be more efficient to verify the AHD
algorithm. Via C programming, performing the same number of operations for one
frame has cost a minute and twenty seconds by lab experiments using Intel(R) Core

(TM) 2Quad CPU, 2.66 GH, 0.98 GB ofRAM and 78.4 GB free hard disk space.

3.4 Software Development

It is known for C programming language and its enhancement copy C++ to have

the ability of accessing libraries using linkage specification. Open Source Computer

Vision Library (OpenCV) is a library consisting ofCfunctions and some C++ classes
that mainly implement image processing and computer vision algorithms [18]. The
library is supported by C++. Object tracking algorithms including background
subtraction, segmentation and even optical flow are enhanced byOpenCV library. For

subtraction, there is an already built-in function that identifies moving objects using

accumulative background information. Change detection and threshold are already

built-in functions are available to be used for tracking purposes. However, to
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implement the AHD algorithm using the adaptive threshold as stated in the

algorithm's steps, user-built functions have been developed to be used instead of the

already built-in ones. From the other side, the code to be built is simulating the one

that have to be implemented on the hardware. This will cause the built software

system to be more accurate in verification and comparison. However, some built-in

functions of OpenCV have been used to capture frames from the camera or from a

video file while other functions are used to represent the frame image in the

appropriate format and to extract the pixels. Reading the sample videos from an 'avi'

file or from a camera is done via OpenCV functions. Frames are retrieved from the

video stream after grabbing them. The captured frames from the video are stored in an

object of class Tpllmage' which is used to represent image in OpenCV. For

simplicity, since 30 frames are needed from the video in the idle condition —with no

moving objects in the scene-, bitmap images which have been retrieved before from

the video through MATLAB are loaded.

OpenCV uses Ipllmage structure to represent images in a matrix or array form.

'Ipllmage' structure came from Intel Image processing library (IPL) and it stores

certain properties of the image and represents the image in multidimensional array

according to the number of color planes of the image. Each color plane is represented

by a channel, thus, RGB image has three channels where only a single channel is used

for gray scale images. To reach any frame quickly, the frames are stored in an array of

'Ipllmage' objects. To retrieve the pixel's value within a frame, an equation of the

pixel's coordinates and the target color channel is used to get the correct index of the

pixel in image data attribute. The data attribute of'Ipllmage' structure is a pointer

for aligned image data. For example, to get the pixel value of coordinate (i,j) for

channel k, the index of image data is defined by / * step +jx nChannels + k, where

step is the size of aligned image row in bytes, nChannels is the number of color

channels of the image and k is the channel value (i.e. 0,1 or 2 for Blue, Green and Red

for RGB format). The implementation has used a number of FOR loops in order to

move between frames and pixels during the execution of the algorithm.
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3.5 Software Verification and Evaluation

Figure 3.2 and Figure 3.3 show some results of testing AHD in real environment

videos. The video used in Figure 3.2 was taken in the lab -indoor place- at a day time

under a normal lighting for humans walk in a normal speed. The exhibited frames

illustrate AHD results after applying it in chosen frames. Frames were chosen from

different times of the video stream that cover objects in far and near locations from

the camera.

a. Original image of frame 200. b. Binary image of frame 200 with k=6.

c. Original binary image of frame 223. d. Binary image of frame 223 with k=6.

e. Original image of frame 242. f. Binary image of frame 242 with k=6.

Figure 3.2: Original and binary images obtainedby applying AHD algorithm on

different frames for moving objects.

The video in Figure 3.3 is taken for fast moving vehicles in an outdoor

environment, at the day time.
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a. original image of frame 36. b. binary image of frame 36 with

k=2.

c. original image of frame 78. d. binary images of frame 78 with

k=l.

Figure 3.3: Original and binary images obtained of applying AHD algorithm on

different frames for moving vehicles.

The evaluation of the implemented algorithm was done through calculating the

correctness of obtained results. Later on,the correctness evaluation is used to compare

the obtained results from the implementation with those which have been obtained by

[4].

The correctness of AHD algorithm was calculated using Jaccard Coefficient (J)
[12].

J = TP/(TP + FP + FN} x 100 (3.6)

where TP (true positives) is the number ofcorrectly detected moving pixels, FP(false

positives) is the number of false detected moving pixels and FN (false negatives) is

the number of missed detected moving pixels. The truth image has been determined

manually using advanced image editor program by coloring the objects with white

andthe background with black. Pixels' colors of the sample image are compared with

41



the ones of the truth image to decide which counter of TP, FP and FN has to be

incremented. A code has been built in C++ using OpenCV to implement the test and

determine /coefficient afterimplementing the AHD on a sample frame.

Table 3.1 illustrates the J coefficient for the binary images obtained in Figure 3.2.

Table 3.1:Jaccard coefficient of binary images obtained in Figure 3.2.

Frame from figure no. Jaccard coefficient

Figure 3.2.b 88.26%

Figure 3.2.d 74.65%

Figure 3.2.f 67.46%

The Numerical Jaccard (NJ) gives the detection accuracy for sequence of frames.

From Table 3.1,

NJ = (88.26 + 74.26+ 67.46) /3 = 76.66% (3.7)

Also J coefficients were calculated for the moving vehicles video that is matching

the environment and speed of the video used by [4]. Table 3.2 shows J value for

different frames of moving vehicles' video tested using the same code.

Table 3.2: Jaccardcoefficient for binary images obtained fromvideo of moving

vehicles.

Frame from figure no. J Coefficient

Figure 3.3.b 68.20%

Figure 3.3.d 67.16%

The Numeral Jaccard of Table 3.2, is NJ = (68.20 + 67.16/2) = 67.68%. To

compare between our implementation of AHD and the work of [4], we have

calculated J for the obtained binary image of [4] as shown in Figure 3.4. J value for

the binary image of Figure 3.4 is (J=81.29%).
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Figure 3.4: Original and binary images obtained by

applying AHD algorithm on [4],

The difference in accuracy between AHD applied in [4] and this research for an

indoor, not fast moving objects is (4.6%). When comparing the results in [4] and that

obtained from outdoor, fast moving objects, the former is better by 13.61%.

The accepted object tracking rate of accuracy in industry is 80%, while the one

achieved by verifications was 76.66%, which is close to that rate.

The (4.6%) difference in accuracy between AHD applied in [4] and this research

is attributed to some factors. Different environments, outdoor, indoor, the position of

the camera from the objects are all factors that influence the implementation results.

The binary image quality is improved as the object being far away from the camera.

The data for the binary frames published by [4] were not sufficient to calculate NJ,

thus for comparison, only J factor for one frame has been used.

3.6 Chapter Summary

The AHD algorithm has been tested based on software implementation for the

same environment that is going to be used in the FPGA implementation. By building

a software system that implements the AHD algorithm, an automatic tracking system

has been achieved. Choosing C++ with OpenCV as programming tool rather than

MATLAB has significantly reduced the execution time from four hours into one

minute and twenty seconds for calculating the threshold and building the binary image

for one frame. However, the execution speed is still not fast to process at real time

condition of 30 fps, since to processing of one frame without calculating the threshold

takes 33 seconds. Testing the algorithm on software has achieved results with
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76.66%of accuracy, using Numeral Jaccard coefficient. The test took place in indoor
environment where the moving objects were people. The accuracy was calculated for

the work proposed by [4] which gave 81.29%. However that was for outdoor
environments with fast moving vehicles far located from the camera in their video.

Thus, the comparison is not justified since the videos have different conditions. Even
with less than 80% of accuracy for the AHD implementation on software, the AHD is

chosen to be implemented onFPGA onthe same testing conditions.

We are going to adhere to the AHD algorithm because it is computerized on HDL
and can be run automatically in contrast with other algorithms of background

subtraction. Moreover, the simplicity of the algorithm's steps offers implementation's

possibilities to optimize the obtained synthesis of the design. With an optimized
synthesis design the performance parameters which are specified by the problem
statement in section 1.4 and in sections 3.2 and 4.3 are minimized. As mentioned in

sections 2.3.1 and 2.3.2 of the literature review, some research work implemented

segmentation algorithms on FPGA for tracking moving objects, while less number of
previous works used background subtraction algorithms. The goal is to implement a
simple, automatic improved background subtraction algorithm in order to achieve less

resource utilization, which can be achieved with AHD.
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CHAPTER 4

HARDWARE ARCHITECTURE AND IMPLEMENTATION

4.1 Chapter Overview

This chapter illustrates the proposed hardware architecture, which has been built

to implement the AHD algorithm on the FPGA device. Through an analytical study

of the AHD based on the hardware implementation, the optimum solution to achieve

real-time tracking system will be investigated. Therefore, the interfacing and the inner

hardware architecture design on the FPGA will be demonstrated. Other related

important issues that play roles in system design such as memory map, data rate,

frequency and achieving a real time system are covered in this chapter. Different

techniques that have been investigated to overcome encountered difficulties in

meeting the system specifications are covered. Through hardware tools and

specifications of the system, the design methodology that was followed for the system

to implement an object tracking algorithm on an FPGA will be outlined.

4.2 Hardware Preparation

Following is the detailed description of the hardware used in the implementation

of the proposed system. The hardware consists of an FPGA interfaced with a camera,

from other side interfaced with VGA monitor. This research has used a DEII Altera

board that integrates a Cyclone II 2C35 FPGA device and 8M byte external SDRAM.

A TRDB_D5M CMOS camera from Terasic is selected to be used. The TRDB_D5M

is suitable to develop a 5 Mega Pixel Digital Camera on the Altera DEII boards. The

frame rate of the camera according to adjusted resolution of 640 *480 pixels is

77.4fps[44].



The DEII board integrates many features that allow the user to design a wide

range ofcircuits, since all connections are made through the Cyclone II FPGA device,
see Appendix A. This research has used some ofthe board's integrated devices and
features. The 7-Segment Displays have used for testing purposes in order to observe

the frames sequence number, the value of the pixels, or the result of a single pixel.

The VGA video port is used to connect the monitor to display captured frames or a

video stream as needed. One of the expansion headers, offered also by the board, has

used to connect and interfaces the TRDB_D5M camera with the FPGA. From the

integrated external memories offered on the board, the 8M byte SDRAM is used
which is sufficient to handle the required frames of AHD algorithm as will be

explained in section 4.4.2. DEII board's devices and features that are chosen to be

part ofthe design ofthis work are presented in Appendix A in more details.

The hardware description language that is used to build the designed system was

Verilog, while Quartus II Web Edition software tool from Altera has been used for

Verilog code development. Quartus software offers compiling and testing for the

designed modules. In addition Quartus programmer tool is used to integrate the built

modules into the FPGA device.

For simulation purposes, ModelSim simulator software by Altera has been used,

which allows observing the results as a wave forms.

4.3 Key Optimization Parameters

This work aims to implement the AHD algorithm on FPGA while achieving

the maximum throughput with minimum device utilization in real time environment.

