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ABSTRACT 

Vision and haptic are two most important modalities in a medical simulation. While 

visual cues assist one to see his actions when performing a medical procedure, haptic 

cues enable feeling the object being manipulated during the interaction. Despite their 

importance in a computer simulation, the combination of both modalities has not been 

adequately assessed, especially that in a haptic dominant environment. Thus, resulting 

in poor emphasis in resource allocation management in terms of effort spent in 

rendering the two modalities for simulators with realistic real-time interactions. 

Addressing this problem requires an investigation on whether a single modality 

(haptic) or a combination of both visual and haptic could be better for learning skills 

in a haptic dominant environment such as in a palpation simulator. However, before 

such an investigation could take place one main technical implementation issue in 

visio-haptic rendering needs to be addressed. Implementing a real-time interaction 

together with its proper synchronization without using any special computer hardware 

requires extensive computation due to the complex nature of the mechanical 

behaviour of the soft tissue. In addition, multimodal cues that include haptic sensation 

require an update rate of 1000 Hz in order to maintain realism. Thus, a realistic visio-

haptic deformable model development is required but up to certain extent as beyond 

realism, computation is counterproductive.    

This thesis focuses on the development of fast rendering algorithms for real-time 

visio-haptic deformation modelling of soft tissue, in general, and investigation of 

multimodal cues and its extent in a haptic dominant palpation simulator for the 

enhancement of learning skills, in particular. Two visio-haptic deformable models 

were developed. The first is a vertex based visio-haptic deformable model using slope 

intercept form of a line equation and is implemented on the surface mesh model. The 

second is an adaptive area based visio-haptic deformable model, implemented on the 

surface mesh model as well as on a volumetric mesh model in order to capture the 

internal physical properties of the soft tissue. These models are different in terms of
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their visual and haptic realism. The efficiency of the models was improved further by 

implementing an octree space partitioning, and one and two-neighbourhood 

techniques. Both models developed are important in this thesis and are meant to be 

used as test bed for the evaluation. 

An evaluation study consisting of four series of experiments was conducted to 

validate the models and investigate the role of visio-haptic cues in a haptic dominant 

simulator. The results of these studies show that visio-haptic modality was better in 

learning skills as compared to haptic only in a haptic dominant environment. 

Multimodal cues enhanced learning skills in an instructor/ trainee environment as well 

as enhanced the learning skills of trainee in a short-term and long-term memory for 

force and position recall. The findings also stress that the extent of including visual 

and haptic cue into the simulation needs to be considered in order to improve the 

performance of the simulator.  
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ABSTRAK 

Visi dan haptik adalah kaedah yang sangat penting dalam simulasi bagi bidang 

perubatan. Isyarat visual mampu membantu seseorang pengendali untuk melihat 

prosedur perubatan yang sedang dilakukan manakala isyarat haptik membolehkan 

pengendali merasai sentuhan ke atas objek yang dimanipulasi semasa interaksi 

berlaku. Walaupun kedua-duanya penting dalam simulasi komputer, gabungan kedua-

dua kaedah belum dikaji dengan menyeluruh, terutamanya dalam persekitaran haptik 

yang dominan. Kesannya, pengurusan peruntukan sumber adalah tidak 

memberansangkan daripada segi usaha untuk mengubah dua kaedah ini kepada 

simulator bagi interaksi semasa secara realiti. Oleh itu, penyelidikan perlu dilakukan 

bagi mengenalpasti sama ada kaedah tunggal (haptik) atau gabungan kedua-duanya 

yang berkemungkinan lebih baik bagi tujuan pembelajaran dalam persekitaran haptik 

yang dominan seperti di dalam simulator sentuhan. Walau bagaimanapun, sebelum 

penyiasatan sedemikian boleh dilakukan, satu isu pelaksanaan teknikal utama dalam 

pengubahan visi-haptic rendering perlu dijalankan. Perlaksanaan interaksi masa 

secara realiti bersama-sama dengan jajaran yang betul tanpa menggunakan mana-

mana komponen elektronik computer, memerlukan pengiraan yang meluas 

disebabkan sifat mekanikal kompleks yang ada pada tisu lembut itu sendiri. Isyarat 

mod berbilang adalah termasuk dengan sensasi haptik yang memerlukan kadar 

peningkatan kepada 1000 Hz bagi mengekalkan realisme. Oleh itu, pembangunan 

model visi-haptik boleh ubah semasa adalah perlu sehingga pada had tertentu sahaja. 

Langkauan had yang ada boleh menyebabkan keadaan di luar realisme yang sekaligus 

menujukkan pengiraan adalah tidak produktif pada sesetengah situasi. 

