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ABSTRACT 

The natural convective flow due to heat and mass transfer along an impulsively 

started vertical porous plate has numerous applications in engineering and technology. 

For example, water filtration in agriculture engineering, distillation, oil cracking, in 

nuclear reactors, ionization of liquids, etc. In this thesis, the free convection heat and 

mass transfer flow past an impulsively started infinite vertical porous plate with 

Newtonian heating is studied. Different physical effects such as heat generation, 

viscous dissipation, magnetic field, thermal radiation, chemical reaction, Soret and 

Dufour effects have been examined in this research. The governing non-linear boundary 

layer equations are transformed to non-dimensional ordinary differential equations by 

using suitable dimensionless variables. The non-linear problems are then solved by 

Homotopy Analysis Method (HAM). HAM solution results are found to be in excellent 

agreement with the exact solution results for limiting cases. The velocity, temperature 

and concentration profiles as well as skin friction, rate of heat and mass transfer are 

analyzed through graphs and tables. It has been observed that, the dimensionless 

velocity increases as the Eckert number, heat generation parameter, Soret number or 

Dufour number increasing, while it decreases as the suction parameter, magnetic field 

parameter, radiation parameter or chemical reaction parameter increasing. The 

dimensionless temperature increases as the Eckert number, heat generation parameter, 

magnetic field parameter or Dufour number increasing, while it decreases as the suction 

parameter, radiation parameter or Soret number increasing. Similarly, the 

dimensionless concentration increases as the magnetic field parameter, Soret and 

Dufour number increasing, while it decreases as the suction parameter, radiation 

parameter or chemical reaction parameter increasing. 
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ABSTRAK 

Aliran olakan bebas disebabkan pemindahan haba dan jisim dengan desakan 

permulaan di sepanjang plat berlians menegak mempunyai banyak aplikasi dalam 

kejuruteraan dan teknologi. Sebagai contoh, penapisan air dalam bidang kejuruteraan 

pertanian, penyulingan , permisahan minyak, dalam reaktor nuklear, pengionan cecair, 

dan lain-lain. Dalam tesis ini, aliran olakan bebas pemindahan haba dan jisim yang 

mengalir melalui desakan permulaan plat tegak berliang dengan pemanasan Newtonan 

dikaji. Kesan fizikal yang berbeza seperti penjanaan haba , pelesapan likat, medan 

magnet, sinaran haba, tindak balas kimia, kesan Soret dan Dufour diselidik dalam kajian 

ini. Persamaan penaklukan lapisan sempadan tak linear diubah kepada persamaan 

pembezaan biasa tak berdimensi dengan menggunakan pemboleh ubah tak berdimensi 

yang sesuai. Masalah-masalah tak linear kemudiannya diselesaikan dengan Homotopy 

Analysis Method ( HAM) . Keputusan penyelesaian HAM didapati menunjukkan 

persetujuaan yang baik dengan keputusan penyelesaian tepat untuk kes yang terhad. 

Profil halaju, suhu dan kepekatan serta geseran permukaan, kadar pemindahan haba dan 

jisim dianalisis melalui graf dan jadual. Hasil pemerhatian bahawa halaju tak 

berdimensi bertambah apabila nombor Eckert, parameter penjanaan haba, nombor Soret 

atau nombor Dufour bertambah. Dan halaju berkurang apabila parameter sedutan, 

parameter medan magnet, parameter sinaran atau parameter tindak balas kimia 

bertambah. Suhu tak berdimensi pula bertambah apabila nombor Eckert, parameter 

penjanaan haba, parameter medan magnet atau nombor Dufour bertambah. Dan suhu 

berkurang apabila parameter sedutan, parameter sinaran atau nombor Soret bertambah. 

Begitu juga konsentrasi tak berdimensi bertambah apabila parameter medan magnet, 

nombor Soret dan nombor Dufour bertambah. Dan konsentrasi berkurang apabila 

parameter sedutan, parameter sinaran atau parameter tindak balas kimia bertambah. 



ix 

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the 

university, the copyright of this thesis has been reassigned by the author to the legal 

entity of the university, 

Institute of Technology PETRONAS Sdn Bhd. 

 

Due acknowledgement shall always be made of the use of any material contained 

in, or derived from, this thesis. 

 

© Muhammad Kamran, 2014 

Institute of Technology PETRONAS Sdn Bhd  

All rights reserved. 

  



x 

TABLE OF CONTENT 

 

ABSTRACT ............................................................................................................................. vii 

ABSTRAK .............................................................................................................................. viii 

LIST OF FIGURES ................................................................................................................. xii 

LIST OF TABLES ................................................................................................................... xv 

CHAPTER 1 INTRODUCTION ................................................................................... 2 

1.1 Thesis Outlines .................................................................................................. 2 

1.2 Heat Transfer ..................................................................................................... 2 

1.2.1 Conduction ............................................................................................ 2 

1.2.2 Convection ............................................................................................ 3 

1.2.2.1 Free Convection ......................................................................... 3 

1.2.2.2 Forced Convection ..................................................................... 4 

1.2.3 Thermal Radiation ................................................................................. 4 

1.3 Mass Transfer .................................................................................................... 5 

1.4 Heat Transfer past a Porous Surface .................................................................. 6 

1.5 Magneto-hydrodynamics (MHD) equations with Ohmic heating ..................... 7 

1.6 Basic Idea of the HAM .................................................................................... 10 

1.7 Literature Review ............................................................................................ 13 

1.7.1 Newtonian Heating .............................................................................. 17 

1.8 Problem Statement ........................................................................................... 18 

1.9 Research Objectives......................................................................................... 19 

1.10 Significance of the Research ......................................................................... 19 

1.11 Scope of the Research .................................................................................... 20 

1.12 Chapter Summary .......................................................................................... 20 

CHAPTER 2 EFFECTS OF HEAT GENERATION AND VISCOUS 

DISSIPATION ....................................................................................................... 21 

2.1 Introduction...................................................................................................... 21 

2.2 Problem Description ........................................................................................ 22 

2.3 Solution by HAM ............................................................................................ 25 



xi 

2.4 Exact Analytical Solution ................................................................................ 30 

2.5 Result and Discussion ...................................................................................... 33 

2.6 Chapter Summary ............................................................................................ 42 

CHAPTER 3 THERMAL RADIATION AND VISCOUS DISSIPATION 

EFFECTS IN THE PRESENCE OF MAGNETIC FIELD ................................... 43 

3.1 Introduction...................................................................................................... 43 

3.2 Problem Description ........................................................................................ 45 

3.3 Solution by HAM ............................................................................................ 48 

3.4 Exact Analytical Solution ................................................................................ 50 

3.5 Result and Discussion ...................................................................................... 53 

3.6 Chapter Summary ............................................................................................ 66 

CHAPTER 4 SORET AND DUFOUR EFFECTS IN THE PRESENCE OF 

THERMAL RADIATION, VISCOUS DISSIPATION AND CHEMICAL 

REACTION ........................................................................................................... 67 

4.1 Introduction...................................................................................................... 67 

4.2 Problem Description ........................................................................................ 70 

4.3 Solution by HAM ............................................................................................ 74 

4.4 Exact Analytical Solution ................................................................................ 77 

4.5 Result and Discussion ...................................................................................... 82 

4.6 Chapter Summary .......................................................................................... 102 

CHAPTER 5 CONCLUSION.................................................................................... 103 

5.1 Conclusion ..................................................................................................... 103 

5.2 Recommendations for Future Work .............................................................. 104 

APPENDIX A BOUSSINESQ APPROXIMATION ................................................ 105 

  



xii 

LIST OF FIGURES 

 

Figure 2.1: Physical Model .......................................................................................... 23 

Figure 2.2:  curves at 20th order of HAM .................................................................. 33 

Figure 2.3:  curves at 20th order of HAM .................................................................. 34 

Figure 2.4: Comparison of temperature profiles for HAM and analytical solution at 

different Pr when 0Ec . ............................................................................................. 34 

Figure 2.5: Comparison of velocity profiles for HAM and analytical solution at 

different Gr when 0Ec . ............................................................................................. 35 

Figure 2.6: Comparison of temperature profiles for HAM and analytical solution at 

different s when 0Ec . ............................................................................................... 35 

Figure 2.7: Comparison of velocity profiles for HAM and analytical solution at 

different s when 0Ec . ............................................................................................... 36 

Figure 2.8: Comparison of temperature profiles for HAM and analytical solution at 

different Q when 0Ec . .............................................................................................. 36 

Figure 2.9: Influence of s on velocity profiles ............................................................. 37 

Figure 2.10: Influence of Gr on velocity profiles ......................................................... 37 

Figure 2.11: Influence of Pr on velocity profiles .......................................................... 38 

Figure 2.12: Influence of s on temperature profiles ..................................................... 38 

Figure 2.13: Influence of Q on temperature profiles .................................................... 39 

Figure 2.14: Influence of Pr on temperature profiles ................................................... 39 

Figure 2.15: Influence of Ec on temperature profiles ................................................... 40 

Figure 3.1: Physical Model .......................................................................................... 46 

Figure 3.2:  curves at 20th order of HAM .................................................................. 54 

Figure 3.3:  curves at 20th order of HAM .................................................................. 54 

Figure 3.4: Comparison of temperature profiles for HAM and analytical solution at 

different Pr when 0Ec . ............................................................................................. 55 

Figure 3.5: Comparison of velocity profiles for HAM and analytical solution at 

different Gr when 0Ec . ............................................................................................. 55 



xiii 

Figure 3.6: Comparison of velocity profiles for HAM and analytical solution at 

different M when 0Ec . ............................................................................................. 56 

Figure 3.7: Comparison of temperature profiles for HAM and analytical solution at 

different R when 0Ec . .............................................................................................. 56 

Figure 3.8: Comparison of temperature profiles for HAM and analytical solution at 

different s when 0Ec . ............................................................................................... 57 

Figure 3.9: Comparison of velocity profiles for HAM and analytical solution at 

different s when 0Ec . ............................................................................................... 57 

Figure 3.10: Influence of Pr  on velocity profiles. ....................................................... 58 

Figure 3.11: Influence of Pr  on temperature profiles. ................................................ 59 

Figure 3.12: Influence of Gr  on velocity profiles. ...................................................... 59 

Figure 3.13: Influence of M  on velocity profiles. ...................................................... 60 

Figure 3.14: Influence of M  on temperature profiles. ................................................ 60 

Figure 3.15: Influence of R  on velocity profiles. ........................................................ 61 

Figure 3.16: Influence of R  on temperature profiles. ................................................. 61 

Figure 3.17: Influence of s  on velocity profiles. ......................................................... 62 

Figure 3.18: Influence of s  on temperature profiles. .................................................. 62 

Figure 3.19: Influence of Ec  on temperature profiles. ................................................ 63 

Figure 4.1: Physical Model .......................................................................................... 71 

Figure 4.2:  curves at 20th order of HAM .................................................................. 83 

Figure 4.3:  curves at 20th order of HAM .................................................................. 83 

Figure 4.4: Comparison of temperature profiles for HAM and analytical solution at 

different s when 0 DuEc . ....................................................................................... 84 

Figure 4.5: Comparison of Concentration profiles for HAM and analytical solution at 

different s when 0 DuEc . ....................................................................................... 85 

Figure 4.6: Comparison of velocity profiles for HAM and analytical solution at 

different s when 0 DuEc . ....................................................................................... 85 

Figure 4.7: Comparison of velocity profiles for HAM and analytical solution at 

different M when 0 DuEc . ..................................................................................... 86 

Figure 4.8: Comparison of temperature profiles for HAM and analytical solution at 

different R when 0 DuEc . ...................................................................................... 86 



xiv 

Figure 4.9: Comparison of concentration profiles for HAM and analytical solution at 

different  when 0 DuEc . ....................................................................................... 87 

Figure 4.10: Comparison of concentration profiles for HAM and analytical solution at 

different Sr when 0 DuEc . ..................................................................................... 87 

Figure 4.11: Comparison of temperature profiles for HAM and analytical solution at 

different Pr when 0 DuEc . ..................................................................................... 88 

Figure 4.12: Comparison of velocity profiles for HAM and analytical solution at 

different Gm when 0 DuEc . ................................................................................... 88 

Figure 4.13: Comparison of concentration profiles for HAM and analytical solution at 

different Sc when 0 DuEc . ..................................................................................... 89 

Figure 4.14: Comparison of velocity profiles for HAM and analytical solution at 

different Gr when 0 DuEc . .................................................................................... 89 

Figure 4.15: Influence of s  on the dimensionless velocity profile. ............................. 90 

Figure 4.16: Influence of Sr  on the dimensionless velocity profile. ........................... 91 

Figure 4.17: Influence of R  on the dimensionless velocity profile. ............................ 91 

Figure 4.18: Influence of M on the dimensionless velocity profile. ........................... 92 

Figure 4.19: Influence of  on the dimensionless velocity profile. ............................. 92 

Figure 4.20: Influence of Du  on the dimensionless velocity profile. ......................... 93 

Figure 4.21: Influence of Gr on the dimensionless velocity profile. ........................... 93 

Figure 4.22: Influence of Gm on the dimensionless velocity profile. .......................... 94 

Figure 4.23: Influence of s  on the dimensionless temperature profile. ...................... 94 

Figure 4.24: Influence of M on the dimensionless temperature profile. ..................... 95 

Figure 4.25: Influence of Sr  on the dimensionless temperature profile. .................... 95 

Figure 4.26: Influence of R  on the dimensionless temperature profile. ..................... 96 

Figure 4.27: Influence of Du  on the dimensionless temperature profile. ................... 96 

Figure 4.28: Influence of Ec on the dimensionless temperature profile. ..................... 97 

Figure 4.29: Influence of s  on the dimensionless concentration profile. .................... 97 

Figure 4.30: Influence of Sr  on the dimensionless concentration profile. .................. 98 

Figure 4.31: Influence of R  on the dimensionless concentration profile. ................... 98 

Figure 4.32: Influence of  on the dimensionless concentration profile. .................... 99 

  



xv 

LIST OF TABLES 

 

Table 2.1: Effects of Eckert number )(Ec  and heat source parameter )(Q  on velocity 

profile ........................................................................................................................... 40 

Table 2.2: Skin Friction )(  and Nusselt number )(Nu variation ................................ 41 

Table 3.1: Influence of Eckert number )(Ec  on fluid velocity ..................................... 64 

Table 3.2: Influence of thermal Grashof number )(Gr on fluid temperature ................ 64 

Table 3.3: Skin Friction )(  and Nusselt number )(Nu variation ................................ 65 

Table 4.1: Influence of  M on concentration profile )(yC  ......................................... 99 

Table 4.2: Influence of Du on concentration profile )(yC  ....................................... 100 

Table 4.3: Influence of  on temperature profile )(y  .............................................. 100 

Table 4.4: Skin Friction )( , Nusselt number )(Nu and Sherwood number )(Sh  effects

.................................................................................................................................... 101 

  



xvi 

LIST OF NOMENCLATURE 

 