Hardware design on FPGA is influenced by some parameters. The trade-of between

those parameters to get the best design is different from case to case. As an example,

some cases focus on the system performance ignoring the other factors such as power

consumption, cost and logic utilization. Thus during hardware designing, the desired

optimization parameters have to be set as targets to be met. Scope of this thesis is to

measure the performance of the system using following key optimization parameters:
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1. Throughput. Which is the amount of data the system can process during a unit

of time. In image processing applications, the frame rate which is the number

of output frames that can be processed per second is used as a measure of the

design throughput. In this work, the throughput is computed using the number

of required clock cycles to operate one frame over the system's frequency.

The performance is increased with the increment of the throughput. However

from another side, by increasing throughput, a penalty of power consumption

and size of design is paid. Some implemented work of tracking systems on

FPGA, such those presented in sections 2.3.2-2.3.5 have set throughput as the

top priority to be achieved which in the other side affected other parameters

such as the amount of generated logic. For the system in this work, the priority

is set for optimizing the logic utilization that at the same time achieves the

throughput of real time. Thus the minimum throughput that must be achieved

is at least 30 fps, which is the real time throughput. Limitation on throughput

is imposed in order to optimize other parameters of logic utilization, cost and

power dissipation thought this research.

2. System frequency. System speed increases with the increment of the clock

frequency and thus the throughput. However, the power consumption

increases too as the frequency increases since it is in the current dissipation

equation as was explained in section lASystem's clock frequency of this

work is set to ensure data synchronization between I/O peripherals and other

internal processing blocks of the FPGA. The speed of transferring data from

the memory into the processing units is also considered. The FIFOs that are

used as buffers between the memory and the processing units to overcome the

difference of frequencies between them are reflecting on the system speed too.

The speed of filling the FIFOs and processing the data via the processing units

and store the results into FIFOs then to memory again must be the same or

faster than the system frequency. Therefore system frequency must be set to

meet the timing of the design and to achieve the desired throughput. Sections

4.6 and 4.7 explain the selection of the system frequency according to the

design architecture of the processing units.
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3. Logic Utilization. While the smallest logic of FPGA device is the logic

element, the amount of logic elements used to implement a design is called

logic utilization. The logic element itself consists of internal components.

Mainly for allFPGA devices, the logic element consists of one or more lookup

tables (LUT), which works as a function generator that implements any

function with the LUT inputs [6, 45], as Figure 4.1 shows.

I/O pad

• D •

• • •

• • •

(b)

Figure 4.1: (a) Architecture of thebasic elements ofgeneric FPGA (b) A simplified

architecture of logic block [6].

In addition, a programmable register is available to be connected with the

output of the LUT. Also there are programmable connections to direct the

output of the logic elements to other logic elements or to the I/O peripherals.

By reducing the logic utilization of the FPGA, the device area, cost, power

dissipation. We have considered the logic utilization's optimization as a target

to be reached in implementing our design in addition to processing the frames

at real time.
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4.4 Analytical Study

We have analyzed AHD algorithm from software implementation's perspective in

Software Selection of section 3.3. While implementing the algorithm on the FPGA,

this research has focused on hardware capabilities and system specifications. In other

considerations, how to implement AHD algorithm with specific issues on a hardware

with a specific capabilities. An analytical study for algorithm steps according to the

hardware is discussed in subsection 4.4.2.

4.4.1 Image Representation and Data Row

An important factor that influences the quality of the results, computation time

and the required space is the image representation. The image can be represented in

different color models with different color depths. A color model is the mathematical

model which describes the way to represent the colors as tuples of numbers, typically

as three or four values or color components. Examples of Famous color models are

red, green, blue (RGB) model and luminance/chrominance YUV model. The color

depth is the number of bits used to represent the color ofa single pixel or known as bit

per pixel (bpp). In this research, data row term which is a set of bits that represents

one pixel is used in describing the developed system.

With a Higher color depth, a broader range of distinct colors are produced and a

higher quality of image is returned. However, to set a higher quality representation of

the image will option a bigger size of data row, which is a critical choice while using

limited resources devices such FPGAs. The original data row width used by Terasic

model that interfaces the TRDB camera with the FPGA is 30 bits. Initially, the data

comes from the camera in a 12 bits Bayer pattern form. It is then converted to 12 bits

represent each color, 10 bits of each are taken to represent 30 RGB bits model (the

most 10 significant of the 12 data bits are taken). Memory space issues and number of

bits involved in each process operation and consequently the computational time,

specifies the limit of color depth that could be used. Reducing the data row width

without losing the data quality is also the other border of the quality limitation.
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In DEII board, the width of data bus to SDRAM is 16 bits. If data row were

represented by 30 bits, then two clock cycles are needed to access the data row each

time a read/write operation from the memory has occurred. In addition, two FIFOs

with 16 bits are used to store each half of the pixel and then to read from both of them

to display the pixel by a VGA or to perform operations on it. Since the developed

system is meant to apply several process operations on the pixel value in a

synchronous manner, the pixel value is needed to be ready within one clock cycle.

Therefore, the data row width or the color depth is set to the same size ofthe SDRAM

data bus. This size simplifies the system and avoids asynchronous problems that could

occur. Within 16 bits, the RGB color model can be presented using High Color [46]

of image representation that uses 16 -bit color schemes with 5 bits to represent red, 5

bits to represent blue and 6 bits to represent 64 levels of green [47]. This format is

considered sufficient to display photographic images [48]. In image processing,

representing the pixel with the most significant bits while ignoring some of the least

significant bits for a pixelwith large number of digits does not affect the quality of the

image. Since when a pixel value is represented by a large number of digits the lowest

significant digits value represents a very small value compared to the most significant

ones, i.e. if the red color of the pixel is 5,000,100, it will not be affected by adding or

subtraction 100 from it. Thus, the 30 RGB bits can be easily converted to the 16 high

color models using the most significant bits from each color channel to represent its

corresponding one in the 16 bits model. Thus, the most 5 significant bits are taken for

red color and so on.

Many image processing algorithms prefer to deal with gray scale images instead

of the color ones. For RGB image, operations such as subtraction should be applied

for each color channel, the green, the blue and the red. Thus, an operation should be

applied three times. In contrast, in the gray scale representation of an image, only one

value represents the pixel that carries the intensity information [49]. Using the gray

scale in our hardware design provides a less computation time and less registers and

logic elements that need to be used.

Many methods are used to convert from RGB to gray scale. The lightness method

uses averages of the most prominent and least prominent colors: (max(R, G, B) +
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min(R, G, B)) / 2. Another method, the average method, simply finds averages of the

RGB values, (R + G + B) / 3. The conversion to gray scale which depends on colors'

luminance is the method used by MATLAB. It assigns a specific weight to each color,

.2986 x R+.5870x G + .1140 x B [2].

With an FPGA implementation, there are two drawbacks of using the conversion

methods mentioned above which are the use of the floating point and the

multiplication or division operations. Implementing floating point with large number

of arithmetic operations on FPGAs is very expensive in terms of the number of logic

elements required. Also, using multiplications and, worst, using division operations is

costly if it is used a lot in the design [6].

A suggested solution presented by N. H. Tan [50] is to use the average method but

dividing by 4 rather than 3, (R + G + B) / 4. Division by 4 in the binary system can be

performed using shift operation for two bits. This will obtain a 25% darker image than

the one obtained by average conversion method. However, it does not make a big

different on moving object tracking's results.

Finally, the image representation in this system is following the gray scale

representation using the average method divided by 4. A 12 bits of gray scale is used

during calculations, while to display results on VGA, 10 bits are used for all channels.

Reducing number of bits from 12 to 10 for VGA does not affect image quality, since

the binary image is represented in black and white and all bits values will be even

ones or zeroes.

4.4.2 AHD Analysis Based Hardware Implementation

The initial step of AHD algorithm finds the adaptive threshold for all pixels of the

window within 30 frames. Thus, it is needed to accumulate values during calculation

time and to use these values later in the tracking time. Determining the threshold

requires 30 frames of the video stream. As has been discussed in the analysis for

software implementation, the k factor that specifies the detection sensitivity is taken

as 6 according to some lab's tests. While building the binary image, the value of k
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determines the number of preceding frames that is going to undergo hybrid difference

calculations.

To calculate the adaptive threshold, 30 frames are needed, then at tracking time

each frame needs its previous 6 frames to determine the binary image. Thus, 30 +

k=36 frames of memory space is needed. Another issue is the size of the data row

which is the number of bits that represent one pixel. For data row representation, 16

bits gray scale has been used as was mentioned in section 4.4.1. The frame size used

in the system is 640 x 480 pixels according to the resolution offered by the Terasic

camera. Therefore, the required space needed for the threshold is window size xno.

frames x data row size =640 x 480 x 30 x 16 = 18.432 M byte.The18.432 M byte is

larger than the available size of the 8 M byte SDRAM memory used in this design. To

adapt the required space with the one available and to keep the systemrunning on the

real time, a frame sequence technique was developed.

Frame Frame Frame Frame Frame Frame
t t-k t t-k t t-k

1 5 13 7 25 19

2 4 14 8 26 20

3 3 Q. 15 9 Q. 27 21

4 2
3

O 16 10
3

O 28 22

5 1 O) 17 11 CO 29 23

6 0 18 12 30 24

7 1 19 13

8 2 20 14

9 3 21 15

10 4 22 16

11 5 23 17

12 6 24 j 18

Figure 4.2: Frame sequence technique to determine the threshold value, where k=6.

Figure 4.2 shows sequences of frames from 1 to 30 categorized in groups.

According to the algorithm as explained previously, the mean value (M) is calculated

by equation (3.2) as given in subsection 3.2.2,
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Thus, the calculations are passed from t = 1 till t = 30. The calculations for the 30

frames are done via 30 iterations. The numbers listed in groups opposite to each other

of the figure represent the numbers of two corresponding frames (Frame t and Frame

t-k) that have to be subtracted during iterations. In the first iteration, frame 1 (t) and

frame 5 (abs(l-6)) are subtracted in order to find the hybrid difference values and so

on for the rest of the iterations. Indeed the subtraction operations are done on the pixel

level. As will be explained more lately, to save access and retrieve computation time,

subtractions are done for the entire frame's pixels then the results are accumulated to

be used with the results of the next frame. This is done instead of applying the

operations on one pixel through the thirty frames before moving to the next pixel.

At each time there will be six frames in the memory and two lookup tables with

the frame size that are used to accumulate the mean and standard deviation values.

The lookup tables at the end will contain the threshold domain's borders, pv -$- and

f-i-j +S-j. Six frames are used to calculate the hybrid difference then the next six

frames are loaded gradually instead of old frames that are not in need any more. The

first group contains frames 1, 2, 3, 4, 5 and 6. After calculating the hybrid difference

for each frame in the first column with the corresponding one on the opposite column,

the next frames have to be loaded. Since the next group (group 2) still need group 1

frames (frames from 1 to 6), loading the next frames after that is done gradually.