 

0B   Magnetic Field )(T  

C   Dimensionless Concentration 

C    Dimensional Concentration )( 3Kgm  

pc   Specific Heat at Constant Pressure )( 11  KgJK  

sc   Concentration Susceptibility )( 3Kgm  


C   Free Stream Dimensional Concentration )( 3Kgm  

mD   Mass Diffusivity )( 12 sm  

Du   Dufour Number  

Ec   Eckert Number 

g   Acceleration due to Gravity )( 2ms  

Gm   Mass Grashof Number 

Gr   Thermal Grashof Number 

h   Heat Transfer coefficient )( 12  KWm  

k   Thermal Conductivity )( 11  KWm  

ck   Rate of Chemical Reaction 

Tk   Thermal Diffusion Ratio 

M   Magnetic Field Parameter, i.e., Square of the Hartmann Number 

Nu   Nusselt Number 

P   Pressure )(Pa  

Pr   Prandtl Number 

Q   Dimensionless Heat Source Parameter 

Q   Dimensional Heat Source )(J  

rq   Radiative Heat Flux )( 2Wm  

R   Thermal Radiation Parameter 

s   Suction Parameter 

Sc   Schmidth Number 



xvii 

Sh   Sherwood Number 

Sr   Soret Number 

T    Temperature of the Fluid )(K  

mT   Mean Fluid Temperature )(K  


T   Free Stream Temperature )(K  

u     Dimensionless Fluid Velocity 

u     Dimensional Fluid Velocity )( 1ms  

0u     Velocity of the Plate )( 1ms  

0v    Suction Velocity )( 1ms  

yx,   Dimensionless Cartesian co-ordinates 

yx ,   Cartesian co-ordinates 

 

Greek symbols 

 

   Absorption coefficient 

   Thermal Expansion coefficient )( 1K  

   Concentration Expansion coefficient )( 13 Kgm  

   Chemical Reaction Parameter 

     Dimensionless Fluid Temperature 

   Dynamic Viscosity ).( sPa  

    Kinematic Viscosity )( 12 sm  

   Fluid Density )( 3Kgm  

   Electrical Conductivity )( 1Sm  

   Stefan-Boltzmann Constant )( 42  KWm  

   Skin Friction 

    Sheer Stress )( 21  sKgm  

 

 



ii 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Thesis Outlines 

In this thesis Homotopy Analysis Method (HAM) is applied to solve system of non-

linear ordinary differential equations. In chapter 1, a brief introduction about heat and 

mass transfer, heat transfer through a porous plate, Magneto-hydrodynamic (MHD) 

equations of viscous incompressible fluid with ohmic heating, basic idea of HAM, 

literature review about the free convection along a porous plate, problem statement, 

research objectives, significance and scope of research are given. In chapter 2, an 

incompressible viscous fluid flow problem with heat generation parameter is 

considered to illustrate the application and scope of HAM. In chapter 3, we explore the 

solution of a viscous fluid flow problem in the presence of thermal radiation and 

transverse magnetic field. Chapter 4 deals with MHD fluid flow to study the Soret and 

Dufour effects. In addition, all chapters incorporate the HAM solution of the respective 

problem and the validation of results with the exact analytical solution results for 

limiting cases. Chapter 5 presents the main findings of the present study and 

recommendations for future work. 

1.2 Heat Transfer 

Heat transfer deals with the study of rates at which exchange of heat takes place 

between a source and a receiver. Energy, as heat, is transfer from one place to another 

within the system or between the systems due to temperature difference. When two 

bodies at different temperature are brought into thermal contact, heat transfer takes 

place from higher temperature region to lower temperature region. The net flow of the 

heat is always in the direction of lower temperature region. The energy, in heat transfer 



 

2 

process, cannot be measured or observed directly. However, its effects can be identified 

and quantified through measurements and analysis. Heat-transfer phenomena occur in 

many industrial and environmental processes, particularly in energy utilization, thermal 

processing and thermal control. The purpose of thermal processing is to force a 

temperature change in the system that enables or disables some material transformation; 

e.g., in food pasteurization, cooking, steel tempering or annealing. Heat transfer 

encompasses all phenomena occurring in the environmental sciences like meteorology, 

oceanography, pollutant dispersion, forest fires, urban planning, building, etc. In 

manufacturing industry heat transfer plays fundamental role to manufacture the energy 

conversion devices, like solar collectors, combustors, incandescent lamps, radiators, 

refrigerators, heat exchangers, etc. Heat transfer problems are encountered in many 

chemical reactions such as crystallization, distillation, ionization and oil cracking. The 

study of heat transfer may arise in materials processing like casting, welding, hot 

shaping and crystal growth. It has wide range of applications in high speed air craft, 

missiles, re-entry vehicles, cooling of turbine blades, air conditioning and in nuclear 

reactors. A heat transfer analysis must also be made in the design of electric machines, 

transformers, computer assemblies, electronic chips and bearings to avoid conditions 

that will cause overheating and damage the equipment.  

When temperature difference exists, heat transfer is classified into three basic 

mechanisms, namely conduction, convection and thermal radiation.  

1.2.1 Conduction 

Conduction is a heat transfer mechanism in which heat is transferred from higher 

energetic particles to lower energetic particles as a result of their lattice or random 

collision. In conduction heat transfer, atoms or molecules physically interact by elastic 

and inelastic collisions to transfer their energy from higher temperature region to lower 

temperature region. In conduction, usually termed as molecular phenomenon, energy 

transfer takes place in all form of ponderable matter, such as solids, liquids, gases and 

ionized plasmas. In opaque solids conduction rate is high as compared to liquids and 

gases. Heat is transferred by conduction in numerous examples such as flow of heat 
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through bricks of a furnace, metallic sheet of a boiler, metallic wall of a heat exchanger 

tube, etc. A monograph [1] on the heat conduction explores the various aspects of 

thermal conduction in the heat transfer process. 

1.2.2 Convection 

The transverse of energy from one region to another due to macroscopic motion in a 

fluid, added on the energy transfer by conduction is called heat transfer by convection. 

In other words, convection is the heat transfer mechanism in which heat transfer takes 

place between the solid surface and the adjacent moving fluid. In convective heat 

transfer phenomenon, physical mixture of hot and cold portion of fluid and solid is 

responsible for the flow of heat from one region to another region. Numerous practical 

applications of convective heat transfer in chemical process industries involve either 

heat transfer from a fluid or heat transfer to a fluid. A detailed tract [2] on the convective 

heat transfer explains numerous aspects in the study of heat transfer. In the literature, it 

has been observed that convection on a surface merely depends upon the three 

fundamental factors that play a major role in convective heat transfer: (i) fluid motion, 

(ii) nature of the moving fluid, and (iii) surface geometry. The convection mode of heat 

transfer actually classified into two basic phenomena, free convection and forced 

convection. 

1.2.2.1 Free Convection 

Free or natural convection is a phenomenon, a type of convective heat transfer, in which 

heat flows with the fluid motion generated by the density variation occurring in the 

fluid due to temperature gradient. Free convection actually consists of two mechanisms 

operating simultaneously, (i) gravitational force, and (ii) density gradient. Due to 

density gradient, caused by temperature difference, fluid closer to the body receives 

heat, become less dense and rises, meanwhile surrounding cooler fluid then moves to 

replace it. In this way, density difference creates an ascendant movement of the fluid 

closer to the body. The driving force for free convection is the buoyancy force due to 

combined gravitational force and density gradient of the fluid. Hence in free convection 
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flow, momentum and energy equations are depend on each other. Free convection flows 

have been studied extensively because of their numerous applications in science and 

engineering. Practical applications of free convection are such as heat transfer from the 

surface of a pipe to the ambient air and in transmission lines as well as from various 

electronic devices and finned surfaces, as heat sinks, that are designed to use in 

microelectronics cooling systems. 

1.2.2.2 Forced Convection 

A convection process in which fluid motion is generated by an external mean (such as 

pump, fan, suction device, etc.) is called forced convection. In such type of flow, heat 

transfer rate at the surface of fluid can be enhanced by pressure gradient. So, the most 

common perception is that higher the pressure gradient, higher the forced convection, 

and therefore higher the cooling rate of the moving fluid. In forced convection flow, 

momentum equation is independent of the energy equation but the energy equation 

depends on the momentum equation. Forced convection plays a fundamental role in 

daily use appliance, including air conditioning, cooling of computer’s assemblies, 

micro-wave ovens, etc. Forced convection is also used in engineering practices to 

provide the best design of heat conducting devices such as heat exchangers, rocket 

nozzles and shuttle wings are few among the examples. 

1.2.3 Thermal Radiation 

The mode of heat transfer in which energy is generated by charged particles of matter 

in the form of electromagnetic waves (or photons) as a result of the changes in the 

electronic configurations of that charged particles (such as atoms or molecules), is 

called thermal radiation. In this heat transfer mechanism, electromagnetic radiations are 

emitted from solid surfaces, emission may also occur from liquids and gases, which 

have temperature above absolute zero. The energy of the radiation field is transported 

by electromagnetic waves or photons, which does not require a physical medium for 

their propagation. While other modes of heat transfer require the presence of a material 

medium for their heat transmission. In fact, radiation transfer occurs most efficiently in 
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vacuum and therefore it suffers no attenuation in space. This is exactly how the sunlight 

reaches the earth in the form of thermal radiation. When these radiations are incident 

on the earth’s surface, a portion of the total energy is absorbed in the surface, a portion 

is reflected from the surface, and the remainder is transmitted through the surface. The 

earth’s absorption of solar radiation and its outgoing thermal radiation cause to create 

a temperature difference on the surface of earth. Due to this temperature difference a 

change in the earth’s climate occur. When temperatures are uniform, the radiative heat 

flux between objects is in equilibrium and there is no net heat transmission between 

them. The balance is disturbed when temperature difference become non-uniform and 

thermal energy is transported from higher temperature region to lower temperature 

region. Generally, two limiting cases of radiative heat transfer mechanism are 

considered in literature, namely (i) optically thick limit and (ii) optically thin limit. The 

ratio of the characteristic physical dimension to the penetration length of radiation is 

termed as the optical dimension of a system. For an optically thick medium, radiation 

can be considered as a diffusive process in which penetration length is small and is 

equivalent to the radiation mean free path. On the other hand, a reverse trend can find 

for an optically thin medium. Many researchers have studied the thermal radiation for 

the heat transfer phenomena - Siegel et al. [3], Modest [4], etc. 

1.3 Mass Transfer 

The phenomenon in which constituent of matter moves from a region of higher 

concentration to that of lower concentration is called mass transfer. In mass transfer, 

constituent transports to the direction of reducing concentration gradient and when 

concentration gradient is zero then equilibrium takes place. In other words wherever 

the concentration difference exists, mass transfer takes place.  

Mass transfer processes may be divided into two categories: molecular diffusion 

and convective mass transfer. Diffusion pertains to the transport of constituents through 

the action of random motions and its rate depends on the temperature, velocity of the 

fluid and size of the particles. Molecular diffusion takes place in solids, liquids or gases. 
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Convection refers to transport of the constituents with the mean fluid flow along with 

the molecular diffusion.  Convective mass transfer is carried out in liquids and gases.  

Mass transfer operation plays an important role in nature and industries. For 

example, evaporation of the water from the surface to the atmosphere, diffusion of 

chemical impurities in the water, separation of chemical particles in the distillation 

process, elimination of toxic gases and deodorization of air, humidification, drying, 

crystallization and number of other techniques. 

1.4 Heat Transfer past a Porous Surface 

A porous medium is a material that contains interconnected voids or spaces through 

which fluid (liquid / gas) can pass. Physically, porosity of porous mediums depends on 

the size of pores. Materials with smaller size of pores are less permeable, while 

materials with high porosity have large pore size and are easily permeated. Sand, soil 

and some type of stones are general examples of naturally occurring porous medium. 

On the other hand, ceramics and foams are manufactured to use as porous media. There 

are numerous applications of porous media in science, engineering and everyday life. 

Among all these applications filtration is the most common one. In industries, porous 

materials can be used to filter gases or liquids from certain compounds, e.g., petroleum 

refining, heat transfer from preserved agriculture products, water filtration in which 

carbon filters are used to filter undesirable organic compounds and metals from the 

water, etc.  

A literature survey reveals that the boundary layer flow past a porous surface has 

been studies by a number of researchers. Kim [5] reported the heat transfer through 

moving vertical porous plate in a micropolar fluid. He found that by increasing the 

permeability parameter, velocity increases rapidly near the porous plate and then 

decreases to the relevant free stream velocity. Jaiswal and Soundalgekar [6] studied the 

temperature effects on a viscous incompressible dissipative fluid flow past an infinite 

vertical porous plate embedded in a porous medium under the influence of constant 

suction. Kim and Fedorov [7] examined the thermal radiation effects on unsteady mixed 

convection flow of a micro polar fluid along a vertical porous plate. They used 
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Rosseland approximation to study the radiation effects for an optically thick fluid. 

Makinde [8] studied the free convection interaction with thermal radiation in a 

boundary layer flow past a moving vertical porous plate using shooting method. An 

analytical series solution for unsteady mixed convection stagnation point flow along a 

vertical surface in a porous medium was investigated by Liao et al. [9]. Seddeek and 

Salama [10] investigated the effects of variable viscosity and thermal conductivity on 

unsteady laminar flow past a semi-infinite vertical porous plate using shooting method. 

In the presence of thermal radiation, effects of variable suction and thermophoresis on 

combined free-forced convective flow over an inclined porous plate have been 

examined by Aslam et al. [11]. An analytical study for a first order homogenous 

chemical reaction and electrically conducting viscous fluid past a moving vertical 

porous plate with time dependent variable suction velocity has been reported by 

Ibrahim et al. [12]. Damseh and Shannak [13] used the Crank-Nicolson method to 

investigate the unsteady free convection flow of an incompressible visco-elastic fluid 

past an infinite continuously moving vertical porous plate in the presence of first order 

chemical reaction. 

1.5 Magneto-hydrodynamics (MHD) equations with Ohmic heating 

Magneto-hydrodynamics deals with the study of moving fluid in an electromagnetic 

field. The basic equations of MHD, in fluid dynamics, consist of the modified electro-

dynamic and hydrodynamic equations. In MHD modified equations, Maxwell’s 

electro-dynamic equations remain same. The ohm’s law in which electric current is 

proportional to the potential difference across the ends of a conductor has been modified 

to the induced current. The modified momentum equation has to include the Lorentz 

force into account. The inclusion of the ohmic/joule heating modifies the energy 

equation. Charge density is negligible for neutral fluids. Also in MHD, when the 

velocity of the moving fluid is very slow in comparison with the velocity of light then 

the Maxwell displacement current can be neglected and the fluid may be treated as a 

continuum, without mean-free-path effects. In the same case, convection current can 

also be neglected as compared to the conduction current.  
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The basic equations for viscous incompressible MHD fluid flow can be summarized 

in the form of the continuity, momentum and energy equations.  

The equation of continuity is 

,0 .  V


                   (1.1) 

where V


is the fluid velocity vector. The equation of the continuity basically is a 

statement about the law of conservation of the mass. According to this law mass of the 

fluid within the specified region is conserved.  

The momentum equation for MHD fluid is  

,)().( 2 gBjVpVV
t

V
 












 


                          (1.2) 

where  is the fluid density, p the modified fluid pressure including centrifugal force, 

 the coefficient of viscosity, j


the current density vector, B


the magnetic induction 

vector and g the acceleration due to gravity. In the above equation (1.2) the term 

VV


).(  represents the convective acceleration which is usually caused by a change in 

fluid velocity over position, p the pressure gradient, V


2 the viscous force and 

Bj


 the Lorentz force term. The equation (1.2) is the modified form of the Navier-

Stokes’ equation.  

The equation of state for the incompressible viscous fluid under the Boussinesq 

approximation can be written as 

 )(1 00 TT                     (1.3) 

where   is the thermal expansion coefficient, T  the fluid temperature, 0T  the 

reference temperature and 0  the fluid density at temperature 0T  .  

The Maxwell’s equations are 
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jB e


  (Ampere’s law),                 (1.4) 

t

B
E









 (Faraday’s law of magnetic induction),              (1.5) 

0.  B


 (Gauss’s law for magnetism),                (1.6) 

eD 


 .  (Gauss’s law),                  (1.7) 

where e is the magnetic permeability, E


 the electric field vector, D


 the displacement 

vector and e the electric charge density.  

By the Ohm’s law, 

)( BVEj


                   (1.8) 

From the Navier-Stokes’ equation, the magnetic induction equation can be modified 

as  

BvBV
t

B
m




2)( 



,                    (1.9) 

where 
e

mv


1
 is the magnetic diffusivity and  the electrical conductivity of the 

fluid. Generally, the equation (1.9) holds for all compressible or incompressible fluids 

and it is quite independent from the Lorentz or Coriolis forces. 

The energy equation including viscous dissipation and ohmic heating is  




2
2).(

j
TkTV

t

T
c p

















                (1.10) 

where k is the thermal conductivity of the material, pc the specific heat at constant 

pressure,  the viscous dissipation term and 


2j


the ohmic heating. 
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The combination of the momentum equations of fluid dynamics and Maxwell’s 

equations of electromagnetism generally describe the MHD effects in the heat and mass 

transfer problems. Magneto-hydrodynamics and ohmic heating have numerous 

applications in science and engineering. MHD plays a fundamental role in plasma 

physics. The applications of MHD has been found in problems related to power 

generation, space research, cooling of nuclear reactor and many other engineering 

fields. Applications of ohmic heating are very broad ranging from science to industry. 

In the literature [14] it has been found that the applied electric field under ohmic heating 

causes electroporation of cell membranes. The principles of ohmic heating also used in 

blanching, evaporation, dehydration, sterilization, and pasteurization. 

1.6 Basic Idea of the HAM 

Consider a non-linear differential equation in the general form 

0)]([ yuN                   (1.11) 

where N  represents a non-linear differential operator and )(yu is a solution of that 

non-linear differential equation. Let )(0 yu  denote the initial guess of )(yu , which 

satisfies the initial and boundary conditions of the equation (1.11). To illustrate the idea 

of HAM, a continuous mapping can be defined as 

);()( qyyu   

where ]1,0[q  represents the so-called embedding parameter or sometimes it is 

called as homotopy parameter that increases from 0 to 1, as a result unknown function

);( qy  varies from initial guess )(0 yu  to the solution of equation (1.11), i.e., )(yu . To 

ensure this, Liao [15] constructed a so-called zero-order deformation equation as 

  ));(()()();()1( 0 qyNyHqyuqyLq                (1.12) 
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where L is an auxiliary linear operator which may be a linear differential operator 

of any order from equation (1.11),  is a non-zero auxiliary parameter, )(yH is the 

auxiliary function and ));(( qyN   is a non-linear differential operator.  

when 0q , the zero-order deformation equation gives, 

)()0;( 0 yuy                   (1.13) 

and at 1q , the zero-order deformation equation gives, 

)()1;( yuy                               (1.14) 

It would be noted that there is a great freedom to choose the initial guess )(0 yu , 

auxiliary linear operator L  [15], auxiliary parameter   [16-18] and auxiliary function

)(yH  [19, 20] and this criteria plays an important role in the convergence of the HAM 

solution [21, 22]. However, the Taylor’s series expansion of );( qy  about q  gives, 

n

n

n qqDyqy 





1

 ))y;(()0;();(                 (1.15) 

where )(nD  is the nth order deformation derivative, i.e., 

0

);(

!

1
));((





q

n

n

n
dq

qyd

n
qyD


                (1.16) 

It is assume that all the auxiliary variables are properly chosen so that the solution

);( qy  to the zero-order deformation exists for all ]1,0[q ; and the series (1.15) 

converges at 1q . Then, the solution will be given by 

.)()()(
1

0 





n

n yuyuyu                 (1.17) 

To get the unknowns, i.e., )(yun  in (1.17), so-called nth order deformation equation 

can be obtained by n times differentiating the equation (1.12) with respect to the 

embedding parameter q , and after setting 0q  and finally dividing by n!, we have 
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  ))(()()()( 11 yuRyHyuyuL nnnnn                  (1.18) 

where 










,11

10

n

n
n  

and 

)));((())((
011  

qnnn qyNDyuR  . 

It is important to note that the ))(( 1 yuR nn   only depend upon the

)(),...,(),(),( 1210 yuyuyuyu n . Hence, from the nth order deformation equation (1.18), 

the nth order solution of equation (1.11) can be written as 

.)()()(
1

0 



n

m

m yuyuyu  

Numerous types of non-linear problems have been successfully solved by using 

HAM. In 1992 HAM was proposed by Liao in his PhD dissertation to solve the linear 

and non-linear differential equations. In this method, there is a lot of freedom to 

accelerate the convergence of series solution by choosing suitable solution parameters 

[15] namely, auxiliary linear operator, auxiliary parameter  and auxiliary function. 

Auxiliary parameter plays an important role to enhance the convergence of series 

solution [18, 23]. A delineate description on auxiliary linear operator, auxiliary function 

and auxiliary parameter has been reported in [17-20]. HAM has advantage over 

homotopy perturbation method [24, 25] and many others; in most cases it gives the best 

approximated analytical solution for nonlinear differential equations [21, 22, 26]. 

Srinivas and Muthuraj [27] investigated the effects of thermal radiation and space 

porosity on MHD mixed convection boundary layer flow past a vertical channel by 

using HAM. Zheng et al. [28] used HAM to analyze the unsteady mixed convection 

boundary layer flow and radiation heat transfer of Maxwell fluid over a stretching 

porous plate in the presence of boundary slip and heat source/sink. 
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1.7 Literature Review 

Many researchers investigated the thermal radiation effects on porous surfaces by using 

analytical, approximate analytical or numerical methods. Laplace transformation, finite 

difference method, perturbation technique, shooting method and many other techniques 

were applied to solve porous plate problems.  

Hossain et al. [29] investigated the radiation effects on vertical porous plate with 

variable temperature depended viscosity by using Keller box method. Kim and Fedorov 

[7] studied the thermal radiation effects on transient mixed convection flow of a micro-

polar fluid past a moving semi-infinite vertical porous plate. They used Rosseland 

approximation to delineate the radiative heat flux with the constant velocity of porous 

plate. Naby et al. [30] reported the thermal radiation effects on MHD unsteady free 

convective flow over a vertical porous plate by using a finite difference method in the 

presence of transverse uniform magnetic field. Makinde [8] reported a study of 

boundary layer flow with thermal radiation and mass transfer past a vertical porous 

plate in a gray absorbing-emitting fluid. Thermal radiation interaction with unsteady 

MHD flow past a vertical porous plate immersed in a porous medium was analyzed by 

Samad and Rehman [31]. They used the Nachtsheim-Swigert iteration technique to 

solve the governing equations with the time dependent suction velocity of the porous 

plate. Network simulation method was applied to study the thermal radiation and 

viscous dissipation effects on MHD unsteady free convective flow over a vertical 

porous plate by Jordan [32]. Makinde and Ogulu [33] investigated the thermal radiation 

effects on a vertical porous plate in the presence of transverse magnetic field with time 

dependent variable viscosity. They used shooting method to solve the boundary layer 

equations with the consideration of first order homogenous chemical reaction. In the 

presence of thermal radiation, variable suction and thermophoresis, the combined free-

forced convective flow over an inclined porous plate have been examined by Aslam et 

al. [11]. An analytical study for a first order homogenous chemical reaction and 

electrically conducting viscous fluid past a moving vertical porous plate with time 

dependent variable suction velocity was reported by Ibrahim et al. [12]. Mohamed and 

Abo-Dahab [34] analyzed the effects of thermal radiation and chemical reaction on free 

convective MHD heat and mass transfer for a micro-polar fluid flow over a vertical 
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moving porous plate with the heat generation. They studied these effects with time-

dependent variable suction velocity of the porous plate in the presence of a uniform 

transverse magnetic field. Pal and Talukdar [35] studied the thermal radiation and first 

order chemical reaction effects on unsteady mixed convection heat and mass transfer 

boundary layer slip flow over a vertical porous plate by using perturbation technique. 

An interaction of thermal radiation and nth order homogenous chemical reaction with 

MHD mixed convection heat and mass transfer flow past a vertical porous plate with 

constant heat flux and viscous dissipation has been investigated by Makinde [36]. 

In nature and engineering, free convection flow is very common and has been 

studied extensively by many researchers. When heat and mass transfer takes place 

simultaneously in a moving fluid, the relations between fluxes and driving potentials 

are more complex in nature. An energy flux generated by composition gradient is 

termed the Dufour or diffusion-thermo effect. On the other hand, mass flux generated 

by temperature gradient is termed the Soret or thermal-diffusion effect. Generally, Soret 

and Dufour effects in heat and mass transfer process are neglected due to smaller order 

of magnitude than the effects described by Fourier’s and Fick’s laws. However, when 

the density difference occurs Soret and Dufour effects play an important role in the flow 

regimes. These effects are considered as second order phenomena and may become 

important, for instant, Soret effect has been utilized for isotope separation from a 

mixture of gasses of light molecular weight (H2 , He) and medium molecular weight 

(N2 , air), the Dufour effect can’t be ignored due to its importance in certain kind of 

conditions [37]. Due to significance of Soret (thermal-diffusion) and Dufour (diffusion 

thermo) effects for the fluids with light molecular weight as well as medium molecular 

weight, many researchers have been studied and reported results for such type of flows. 

Postelnicu [38] investigated the influence of chemical reaction on free convection 

heat and mass transfer flow past a vertical surface in porous medium by considering 

Soret and Dufour effects using finite difference technique. It was observed that by 

increasing chemical reaction parameter concentration profile increases. Mansour et al. 

[39] studied the effects of chemical reaction and thermal stratification on MHD free 

convection heat and mass transfer flow over a vertical stretching surface embedded in 

a porous medium in the presence of Soret and Dufour effects by shooting method. They 



 

15 

found that the velocity, temperature and concentration decrease with an increase in 

chemical reaction parameter. Chamkha and Nakhi [40] reported the MHD mixed 

convection radiation interaction along a permeable surface immersed in a porous 

medium in the presence of Soret and Dufour effects. They observed that in the presence 

of thermal radiation local Nusselt number increases and local Sherwood number 

decreases. Thermophoresis particle deposition in a non-Darcy porous medium under 

the influence of Soret-Dufour effects was analyzed by Partha [41]. He found that 

increasing concentration distributions, Soret effect has significant influence not only in 

aiding but also in opposing buoyancies. A numerical study of free convection magneto-

hydrodynamic heat and mass transfer flow past a stretching surface embedded in a 

saturated porous medium with Soret and Dufour effects was studied by Beg et al. [42]. 

Partha [43] examined the suction and injection effects on thermophoresis particle 

deposition in a non-Darcy porous medium under the influence of Soret and Dufour 

effects. Mahdy [44] presented a study of non-similar boundary layer non-Darcian 

mixed convection heat and mass transfer flow of a non-Newtonian fluid past a vertical 

isothermal plate embedded in a porous medium with the Soret and Dufour effects using 

Newton-Raphson shooting technique. He found that local heat transfer rate increases 

and local mass transfer rate decreases for the increase of Soret number. Kumar and 

Murthy [45] analyzed the Soret and Dufour effects on heat and mass transfer double-

diffusive free convection boundary layer flow past a corrugated vertical surface 

embedded in a non-Darcy porous medium using finite difference scheme. A numerical 

study of Soret and Dufour effects on the combined laminar free convection flow of non-

Newtonian fluids along a vertical plate embedded in a porous medium with thermal 

radiations was studied by Tai and Char [46]. Vempati and Gari [47] used the finite 

element method to investigate the Soret and Dufour effects on unsteady MHD flow past 

an infinite vertical porous plate with thermal radiation and oscillatory suction velocity. 

For electrically conducting fluid, a free convective chemically reacting MHD boundary 

layer flow of heat and mass transfer problem along a vertical plate in the presence of 

suction and injection with Soret and Dufour effects was reported by Olanrewaju and 

Makinde [48]. Using Runge Kutta Gill integration scheme with shooting technique, 

Kandasamy et al. [49] examined the Soret and Dufour effects with thermophoresis and 

chemical reaction on free convection heat and mass transfer flow past a porous 
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stretching surface in the presence of heat source and sink. Arasu et al. [50] studied the 

lie group analysis for Soret and Dufour effects on free convective heat and mass transfer 

flow over a vertical porous stretching surface with time depended fluid viscosity 

embedded in a porous medium in the presence of thermophoresis particle deposition. 

Cheng [51], making use of the cubic spline collocation method, Soret and Dufour 

effects on the free convection boundary layer flow past a vertical plate embedded in a 

porous medium saturated with a non-Newtonian power law fluid were studied. Prasad 

et al. [52] carried out an implicit numerical study of Soret and Dufour effects on MHD 

free convective heat and mass transfer flow past a vertical porous plate embedded in a 

non-Darcian porous medium in the presence of uniform magnetic field.  Makinde and 

Olanrewaju [53] employed a shooting iteration technique with the forth order Runge-

Kutta integration scheme to examine the Soret and Dufour effects on unsteady mixed 

convection flow over a vertical porous flat plate moving through a binary mixture of 

chemically reacting radiative fluid. A numerical study of Soret and Dufour effects on 

unsteady MHD free convective flow of an electrically conducting fluid over a vertical 

plate embedded in a non-Darcy porous medium was studied by Odat and Ghamdi [54]. 