When JV=7(the seventh iteration) in equation 2, the seventh frame is loaded and use

frame 1 to find the Dtvalues. After that iteration, Framel is not needed any more and

the next frame, Frame 8, is loaded on Frame 1 position. Therefore, each time a frame

from the six frames is discarded, the new current frame is stored on its' place. In this

way the number of frames needed at any moment can be reduced from 30 frames to 7

frames.

With this frame sequence technique, the memory size needed is 640 x 480 x 7 x

16 = 4,300,800byte= 4.301 M byte. By adding two frames which are the size of

lookup tables, the memory size needed to calculate the threshold and store it is 640 x

480 x 16 x (7+2) = 5,529,600 byte = 5.530 M byte which is within the available

memory size of 8 M byte.
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Another issue to discuss is simplifying the AHD calculations. The standard

deviation is calculated by the formula

as has been stated in section 3.2.2 by equation (3.3). To simplify what under the

square root,

£(zj'(i-,./)-4)2
?=i

=£ (D'2(iJ)-2MDl(i,j) +fi2) (4.1)

=|>'2(U)-2^L>'(U) +iV
/=1 1=1

andsince ju = —Y D'(/', /) andby multiply with N,
Ntt

Nfi^D'iiJ) (4.2)

Byusing equation (4.2) for the middle term of (4.1), equation (4.1) become

=j^D'\iJ)-Niu2 (4.3)
AT

(=1 M ^

From equation (4.3), the base formulas have to be calculated to determine the
N N

adaptive threshold (the mean and standard deviation) are ^D'2(^y)and ^ £>'(/,/).

N N
If N=30, by defining£D'2(z, j) and ^ £>'(/,/) for all pixels frames, then some
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additional calculations need to be performed at the end to get the mean and standard

deviation. Thus the developed processing units for AT as will be discussed in details
N N

during sections 4.6, is meant to calculate ^D'2(i,j) and ^D'(i,j), while the rest

of calculations is completed after the unit finishes its job, which will be explained in

the FSM section 4.8.

4.5 Proposed Design for the Hardware System Architecture on FPGA
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Figure 4.3: The system hardware architecture on FPGA

Figure 4.3 shows the hardware architecture of the system that at the same time

represents the modules and main blocks built on the FPGA. The rectangle shapes

represent modules while the rounded rectangles represent blocks inside modules, i.e.

'Auto Read/Write and Priorities Control' is a block inside Sdram_ControlIer module.

DE2_D5M is the main module that connects interface modules with other modules
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and synchronizes the entire system to work correctly. Interface modules connect the
FPGA with external devices. The TRDBJD5M camera, the external SDRAM and

VGA monitor are the main external devices used in this developed system.

CCD Capture module receives the incoming data captured from the camera and
generates data row, column and frame counters that are used to define the beginning
and the ending of each coming frame. With each clock cycle, the data is captured by
CCD_Capture, which is 12 bit data row in Bayer pattern format, and sent to
Row_to_Gray module. Row_to_Gray module retrieves the original value ofthe pixel
represented in 30 bits RGB data row and then converts it to 16 bit Gray scale data

row.

AHD algorithm is executed via two modules, the Threshold Definer (TD) unit and

the Binary Image Builder (BIB) unit. These two units are the core of the system

design since regardless of initialization processes or loading processes, most of the
time one of these two units is running. Both of them take data from the FIFOs and

output the results into the FIFOs again. While one ofthe units is working, as will be
explained in section 4.6 and 4.7, the Finite State Machine is managing the control of

data flow between them.

SDRAM_Controller is the largest module of our design; it gives control to

SDRAM to store data and fetch it as required by the algorithm or the output display.

To match the processing speed of the SDRAM controller with the data rate of the

camera, the data are buffered to a First In First Out structure (FIFO). FIFOs allow

data to pass across the different clock domains of the camera (96 MHz), the memory

(125 MHz), and the VGA (50 MHz). Thus, the incoming Gray data row is buffered
into Write_FIFO before the SDRAM writing operation is done, and is buffered from

the SDRAM into Read_FIFO after reading operation was done. The buffered data in

Read__FIFO is used later in AHD calculations or sent to VGA module to display it on

the monitor.

The Finite State Machine is the heart module of the systems that controls the start

of read or writes to FIFOs and from which FIFOs. Pixel mapping also for the proper

address of the frame that supposed to be read from the memory is also performed

within this module. In addition, controlling data flow between the camera, FIFOs, the
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algorithm's units and between the SDRAM is performed. To decide when to read

from the camera 30 frames and start calculating threshold through the Threshold

Definer unit, or when to read 6 frames to start calculating the hybrid difference and

build the binary image through Binary Image Builder unit, are all managed by the

Finite_State_Machine module. The functionality of the Finite_State_Machine in order

to control the developed system is illustrated in more details in section 4.8.

Two important blocks of SDRAM_Controller, the 'Internal Address and Length

Control' block, and the 'Auto Read/Write and Priorities Control' block are shown in

the architecture. The first one responsible for assigning addresses, generated by the

state machine, to the proper read or write address register that is related to one FIFO

of the design. At the beginning, it sets the addresses specifying which frames are

going to be processed, incrementing the addresses until the end of the frame is done

automatically within this block. Important signals indicate when the frame has been

finished and when six frames or thirty frames are generated and send to the

FmitejState_Machine. Accordingly, the Finite State Machine decides which level of

execution should be performed. Set and Reset of these signals are done cooperatively

between this block and the Finite_StateJvlachine. The main functionality of 'Auto

Read/Write and Priorities Control' block is to give the control to one FIFO at a time

to access the SDRAM. It enables RD_MASK or WRJVIASK for the specific FIFO to

increment the address through the 'Internal Address and Length' block, while loading

the current assigned address for that FIFO to SDRAM address buss. Distributing the

accesses between FIFOs and to be sure that no more than one FIFO is accessing the

memory, are assured by this block.

One of other complementary modules is the VGA_Controiler that generates the

signals which drive the LCD. Also it generates 30-bit data output, a horizontal sync, a

vertical sync, and data enable signals according to the data rate of the monitor. This

module can be used to output the obtained results.

The I2C_CCD_Config module configures the camera using an I2C bus. Through

it, the exposure level can be set, using the board's switches as inputs.

57



For debugging issues, SEG7_LUT_8 and SEG7_LUT modules are used to trace

some results via seven segments sets that are integrated on the DEIIboard.

The sdram_pll, module generates 125 MHz clock for the SDRAM, and 20 MHz

clockfor control logic and the algorithm units, using a phase-locked loop.

4.6 Threshold Definer Unit's Frequency, Functionality and Architecture

The core part of the system is the Threshold Definer Unit and the Binary Image

Builder unit. In Figure 4.4, the design architecture of the threshold unit and the

interact connections with FIFOs and SDRAM are illustrated. The unit simply consists
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Figure 4.4: Architecture ofthe Threshold Definer Unit.

The SDRAM receives the read enable signal, while proper addresses of current

frame /, frame t-k and the threshold LUT tables are prepared for each Read_FIFO by

the SDRAM_Controller. Reading operation is started by the SDRAM through the 16
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bits' bus to fill each FIFO by 256 words, where 256 is the memory burst. Using big

memory burst saves updating the address for each memory word, instead it is updated

every 256 word when the burst finished. Additionally, big memory bursts reduce the

overall access time of the memory since the number of times the memory is used is

significantly reduced. Since the SDRAM is a single port memory, only one read or

write operation is done at a clock cycle and therefore only one FIFO at a time

accesses the memory. The distribution of the memory access is controlled by the

SDRAM_Controller in such a way that each FIFO gets the access for one memory

burst then reserve it again afterall FIFOs had a turn, where this operation is repeated

until a full frame have been buffered.

To synchronize the system, all data from four FIFOs of Figure 4.4 must reach the

Threshold Definer unit at the same time. This means reading access for all FIFOs

must be done for once at least before the unit start processing. To fill four FIFOs with

256 words' burst, a number of 4 * 256 = 1,024 cycles are needed. It is a big amount

of delay but the point is that SDRAM speed is 125 MHz, while the Threshold unit

speed is set to adapt the requested loading time, which that processing speed is set to

be slower than the speed of filling all FIFOs by the memory. The advantage of the

FIFOs that have used that it is a dual port FIFOs and the frequency of each port is

independent from that of the other port. Thus read andwrite operations could be done

at the same time with different speeds. This ability makes the SDRAM_Controiler

work as a multi-port device with multi-operation while the SDRAM itself has only
one port with one operation at a time.

The Read_FIFOs from the other side are working with 25 MHz frequency to feed

the data into the Threshold Definer unit. Since the internal architecture of the unit is

using the pipelining technique, only one clock cycle is required to process each pixel

as explained in section 4.9. Of course, a delay of five cycles has to be paid at the

beginning until the final output is ready by the pipelining, but this delay is paid only
once at the beginning of each new frame.

The memory bandwidth has to be bigger than the sum ofother units' bandwidths.

To fill all Read_FIFOs, 1,024 * (1/125M) = 8,192 ns is required. While to process

the data that have filled FIFOs, only 256 cycles are needed, since data is taken in
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parallel from FIFOs at the same time. With the 25 MHz frequency, it needs 256 x
(1/25M) = 10,240 ns oftime to process the data ofFIFOs. Since, the speed ofthe
memory is larger than the Threshold unit, data always will be ready for the unit.

A memory loading delay time, 8,192 ns, is paid once at the beginning of

processing each new frame. This delay is overlapped for next bursts to the end ofthe
processed frame, since loading from memory is done while the processing ofold one
is running by the unit. The selected size ofFIFOs, 512 words, which is double the size
ofthe memory burst, gives a space to write another burst to FIFOs while the first one

is still there.

Rd pipQs Threshold Definer Uni

Frame t

Frame t-k

Frame t+1

Frame t+1-k

LUT_I>f

UJJ_^Dt2

cyd ' cyc2 ' cyc3 ' cyc4 ' cyc5

Figure 4.5: Improved architecture ofthe Threshold Definer Unit.

The throughput of using the unit to calculate the threshold via thirty frames is

25MJ (307,200 pixel x 30 iterations) =2.7 frame per second (fps), where 307,200 =

640 x 480, is the number of cycles to operate one frame. In order to improve the

throughput of the system, the Threshold Definer unit is modified to calculate

threshold for two frames and accumulate their obtained results. The improved design

of the unit as shown in Figure 4.5 uses six FIFOs while the old threshold unit is

duplicated. The penalty of the improved design is implied in two issues, waiting time
to fill FIFOs and the pipelining unit's depth. The former is caused by adding

20 MHz
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additional two FIFOs, requiring to wait first time for 256 x 6 x (1/125M) = 12,288

ns. Increasing number of FIFOs does not affect number of processing cycles needed

by the Threshold unit, it is always 256 cycles. However, the cost comes from the

delay that the unit has to wait until all FIFOs are filled for the first time and from the

other side, the number of logic elements that has to be increased. Since the FIFOs

load delay has increased, the unit frequency should be reset to adapt it. Therefore the

speed of loading data from FIFOs to the Threshold Definer unit is reduced to 20MHz.