They employed an implicit finite difference scheme of a Crank Nicolson type and found 

that the skin friction and Sherwood number decreases either by increasing Dufour 

number or by decreasing Soret number. Turkyilmazoglu and Pop [55] investigated a 

numerical study for the Soret and heat source effects on the unsteady MHD free 

convection flow of an electrically conducting fluid past an impulsively started infinite 

vertical plate. Hayat et al. [56] used the homotopy analysis method to analyze the Soret 

and Dufour effects on the unsteady free convection heat and mass transfer flow of a 

third grade non-Newtonian fluid past a stretching sheet in the presence of chemical 

reaction. Prakash et al. [57] accounted for the Dufour and radiation effects on unsteady 

MHD free convection flow past an impulsively started an infinite vertical plate 

embedded in a porous medium with variable temperature and uniform mass diffusion 

in the presence of transverse magnetic field, employing the Laplace transform method. 

A numerical study of thermophoresis particle deposition and Soret-Dufour effects on 

MHD free convective heat and mass transfer flow past a non-isothermal wedge in the 

presence of thermal radiation and ohmic dissipation was studied by Pal and Mondal 

[58]. Sharma et al. [59] used a finite difference method to investigate the Soret and 
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Dufour effects on unsteady MHD mixed convection flow past an infinite vertical porous 

plate embedded in a porous medium in the presence of heat source, ohmic dissipation 

and chemical reaction. Turkyilmazoglu [60] carried out an analytical and numerical 

study of Soret and Dufour effects on MHD mixed convection flow of an electrically 

conducting, viscoelastic fluid over a stretching vertical porous surface embedded in a 

porous medium in the presence of uniform magnetic field. 

1.7.1 Newtonian Heating 

In the literature, Merkin [61] pointed that there are four common heating processes, 

generally specified as the wall-to-ambient temperature distributions, namely, (i) 

prescribed wall temperature distributions; (ii) prescribed surface heat flux distributions; 

(iii) conjugate conditions, where heat is supplied through a bounding surface of finite 

thickness and finite heat capacity. The interface temperature is not known a priori but 

depends on the intrinsic properties of the system; and (iv) Newtonian heating, in which 

the heat transfer rate from the bounding surface with a finite heat capacity is 

proportional to the local surface temperature and it is usually termed conjugate 

convective flow.  

Among these four heating processes, many researchers investigated the boundary 

layer problems with Newtonian heating. Chaudhary and Jain [62] investigated the 

unsteady free convection boundary layer flow over an infinite vertical plate with 

Newtonian heating using Laplace transform technique. Salleh et al. [63] examined the 

steady forced convection boundary layer flow near a forward stagnation point past an 

infinite plane wall with Newtonian heating using finite difference scheme. They 

investigate the effects of large range of values of Parandtl number on temperature 

profiles. Mebine and Adigio [64] analyzed the thermal radiation effects on unsteady 

free convection flow past a vertical porous plate with Newtonian heating by using 

Laplace transform technique. Salleh et al. [65] studied the free convection boundary 

layer flow over a solid sphere with Newtonian heating. In the presence of thermal 

radiation, Narahari and Nayan [66] investigated an analytical study of free convection 

boundary layer flow resulting from heat and mass transfer over an infinite vertical plate 
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with Newtonian heating. Salleh et al. [67] examined the forced convection heat transfer 

over a circular cylinder with Newtonian heating. Singh and Makinde [68] investigated 

the combined effects of transverse magnetic field and volumetric heat generation on 

boundary layer flow of a viscous incompressible electrically conducting fluid past an 

inclined plate with Newtonian heating by using shooting method. Narahari and Dutta 

[69] reported the effects of thermal radiation and mass transfer on unsteady free 

convection boundary layer flow of an optically dense viscous incompressible fluid past 

a vertical plate with Newtonian heating using Laplace transform technique. Das et al. 

[70] examined the radiation effects on unsteady free convection flow over a vertical 

plate with Newtonian heating using finite difference scheme. They found that 

temperature decreases with an increase in radiation parameter and Prandtl number, 

while the velocity increases with an increase in either Grashof number or time. 

In the above all cited work, the problem of free convection flow past an infinite 

vertical porous plate with Newtonian heating has not been investigated even though this 

problem involves in numerous practical applications. 

1.8 Problem Statement 

The aim of this study is to investigate the free convection heat and mass transfer flow 

past an impulsively started infinite vertical porous plate with Newtonian heating. In this 

research, the problems considered are 

1. Heat generation and viscous dissipation effects. 

2. Thermal radiation and viscous dissipation effects in the presence of transverse 

magnetic field. 

3. Soret and Dofour effects in the presence of thermal radiation, viscous 

dissipation and chemical reaction.  

Additionally these effects are not yet explored on infinite moving vertical porous 

plate with Newtonian heating but interesting to be investigated. 
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1.9 Research Objectives 

Objectives of the proposed research work are 

1. To obtain the solution of system of non-linear ordinary differential equations 

using Homotopy Analysis Method (HAM). 

2. To determine exact analytical solution of that system of equations for limiting 

case. 

3. Validation of HAM solution results with the exact analytical solution results for 

the limiting case. 

4. To investigate and discuss the influence of dimensionless physical parameters 

on the fluid characteristics. 

1.10 Significance of the Research 

The significance of the research: 

1. The study of free convection incompressible fluid through vertical porous plate 

with Newtonian heating has generated many interests because in which heat 

transfer rate from the bounding surface is directly proportional to the local 

surface temperature and this study become more important in recent years due 

to its wide applications in science and engineering. 

2. Boundary layer flow through porous surfaces in the presence of heat generation 

and thermal radiation has significant applications in industry such as water 

filtration, oil distillation, heat transfer from stored agricultural products, cooling 

of nuclear reactors, computer assemblies, automotive industry, textile industry 

and in a variety of other applications. 

3. The study of Soret and Dufour effects on MHD flow can be useful in ionized 

fluids, chemical reactions, etc. 
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Thus, the study of the free convection flow due to heat and mass transfer along an 

impulsively started infinite vertical porous plate in the presence of heat generation, 

viscous dissipation, magnetic field, thermal radiation, chemical reaction, Soret and 

Dufour effects with Newtonian heating is important due to strong applications in 

science and engineering. Besides, this study will be helpful in order to solve the 

problems related to the heat and mass transfer boundary layer flow. 

1.11 Scope of the Research 

This study will take into consideration of free convection boundary layer flow of 

viscous incompressible fluid past an impulsively started infinite vertical porous plate 

with Newtonian heating. The governing non-linear system of ordinary differential 

equations incorporated with different physical effects such as heat generation, viscous 

dissipation, thermal radiation, magnetic field, Soret and Dufour effects was solved by 

a semi-analytical method known as Homotopy Analysis Method (HAM) and HAM 

solution results are then compared with the analytical solution results in limiting case. 

In the literature, nobody has studied these effects on free convection flow past an 

impulsively started infinite vertical porous plate in the presence of Newtonian heating.  

1.12 Chapter Summary 

This chapter not only highlights the breakthroughs in the literature for the heat and mass 

transfer models, but also describes three different problems of free convection boundary 

layer flow past an impulsively started infinite vertical porous plate with Newtonian 

heating. Moreover, critical literature review on free convection flow is elaborated with 

the emphasis on heat and mass transfer models, Newtonian heating, numerical, 

analytical and semi-analytical methods of solution and observed result, so as to identify 

the novelty of proposed studies.  

 

  





  

CHAPTER 2 

EFFECTS OF HEAT GENERATION AND VISCOUS DISSIPATION

 

2.1 Introduction 

Boundary layer flow through porous surface has many industrial applications such as 

water filtration in agricultural engineering, heat transfer from stored agriculture 

products, design of rocket nozzle and cooling of nuclear reactors. Kim [71] reported the 

heat transfer through moving vertical porous plate in a micropolar fluid. He found that 

by increasing the permeability parameter, velocity increases rapidly near the porous 

plate and then decreases to the relevant free stream velocity. Kim and Fedorov [7] 

examined the thermal radiation effects on unsteady mixed convection flow of a micro 

polar fluid along a vertical porous plate. They used Rosseland approximation to study 

the radiation effects for an optically thick fluid. Makinde [8] studied the free convection 

interaction with thermal radiation in a boundary layer flow past a moving vertical 

porous plate using shooting method. An analytical series solution for unsteady mixed 

convection stagnation point flow along a vertical surface in a porous medium was 

investigated by Liao et al. [9]. Seddeek and Salama [10] investigated the effects of 

variable viscosity and thermal conductivity on unsteady laminar flow past a semi-

infinite vertical porous plate using shooting method.  

Free convection flow with Newtonian heating, in which heat transfer rate from the 

bounding surface with a finite heat capacity is proportional to the local surface 

temperature, was extensively studied after Merkin’s work [61]. Lesnic et al. [72] 

studied a free convection boundary layer flow along a vertical surface embedded in a 
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porous medium with Newtonian heating using finite difference method. They compared 

the full finite-difference solution and the small and large series solutions, and concluded 

that the full numerical solution is accurate. Chaudary and Jain [73] presented an exact 

solution of unsteady boundary layer flow past an infinite vertical plate with Newtonian 

heating using Laplace transform method. Mebine and Adigio [64] examined thermal 

radiation effects on unsteady free convection flow past a vertical porous plate with 

Newtonian heating. Salleh et al. [63] investigated the Prandtl number effects on 

boundary layer flow along an infinite plane wall with Newtonian heating using Keller 

box method. Narahari and Ishak [74] performed a theoretical investigation in the 

presence of thermal radiation, on unsteady free convection boundary layer flow near a 

vertical plate with Newtonian heating. The influence of thermal radiation on unsteady 

natural convection flow resulting from heat and mass transfer was analytically 

investigated by Narahari and Nayan [66] using Laplace transform technique. The 

unsteady free convection boundary layer flow over an infinite vertical plate with 

Newtonian heating was examined by Narahari and Dutta [69] for uniform mass 

diffusion and mass flux boundary conditions.  

However, the effects of heat generation and viscous dissipation on the natural 

convection flow past an impulsively started infinite vertical porous plate with 

Newtonian heating have not been studied in the literature even though this study finds 

many engineering applications.  

2.2 Problem Description 

Consider the steady state free convection flow of a viscous incompressible fluid past a 

uniformly moving infinite vertical porous plate with Newtonian heating in the presence 

of heat generation and viscous dissipation. The x -axis is chosen along the plate in the 

upward direction and y -axis normal to it. Let 0u be the velocity of the moving plate 

as shown in Figure 2.1. The flow is being incompressible and all the fluid properties 

are taken to be constant except the density in the buoyancy-force term where the 

Boussinesq approximation is used. Then the free convection flow along the porous plate 

is governed by the following equations [75]: 
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Figure 2.1: Physical Model 
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In the boundary layer analysis, the velocity and temperature gradients normal to the 

surface are much greater than those in the direction parallel to the surface [76], [77]; in 
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other words LLxy    and,~,~ , where  is the boundary layer thickness and L  

is the characteristic length, is considered. Therefore, fluid characteristics are 

independent of x and only function of y . Then by the usual Boussinesq approximation 

(see Appendix) above system of equations can be written as 
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The boundary conditions are 
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Integrating equation (2.1) for constant suction, we get 

0vv                                                                                     (2.5) 

where 0v  is the normal velocity of suction at the plate )0( 0 v  and 00 v  represents 

the case of non-permeable plate. 

Equations (2.2) and (2.3) can now be written as 
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Introducing the following non-dimensional quantities: 
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Equations (2.6), (2.7) and (2.4) respectively take the following non-dimensional 

forms: 

0
2

2

 Gr
dy

du
s

dy

ud
                                                             (2.9) 

0 PrPr

2

2

2









 


Q

dy

du
Ec

dy

d
s

dy

d
                             (2.10) 

with the dimensionless boundary conditions 
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2.3 Solution by HAM 

The set of base functions for velocity )(yu  and temperature )(y  can be written as 

 0,0  kney nyk
                                             (2.12) 

It is assume that the solutions for )(yu  and )(y  can be expressed as 
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where na  and nb  are co-efficients to be determined. Under the rule of solution 

expression and boundary conditions (2.11), it is easy to choose the initial 

approximations for the velocity and temperature as follow: 

yy eyeyu 2

00 )(    and     )(                                          (2.14) 
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A mapping is defined for velocity and temperature as 

   );(),;()(),( qyqyyyu    

where q  is an embedding parameter that varies from 0 to 1, as a result 

 );(),;( qyqy   varies from initial solution  )(),( 00 yyu   to exact solution

 )(),( yyu  .  

Now, the auxiliary linear operators for equations (2.9) and (2.10) can be defined, 
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with the following properties, 
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where 0A , 1A , 0B  and 1B  are coefficients. The non-linear operators can be defined 

from equations (2.9) and (2.10) as 
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Denoting u  and   as the non-zero auxiliary parameters, )(yHu  and )(yH  as 

the non-zero auxiliary functions, the zero-order deformations are  
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subject to the boundary conditions 
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At 0q , zero order deformation equations gives, 
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and at 1q , zero-order deformation equations gives, 
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The auxiliary parameters ) ,(  u  and auxiliary functions ))(  ),(( yHyHu  are 

properly chosen, so that the nth order deformation derivatives are 
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with the help of equation (2.22) and Taylor’s theorem, we expand );( qy and 

);( qy  in the power series of q , 
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It is assumed that the initial approximations, auxiliary linear operators, auxiliary 

parameters and auxiliary functions are properly chosen, so that the series in equations 

(2.26) and (2.27) are converge at 1q and hence 
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By differentiating the zero-order deformation equations n  times with respect to q  

then dividing by ! n , and setting 0q , we get the higher-order deformation equations 

as 
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subject to the boundary conditions 
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For simplicity [15], auxiliary functions and auxiliary parameters can be chosen as 
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1)()(  yHyHu   and    u . 

Let )(yun

  and )(yn

  denote the special solutions of the equations (2.30), 

respectively. Therefore, 
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where 
11

 and 


LLu  are inverse linear operators. Therefore, the general solutions 

of equations (2.30) can be written as 
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where the coefficients 0A , 1A , 0B  and 1B  are determined from the boundary 

conditions (2.31) as 
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Now the skin friction )( at the surface of porous plate, which is given by the 

following formula  
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and the heat transfer rate at the surface of the porous plate in terms of the Nusselt 

number )(Nu is defined as 
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2.4 Exact Analytical Solution 

In the absence of viscous dissipation )0( Ec , the non-linear system of equations (2.9) 

and (2.10) subject to the boundary conditions (2.11) reduces to 
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Corresponding auxiliary linear equations of (2.39) and (2.40) are 
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0)Pr( 2  Qmsm      

0Pr2  Qmsm  

2

4PrPr 22 Qss
m


  

Let, 



 

31 













 








2

4PrPr
 

or     
2

4PrPr
     ,

2

4PrPr

22

2

22

2

22

1

Qss
m

Qss
m

Qss
m

 

Now, the general solution for equation (2.43) will be 
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Now, equation (2.42) can be written as 
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Complimentary solution will becomes 
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Applying boundary condition on (2.46), since 0   therefore,y  as  0 3  cu

and 0,yat   1 u so we have  
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Hence, equations (2.45) and (2.47) represent the exact analytical solution of system 

of equations (2.39) and (2.40) for limiting case. 
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2.5 Result and Discussion 

The auxiliary parameter 0  has significant role on the convergence of series solution 

obtained by the HAM. It is also called as convergence control parameter. A suitable 

value of auxiliary parameter   can be chosen from the convergence region. The 

convergence regions for velocity and temperature fields are shown in Figures 2.2 and 

2.3 using 20th order of HAM solution for fixed set of parameters

4 and 5.0 ,1.0 ,2.0,71.0Pr  sQEcGr . The common convergence regions for 

both velocity and temperature fields are 1.06.0    and 05.06.0   , 

respectively. The coupled non-linear system of equations (2.9) and (2.10) subject to the 

boundary conditions (2.11) have been solved using homotopy analysis method (HAM). 