Using 20 MHz for the unit costs 256 x (1/20M) = 12,800 ns to process data of six

FIFOs containing 256 pixels in each, while the throughput has improved to 20 M /

307,200 x 15 = 4J4 fps, where 15 is half the value of the thirty frames since two

frames are being processed by the improved unit at a time. The adaptive threshold is

calculated once at the beginning of running time with initial conditions or calculated

again with system reset request. There for the throughput of TD unit is not considered

as a problem while the main throughput of the system is considered by the BIB unit

that will be running at tracking time.

4.7 Binary Image Builder Unit's Frequency, Functionality and Architecture

Binary Image Builder (BIB) unit is run at the tracking time to build the binary

image that represents the moving objects. It uses the threshold values that have been

calculated at initial time by the Threshold Definer unit, where they are stored at the

end in LUTs in the memory. BIB design consists of two subtractions, four comparison

operations and two OR and an AND gates as shown in Figure 4.6. Building the binary

image needs to find the set of hybrid differences of each pixel of the current frame

with its corresponding pixels from the successive six frames. To improve the unit

throughput, its design is made to calculate hybrid difference values for two frames

each time. As shown in Figure 4.6, the architecture of BIB unit is built to take input

values from six Read_FIFOs, where three FIFOs of them buffer memory data of the

current frame, Frame (t) and the successive two frames; Frame (t-s) and Frame (/-

s+1), where s a value from 1 to k (k is set to be 6 as mentioned in 3.3.1). Subtraction

operations are performed between data that come from the first FIFO, the second and

the third FIFO.
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Figure 4.6: Architecture of BinaryImage BuilderUnit.

For the other three FIFOs of the design, two of them are used to read the stored

threshold LUTs which contain the values of p +a and fi-a, while the last FIFO is

used to store the intermediate or the final obtained binary image. After subtraction,

the result undergoes two comparisons with ju +cr and p-a for that pixel. The OR

gate is used to determine if at least one ofthe comparison results is true, either D*>
p+a or Dt<n-a . Two OR gates are used, one for the obtained result of Frame t -

Frame (t-s) and the other for Frame t - Frame (t+l-s). For a pixel, all Dt values via

six frames have to achieve the threshold condition, since only two Dt values are

determined at a round, the value need to be stored and compared in the next round

with the results of other Dt values. Therefore, AND gate is used to determine if the

old test result with the current results are achieving the condition. An intermediate

Binary Image is stored in the memory and updated each round until subtraction with

the six frames is finished, and then the final binary image of the current frame will be
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ready. Whenthe binary image had beenbuilt, it can be displayed into a monitor or can

be stored in some storage according to the application needs.

The FIFOs used in the Binary Image builder are the same as those used for the

Threshold Definer unit. To adjust the frequency, the speed of processing should not

be faster than the time the memory takes to fill the six FIFOs. The time needed by

memory to fill up Read_FIFOs is 12,288 ns, while 12,800 ns is needed by the BIB

unit to process that amount of data, working with 20MHz. The frequency of the

system and the control finite state machine are set at 20 MHz, since it's the frequency

that achieves the highest throughput of using six FIFOs. Unifying the frequency for

system units reduces skew and metastabilty problems that could occur between blocks

with different clock domain within the same system. Only the frequency of the

SDRAM is 125 MHz, which is higher than the system frequency, since the memory is

and has to work faster. With the design of BIB unit, the system throughput at tracking

time is 20 MHz/ 307,200 x 3 = 21.7 fps, where 307,200 x 3 is the number of cycles

needed to execute the algorithm on one frame. 307,200 is the number of pixels of the

frame, since with the pipelining, to process a pixel within the BIB unit cost just one

clock cycle. Multiplying number of pixels of a frame with three since the hybrid

difference is calculated through six frames, while the rounds reduced from six to three

after processing two frames in parallel each round.

To improve the design ofBIB unit in order to increase the throughput, line buffers

are used. The improved design as represented in Figure 4.7, consists of two main

parts, line buffers and the processing unit.
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Figure 4.7: Improved Architecture ofBinary Image Builder Unit

Processing data is done within two stages, where each stage processes 256 words

(pixels). The stages work alternatively, when one is processing the other is idle. The

first stage which is the line buffers consists of five shift line buffers for the current

frame t, the two threshold values Tl (fi +a) and T2 (jn-a), and two frames of the six

frames which are to be subtracted from Frame t ( Frame (t-1) and Frame (t-2)). Each

line buffer is 256 words long, for the five line buffers 1,280 words are used. The

created line buffer is built using memory blocks rather than registers to optimize the

logic elements utilization. By this design the number of FIFOs that access the memory

at any time is six, including the FIFO used to store the obtained binary image back

into the memory, the camera write FIFO for new frames and the read to VGA FIFO.

By considering all FIFOs in the system while setting the frequency, the system

becomes more stable. The frequency is set to 20 MHz, since 6 FIFOs x 256 * 8 ns

(1/125 MHz)=12,288 ns and 256 x 50 ns(l/20 MHz) = 12,800 ns are the required

time to read bursts from the memory into all FIFOs and the time to read that burst

from all FIFOs respectively. Figure 4.8 illustrates the flow of processing the two

stages between FIFOs, line buffers and BIB unit on the time line at tracking time.
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Figure 4.8: Processing flow between FIFOs, line buffers and BIB unit on the time line

at running time for the improved Binary Builder unit.

The FIFOs first read a burst (256 words) from the memory for pixels and

threshold values that are used for line buffers. When the unit starts to work, for 256

cycles, the values are buffered from the five FIFOs into the line buffers. Since each

FIFO has place for two bursts (512 words), during buffering operation, the addresses

inside SDRAM_Controller for the FIFOs are automatically changed and read

operations for a burst for the rest of frames, Frame (t-3), (t-4), (t-5) and (t-6)are

started. Synchronized signals are used to organize the work between the two stages

and to synchronize the data during all levels. Buffering data from FIFOs into line

buffers does not start until all Read FIFOs have finished reading a burst from the

memory. A synchronized signal is used to indicate when burst read operation for all

FIFOs are completed. The same synchronized signal is used to start reading bursts

from the memory into the FIFOs for other frames while reading from the FIFOs into

line buffers is running. For the next 256 cycles, pixels are read from the line buffers

that are now full, and from the FIFOs with the same speed to determine the HD value
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for 256 pixels. At this time buffering new data to line buffers is stopped. While BIB

unit is active, reading operations from the memory into the FIFOs is done for the next

256 pixels to fill the line buffers for the next 256 cycles in next stage. By this design,

processing one pixel of a frame is taking two cycles, one cycle to buffer half of values

into the line buffers and other cycle to read the rest of the values from the FIFOs.

The inner design of Figure 4.9 illustrates the internal architecture of the improved

BIB unit. The unit integrates subtraction and comparison operations for all six frames

in contrast with the old structure that integrates operations for two frames only. The

old structure obtained the needs to repeat using the unit and accumulate the results via

three iterations to get the final result.

Line buffers

Frame t —».

Frame t-1

Frame t-2

Threshold 1

Threshold 2—»

Clock 20 MHz.

From FIFOs

Binary Image
Builder Unit

CO •<* "O CO

CD CD CD CD
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Binary
Result
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Figure 4.9: The improved internal architecture ofBIB unit.

When the BIB unit is not idle (during the second stage), it takes one clock cycle to

process each pixel. Since the unit is using pipelining technique, the operating time to

obtain a result for a pixel takes one clock cycle, after a delay paid once at the

beginning of each frame. Considering the waiting time to make all data ready (first

stage), 256 cycles for 256 pixels, which means each pixel is processed during two

clock cycles, one for loading data and another one for the data to be processed
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through the BIB unit. At the meantime, control signals are used to organize the work

between the two stages, FIFOs and reading the correct addresses at the correct time.

By this design the throughput is improved from 21.7 into 32.55, since 20 MHz\

(307,200 x 2) =32.55 fps.

4.8 Finite State Machine and Control Signals

Finite State Machines (FSM) are the heart of any digital design [51]. It is used to

model a system that transits between internal states. Regarding the sequential circuits,

the transition between FSM's states does not follow a sequential order. The transition

between the states is decided according to the current state value and external inputs.

The design of this research has used a FSM to control the built digital system as

has showed in Figure 4.3. The FSM is used to test external commands to activate

proper control signals to control operation of data path [52]. From another

perspective, the FSM works onachieving the hardware timing andmeeting thesystem

specifications, specifically, to control the data flow between inputs, outputs, memory
and FIFOs.

The state diagram of the FSM is illustrated in Figure 4.10, where outputs of the

state machine are functions of inputs and states; thus it is a mealy state machine. The

states' coding is an important design issue that reflects the system speed and the

number of logics used. When the number of bits that represent the states is small, the

number of logic used is reduced. The selected state's coding specifies the number of

comparison operations and the number of bits needed to be tested during state

transition i.e., a move from one state to another, which reflects on the speed, power

and area ofthe design. Some detailed work have been done on optimizing the FSM by

selecting the most optimized coding technique according to the number of the state

and transition for each state which is out of this research area and is left for the future

research work [53].

The gray coding style has been selected, to represent states, since only one bit is

changed to transit from a state to its next state. Thus, the transition between states
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dissipates less power. Using 3 bits for state code is enough to cover the 7 states inthe

main state diagram. An additional bit could be added to be used for the state coding

for future states.

stopWrFrms

!RESET N

68

SstopWrFrms

stopWrFrms

!frame_signal

Figure 4.10: Main state diagram of AHD finite state machine.

The FSM of Figure 4.10 controls the data path among the system to determine the

adaptive threshold values at the initial time of system's execution. Seven states have

been used, which start with 'SETUP' state that is executed once at the system's

starting time. At 'SETUP' state, the specified locations in the memory for lookup

tables are set to zero values preparing to use them as accumulators for threshold

calculations or for binary image building. As shownin the memory map addressing of

frames on Figure 4.11, two lookup tables (LUT) are reserved in a specific locations in

the memory. The memorymap diagram shows the start memory location of eachLUT

and their sizes which is the size of the captured frame, 640 x 480 pixels. Writing

enable signals are sent in this state to both 'WRITE_FIF01' and "WRITE_FIF02", to

enable writing operation on the SDRAM. The initial addresses of the LUTs are sent to

SDRAM_Controller, while the data value, which is in this case 16 bits of zeros, is

sent to FIFOs as well. This state is repeateduntil 'end_setup' signal is activated by the



Internal Address and length control block of Figure 4.3. With 'end_setup' signal, the

next state is set to 'IDLE' and enable write signals are disabled.
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Figure 4.11: The memory map of frames and lookup tables (LUT) on the SDRAM.

Next state is 'IDLE' state that tests if the next state should be 'LOADFRAMES'

to apply the frame sequence technique that has been explained in section 4.4.2 or

deciding to finish the state machine by stick to 'IDLE' state.

The job of 'LOAD_FRAMES' state is to load the number of subsequent frames

from the camera into the SDRAM for the first load then to load new frames gradually

to replace the already finished frames. As in the final design of the TD unit of Figure

4.5 in section 4.6, parallel calculations are done to determine HD for two frames of

the 30 frames at a clock cycle. The two parallel calculations require accessing four

frames, Frame t, t-k, t+1 and (t+l)-k, which are available in the memory after the first

sequence of frames have been written during 'LOAD_FRAMES' state. If the number

of loaded frames are set to 6, then the need to load the next two frames after

processing the six frames are required. However, overwriting the old six frames

cannot be done since they are still required in the next rounds of calculations, i.e.

when t=7, t-k=l, means Frame 1 still under use. By processing frames 7 and 8 with

frames 1 and 2, frames 1 and 2 are not going to be used in future TD calculations and

thus they can be overwritten. The same situation is repeated for the rest of frames,

therefore, the number of initial loaded frames is set to eight rather than six. After

operating the 7th and the 8th frames, two new frames are loaded in the place of

frames 1 and 2 since they are not in need any more. Similarly after processing frames
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9 and 10 that use frames 3 and 4 (t-k) for HD calculations, frames 11 and 12 are

stored instead of frames 3 and 4 locations, and so on. Thus, after processing the first

eight frames, a new two frames is stored in the memory in the oldest frames'

locations. Specifying the location where the new frames have to be stored is

determined using a rotating pointer starting at Frame l's location to Frame 8's

location of the memory (locations of Fl and F8 in Figure 4.11). To adapt the writing

frequency from the camera (96 MHz) to the SDRAM (125 MHz), 'WRITEJTFOl' is

used to buffer the data. WRITE_FIF01 's write enable signal is assigned by the FSM

to 'WR1__CCD\ The 'WR1_CCD' signal is a combined function of FRAME_VALID

and LINE_VALID signals that are obtained by the camera to indicate the boundaries

between different frames and lines within the frame, where a valid pixel is obtained

when both of them are active. At the same time, data coming from the camera are

directed to the 'WRITEJTFOl'. "

When the eight frames or the two frames have been loaded into the SDRAM, the

control signal 'stopWrFrms' is sent through Internal Address and length control to the

FSM, where the last transits the system to the next state, 'TD' where the required

signals and addresses for defining thresholds are set.

By having eight frames in the memory, the adaptive threshold algorithm is ready

to start implementation. In 'TD' state, pixel mapping is done first to determine the

addresses of the four frames (t, t-k, t+1 and (t+l)-k) that will be used by the current

TD unit calculations. Only the first addresses of frames are required to be sent to

SDRAM_Controller module while incrementing the rest of frame's addresses is done

automatically via the Internal Address and Length Control block. Pixel mapping with

address pointer register are keep saving the order of the frames sequences to

determine the proper sequence for the next round until all the thirty frames are

processed.

Also read and write enable signals for read and write FIFOs are activated in 'TD'

state as well as the coming data from read FIFOs is directed to the TD unit inputs

while the output of the unit is directed to write FIFOs' input. By setting addresses,

directing the data path and activating control signals, the TD unit processes frames to

determine the adaptive threshold in the way stated in section 4.6. Enable writing or
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reading signals are set for the FIFOs, however the SDRAM_Controiler works

automatically through the Auto Read/Write and Priorities Control block to generate

SDRAM's read and write signals. Auto Read/Write and Priorities Control block

checks the availability or the full space of FIFOs. According to that, SDRAM signals

are generated. For the case of writing from FIFO into SDRAM, the control block

checks if the number of lines filled by the FIFO reached 256 or more, then it

generates the proper SDRAM signals to make writing operation while blocking any

other FIFOs from accessing the memory until the writing operation is finished. The

same is applied for reading case, but the condition here is to have enough empty space

of the FIFO for incoming 256 words from the memory. Signals for reading from the

memory into the FIFO or writing from the FIFO into the memory are generated

automatically through the SDRAM_Controller, while signal enable reading from the

FIFOs into the algorithm unit or writing the obtained results of the units into FIFOs

are set by the FSM.

The FSM is used mainly in this design to control threshold definer

implementation at the beginning of running time. After the adaptive thresholds are

determined the system stays in BIB state for the rest ofrunning time as long as system

reset signal has not been activated. Building the binary image is done when the

system reach 'BIB' state, which is the last one in later rounds after determining the

adaptive threshold through thirty frames. In 'BIB' state, TD unit signals are

deactivated and the data of read FIFOs are directed into the BIB unit instead of TD

unit since the same FIFOs are used. The output of the BIB unit is directed into write

FIFO and from there into the Binary Image location that is reserved in the memory to

store the results as shown in Figure 4.11. First seven frames are stored in the memory

in the same locations used before for TD. The seven frames are needed since the

current frame (Frame t) with its previous six frames are used in building the binary

image. After processing Frame t, the next new frame is stored in the oldest frame's

location since it is not used anymore and frame pointer of Frame / is updated to be

Frame (t-1). The pointers registers are used to point to the current frame and the

previous six frames in the correct order. Pixel mapping and addressing are managed

automatically within this state (BIB state) through SDRAM_Controller and by using

control signals without using additional states as with TD unit. The reason behind that
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is loading new frames and processing the existing frames is done in parallel, which

means no need to stop the processing unit for a while to load new frames and then

activate it again through the states. The improved BIB design unit as was explained in

section 4.8 processes data of frames burst by burst, 256 words each time, rather than

finishing the whole frame at once. For the first stage, five FIFOs are used to read 256

words of data from the memory into the line buffers and one FIFO is used to write

new data from the camera into the memory instead of the burst had just shifted into

line buffers. As well in the second stage, four FIFOs are used to read data from the

memory into the BIB unit, while an additional FIFO is used to store the results in the

memory and another FIFO is used to display the results of 256 pixels into VGA

monitor.

~~ The state maciTine^tays~m^D"'~state

k, for the current round are processed. 'Next_Round' state tests control signals

'frame30', 'eightFrameSignal' and 'frame_signar that are generated by the

SDRAM_Controller while the execution of different states is running. In

'Next_Round' the FSM is directed to the next state supposed to be executed

according to the tested signals. If the 'frame30' signal is active, then the thirty frames

that define the threshold, have been covered and the next state is 'BIB' state. The

'eightFrameSignal' that indicates when the first 8th frames have processed is tested.

When processing of thirty frames is not completed, if 'eightFrameSignal' is active

then it means the eight frames that were written in the memory have been processed

and the state machine has to load the next two frames, thus the next state is set to

'LOAD_FRAMES\ If neither of the previous signals is active, then the signal

'frame_signal' is tested. 'frame_signal' indicates that the two frames under parallel

processing by TD unit have been operated while unprocessed frames are still in the

memory waiting to be processed. Thus the next state is set to 'TD' if the first eighth

frames have not been processed yet, and is set to 'LOAD_FRAMES' if the

'eightFrameSignal' is active, since two frames are loaded each time after processing

the current frames by TD unit.

'frame30' signal indicates when all 30 frames have been processed through the

TD unit and lead the FSM to 'Finalize Tl and T2' state and then to the last state,
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'BIB'. In 'Finalize Tl and T2' the final threshold values, //-o-'and^' + o-'as defined

by equation (3.2) and (3.3) in subsection 3.2.2, are calculated using the accumulated

D' and D'2 values for all pixels of the two LUTs that were determined through the

previous states via 30 frames. The results of final threshold are stored again in the

LUTs where they are used later in comparison operations in order to build the binary

image.

4.9 Pipelining and Data Flow

Pipelining is an implementation technique that is used to increase the throughput

and parallelism [54]. The pipelined design on FPGA utilizes the advantage of the

parallel processing capabilities of the FPGA to increase the efficiency of sequential

code. To implement a pipeline, the code must be divided into stages separated by

storage elements. The outputs of each stage deliver the results of the current stage that

is lagging behind the input by the number of stages of the pipeline which specifies the

pipeline depth. The last output is invalid until the pipeline is filled [55].

The pipelining judged to be synchronous or asynchronous depending on the data

transition controller for the stages, [54].

Synchronous pipeline blocks are built to work in parallel during 'TD' and 'BIB'

states to optimize the number of clock cycles needed to process each pixel through

TD and BIB units. Since the transition between pipelining stages is controlled by the

same clock cycle of the FSM, it is a synchronous one. As explained before in the FSM

in section 4.8, the 'TD' state reads data from six locations in the memory to determine

the adaptive thresholds and then it writes back the results into the memory. This

operation should be repeated within each clock cycle while the FSM is repeating the

'TD' state. This means read/write and processing operations of TD unit supposed to

be done within one clock cycle (before the next FSM's clock cycle occurs). The FSM,

pipelining and the read/write operations of FIFOs from processing unit side are set

with the same speed (20 MHz).To adjust the number of required clock cycles to

determine the AT or to build the binary image and to speed up the system, the
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pipelining is used to receive data from six reading FIFOs and send the results into two

writing FIFOs within one clock cycle. In our design, we have built two pipeline

architectures for the two developed units of sections 4.6 and 4.7 as represented in

figures 4.12 and 4.13. The pipelining of the two units, Threshold Definer unit and

Binary Image Builder unit are built to optimize the number of clock cycles needed to

execute the algorithm on a pixel during the 'TD' and 'BIB' states.

4.9.1 Pipelining of the Threshold Definer Unit

Figure 4.12 shows the pipelined data path that represents the Threshold Definer

unit. The pipeline consists of five stages. Thus, to find Dt and Dt2 for the current two

pixels of frame t and t+1, five clock cycles of latency are needed until the last output

is ready. The latency of five clock cycles is paid once each time at the beginning of

processing a new frame of the frames sequences. However, for processing the rest of

the pixels in each frame, only one clock cycle is needed for each pixel. Thus, five

cycles of latency against saving four cycles for 307,200 x 2 pixels are almost

negligible.
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Figure 4.12: Pipelining data path of Threshold Definer unit

At the first stage of the data path, data are shifted from FIFOs into registers 'rth

Value', '(?-£)th Value', '(t+l)th Value' and \t+l -£)th' which are the pixels' values

of frame t, frame t-k, and the next frame oft and it's corresponding frame that are

processed in parallel. Data from the other two FIFOs, the accumulated Dl value from

the first lookup table and the accumulated Devalue from the second lookup table

respectively are shifted to registers 'sumDt_old' and 'sumDt2_old\ Within the same

clock cycle a subtraction process to find Dt values for frames t and t+1 are executed.

However, subtraction results are ready with the second clock cycle where they are

delivered to input registers of the second stage, 'Dt' and 'Dt_l'. Pipelining stages are

receiving inputs from the previous stage or RD_FIFOs while delivering outputs to the

next stage or WR_FIFOs with each clock cycle.