The HAM solution is validated by comparing with the exact solution in the absence of 

viscous dissipation )0( Ec . Comparison of the results for velocity and temperature 

fields is shown in Figures 2.4-2.8. From these figures it is clear that there is an excellent 

agreement between the HAM and exact solution results. This indicates that the HAM 

solution is accurate and giving promising results. 

 

Figure 2.2:  curves at 20th order of HAM 
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Figure 2.3:  curves at 20th order of HAM 

The effects of different parameters on velocity and temperature fields have been 

investigated and the results are shown in Figures 2.9 to 2.15. Figure 2.9 shows the 

influence of suction parameter on the velocity field. It is observed that the fluid velocity 

decreases as the suction parameter increases. It has been observed that velocity 

boundary layer increases by increasing thermal Grashof number (as in Figure 2.10) 

whereas it decreases by increasing Prandtl number (as in Figure 2.11). 

 

 

Figure 2.4: Comparison of temperature profiles for HAM and analytical solution at 

different Pr when 0Ec . 
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Figure 2.5: Comparison of velocity profiles for HAM and analytical solution at 

different Gr when 0Ec . 

Figures 2.12 to 2.15 have been plotted to observe the effects of EcQs  and Pr,, on 

temperature profiles. It is noted that the fluid temperature decreases as the suction 

parameter increases in Figure 2.12. Also, thermal boundary layer thickness decreases 

rapidly by increasing the suction velocity of the vertical moving porous plate. Similar 

type of behavior is observed for thermal boundary layer variation with Pr  from Figure 

2.14. 

 

Figure 2.6: Comparison of temperature profiles for HAM and analytical solution at 

different s when 0Ec . 
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Figure 2.7: Comparison of velocity profiles for HAM and analytical solution at 

different s when 0Ec . 

 

Figure 2.8: Comparison of temperature profiles for HAM and analytical solution at 

different Q when 0Ec . 

Figure 2.13 shows the influence of heat generation parameter on the temperature 

field. It is observed that the fluid temperature increasing with the increase of heat 

generation. Thus, the presence of heat source generates energy in the boundary layer 

that causes the increase in fluid temperature. The effect of Eckert number on the fluid 

temperature is shown in Figure 2.15.  From this figure it can be seen that the temperature 
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increases with increasing Eckert number. This is because of the energy generated due 

to frictional heating in the boundary layer. 

Effects of Eckert number and heat source parameter on the fluid velocity for a fixed 

set of parameters  4 and 2.0 ,71.0Pr  sGr  are presented in the Table 2.1. It 

showed that velocity of the fluid increases with increasing Eckert number. Similar type 

of behavior is found with heat source parameter in Table 2.1. Thus, an increase in heat 

source parameter leads to an increase in the fluid velocity. 

 

Figure 2.9: Influence of s on velocity profiles 

 

 

Figure 2.10: Influence of Gr on velocity profiles 
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The numerical results of skin friction and Nusselt number are calculated for 

different values of system parameters and displayed in the Table 2.2. It is observed that 

the skin friction increases with increasing Prandtl number and suction parameter 

whereas it decreases with increasing Grashof number, Eckert number and heat 

generation parameter. Also, from the Table 2.2, it can be seen that the Nusselt number 

increases with increasing Prandtl number and suction velocity whereas it decreases with 

increasing Grashof number, Eckert number and heat generation parameter. 

 

Figure 2.11: Influence of Pr on velocity profiles 

 

 

Figure 2.12: Influence of s on temperature profiles 
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Figure 2.13: Influence of Q on temperature profiles 

 

 

 

Figure 2.14: Influence of Pr on temperature profiles 
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Figure 2.15: Influence of Ec on temperature profiles 

 

 

Table 2.1: Effects of Eckert number )(Ec  and heat source parameter )(Q  on velocity 

profile 

Ec  Q       

  1.0y   1y  2y  3y  4y  

0 0.5 0.67359 0.02008 0.00049 0.000018 5.88E-7 

0.05 0.5 0.67388 0.02025 0.00050 0.000019 1.53E-6 

0.1 0.5 0.67417 0.02041 0.00052 0.00002 1.61E-6 

0.15 0.5 0.67447 0.02057 0.00053 0.000021 1.68E-6 

0.2 0.5 0.67475 0.02074 0.00055 0.000022 1.76E-6 

0.1 0 0.67352 0.01986 0.00046 0.000015 1.900E-6 

0.1 1 0.67525 0.02135 0.00065 0.000036 2.63E-6 

0.1 1.5 0.67738 0.02348 0.00103 0.00009 7.892E-6 
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Table 2.2: Skin Friction )(  and Nusselt number )(Nu variation 

Pr  s  Gr  Ec  Q    Nu  

0.3 4 0.2 0.1 0.5 1.05984 1.12762 

0.71 4 0.2 0.1 0.5 3.91252 2.46718 

1 4 0.2 0.1 0.5 3.94273 3.52315 

3 4 0.2 0.1 0.5 3.97018 9.01426 

7 4 0.2 0.1 0.5 4.02631 15.8086 

0.71 4 1 0.1 0.5 3.73415 2.45583 

0.71 4 2 0.1 0.5 3.473 2.46894 

0.71 4 3 0.1 0.5 3.21579 2.48113 

0.71 4 4 0.1 0.5 2.96184 2.49237 

0.71 4 0.2 0.1 0 3.95414 2.57897 

0.71 4 0.2 0.1 1 3.93233 2.24546 

0.71 4 0.2 0.1 1.5 3.90364 1.98915 

0.71 0 0.2 0.1 0.5 0.56148 1.45462 

0.71 1 0.2 0.1 0.5 0.62035 1.58208 

0.71 6 0.2 0.1 0.5 5.95373 3.59575 

0.71 10 0.2 0.1 0.5 9.77897 5.58857 

0.71 4 0.2 0 0.5 3.95432 2.65142 

0.71 4 0.2 0.05 0.5 3.95036 2.54101 

0.71 4 0.2 0.15 0.5 3.94248 2.35983 

0.71 4 0.2 0.2 0.5 3.93854 2.28459 
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2.6 Chapter Summary 

In this chapter, heat generation and viscous dissipation effects on free convection flow 

past an impulsively started infinite vertical porous plate in the presence of Newtonian 

heating have been studied by analytical technique known as Homotopy Analysis 

Method (HAM). There is an excellent agreement between exact analytical and HAM 

solution results in the absence of viscous dissipation. It can be seen from the results, an 

increase in the heat generation parameter and Eckert number lead to an increase in the 

fluid velocity and temperature. However, skin friction and heat transfer rate decrease 

with the increase in heat generation parameter and Eckert number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

CHAPTER 3 

THERMAL RADIATION AND VISCOUS DISSIPATION EFFECTS IN THE 

PRESENCE OF MAGNETIC FIELD

 

3.1 Introduction 

The effect of thermal radiation on natural convection heat transfer becomes very 

significant especially at high operating temperature. In many industrial processes, 

which occur at high temperature, the study of thermal radiation becomes more 

important for the design of apposite equipment. Nuclear reactors, gas turbines and the 

numerous propulsion devices for aircraft, missiles, satellites and space vehicles are 

examples of such industrial areas. Many researchers have been investigated the thermal 

radiation effect on porous plate by using analytical or approximate analytical methods. 

Laplace transformation, finite difference method, perturbation technique, shooting 

method and many other techniques have been applied to solve the heat and mass transfer 

problems. Hossain et al. [29] investigated the thermal radiation effect on free 

convection flow of a viscous incompressible fluid along a uniformly heated vertical 

porous plate with uniform suction and temperature depended viscosity. Kim and 

Fedorov [7] studied the thermal radiation effect on transient mixed convection flow of 

a micro-polar fluid past a moving semi-infinite vertical porous plate. They used 

Rosseland approximation to delineate the radiative heat flux with the constant velocity 

of porous plate. Makinde [8] carried out a numerical study to investigate the thermal 

radiation effect on free convection heat and mass transfer flow past a moving vertical 

porous plate. Makinde and Ogulu [33] investigated the thermal radiation effect on the 

heat and mass transfer flow past a vertical porous plate in the presence of transverse 

magnetic field with time dependent viscosity. They used shooting method to solve the 
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boundary layer equations with the consideration of first order homogenous chemical 

reaction. An analytical study for a first order homogenous chemical reaction and 

electrically conducting viscous fluid past a moving semi-infinite vertical porous plate 

in the presence of heat source and sink was reported by Ibrahim et al. [12]. 

The flow of heat transfer fluids near different types of boundaries can be controlled 

by magnetic field. This study has significant interests in the boundary layer flows 

subjected to an externally applied transverse magnetic field. Moreover, the study of 

magnetic field effects on the thermal transport process in the boundary layer flow with 

the inclusion of ohmic heating has gained considerable attention. Naby et al. [30] 

reported the thermal radiation effect on MHD unsteady free convection flow past a 

vertical porous plate by using a finite difference method in the presence of a uniform 

transverse magnetic field. Thermal radiation interaction with unsteady MHD flow past 

a vertical porous plate immersed in a porous medium in the presence of magnetic field 

was analyzed by Samad and Rehman [31]. They used the Nachtsheim-Swigert iteration 

technique to solve the governing equations with the time dependent suction velocity of 

the porous plate. Network simulation method was used to study the thermal radiation 

and viscous dissipation effects on MHD unsteady free convective flow over a vertical 

porous plate by Jordan [32]. In the presence of thermal radiation, effects of variable 

suction and thermophoresis on steady MHD combined free-forced convective heat and 

mass transfer flow over a semi-infinite inclined porous plate was examined by Aslam 

et al. [11]. Mohamed and Abo-Dahab [34] analyzed the effects of thermal radiation and 

chemical reaction on free convection MHD heat and mass transfer flow of a micro-

polar fluid over a semi-infinite vertical moving porous plate in the presence of heat 

generation. They studied these effects with time-dependent variable suction velocity of 

the porous plate in the presence of a uniform transverse magnetic field. Pal and 

Talukdar [35] used a perturbation technique to investigate the thermal radiation and 

chemical reaction effects on unsteady mixed convection MHD heat and mass transfer 

boundary layer slip flow over a vertical porous plate in the presence of uniform 

transverse magnetic field. An interaction of thermal radiation and nth order homogenous 

chemical reaction with MHD mixed convection heat and mass transfer flow of an 

incompressible Boussinesq fluid past a vertical porous plate embedded in a porous 

medium with constant heat flux and viscous dissipation was investigated by Makinde 
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[36]. The present work has been undertaken to study the effects of thermal radiation 

and viscous dissipation on free convection heat transfer flow of a viscous 

incompressible electrically conducting fluid over an impulsively started infinite vertical 

porous plate with Newtonian heating in the presence of transverse magnetic field. 

3.2 Problem Description 

In this chapter, the thermal radiation effect on free convection flow along an 

impulsively started infinite vertical porous plate permeated by a transverse magnetic 

field in the presence of Newtonian heating is examined. The x -axis is taken along the 

plate in the upward direction and y -axis normal to the plate as shown in Figure 3.1. 

The flow is being incompressible and it is assumed that the heat transfer rate from the 

surface with a finite heat capacity is proportional to the local surface temperature )(T  , 

i.e. 

0at        



yT

k

h

y

T
 

where T  is the temperature of the fluid, h is the heat transfer coefficient and k is 

the thermal conductivity of the plate. Since the plate is assumed to be infinite along the 

x -axis direction, all the physical variables are independent from x and are functions 

of y only. Under the usual Boussinesq approximation [77], i.e., density changes with 

temperature, which gives rise to the bouncy force, the governing boundary layer 

equations are simplified to the following form: 
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Figure 3.1: Physical Model 

where u is the fluid velocity in the x direction, v the suction velocity,   the 

kinematic viscosity, 

T the free stream temperature, g  the acceleration due to gravity,

  the volumetric coefficient of thermal expansion, 0B the magnetic field component 

along y axis,  the electrical conductivity of the fluid,  the fluid density, pc the 

specific heat at constant pressure, 
rq the radiative heat flux; and  is the viscosity. 

The boundary conditions are 
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Integrating equation (3.1) for constant suction, we get 
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0vv                                   (3.5) 

where 00 v is the normal velocity of suction at the plate. 

Equations (3.2) and (3.3) can now be written as 

u
B

TTg
y

u

y

u
v 









 






2

0

2

2

0 )(                (3.6) 

2

2

0

2

2

2

0

1
u

c

B

y

u

cy

q

cy

T

c

k

y

T
v

pp

r

pp







































             (3.7) 

For an optically thin gray gas, the radiation heat flux rq in equation (3.7) satisfies 

the following non-linear differential equation: 
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where  is the radiation absorption coefficient and  is the Stefan-Boltzmann 

constant. Assuming that the temperature differences within the flow are sufficiently 

small such that 4T  can be expressed as a linear function of T using the Taylor series 

expression, after neglecting higher-order terms, we get 
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In the view of equation (3.8) and (3.9), equation (3.7) becomes 
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Introducing the following non-dimensional quantities: 
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where u and  are the dimensionless velocity and temperature respectively, s is the 

suction parameter, M is the magnetic field parameter, i.e., square of the Hartmann 

number, Gr is the thermal Grashof number, Pr is the Prandtle number, Ec is the Eckert 

number and R is the radiation parameter.  

In the view of equations (3.11), (3.6), (3.10) and (3.4) reduces to the following non-

dimensional forms: 
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The corresponding boundary conditions are 












.as         ,0,0

,0at),1(,1

yu

y
dy

d
u






             (3.14) 

3.3 Solution by HAM 

To solve the system of nonlinear equations (3.12) and (3.13) subject to the boundary 

conditions (3.14) by HAM, we assume the initial guesses and linear operators as defined 

in equations (2.14) and (2.15), respectively. 

We then assume that the solutions of the form 
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with the non-linear operators 
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The generalized homotopies are then defined to be 
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These generalized homotopies produce the nth order deformation equations 
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subject to the boundary conditions 
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For simplicity [15], again we chose auxiliary functions and auxiliary parameters as 

1)()(  yHyHu   and    u  

For each n we can get the required solutions from the nth order deformation equations, 

subject to the boundary conditions (3.22).  

The skin friction and Nessult number formulae are used as mentioned in (2.37) and 

(2.38). 