When Dtof pixel(ij) is determined in stage two, a new pixel is loaded from the

FIFO into the input register in stage one. Thus 'smDt_old' and 'smDt2_old' values

are pipelined from the first stage into the second stage registers, 'piplSmDt' and
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'piplSmDt2', to keep the corresponding threshold values of pixel(ij). In order to find

Dt2 ofDt for pixel's frame t and t+1, shift by 1 to the left is appliedfor values of'Dt'

and 'Dt_l'. Additionally, to save the number of pipelining stages and since Dl and

old Dt summation values are ready by stage two, 'Dt' + 'smDt_old' is implemented

in this stage. Dt2 values are delivered with the third clock cycle to 'Dt2' and 'Dt_12'

registers of stage three as well as the summation result that is delivered to register

'pip2SmDt'.

In the third stage, addition operations are applied for 'Dt2' with 'Dt_12' and

'pip2SmDt' with 'pipDt_l\ where 'pip2SmDt' carries the summation of old Dc value

of LUT with Dt of frame t and 'pipDt_l' is the Dt value of frame t+1 that has shifted

via stages. The old value of Dt2 fronT~the seconcTTUT is sTuTfedTo^pip2SmDt2'"

register since it has not been used yet. With the fourth clock cycle, the summation of

Dl of the two frames, t and t+1, and the accumulated value from old rounds are

determined and stored in 'pip2SmDt' register while the last addition operation is

done. The accumulated Devalue that was kept through three stages is added to the

summation of Dt2of frame t and frame t+1 that was determined during stage three.

Finally, ^summation is delivered to 'sumDt' register and £)t2summation to

'sumDt2' register at the fifth clock cycle. The last two registers are the Threshold

Definer unit's output registers that are wired to WR_FIFOs inputs in order to store the

results in LUTs in the memory.
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Table 4.1 : Pipelining data flow table of Threshold Definer unit.
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Table 4.1 illustrates the data flow of the pipeline of Figure 4.9, where columns

represent the pipeline registers from different stages and lines represent values of

these registers during clock cycles' transition. Symbols vl, v2...etc, represent the

corresponding register value of pixel number 1, 2...etc. respectively. Thus, vl of

column 't-thValue' in the first row represents the value of the first pixel of frame t, vl

in column 'Dt' is the determined D*of the values were in 'MhValue' and 't-kth value'

in the first clock cycle. Last outputs 'sumDt' and 'sumDt2' for pixel 1 are ready in the

fifth clock cycle. For the first pixel of the frame, it takes five clock cycles to reach the

pipeline output. Otherwise, the outputs of pixels for the rest of the frame are ready

just one cycle after the previous pixel's output is ready. Therefore, only one clock

cycle is needed for each pixel to implement the AHD since the pipeline works in

parallel with different pixels at the same time.

Using pipelining for unit's design rather than combinational logic has been

selected because the critical path of the combinational design will be the longest path

among the whole unit design while in the case of pipelining the critical path will be

the longest path among the stages. As apparent in the designed unit in Figure 4.12, the

logic design is distributed among the stages to get minimum possible longest path.

Operations have been distributed in such a way that cost one clock cycle for each

single pipeline stage.
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4.9.2 Pipelining of the Binary Image Builder Unit

The next level of implementation is to build the binary image after the threshold

has been calculated. A pipeline has been developed for the Binary Image Builder unit

as illustrated by Figure 4.13.

elk cycle 1

Frame t

Line buffer

Frame t-1

Line buffer

Frame t-2

Line buffer

-Frame-t-3-

Rd FIF01

Frame t-4
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Rd FIF04

ThrFst

Threshold 1.
Line buffer

ThrSec

Threshold 2|
Line buffer

elk cycle 2 elk cycle 3 elk cycle 4 elk cycle 5

RSLT

•4,1—*

WR2 FIFO

Figure 4.13: Pipelining data path of Binary Image Builder unit.

In the first stage of the pipeline with the first clock cycle, pixel values from

location (i,j) of frames / and t-1 to t-6 with the two thresholds Threshold 1 (fi +o) and

Threshold 2 (/u - a ) are arrived. The received data as was explained in section 4.7 are

delivered by five line buffers and four FIFOs. The threshold values are saved in

registers to be used in the next stage, while the other values are subtracted from pixel

value of Frame t. By subtraction operations, Dtvalues are determined and sent to the

second stage registers ('Dtl'- 'Dt6').In the second stage, comparison operations are

done to compare Dt values with the threshold values which represent thresholds of

the current pixel. The thresholds are used to test if lvalues are greaterthan n +a and
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if they are less than^ -a . Results ofcomparison are shifted into twelve registers with

single bit of the next stage. Moreover, these values went under OR operations, since

one condition must be satisfied, either £>c is greater than the first threshold or it is less

than the other value of threshold. However one of the conditions for each Devalues,

'DtF to 'Dt6', have to be met, thus in the fourth stage, the results of OR operations

are delivered to 'rl' to 'r6' registers where AND operation is performed for all of

them to determine if all Dl values are not belonging to the threshold interval. The

pipelining of BIB unit takes five clock cycles to determine the initial binary value of

one pixel, which have to be paid once at the beginning of processing the frame, while

it takes only one clock cycle after that.

In Table 4.2, the data flow of the Binary Image Builder unit of Figure 4.13 is

illustrated through the first 5 clock cycles of execution.

Table 4.2 Pipelining data flow table of Binary Image Builder unit
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4.10 Chapter Summary

Hardware implementation of AHD algorithm on FPGA has been thoroughly

discussed. Using Cyclone device as a processor to control the external SDRAM and

the camera connected through the DEII board has been justified. Some techniques
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such as parallelization as with pipelining have been covered. This research has

developed a finite state machine that controls the overall modules that comprise the

system. Architecture of the hardware design on FPGA was explained through

previous sections. In order to justify the methodology and hardware techniques that

have been used, an analytical study is made. This chapter has covered the research

methods, equipment used and the techniques followed or developed in order to meet

the expected results as will be discussed in the next chapter.
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CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 Chapter Overview

This chapter discusses the performance and feasibility of the obtained system as a

real time system. The system throughput and frequency speed settings have been

discussed. Previously, comparisons with other systems have been discussed in the

literature review in terms of methodology. This chapter explains the results

thoroughly in the coming sections and sub sections. A comparative performance

analysis using a new approach has been performed with the existing ones. At the end,

an evaluation of this system will be discussed in terms of achieving the optimal

system specifications.

5.2 Experimental Setup and Deployment Strategy

The implementation and simulation experiments on the FPGA have been applied

by tacking real time Video stream in conditions similar to those used for the software

implementation as mentioned in Chapter 3. The real time recording was taken inside

the lab, in door place, under neon lights during day time while moving objects were

humans. Figure 5.1 shows the deployment model of the system, which illustrates the

data flow of the input and output through the system.



Real Time

Video

FPGA

CCD Capture

Defining
The Adaptive

Threshold

Building The
Binary mage

SDRAM

Controller

VGA

Controller

* SDRAM

VGA

Figure 5.1: Deployment Model

Once the data come out from the camera it is captured by the FPGA via the "CCD

capture" block where it is converted to the appropriate digital form for image

processing. The formatted data is sent continuously to the~extemarSDRAMTrieinmy~

through "SDRAM controller" block. Later on, after storing the required number of

frames, the frames start to transfer to "Define Adaptive Threshold" block to calculate

the threshold. When the threshold is calculated, "Building Binary Image" block starts

the processing by receiving the data from the SDRAM. There the moving objects are

detected and given a white color while the rest of the image is set to black. Read/write

operations are interacting between the blocks and the SDRAM during processing the

threshold and building the binary image. The final output is a binary image of the

moving objects over a frame. To observe the output of binary image it is sent to VGA

monitor through "VGA Controller" block that synchronizes the output frames.

5.3 Baseline Approaches

In the literature review of Chapter 2 in section 2.3, different design and

implementation approaches of object tracking systems on FPGA have been described.

This chapter uses those approaches for comparing performance analysis with the

proposed approach. The following is a list of object tracking approaches that are

going to be compared with the proposed design in section 5.6.
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1. Image Segmentation and Pattern Matching [22], section 2.3.2.

2. Image Segmentation based on Color Threshold [11], section 2.3.1.

3. Principal Component Analysis [10], section 2.3.5.

4. Planer Motion Tracking using Matched Filter [18], section 2.3.3.

5. Color Detection and Binarization [24], section 2.3.4.

6. HW/SW co-design using Kernel Based [16].

5.4 Performance Analysis

The frame rate of a real time video system is the frames' speed that makes the

human visual system sees it as a continuous scene. The frame rate itself is the

frequency that a full frame is updated within it. Current real time video systems

follow different standards of frame rates, but all rates belong to three standard rates

which are 24, 25, or 30 frames per second (fps). Definite frame rate's and real time

frame rate's definitions are the keys that have been used to evaluate how much close

this system to the real time system and how much its speed.

The two core parts of our system are the Threshold Definer unit and the Binary

Image Builder unit. The Threshold Definer unit can be run at initial time, a previous

time before the real implementation. From the other side, the obtained threshold

values are used at the real tracking time by the Binary Image Builder unit. However if

the execution time of the Threshold Builder unit combined with the other unit could

meet the real time rate, then it is feasible to run both units at the tracking time. When

the system is fast enough to recalculate the threshold from time to time or with

changes of lighting conditions during the tracking time, the adaptive threshold will be

more accurate as detailed in the algorithm [4], since new changes in the environment

are updated in the new threshold.

The system frequency is set to 20 MHz in order to achieve the best frame rate of

the design. The Threshold Definer unit reads four frames and two LUTs from the
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memory to calculate the frames differences and accumulates the results through thirty

frames. Using pipelining has reduced the required clock cycles for each pixel from 5

to 1. However to synchronize the data coming from the FIFOs, as explained in section

4.6, a waiting penalty has been paid. The pipeline unit has to wait until all Read

FIFOs are filled with 256 pixels' value, where 256 words is the selected memory

burst. The system speed has to be less than the speed of reading the data from the

memory into six FIFOs. Thus, the time needed to fill six FIFOs by the memory is 256

x 6 x (1/125 M) = 12,288 ns, where 125 M is the memory speed. To process 256

word x 6 FIFOs in 20 MHz will cost 256 cycles * (1/20M) = 12,800 ns, which

assures processing data later when it is ready for pipelining. For one frame, the

required time is 307,200 * 50 n = 15,360,000 ns, while for 30 frames 12,288,000ns *

30 = 460,800,000 ns is required. Loading next stream of data until the end of the

frame is done while the pipelining is processing the current 256 pixels. Thus, the load

delay time of 12,288 ns is paid only once at the beginning of implementing each

frame which is negligible since it represents just 0.1 % of loading time for the whole

frame. Therefore, the frame rate achieved by using the Threshold Definer unit for

thirty frames is 20 M / 307,200 x 15 - 4.3 fps, where 15 is the number of iterations

the unit have to be repeated until the threshold is determined. The iterations have been

reduced from 30 to 15 with the new parallel design that processes two iterations each

time. System frequency for the old developed design was set to 25 MHz that uses four

read FIFOs as unit's input. However processing 30 frames are done through 30

iterations, since the old unit design performs one iteration at a time. Thus the achieved

throughput was 25 M / 307,200 * 30 = 2.7 fps. Reducing the frequency to 20 MHz to

adapt the delay loading time for six read FIFOs that provide parallel execution for two

iterations at a time will achieve higher throughput.