3.4 Exact Analytical Solution 

Exact analytical solution of the prescribed system of equations (3.12), (3.13) with 

boundary conditions (3.14) can be find in the absence of viscous dissipation and ohmic 

heating, i.e., )0( Ec . For this purpose, the system of equations (3.12), (3.13) subject 

to the boundary conditions (3.14) can be written as 
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Corresponding auxiliary linear equations of (3.25) and (3.26) are 

02  uMGrumsum                 (3.28) 
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0Pr2   Rmsm                (3.29) 

where dydm  , solving equation (3.29) 
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Now, the general solution for equation (3.29) will be 
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Thus, equation (3.30) becomes as 
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Now (3.28) can be written as 
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Its corresponding homogenous auxiliary equation is 
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Complimentary solution of (3.32) will be 
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Now, 
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Hence, equations (3.31) and (3.34) represent the exact analytical solution of system 

of equations (3.25) and (3.26) for limiting case. 

3.5 Result and Discussion 

In the solution of HAM, auxiliary parameter 0  effectively controls the convergence 

of series solution. To ensure the convergence of series solution so called  curves for 

velocity and temperature profiles are plotted at 20th order of HAM in Figures 3.2 and 

3.3 for fixed set of parameters ,1.0 ,2 ,2,5  EcsMR 2 ,71.0Pr  Gr . The 

common convergence regions for both velocity and temperature profiles are

05.019.0    and 03.018.0   , respectively. 
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Figure 3.2:  curves at 20th order of HAM 

 

 

Figure 3.3:  curves at 20th order of HAM 

Homotopy Analysis Method (HAM) has been applied to solve a coupled non-linear 

system of equations (3.12) and (3.13) subject to the boundary conditions (3.14).  The 

results obtained by the HAM have been compared with the exact solution results in the 

absence of viscous dissipation and ohmic heating. An excellent agreement is found 

between the results, which can be seen from figures 3.4 to 3.9. 
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Figure 3.4: Comparison of temperature profiles for HAM and analytical solution at 

different Pr when 0Ec . 

 

 

Figure 3.5: Comparison of velocity profiles for HAM and analytical solution at 

different Gr when 0Ec . 
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Figure 3.6: Comparison of velocity profiles for HAM and analytical solution at 

different M when 0Ec . 

 

 

Figure 3.7: Comparison of temperature profiles for HAM and analytical solution at 

different R when 0Ec . 
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Figure 3.8: Comparison of temperature profiles for HAM and analytical solution at 

different s when 0Ec . 

 

 

Figure 3.9: Comparison of velocity profiles for HAM and analytical solution at 

different s when 0Ec . 

Figures 3.10 to 3.19 depict the effects of Prandtl number (Pr) , thermal Grashof 

number )(Gr , magnetic field parameter )(M , radiation parameter )(R , suction parameter

)(s  and Eckert number )(Ec  on velocity and temperature fields, respectively. The 

velocity profiles for various values of Prandtl number are plotted in Figure 3.10. 
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It is observed that an increase in the value of prandtl number decreases the fluid 

velocity. This is may be due to the fact that the fluids with high Prandtl number have 

greater viscosity, which makes the fluid thick and hence, it moves slowly. Similar type 

of behavior is observed for thermal boundary layer variation with Prandtl number from 

Figure 3.11. The effects of thermal Grashof number on velocity profile are presented in 

Figure 3.12. It is noticed that an increase in Grashof number increases the fluid velocity. 

This would happen because with an increase in Gr the effect of viscous force decreases, 

and thus the velocity boundary layer thickness increases. 

 

 

Figure 3.10: Influence of Pr  on velocity profiles. 

Figures 3.13 and 3.14 show the influence of magnetic field parameter on velocity 

and temperature profiles. In Figure 3.13, it is observed that with an increase in magnetic 

field parameter velocity of the fluid decreases. This is may be due to the fact that the 

Lorentz force which, is produced by the application of a transverse magnetic field, 

causes to decelerate the fluid velocity in the boundary layer. Physically, the higher value 

of magnetic field parameter results in the higher Lorentz force. Similar type of trend 

was observed by Makinde and Ogulu [33]. 
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Figure 3.11: Influence of Pr  on temperature profiles. 

Figure 3.14 reveals that an increase in the magnetic field parameter causes to rise 

the thermal boundary layer thickness. This is may be due to the fact that extra work is 

done to drag the fluid against the magnetic field which causes to increase the thermal 

energy of the fluid in the thermal boundary layer region and consequently temperature 

profile rises. The influence of thermal radiation parameter on velocity and temperature 

fields is plotted in Figures 3.15 and 3.16. It has a significant reducing effect on both the 

velocity and temperature fields.  

 

 

Figure 3.12: Influence of Gr  on velocity profiles. 



 

60 

It is observed that an increase in the thermal radiation parameter causes to decrease 

in the velocity as well as temperature distributions in the boundary layer. This is 

because rises in the thermal radiation parameter have tendency to dominant the 

conduction effects over radiation absorption. Therefore, higher value of radiation 

parameter causes to decrease in the momentum as well as thermal boundary layer 

thickness. 

 

 

Figure 3.13: Influence of M  on velocity profiles. 

 

 

Figure 3.14: Influence of M  on temperature profiles. 
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Figure 3.15: Influence of R  on velocity profiles. 

The influence of suction parameter on velocity and temperature fields is plotted in 

Figures 3.17 and 3.18. It is noted that fluid velocity decreases as suction parameter 

increases. Similar type of behavior is observed for thermal boundary layer variation 

with suction parameter from Figure 3.18. Also, it has been observed that thermal 

boundary layer thickness decreases rapidly by increasing the suction velocity of the 

vertical moving porous plate. 

 

 

Figure 3.16: Influence of R  on temperature profiles. 
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The effect of Eckert number on fluid temperature can be seen in Figure 3.19. This 

Figure shows that temperature profile increases with an increase in Eckert number. This 

is may be due to energy generated by work done against the viscous fluid stresses. 

Greater viscous dissipative heat causes a rise in the temperature of the moving fluid. 

 

 

Figure 3.17: Influence of s  on velocity profiles. 

 

 

Figure 3.18: Influence of s  on temperature profiles. 
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Figure 3.19: Influence of Ec  on temperature profiles. 

The influence of Eckert number and thermal Grashof number on velocity and 

temperature fields is presented in Table 3.1 and Table 3.2, respectively. In Table 3.1 it 

can be observed that the fluid velocity increases gradually by increasing Eckert number. 

This is may be due to increase in average translation kinetic energy of the fluid particles. 

The influence of thermal Grashof number on temperature profile is presented in Table 

3.2. It is noticed that the fluid temperature increases near the porous plate by increasing 

thermal Grashof number. However, as distance (y) increases from the plate; the fluid 

temperature decreases to zero. 

The variation of skin friction and Nusselt number at the vertical porous plate is 

calculated and presented in Table 3.3. It is observed that the skin friction increases by 

increasing Prandtl number, suction velocity of the porous plate, magnetic field 

parameter and radiation parameter while skin friction decreases with thermal Grashof 

number and Eckert number. From Table 3.3 it is also found that the Nusselt number 

increases with increasing Prandtl number, thermal Grashof number, radiation parameter 

and suction velocity whereas it decreases with Eckert number and magnetic field 

parameter. 
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Table 3.1: Influence of Eckert number )(Ec  on fluid velocity 

y               Ec    0 0.05 0.1 0.15 0.2 

0 1 1 1 1 1 

0.5 0.288429 0.291298 0.294159 0.297014 0.299863 

1 0.07767 0.079227 0.080783 0.082339 0.083896 

1.5 0.020443 0.021024 0.021606 0.022188 0.022772 

2 0.005700 0.005881 0.006063 0.006244 0.006426 

2.5 0.001802 0.001853 0.001905 0.001955 0.002007 

3 0.000612 0.000627 0.000641 0.000656 0.000670 

3.5 0.000185 0.000189 0.000193 0.000198 0.000203 

4 0.000028 0.000031 0.000032 0.000034 0.000036 

 

 

Table 3.2: Influence of thermal Grashof number )(Gr on fluid temperature 

y               Gr  0.2 2 6 10 15 

0 0.54771 0.543714 0.536585 0.531793 0.529116 

0.5 0.127486 0.1269 0.126207 0.12635 0.127762 

1 0.028227 0.028273 0.028596 0.029236 0.030529 

1.5 0.006161 0.006189 0.006318 0.006545 0.006984 

2 0.001343 0.001351 0.001384 0.001442 0.001554 

2.5 0.000292 0.000294 0.000302 0.000316 0.000342 

3 0.000063 0.000064 0.000065 0.000069 0.000075 

3.5 0.000013 0.000013 0.000014 0.000014 0.000016 

4 2.959E-6 2.973E-6 3.043E-6 3.172E-6 3.434E-6 
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Table 3.3: Skin Friction )(  and Nusselt number )(Nu variation 

Pr  Gr  Ec  s  M  R    Nu  

0.3 2 0.1 2 2 5 2.187823 2.408550 

0.71 2 0.1 2 2 5 2.318805 2.843596 

1 2 0.1 2 2 5 2.380207 3.184474 

3 2 0.1 2 2 5 2.432189 6.043606 

7 2 0.1 2 2 5 2.445486 12.70957 

0.71 0.2 0.1 2 2 5 2.616490 2.825782 

0.71 6 0.1 2 2 5 1.803467 2.863637 

0.71 10 0.1 2 2 5 1.246268 2.880430 

0.71 15 0.1 2 2 5 0.539239 2.889943 

0.71 2 0 2 2 5 2.399372 3.055982 

0.71 2 0.05 2 2 5 2.380807 2.941027 

0.71 2 0.1 2 2 5 2.362325 2.839202 

0.71 2 0.15 2 2 5 2.343924 2.748379 

0.71 2 0.2 2 2 5 2.325601 2.666867 

0.71 2 0.1 0 2 5 0.938857 2.153464 

0.71 2 0.1 1 2 5 1.588374 2.486149 

0.71 2 0.1 4 2 5 3.918558 3.591152 

0.71 2 0.1 6 2 5 5.602275 4.331709 

0.71 2 0.1 2 0 5 1.635060 2.940836 

0.71 2 0.1 2 5 5 2.998375 2.748319 

0.71 2 0.1 2 10 5 3.439559 2.665627 

0.71 2 0.1 2 2 0 0.997461 1.434802 

0.71 2 0.1 2 2 1 1.747897 1.835384 

0.71 2 0.1 2 2 5 2.052392 2.859875 

0.71 2 0.1 2 2 10 2.148354 3.693427 

0.71 2 0.1 2 2 20 2.215011 4.904925 
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3.6 Chapter Summary 

This chapter highlights the thermal radiation and viscous dissipation effects on free 

convection boundary layer flow past an impulsively started infinite vertical porous plate 

with Newtonian heating in the presence of transverse magnetic field. Homotopy 

Analysis Method is used to solve a system of coupled non-linear ordinary differential 

equations. The present results are compared with the exact analytical solution results in 

the absence of viscous dissipation and an excellent agreement is found between them. 

The study revealed that the fluid velocity decreases by increasing magnetic field and 

thermal radiation parameter whereas it increases with increasing Eckert number. On the 

other hand, a rise in the thermal boundary layer thickness causes due to increase in the 

magnetic field parameter and Eckert number however, it decreases with increasing 

radiation parameter. Moreover, the skin friction increases by increasing magnetic field 

and radiation parameter while it decreases with an increase in the Eckert number, and 

the Nusselt number increases with increasing radiation parameter whereas it decreases 

with an increase in the Eckert number and magnetic field parameter. 

 

 

 

 

 

 

 

 

 

 



  

CHAPTER 4 

SORET AND DUFOUR EFFECTS IN THE PRESENCE OF THERMAL 

RADIATION, VISCOUS DISSIPATION AND CHEMICAL REACTION

 

4.1 Introduction 

The study of boundary layer flow in heat and mass transfer problems has attracted 

considerable attention of researchers during last few decades due to its numerous 

applications in nature and technology. Magneto hydrodynamics (MHD) viscous flows 

are important in astrophysics, geophysics such as high temperature plasma, radiation 

propagation through ionosphere, aeronautics, missile aerodynamics, magneto 

hydrodynamics pumps and generators. Effects of magnetic field in free convection flow 

play an important role in ionized fluids, chemical reactions, etc. In engineering, heat 

and mass transfer through porous surfaces has many applications such as oil extraction, 

fossil fuels, distillation and drying of solid particles from the mixture. 

When heat and mass transfer takes place simultaneously in a moving fluid, the 

relations between fluxes and driving potentials are more complex in nature. An energy 

flux generated by composition gradient is termed the Dufour or diffusion-thermo effect. 

On the other hand, mass flux generated by temperature gradient is termed the Soret or 

thermal-diffusion effect. Generally, Soret and Dufour effects in heat and mass transfer 

process are neglected due to smaller order of magnitude than the effects described by 

Fourier’s and Fick’s laws. However, when the density difference occurs Soret and 

Dufour effects play an important role in the flow regimes. These effects are considered 

as second order phenomena and may become important in the engineering areas such 

as nuclear waste disposal, hydrology and geothermal energy. Due to the significance of 
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Soret and Dufour effects for the fluids many researchers have been studied and reported 

results for such type of flows. Postelnicu [38] investigated the Soret and Dufour effects 

on free convection heat and mass transfer flow past a vertical surface in porous medium 

in the presence of chemical reaction using finite difference technique. Thermophoresis 

particle deposition in free convection flow over a vertical plate embedded in a saturated 

non-Darcy porous medium under the influence of Soret and Dufour effects was 

analyzed by Partha [41] using similarity solution technique. He found that increasing 

concentration distribution Soret effect has significant influence not only in aiding, but 

also in opposing buoyancies. Mahdy [44] presented a study of non-similar boundary 

layer non-Darcian mixed convection heat and mass transfer flow of a non-Newtonian 

fluid past a vertical isothermal plate embedded in a porous medium with the Soret and 

Dufour effects using Newton-Raphson shooting technique. Kumar and Murthy [45] 

analyzed the Soret and Dufour effects on heat and mass transfer double-diffusive free 

convection boundary layer flow past a corrugated vertical surface embedded in a non-

Darcy porous medium using finite difference scheme. A numerical study of Soret and 

Dufour effects on the combined laminar free convection flow of non-Newtonian fluids 

along a vertical plate embedded in a porous medium with thermal radiations was studied 

by Tai and Char [46]. Using Runge Kutta Gill integration scheme with shooting 

technique, Kandasamy et al. [49] examined the Soret and Dufour effects with 

thermophoresis and chemical reaction on free convection heat and mass transfer flow 

past a porous stretching surface in the presence of heat source and sink. Arasu et al. 

[50] studied the lie group analysis for Soret and Dufour effects on free convection heat 

and mass transfer flow over a vertical porous stretching surface with time depended 

fluid viscosity embedded in a porous medium in the presence of thermophoresis particle 

deposition. Cheng [51] investigated, making use of the cubic spline collocation method, 

the Soret and Dufour effects on the free convection boundary layer flow past a vertical 

plate embedded in a porous medium saturated with a non-Newtonian power law fluid. 

Makinde and Olanrewaju [53] employed a shooting iteration technique with the forth 

order Runge-Kutta integration scheme to examine the Soret and Dufour effects on 

unsteady mixed convection flow over a vertical porous flat plate moving through a 

binary mixture of chemically reacting radiative fluid.  
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The study of heat and mass transfer with magnetohydrodynamic viscous flows 

through porous medium has been made a fundamental importance due to its 

applications in many devices, like the MHD power generators, MHD heat exchangers 

and cooling of the nuclear reactors. Raptis and Soundalgekar [79] investigated the 

MHD free convection flow past a steadily moving infinite vertical porous plate with 

constant heat flux and constant suction. Raptis et al. [80] examined the free convection 

flow of an electrically conducting viscous incompressible rarefied gas past an infinite 

vertical porous plate in the presence of transvers magnetic field. Mansour et al. [39] 

studied the effects of chemical reaction and thermal stratification on MHD free 

convection heat and mass transfer flow over a vertical stretching surface embedded in 

a porous medium in the presence of Soret and Dufour effects by shooting method. 

Chamkha and Nakhi [40] reported the MHD mixed convection radiation interaction 

along a permeable surface immersed in a porous medium in the presence of Soret and 

Dufour effects. A numerical study of free convection MHD heat and mass transfer flow 

past a stretching surface embedded in a saturated porous medium with Soret and Dufour 

effects was studied by Beg et al. [42]. Vempati and Gari [47] used the finite element 

method to investigate the Soret and Dufour effects on unsteady MHD flow past an 

infinite vertical porous plate with thermal radiation and oscillatory suction velocity. For 

electrically conducting fluid, a free convective chemically reacting MHD boundary 

layer heat and mass transfer flow along a vertical plate in the presence of suction and 

injection with Soret and Dufour effects was reported by Olanrewaju and Makinde [53]. 

Prasad et al. [52] carried out an implicit numerical study of Soret and Dufour effects on 

MHD free convection heat and mass transfer flow past a vertical porous plate embedded 

in a non-Darcian porous medium in the presence of uniform magnetic field. A 

numerical study of Soret and Dufour effects on unsteady MHD free convective flow of 

an electrically conducting fluid over a vertical plate embedded in a non-Darcy porous 

medium was studied by Odat and Ghamdi [54]. They employed an implicit finite 

difference scheme of a Crank Nicolson type and found that the skin friction and 

Sherwood number decreases either by increasing Dufour number or by decreasing Soret 

number. Prakash et al. [57] accounted for the Dufour and radiation effects on unsteady 

MHD free convection flow past an impulsively started an infinite vertical plate 

embedded in a porous medium with variable temperature and uniform mass diffusion 
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in the presence of transverse magnetic field, employing the Laplace transform method. 

Turkyilmazoglu [60] carried out an analytical and numerical study of Soret and Dufour 

effects on MHD mixed convection flow of an electrically conducting, viscoelastic fluid 

over a stretching vertical porous surface embedded in a porous medium in the presence 

of uniform magnetic field. However, Soret and Dufour effects on MHD natural 

convection flow along an infinite vertical porous plate with Newtonian heating in the 

presence of thermal radiation and chemical reaction have not been addressed in the 

literature. Hence the motivation. 

4.2 Problem Description 

In this chapter, we analyze the Soret and Dufour effects on the heat and mass transfer 

MHD flow past an impulsively started infinite vertical porous plate with Newtonian 

heating in the presence of thermal radiation, viscous dissipation and first order chemical 

reaction. Viscous dissipation effects are adopted in the energy equation. Here we 

consider the steady state free convection magneto hydro-dynamic (MHD) boundary 

layer flow of a viscous, incompressible and electrically conducting fluid past an 

impulsively started infinite vertical porous plate with Newtonian heating. The x -axis 

is taken along the porous plate in the upward direction and y -axis is perpendicular to 

the plate as shown in Figure 4.1. A uniform magnetic field of strength 0B is applied 

normal to the plate in the y -axis direction. A first order homogenous chemical reaction 

is also considered with constant rate ck between the diffusing species and the fluid. 

Under the usual Boussinesq approximation [76], [77], [81]; the governing equations for 

the balances of mass, energy, momentum and concentration species can be written as 

follows: 
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Figure 4.1: Physical Model 

 

The appropriate boundary conditions can be written as 
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where x and y are the coordinate axis along and normal to the vertical porous plate, 

respectively. v is the suction velocity of porous plate and u is the component of fluid 

velocity.  , g ,  and   are the kinematic viscosity, acceleration due to gravity, 

electrical conductivity and fluid density, respectively. T  is the temperature of the fluid 

near the plate, 

T is the free stream temperature, C  is the dimensional concentration 

and 

C is the free stream dimensional concentration. pc , sc ,  , k and h are the specific 

heat at constant pressure, concentration susceptibility, viscosity, thermal conductivity 

of the porous plate and convective heat transfer coefficient, respectively.   and 
  are 

the thermal and concentration expansion coefficients, respectively. mD , mT , 
rq ,

Tk and 

ck are the mass diffusivity, mean fluid temperature, radiative heat flux, thermal 

diffusion ratio and rate of chemical reaction, respectively. 

Integrating equation (4.1) for constant suction, we get 

0vv                      (4.6) 

where 00 v is the normal velocity of suction at the plate. 

Equations (4.2) to (4.4) can now be written as 
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For an optically thin gray gas, absorbing/emitting radiation but a non-scattering 

medium, the radiation heat flux rq in equation (4.8) satisfies the following non-linear 

differential equation: 
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where  is radiation absorption coefficient and  is the Stefan-Boltzmann constant. 

It is assumed that the difference between fluid temperatureT   and free stream 

temperature

T  is sufficiently small such that 4T  can be expressed as a linear function 

of T using the Taylor series expression, after neglecting higher-order terms, we get 

434 34 
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In the view of equations (4.10) and (4.11), equation (4.8) yield 
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Introducing the following non-dimensional quantities: 
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where u ,   and C  are the dimensionless velocity, temperature and concentration 

respectively, s is the suction parameter, M is the magnetic field parameter, i.e., square 

of the Hartmann number, Gr is the thermal Grashof number, Gm is the mass Grashof 

number, Pr is the Prandtle number, Ec is the Eckert number, Sc is the Schmidth 

number, Du is the Dufour number, Sr  is the soret number,   is the chemical reaction 

parameter and R is the radiation parameter.  
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In the view of equations (4.13) equations (4.7), (4.12) and (4.9) reduces to the 

following non-dimensional forms, respectively, as 
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The corresponding boundary conditions are 
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4.3 Solution by HAM 

Under the rule of solution expression and boundary conditions (4.17), it is easy to 

choose the initial guesses and auxiliary linear operators for system of equations (4.14), 

(4.15) and (4.16), respectively, as follows; 
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with the following non-linear operators, 
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The generalized homotopies are then defined to be 
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subject to the boundary conditions 
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These generalized homotopies produce the nth order deformation equations as 
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subject to the boundary conditions 
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For simplicity [15], auxiliary functions and auxiliary parameters can be chosen as 

1)()()(  yHyHyH Cu   and    Cu   

For each n we can get the required solutions from the nth order deformation 

equations, subject to the boundary conditions (4.28). 

Skin friction and Nusselt number formulae are used as mentioned in (2.37) and 

(2.38), and the mass transfer at the surface of porous plate in terms of the Sherwood 

number )(Sh  is defined as 
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4.4 Exact Analytical Solution 

In the absence of viscous dissipation and Dufour effect, i.e., 0 DuEc the system of 

equations (4.14), (4.15) and (4.16) subject to the boundary conditions (4.17) can be 

written as 
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subject to the Boundary Conditions 
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Corresponding auxiliary equation for (4.31) 
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Now, the general solution for equation (4.31) will becomes 

ymym
eaeay 21

21)(


                (4.34) 

ymym
eameamy 21

2211)(


  

Now applying boundary conditions 

0at   )1)(()(  yyy   

1212211  aaamam  

01)1()1( 2211  amam  

as y , equation (4.34) becomes 

)(

2

)(

1
21)(



mm

eaea  

Here 1a must be zero. Therefore, 
1

1
or            

1

1

2

2

2

2








m
a

m
a . 

Thus (4.34) becomes as 

ym
e

m
y 2

1

1
)(

2




                 (4.35) 

Now (4.32) can be written as 
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Its corresponding homogenous auxiliary equation is 
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Complimentary solution of (4.36) will becomes 
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Thus (4.37) will becomes 
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Now, equation (4.30) can be written as 
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Corresponding homogenous equation of (4.39) will be, 
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          (4.40) 

Hence, equations (4.35), (4.38) and (4.40) represent the exact analytical solution of 

system of equations (4.30), (4.31) and (4.32) subject to the boundary conditions (4.33) 

for the special case.  

4.5 Result and Discussion 

Convergence of series solutions, obtained by HAM, depends upon the auxiliary 

parameter . Liao [15] explained the admissible range for auxiliary parameter is 

determined by the horizontal portion of so called  curves. To illustrate this concept, 

curves for velocity, temperature and concentration profiles are plotted at 20th order of 

HAM in Figure 4.2 and their derivatives at 0y are plotted in Figure 4.3 for fixed set 
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of parameters ,1,6.0,1,5,2 ,2,1.0 ,2 ,71.0Pr  ScGmRsMEcGr

2.0 and,5.0  DuSr . The admissible convergence regions for velocity, temperature 

and concentration profiles are 03.018.0   ,05.018.0  

02.02.0&   , respectively. 

 

 

Figure 4.2:  curves at 20th order of HAM 

 

 

Figure 4.3:  curves at 20th order of HAM 
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In this study, homotopy solutions of a coupled non-linear system of equations 

(4.14), (4.15) and (4.16) with boundary condition (4.17) have been compared with the 

exact analytical solution results in the absence of viscous dissipation and Dufour effects 

for different values of system parameters. An excellent agreement has been found 

between HAM and exact analytical results that is presented from Figures 4.4 to 4.14. 

 

 

Figure 4.4: Comparison of temperature profiles for HAM and analytical solution at 

different s when 0 DuEc . 

Figures 4.15 to 4.32 are plotted to understand the effects of flow parameters on the 

velocity, temperature and concentration profiles. Figure 4.15 has been presented in 

order to see the suction parameter effects on the dimensionless velocity profile. It can 

be seen that increasing the suction parameter decreases the velocity of moving fluid 

near the vertical plate. 
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Figure 4.5: Comparison of Concentration profiles for HAM and analytical solution at 

different s when 0 DuEc . 

 

 

Figure 4.6: Comparison of velocity profiles for HAM and analytical solution at 

different s when 0 DuEc . 
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Figure 4.7: Comparison of velocity profiles for HAM and analytical solution at 

different M when 0 DuEc . 

 

 

 

Figure 4.8: Comparison of temperature profiles for HAM and analytical solution at 

different R when 0 DuEc . 
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Figure 4.9: Comparison of concentration profiles for HAM and analytical solution at 

different  when 0 DuEc . 

 

 

Figure 4.10: Comparison of concentration profiles for HAM and analytical solution at 

different Sr when 0 DuEc . 
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Figure 4.11: Comparison of temperature profiles for HAM and analytical solution at 

different Pr when 0 DuEc . 

 

 

 

Figure 4.12: Comparison of velocity profiles for HAM and analytical solution at 

different Gm when 0 DuEc . 
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Figure 4.13: Comparison of concentration profiles for HAM and analytical solution at 

different Sc when 0 DuEc . 

 

 

 

Figure 4.14: Comparison of velocity profiles for HAM and analytical solution at 

different Gr when 0 DuEc . 
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Figure 4.16 and Figure 4.20 depict the Soret and Dufour number effects on the 

velocity profile. It is interesting to note that the velocity profile increases by increasing 

Soret and Dufour number. This is may be due to the fact that either a decrease in 

concentration difference or an increase in temperature difference in the momentum 

equation. The similar trend is observed in Figure 4.17 for different values of radiation 

parameter on velocity field. This is because an increased dominance of absorption 

radiation in the porous plate over convection, thereby increasing the buoyancy force 

and momentum boundary layer thickness. Figure 4.18 shows the variation of magnetic 

field parameter on the velocity. As expected, the velocity field decreases when M

increases. This is because the application of transverse magnetic field in an electrically 

conducting fluid causes to produce the Lorentz force, which resists the fluid flow. 

Hence, the velocity boundary layer thickness decreases with increasing values of the 

magnetic field parameter. The behavior of the chemical reaction parameter on velocity 

profile is shown in the Figure 4.19. By increasing chemical reaction parameter velocity 

field decreases. Figures 4.21 to 4.22 display the influence of various thermal Grashof 

number and mass Grashof number on the velocity profile. It is obvious from these 

figures that the momentum boundary layer thickness increases as thermal Grashof 

number and mass Grashof number increases. 

 

 

Figure 4.15: Influence of s  on the dimensionless velocity profile. 
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Figures 4.23 to 4.28 indicate the influence of EcDuRSrMs  and  , , , ,  on the 

temperature profile. Figure 4.23 exhibits the suction parameter effect on the 

temperature profile. As expected, an increase in the s decreases the thermal boundary 

layer thickness. 

 

 

Figure 4.16: Influence of Sr  on the dimensionless velocity profile. 

 

 

Figure 4.17: Influence of R  on the dimensionless velocity profile. 
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Figure 4.18: Influence of M on the dimensionless velocity profile. 

Figure 4.24 reveals that an increase in the magnetic field parameter causes to rise 

the thermal boundary layer thickness. This is may be due to the fact that extra work is 

done to drag the fluid against the magnetic field which causes to increase the thermal 

energy of the fluid in the thermal boundary layer region and consequently temperature 

profile rises. There is a decrease in the temperature when rS  increase as illustrated in 

Figure 4.25.  

 

 

Figure 4.19: Influence of  on the dimensionless velocity profile. 
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The influence of thermal radiation on temperature profile can be seen in Figure 4.26. 

It is observed that an increase in the thermal radiation parameter causes to decrease in 

the temperature distribution in the boundary layer. Therefore, higher value of radiation 

parameter causes to decrease the thermal boundary layer thickness. 

 

 

Figure 4.20: Influence of Du  on the dimensionless velocity profile. 

 

 

Figure 4.21: Influence of Gr on the dimensionless velocity profile. 
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Figure 4.22: Influence of Gm on the dimensionless velocity profile. 

Figure 4.27 reveals an increase in the Dufour number causes to increase the thermal 

boundary layer thickness. Physically, Dufour term that involves in the energy equation 

measures the contribution of concentration gradient to energy flux in the flow regime. 

Hence, it has a significant role on the boundary layer flow and it leads to an increase in 

the temperature profile. It can also be seen from Figure 4.28, an increase in the Eckert 

number leads to rise the fluid temperature. The rise in temperature may be due to 

increase in energy generated by work done against the viscous fluid stresses. 