A frame rate of 4.3 fps still doesn't meet the standard frame rate for a real time

video system. However, this still does not pose a problem since the adaptive hybrid

difference algorithm requires finding the threshold at the initial time of execution with

an ideal background (without moving objects). At tracking time, the Binary Image is

built depending on the threshold that was calculated before.
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For the Binary Image Builder unit, the pipeline is used to calculate the hybrid

difference for the current frame with other six frames. By using the improved unit that

processes hybrid differences for pixels from six frames at the same time, the frame

rate was improved from 20M / (307,200 x 3) = 21.7 fps to 20M / (307,200 * 2) =

32.55 fps. The frame size (307,200 pixels) was multiplied by 3 or 2 according to the

number of clock cycles needed to obtain binary result for one pixel. It required three

iterations per pixel to get the final result using the old design, since partial results are

accumulated and used in next cycles to get the final output. From the other hand, the

new design unit needs two clock cycles per pixel, one to load inputs and the other to

process them. The old proposed design uses six read FIFOs while the new uses five

read FIFOs and five line buffers for parallel calculations. The speed of the new design

is set to 20 MHz considering in addition to two write FIFOs for the obtained binary

image and for loading new frames from the camera. System frequency is set to adapt

sharing the SDRAM speed between six FIFOs at any time (five for line buffers and

data read, two for write and one for read to VGA). Even in the new design, eight

FIFOs are sharing the SDRAM speed while only six FIFOs at any moment are

accessing the memory.

To avoid clock skews, the system frequency is set to 20 MHz for processing units,

read/write FIFOs' operations (with processing units) and the finite state machine.

Using dual port FIFOs between SDRAM and other modules of different frequencies

have prevented the clock domain crossing problems that could occur. The data is

buffered into FIFOs before going to other unit or device.

This system works with 20 MHz speed and achieves 32.55 fps at tracking time,

while achieving 4.3 fps for calculating the threshold through 30 frames at initial time.

Table 5.1 below summarizes the performance analysis for the developed designs that

has discussed in this section.
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Table 5.1: Summarization of performance analysis for the developed designs

Designed

unit

TD

TD (parallel

design)

BIB (old

design)

BIB

(improved

design)

Unit's

frequency

25 MHz

20 MHz

20 MHz

20 MHz

No. of

input

buffers

(FIFOS)

Loading time

from memory

into buffers

8,192 ns

12,288 ns

12,288ns

10,240 ns

No. of iterations

to get the final

result

30

15

Throughput

2.7 fps

4.3 fps

21.7 fps

32.55 fps

5.5 Synthesis Utilization

Figure 5.2 shows a detected moving object that has been obtained using the built

system, the hand appears on the snapshots is used to move the object. The hand has

been detected since it is moving too. When there is no motion, the screen stays black.

Figure 5.2: Detected moving object snapshots
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Table 5.2 shows the synthesis utilization of our system as obtained from the

compilation report of Quartus software. The system was achieved by using 1,821

logic elements from 33,216. While the number of used registers was 1,220, only one

PLL has used to generate the system's 20 MHz clock frequency.

Table 5.2:FPGA's Synthesis Utility of Our System

Total Logic Elements Multipliers Total

Registers

Internal Memory

Bits

PLL

1,821/33,216-5%- 0/70 1,220 74,192/483,840 1/4

(1,506 combinational (15%) (25%)

functions, l,220logic

registers)

5.6 Comparison with Other Systems

The implementation of Adaptive Hybrid Difference algorithm on FPGA has been

compared in this section with other implemented systems presented by other

researchers. Table 5.3 and 5.4 compare the results achieved by implementing tracking

systems using different algorithms and techniques which have been mentioned earlier

during the literature review. The differences the in achieved throughputs between this

new system and other systems are discussed through these sections. To compare the

synthesized utilization for configurable logic block (CLB) we have to estimate a basis

of comparison between different FPGA devices. Next subsection deals with

estimating a common unit for logic utilization comparison between Altera and Xilinx

FPGA devices.

5.7 Logic Utilization Estimated Unit

As mentioned before, the main unit in FPGA is the CLB; however, its inner

architecture is different for different vendors' devices. For Altera FPGAs, the smallest

unit considered is the logic element which generally contains one LUT with 4 inputs

[45]. On the other hand, Xilinx's FPGAs use a number of slices to evaluate logic
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utilities. The slice contains two 4 input LUT with its related connections and output.

Two similar slices are combined to represent a CLB [56]. Figures 5.2 and 5.3

illustrate the inner architecture of two FPGA devices from different vendors; Altera

Cyclone II and Xilinx Spartan II respectively.
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Programmable
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Figure 5.3: Altera, Cyclone II Logic element, inner architecture [45]
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Figure 5.4: Figure 5.3: Xilinx, Spartan II slice, inner architecture [56]

From previous comparisons, in order to compare between works that used

different devices, the logic elements of Altera, a device that contains one LUT is

going to be used. For Xilinx, each slice is estimated by 2 logic elements of that within

Altera device.
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5.8 Comparison with Other Systems

Tables 5.3 and 5.4 list resource usage, performance and speed of different

tracking systems that have been implemented on FPGA using different tracking

algorithms and techniques. While making comparisons between the different designs,

it is important to consider the size of the implemented frame and the FPGA device

used which is illustrated in Table 5.5. Frame size specifies the number ofclock cycles

required to process the algorithm and as a result it increases or reduces the obtained

frame rate.

In [10], I. Bravo et al. implemented the Principal Component Analysis algorithm

and achieved high throughput of 121 fps for 256 * 256 pixels with 100MHz speed

"uslng"oV45vJ~t&Wmxm4s^ .

The second and third rows of Table 5.3, Table 5.4 and Table5.5 represent tracking

systems that use the image segmentation algorithm. The first work is implemented by

K. Yamaoka, et al. [22], which uses the region-growing algorithm to segment the

objects from frames and has performed a very high frame rate but it depends also on

the number of tracking objects as shown in Table 5.4. With 30 objects in a 60 * 80

pixels frame, the throughput of the system is 887 fps with 20 MHz system clock

frequency. Since the segmentation algorithm detects moving and still objects, in [22],

the system has used extra hardware to track the moving object through frames and

thus the number of logic elements and internal memory used was high, 31,987 LEs

and 144,256 bits which are 56% and 2% of the device and memory resources,

respectively.

The other work, in the third row of Table 5.3, Table 5.4 and Table5.5, that uses

the segmentation algorithm depending on color threshold developed by C. Johnston et

al. [11], achieved video tracking system with 25 fps for 768 x 288 pixels frame with

27 MHz system frequency. The work of [11] has used less logic resources of the

device compared with other works, since 798 LE (10%) of logic elements were used.

However 114,688 bits of internal memory were used which is not the lowest among

other works, in addition the achieved frame rate is less than 30 fps which does not

meet the real time frame rate requirement.
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A related work of tracking a planar motion presented by K. Shimizu et al. [18]

using Matched Filter, achieved a high frame rate, 1545.44 fps, with system frequency

of 66 MHz for a 64 x 64 pixels frame size. On the other hand, the used resources were

high too, since 30,140 LE (44%), 124 (86%) BRAMs and 7 multipliers were used.

Y. Hsu et al. [24] have implemented a tracking system which depends on color

detection of a specific color skin using HW/SW co-design. The system has archived

frame rate of 37.3 fps for a frame with 640 x 460 pixels with 25 MHz system

frequency. The system has used 19,085 LE which is 54% of the device resources for

the hardware part. This research work has ignored the software part in evaluation

since it was built to save the detected frame on an SD card and to activate an alarm,

which are out of the scope of our research.

A mixed HW/SW co-design developed by U. Ali et al. [16] using the Kernel

Based algorithm to track a target object was implemented using medium amount of

resources, 6,320 LE (20%), 3 multipliers (8%) and 165,888 bits of internal RAM

(25%). Using 50 MHz for the system to track a target object through a frame with 64

x 64 pixels, 290 fps throughput was achieved which meets the real time frame rate

conditions.

Table 5.3: Resource Usage of different tracking systems on FPGA

Reference Algorithm LEs Used Internal Memory

Bits Used

Our design Adaptive hybrid Difference 1,821 74,192

K. Yamaoka, et al.

[22, 43]

Image Segmentation and Pattern

Matching

31,987 144,256

C. Johnston, et al.

[11]

Image Segmentation based on

Color Threshold

798 114,688

I. Bravo etal. [10] Principal Component Analysis 8,450 737,280

K. Shimizu et al.

[18]

Planer Motion Tracking using

Matched Filter

30,140 124/144 (86%)

Block RAMs

Y. Hsu et al. [24] Color Detection and Binarization 19,085

(for HWpart)

N/A

U. Ali etal. [16] HW/SW co-design using Kernal

Based

6,320 165,888
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Table 5.4: Performance and Speed achieved by the implemented tracking systems on

FPGA.

Algorithm

Adaptive hybrid Difference

Image Segmentation and Pattern

Matching [22, 43].

Image Segmentation based on Color

Threshold [11].

Principal Component Analysis [10].

Pianer-Motion^r-aeking^usmg-MatGhed-

Filter [18].

Colo Detection and Binarization [24].

HW/SW co-design using Kernal Based

[16].

Frame Rate

3255 fps

13,745

cycles +10 cycles x N

2(N: no ofobjects)

25 fps

121 fps

J5JSJJJps_

37.3 fps

290 fps

System Speed

20 MHz

20 MHz

2 7 MHz

100 MHz

(Maximum 1,124 MHzj

66 MHz

25 MHz

50 MHz

Table 5.5: Frames size and Device types

on

used with the implemented tracking systems

FPGA

Algorithm Frame Size FPGA Used Device

Adaptive hybrid Difference. 640x480 pixels Altera Cyclon II 2C35

Image Segmentation and Pattern Matching

[22, 43].

80x60 pixels Altera Startix, EP1S60

Image Segmentation based on Color

Threshold [11].

768x288 pixels Xilinx XC2S200

Principal Component Analysis [10]. 256x 256 pixels Xilinx XC2VP7

Planer Motion Tracking using Matched

Filter [18].

64 x 64 pixels Xilinx Virtex Pro 6000

Color Detection and Binarization [24]. 640x480 pixels Altera Cyclone II 2C35

HW/SW co-design using Kernal Based

[16].

64 x 64 pixels Xilinx Spartan-3e

XC3S1600E
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5.9 System Evaluation

Our system implemented the Adaptive hybrid Difference algorithm using 1,821

logic elements which is 5% of the device resources and 74,192 bits of internal

memory which is 15% of the memory on FPGA's capacity. Comparing with other

systems, the logic utilization is the second smallest one after the work of C. Johnston,

et al. [11] which uses 798 LEs. From another side, the work of C. Johnston uses

114,688 bits from the FPGA internal memory while our design uses 74,192 bits which

is the smallest memory usage among all implementations of Table 5.3.

For the frequency, our system frequency has been adjusted to 20 MHz, which

assures the synchronization between the memory, buffered FIFOs and other

operations. A system with 20 MHz could be judged as a slow system; however the

factor that has been considered in the AHD design was to meet the real time frame

rate (30 fps), where the developed design has achieved 32.55 fps. Additionally, while

developing a system on FPGA, the power dissipation is one of the considerable

factors. Since the power dissipation increases with the increase of frequency,

designing a system that works with low frequency is a desired one.

With the small frequency and small resources, the system has achieved 32.55 fps

frame rate. Other systems, as shown in Table 5.4, have achieved higher frame rates in

common while the used logic resources range between 798 LEs, 6,320 LEs, 8,450

LEs, 19,085 LEs, 30,140 LEs, and 31,987 LEs as shown in Table 5.3, which are high

as compared to the results by the proposed system. Another important issue that

should be considered while comparing between systems' throughput is the frame size.

The frame size affects the number of pixels needed to be processed for each frame

and thus the number of clock cycles that reflects on the frame rate. From tables 5.4

and 5.5, [18] and [22] have achieved very high frame rates while they used 64 x 64

and 80 * 60 pixels for the frame size respectively. This research work has used the

smallest standard resolution listed by the TRDB_D5 camera which is 640 x 480

according to the TRDB_D5's hardware specification manual [44]. By specifying a

smaller frame size for this new system, for example, the frame rate can reach 2,441.4

fps for a frame of 64 x 64 pixels and 2,083.3 fps for one of 80 x 60 pixels at tracking
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time. For calculating the adaptive threshold, it has generated 325.5 fps and 277.8 fps

for frame size of 64 x 64 and 80 x 60 pixels respectively.

The basic difference between implementing the adaptive hybrid difference and the

segmentation algorithms is implied by the order of processes' implementation among

frames and pixels. For segmentation at running time, the processes are done on the

current frame without usually needing data from previous frames. Some features such

as pattern matching information or target object information may be extracted from

previous frames and used while processing the next frames. This makes the use of

extra hardware resources to build line buffers and parallel architectures to speed up

the implementation is effective from timing perspective. Usually each pixel needs to

use its' other neighbor pixels within the same frame. This makes the use of shift line

~rmffersn:Tr"ke'ep—and—reuse-the—pixd&-v^ue-s-of^the-same^frame__v^r_y_ beneficial.

Buffering pixels into line buffers allows the architecture to process more than one

pixel at the same time, since the pixel and its neighbors are loaded from the memory.

Thus algorithms with parallel implementation abilities can achieve high frame rate but

at the same time consumes high resource usage. In contrast, Adaptive Hybrid

Difference algorithm depends on processing pixels from previous frames while

processing the current frame. The needed operations of AHD are simple, consisting of

subtractions, additions and comparison operations, and thus the required logic

elements are small. However, the difficulty comes with the need of accessing frames

from different times to process each pixel. This had resulted in the need to wait until

buffer FIFOs filled from the external RAM, since each FIFO is used to buffer frame

data from the memory, which causes a delay time penalty that had to be paid.

To decide which is more important, speeding up the system or reducing the

hardware resources, design area and cost, is like trying to catch three flying balls

using two hands; only two balls at a moment could be caught. Our system is aimed to

build a tracking system with optimal device resources, area and power achievable by a

real time video surveillance system. Such optimal system has been achieved in this

research.
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5.10 Chapter Summary

This chapter has evaluated and discussed the performance of the hardware system

which has been built to implement the Adaptive Hybrid Difference algorithm on an

FPGA. The system has been evaluated in terms of the speed and hardware resources'

cost. The system achieved throughput of 32.55 fps with a small frequency of 20MHz.

An optimal resource of 1,821 logic elements and 74,192 bits of internal RAM have

been used. 5% of device's area and cost are needed by this system design. By

comparing with other FPGA based tracking systems done by others, with smaller

frame sizes than that used by this proposed system, the throughput was higher while

the resources utilization was higher too. In this chapter the research has answered the

questions which were raised at the beginning of this thesis. This work can achieve an

optimal resource, area and power dissipation by implementing a real time tracking

system on an FPGA device and can work much faster than PCs implementing the

same algorithm.
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CHAPTER 6

THESIS SUMMARY

This research has introduced an optimal architecture design for moving object

tracking systemthat depends on subtraction algorithm for real time environment. The

design has been built to be compatible with FPGA devices' implementation and its

limited resources. By using the Adaptive HybridDifference algorithm for trackingthe

moving objects, the proposed design has achieved frame rate of 32.55 fps with 1,821

XE from 33J2'IF^nogic_eTemer^^

memory space. The device resource usage for the proposed design has achieved the

lowest rate among other tracking systems on FPGA which have been stated by the

literature review of this research. The frame rate of 32.55 fps is achieving the real

time frame rate condition for video surveillance applications which is 30 fps.

The algorithm used detects the moving objects through the scene and represents

them in a binary image with white color among black background. The design

processes the data of the original image through two main units, Threshold Definer

unit and Binary Image Builder unit. The Threshold Definer unit calculates the

adaptive threshold for each pixel from 30 idle frames and stores the results in the

SDRAM. At real time of tracking, the stored thresholds are used with the calculated

hybrid difference values through the Binary Image Builder unit to generate the binary

image. The algorithm's units and camera interfacing with the FPGA have been built

using the HDL Verilog language and have been implemented on the Cyclone II FPGA

device after synthesis using Quartus programmer.

The proposed system has achieved 32.55 fps using the smallest standard

resolution offered by Terasic TRDB D5M camera, 640 * 480 pixels frame size. To

increase system speed, the frame resolution could be reduced. For example

implementing frame of 120 x 160 pixels on the same system can increase the



throughput to 520.8 fps. Using smaller resolution than the standard offered by the

Terasic camera has been left as future work, since additional code is needed to be

developed.

The single port SDRAM has restricted the prospect of using parallehzation, since

only 16 bits of data can be accessed within a single clock cycle. By depending on the

fast speed of the SDRAM while reducing the processing units' speed, an allowable

space of parallelism using buffers of FIFOs was feasible. Since the nature of AHD

algorithm depends on accumulating the results among number of frames, all

operations have to access the memory to take the new value or to accumulate the

calculated results. Increasing the number of buffers to process more pixels in parallel,

will let the memory fill all buffers with data at a slower speed than the unit would

process them, and therefore the system synchronization will fail. Accordingly,

system's frequency was reduced to 20 MHz to adapt dealing between the memory and

six FIFOs at any moment of running time. However the new design has developed

processing unit with pipelining and line buffer techniques that maximized the system

frame rate with low frequency and low device resources.

In this thesis, a new design architecture of implementing AHD algorithm for

object tracking on FPGA for the first time to reduce the logic element utilization

under real time environment has been introduced. By optimizing the logic elements

utilization, the power dissipation on the system is saved too since it depends on the

number of active gates at any moment and the length of routes connecting the gates.

By reducing the synthesized utilization the designed area on the chip is reduced too.

The produced tracking system is optimized and can be used for more advanced

surveillance applications that depend on object tracking as a basic step.

For future work we strongly recommend to continue improving the performance

of this design while keeping the optimized logic utilization. We suggest to redesign

the system with advanced memory device with dual port or with larger data bus width

to increase system's throughput. Other suggestion is to reduce the frame resolution

which is another factor that affects the performance as well. As a future work,

additional techniques can be developed and added to predict the moving object

location in the frame and thus applying operations only for a specific part instead of
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the whole frame. This will add more logic elements but it will reduce the overall

processed pixels and thus the number of operations per frame.
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The FPGA Device

The FPGA device Cyclone II 2C35 FPGA contains53,276' logic elements(LEs). For

running operation and storing by Cyclone II, it has 105 M4K blocks of internal RAM.

To get more options for timing that controls the design, 4 phase-locked loops (PLLs)

are integrated. Additionally Cyclone contains 35 embedded multipliers and 475 user

I/O pins [57].

Some external devices are integrated on Altera DEII board and connected through the

Cyclone FPGA device, so interfacing and dealing with them is reliable, as shown in

Figure 1 below.

USB2.QHost/Devlce

10/100 Ethernet Phy/MAC

SDCard

IrDA Transceiver

Flash (1 Mbyte)

SDRAM (3 Mbytes)

SRAM {512 Kbytes)

7-Segment DI splay {6)

Expansion Headers (2)

50Mhz/ 27Mhz / Ext In

Cyclone II
FPGA

2C35

4-

EPCS16

Config
Device

USB

Blaster

16-bit AudleCODEC

VGA 10-bit Video DAC

TV Decoder

User Green LEDs {8)

User Red LEDs(18)

16x2 LCD Module

PS2&RS-2 32 Ports

Toggle Switches (181

Pushbutton Sw!tches{4)

Figure 1: Block diagram of FPGA and other devices on DEII board [57].

VGA output

The VGA output supported by the DEII board includes a /6~-pin D-SUB connector

that is used to transit the synchronization signals must be provided from the Cyclone
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II FPGA and by Analog Devices ADV7123 triple 10-bit high-speed video DAC. The

ADV7123 device is integrated on the board and connected with the VGA output and

it is used to produce the analog data signals (red, green, and blue). The VGA output

with the ADV7123 can support resolutions ofup to 1600 x1200 pixels at 700MHz.

Expansion Header

There are two expansion headers; this research has used Expansion Header 1 (JP1).

Each expansion header contains 40 pins which work as I/O pins of the Cyclone II. It

is used by the systemdesign to interface the TRDB_5M camera, which is designed by

Terasic to be compatible with the DEII board's expansion header.

SDRAM

A 54-Pin TOSP-2(IS42S 16400) SDRAM is provided by the board which is an 8-

Mbyte Single Data Rate Synchronous Dynamic RAM memory chip which organized

as 7M x 16 bits x 4 banks.

Clock inputs

The board supports these choices of frequencies:

• 50-MHz oscillator

• 27-MHz oscillator

• SMA external clock input

An extra option is offered by using the Cyclone's integrated PLLs to generate other

frequencies. This research has used the standard 50 MHz to generate 25 MHz for the

main system clock and 125 MHz for the SDRAM using PLLs.
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APPENDIX B

K VALUE TESTING
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k Value Testing

Figure 0.1: k value testing

In Figure 1, k values with different settings have been tested to determine the most

accurate value. When k is set to 3, it gives low tracking quality. With k=8, the

obtained image contains wrong detected pixels that make the noise around the objects.

The best value of k from the experiments is 6, as it gave more accurate results than

k^3 and less noise than the one obtained with k^8.
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