 

 

Figure 4.23: Influence of s  on the dimensionless temperature profile. 
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Figure 4.24: Influence of M on the dimensionless temperature profile. 

 

 

 

Figure 4.25: Influence of Sr  on the dimensionless temperature profile. 
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Figure 4.26: Influence of R  on the dimensionless temperature profile. 

 

 

 

Figure 4.27: Influence of Du  on the dimensionless temperature profile. 
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Figure 4.28: Influence of Ec on the dimensionless temperature profile. 

The behaviors of  and  , , RSrs  on the concentration profile are shown in Figures 

4.29 to 4.32. It can be observe in Figure 4.29, the concentration profile decreases with 

an increase in s . Moreover, the effect of Soret number on concentration profile is 

displayed in Figure 4.30. Physically, Soret number that appears in the concentration 

equation measures the contribution of temperature gradient to species diffusion and 

consequently, enhances the concentration profile. However, concentration profile 

decreases when both  and R  increase as shown in Figures 4.31 and 4.32. 

 

Figure 4.29: Influence of s  on the dimensionless concentration profile. 
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Figure 4.30: Influence of Sr  on the dimensionless concentration profile. 

 

 

Figure 4.31: Influence of R  on the dimensionless concentration profile. 

Influence of magnetic field parameter and Dufour number on concentration profile 

is numerically presented in Tables 4.1 and 4.2, respectively. It has been observed that 

concentration profile increases when magnetic field parameter increases. On the other 

hand, by increasing Dufour number, concentration profile increases. Table 4.3 displays 

the influence of chemical reaction parameter on the temperature profile. Near the plate, 

temperature increases when increases but the trend is quite opposite away from the 

plate. 
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Figure 4.32: Influence of  on the dimensionless concentration profile. 

 

Table 4.1: Influence of  M on concentration profile )(yC  

y                                   M  

 0 2 5 10 

0 1 1 1 1 

0.5 0.47413 0.47755 0.49330 0.51974 

1 0.21061 0.21350 0.22962 0.25659 

1.5 0.09095 0.09246 0.10549 0.12623 

2 0.03878 0.03944 0.04972 0.06483 

2.5 0.01645 0.01672 0.02491 0.03617 

3 0.00697 0.00707 0.01362 0.02228 

3.5 0.00295 0.00299 0.00816 0.01496 

4 0.00125 0.00127 0.00528 0.01062 

Variations of the Skin friction, Nusselt number and Sherwood number for different 

physical parameters have been presented in Table 4.4. Numerical values reveal that the 

chemical reaction parameter  enhances the skin friction and Sherwood number but 

reduced the Nusselt number. It has been observed that the skin friction, Nusselt number, 

as found in [48], and Sherwood number decrease with an increase in Dufour number. 

Skin friction and Sherwood number decrease with an increase in Sr , whereas this trend 
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is quite opposite when s increases. However, Nusselt number increases when both Sr  

and s  increase (as shown in Table 4.4). It can also be noted that with an increase in 

magnetic field parameter Nusselt number and Sherwood number decreases, whereas 

the skin friction increases. It further shows that an increase in R  leads to an increase in 

skin friction, Nusselt number and Sherwood number. 

Table 4.2: Influence of Du on concentration profile )(yC  

y                                           Du  

 0 0.2 0.4 0.6 0.8 

0 1 1 1 1 1 

0.5 0.47568 0.47753 0.47936 0.48118 0.48299 

1 0.21129 0.21352 0.21574 0.21797 0.22020 

1.5 0.09058 0.09250 0.09444 0.09638 0.09834 

2 0.03812 0.03949 0.04087 0.04227 0.04369 

2.5 0.01589 0.01676 0.01764 0.01853 0.01945 

3 0.00659 0.00710 0.00762 0.00816 0.00871 

3.5 0.00274 0.00302 0.00331 0.00362 0.00394 

4 0.00113 0.00128 0.00145 0.00162 0.00181 

 

Table 4.3: Influence of  on temperature profile )(y  

y                                        

               0 0.5 1 1.5 2 

0 0.54548 0.56273 0.57599 0.58723 0.59719 

0.5 0.13617 0.14445 0.15046 0.15533 0.15946 

1 0.03810 0.04089 0.04258 0.04374 0.04461 

1.5 0.01300 0.01344 0.01349 0.01339 0.01326 

2 0.00549 0.00514 0.00477 0.00444 0.00416 

2.5 0.00269 0.00218 0.00182 0.00155 0.00136 

3 0.00142 0.00098 0.00072 0.00056 0.00045 

3.5 0.00077 0.00045 0.00029 0.00020 0.00015 

4 0.00042 0.00021 0.00012 0.00007 0.00005 
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Table 4.4: Skin Friction )( , Nusselt number )(Nu and Sherwood number )(Sh  effects 

  Du  Sr  s  M  R    Nu  Sh  

0 0.2 0.5 2 2 5 1.84012 2.83325 0.74137 

0.5 0.2 0.5 2 2 5 1.89790 2.77706 1.10800 

1 0.2 0.5 2 2 5 1.92764 2.73615 1.37081 

1.5 0.2 0.5 2 2 5 1.94789 2.70291 1.58438 

2 0.2 0.5 2 2 5 1.96625 2.67449 1.77027 

1 0 0.5 2 2 5 1.98041 2.86155 1.37940 

1 0.2 0.5 2 2 5 1.93173 2.73244 1.37163 

1 0.4 0.5 2 2 5 1.88249 2.62176 1.36386 

1 0.6 0.5 2 2 5 1.83259 2.52586 1.35608 

1 0.8 0.5 2 2 5 1.78194 2.44196 1.34828 

1 0.2 0 2 2 5 1.95618 2.68080 1.75932 

1 0.2 0.5 2 2 5 1.86649 2.73578 1.37155 

1 0.2 1 2 2 5 1.79393 2.79868 0.99129 

1 0.2 1.5 2 2 5 1.73869 2.86296 0.61843 

1 0.2 2 2 2 5 1.67737 2.95003 0.25289 

1 0.2 0.5 0 2 5 0.47563 2.14483 0.63175 

1 0.2 0.5 1 2 5 1.11587 2.44572 0.96793 

1 0.2 0.5 2 2 5 1.86649 2.73806 1.35768 

1 0.2 0.5 4 2 5 3.53964 3.24916 2.24203 

1 0.2 0.5 6 2 5 5.29449 3.65413 3.20502 

1 0.2 0.5 2 0 5 0.93954 2.85713 1.37731 

1 0.2 0.5 2 2 5 1.92253 2.75086 1.36987 

1 0.2 0.5 2 5 5 2.65728 2.64741 1.34731 

1 0.2 0.5 2 10 5 3.21054 2.57165 1.30335 

1 0.2 0.5 2 2 0 0.62003 1.42370 1.07310 

1 0.2 0.5 2 2 1 1.19964 1.77307 1.22982 

1 0.2 0.5 2 2 5 1.89071 2.75222 1.34488 

1 0.2 0.5 2 2 10 1.91209 3.57680 1.37436 

1 0.2 0.5 2 2 20 1.91408 4.76568 1.40171 
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4.6 Chapter Summary 

In this chapter, Soret and Dufour effects on the heat and mass transfer MHD flow past 

an impulsively started infinite vertical porous plate with Newtonian heating in the 

presence of thermal radiation, viscous dissipation and chemical reaction have been 

examined using Homotopy Analysis Method (HAM). There is an excellent agreement 

between the exact analytical solution results and the HAM solution results in the 

absence of viscous dissipation and Dufour effect.  The obtained results revealed that 

the fluid velocity increases by increasing Soret and Dufour numbers. However, thermal 

boundary layer thickness decreases with an increase in the Soret number whereas it 

increases with increasing the Dufour number. Moreover, an increase in the Soret and 

Dufour number causes to decrease in the skin friction and Sherwood number. On the 

other hand, Nusselt number decreases when Dufour number increases, and it increases 

with an increase in the Soret number. 

 

 

 

 

 

 

 

 

 

 

 

 



  

CHAPTER 5 

CONCLUSION

 

5.1 Conclusion 

Free convection heat and mass transfer flow past an infinitely moving vertical 

porous plate with three types of different flow models namely, (i) heat generation and 

viscous dissipation (ii) thermal radiation and viscous dissipation effects in the presence 

of transverse magnetic field and (iii) Soret and Dufour effects with thermal radiation, 

viscous dissipation and chemical reaction has been studied subjected to Newtonian 

heating thermal boundary conditions. The governing differential equations are 

transformed into system of coupled non-linear ordinary differential equations with 

suitable dimensionless variables. The resulting nonlinear equations are solved by using 

an analytical technique known as Homotopy Analysis Method (HAM). The HAM 

solution results are compared with the exact solution results for limiting cases and it is 

found that the HAM results coincide well with the exact solution results. The effects of 

the physical parameters on the fluid characteristics are displayed in graphical and 

tabular forms. It has been observed that, the dimensionless velocity increases as the 

thermal Grashof number, Eckert number, heat generation parameter, Soret number, 

Dufour number or mass Grashof number increasing, while it decreases as the Prandtl 

number, suction parameter, magnetic field parameter, radiation parameter or chemical 

reaction parameter increasing. The dimensionless temperature increases as the Eckert 

number, heat generation parameter, magnetic field parameter or Dufour number 

increasing, while it decreases as the Prandtl number, suction parameter, radiation 

parameter or Soret number increasing. Similarly, dimensionless concentration increases 



 

104 

as the magnetic field, Soret and Dufour number increasing, while it decreases as the 

suction parameter, radiation parameter or chemical reaction parameter increasing. 

Furthermore, practically important quantities such as skin friction, heat and mass 

transfer rates have also been analyzed numerically. It was found that the skin friction 

increases as the suction parameter, magnetic field parameter, prandtl number, radiation 

parameter or chemical reaction parameter increasing, while it decreases as the thermal 

Grashof number, Eckert number, heat generation parameter, Soret number or Dufour 

number increasing. The heat transfer rate or Nusselt number increases as the Prandtl 

number, thermal Grashof number, suction parameter, radiation parameter or Soret 

number increasing, while it decreases as the Eckert number, heat generation parameter, 

magnetic field parameter, Dufour number or chemical reaction parameter increasing. 

Similarly, mass transfer rate or Sherwood number increases as the suction parameter, 

radiation parameter or chemical reaction parameter increasing, while it decreases as the 

magnetic field parameter, Soret number or Dufour number increasing. 

5.2 Recommendations for Future Work 

Free convection flow past an infinite vertical porous plate with Newtonian heating 

has been studied in this thesis. Heat generation, viscous dissipation, magnetic field, 

thermal radiation, Soret and Dufour effects have been analyzed on the free convection 

flow in the presence of Newtonian heating. In the literature, nobody has been studied 

these effects on the steady free convection flow past an infinite vertical porous plate 

with Newtonian heating to the best of my knowledge. The hierarchy proposed in this 

thesis provides an excellent guideline to future research work. The research 

contributions at the individual chapters of the hierarchy suggest many more aspects of 

heat and mas transfer under the influence of Newtonian heating. The studied effects, in 

this thesis, can be examined with two dimension steady free convective flow along a 

vertical porous plate with Newtonian heating. Furthermore, Hall current effect can be 

analyzed on one or two dimension steady free convection flow past an infinite vertical 

porous plate in the presence of Newtonian heating. Above mentioned all effects can 

also be investigated on unsteady free convection flow past infinite vertical porous plate 

under the influence of Newtonian heating.  



 

105 

APPENDIX A 

BOUSSINESQ APPROXIMATION 

 

Boussinesq Approximation for Heat and Mass Transfer 

The boundary layer equations for steady state two-dimensional incompressible laminar fluid flow 

are 
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In the boundary layer analysis, the velocity and temperature gradients normal to the surface are 

much greater than those in the direction parallel to the surface [76], [77], in other words 

LLxy    and,~,~ , where  is the boundary layer thickness and L  is the characteristic length, 

is considered. Therefore, the terms of the order of magnitude of 
2)/( L and smaller are being neglected 

in equations (2)-(4) [76]. It follows from equation (3) for boundary layer flow is: 
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Equation (5) indicates that the changes of pressure in the y direction can be ignored in boundary 

layer flows. The transversal momentum equation (2) reduces to the statement that in the boundary layer, 

the pressure is only a function of longitudinal position, 
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The boundary layer equations for momentum and energy are 
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where xddP  is the hydrostatic pressure gradient dictated by the reservoir fluid of density  , 

therefore gxddP    and the momentum equation (7) becomes, 
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Equations (1), (8) and (9) must be solved in order to determine Tvu   and,  in the boundary layer. 

Through the body force term g)(   in the momentum equation (9), the flow is driven by the density 

field ),( yx  generated by the temperature field ),( yxT  . Equations (8) and (9) are coupled via the 

equation of state of the fluid; for example,  

TRP              (10) 

if the fluid behaves according to the ideal gas model [77]. At a level x , we have 
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Equation (12) can be written as 
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Equation (13) describes that the density decreases slightly below  as the local absolute 

temperature increases slightly above the reservoir absolute temperature T . In general, for fluids that are 

not necessarily ideal gases, equation (13) can be written as 
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where   is the volumetric expansion coefficient at constant pressure, 
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Implicit in the first order Taylor expansion (14) is the assumption that the dimensionless product 

)(  TT is considerably smaller than unity. 

The Boussinesq approximation of the boundary layer equations amounts to substituting equation 

(14) into equation (8) and (9) and, in each case, retaining the dominant term. For example, in the 

momentum equation (9),  appears in the inertia terms as well as in the body force term; using 

approximation (14), the inertia terms will be multiplied by the dominant term   constant, whereas 
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the leading body force term becomes )(   TTg . Therefore the momentum equation (9) can be 

written as 
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where     and,,, Tg are constants. Similarly, the thermal diffusivity appearing in the 

energy equation (8), Pck   is assumed constant. 

The governing equations result from laws of conservation of mass, of momentum, of energy, and of 

the diffusing molecular species [81] are simplified for typical free convection flows by the Boussinesq 

approximations, which apply for small diffusion generated by density variations. This simplification 

applies to the continuity equation and to the evaluation of the buoyancy force arising from density 

differences. The set of equations can be written as 
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The Boussinesq approximation concerns the combination xPg  in the momentum equation 

(18). For external free convection flows [77], the local hydrostatic value gxddP   , and the 

pressure difference in the convection region associated with motion. 

Consider the term ggxddP )(     

A series expansion of )(   in terms of CPT   and , at a given elevation indicates that the P

effect may be neglected and that only the linear term of the temperature effect will remain in the

1)(  TT , where CPT 
 ,))(1(  is the volumetric coefficient of thermal expansion. A 
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similar argument indicates that only the linear term of the concentration effect need be retained for

1)(  
 CC , where TPC 

  ,))(1(  is the volumetric coefficient of expansion with 

concentration [81]. Thus, the term )(  g is simplified to the following: 
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Now, the set of governing equations for free convective heat and mass transfer laminar flow becomes 
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