 

Tesis ini memfokus kepada pembangunan perubahan algoritma pantas visi-haptik-

semasa untuk model tisu lembut yang bermasalah secara umum, dan penyelidikan ke 

atas isyarat berbilang dan tahap haptik dominan simulator sentuhan untuk 

meningkatkan kemahiran pembelajaran, khususnya. Melalui kaedah visi-haptik, dua
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model yang bermasalah telah dibangunkan. Yang pertama adalah puncak yang 

berasaskan model yang bermasalah (visi-haptik) menggunakan pintasan cerun yang 

didapati daripada persamaan linear dan dilaksanakan pada model permukaan jaringan. 

Yang kedua ialah kawasan penyesuaian berdasarkan model bermasalah (visi-haptik), 

dilaksanakan pada model permukaan jaringan serta pada model isipadu jaringan untuk 

mengenalpasti sifat fizikal dalaman bagi tisu lembut yang bermasalah tersebut. 

Model-model ini adalah berbeza dari segi visual dan haptik realiti. Kecekapan model 

telah dipertingkatkan lagi dengan melaksanakan pembahagian ruang struktur data 

pokok atau Octree, serta satu dan dua teknik kejiranan. Kedua-dua model yang 

dibangunkan adalah penting dalam tesis ini dan bertujuan untuk digunakan dalam 

projek penyelidikan yang besar supaya penilaian yang baik dapat diperolehi. 

Satu kajian penilaian yang terdiri daripada empat siri eksperimen telah dijalankan 

untuk mengesahkan model-model yang ada dan untuk menyiasat peranan isyarat visi-

haptik di dalam simulator haptik yang dominan. Keputusan kajian ini menunjukkan 

bahawa kaedah visi-haptik adalah lebih baik dalam kemahiran pembelajaran 

berbanding haptik hanya dalam persekitaran haptik yang dominan. Isyarat berbilang 

meningkatkan kemahiran pembelajaran seorang pengajar/persekitaran pelatih serta 

meningkatkan kemahiran pembelajaran pelatih dalam memori jangka masa pendek 

dan jangka masa panjang untuk capaian memori seperti daya kerja dan posisi tertentu. 

Hasil kajian juga menunjukkan bahawa keboleh-capaian visual dan isyarat haptik 

terhadap simulasi perlu dititikberatkan dalam usaha untuk meningkatkan prestasi 

simulator. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

A computer simulation enables experiential training systems to take place in the 

medical field. The simulation allows the practitioners to be trained on virtual patients 

[1-3]. The practice supports critical skills analysis and provides feedback on the 

performed procedure. The feedback works as an improvement for the skills before 

instigation training with patients. Simulations can also provide the user with an 

opportunity to practice difficult cases without harming the patients [4]. 

In a medical simulation, vision and haptic are two most important modalities. 

Visual modality allows the trainee to see his actions while performing the procedures 

whereas haptic allows feeling the objects during a training simulation. A situation or 

environment in which haptic feedback is seen as more dominant could be found in the 

example of a simulation involving palpation. Palpation is a medical procedure in 

which the expert with the help of their fingers presses the soft body in order to 

diagnose various abnormalities and/or features through locating the landmarks 

beneath the patient's skin [5]. This procedure is also used by the veterans for diagnosis 

of various stages of pregnancy in animals. The driving force behind the computer 

based palpation simulator are the ethical issues, huge number of experiments per 

patient, and the non-availability of the patients at the right time [6]. In such computer 

based palpation simulators, the practitioner learns skills in performing a specific 

procedure before using his expertise on the real patient especially the internal delicate 

organs such as reproductive tract. The use of visual and haptic feedback in the 

palpation simulator signals their importance, particularly in learning the procedures. 
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Both new and even expert practitioners could benefit from the cues provided. Ideally, 

this practice supports a collaborative process which experts and novices work together 

to achieve a common goal: knowledge transfer. To achieve this goal, both parties 

must build a common ground: a common and consistent representation of the shared 

situation [7]. Integration of both visual and haptic has a potential to accelerate this 

aspiration despite the fact that palpation procedure is more of haptic dominant. An 

understanding on how both modalities could assist in such a training procedure whilst 

taking into account the constraint on the technical implementation is needed. This is 

the central element of this thesis. 

1.2 Problem Formulation 

Multisensory modality is more informative and helps users to learn quickly different 

shapes or procedure as compared to single modality [8] . It has been reported in [9], 

that Visual and Haptic (VH) intervention have progressed in learning different shapes 

as compared to Visual (V) intervention. In addition, Morris et al., [10], showed that 

visio-haptic modalities enhanced force learning skills. However in the findings of 

Srimathveeravalli and Thenkurussi [11] for the positional information recall, have 

stated that visio-haptic is insignificant. Other researchers reported various study 

findings on the importance of visio-haptic information. The visio-haptic training is not 

effective but showed promising results in long-term motor skills [12]. Huegel and 

O'Malley, [13] showed that visio-haptic is effective in the beginning of the learning 

curve, has no significance at the end of the training.  These conflicting results raise a 

question whether visio-haptic cue enhances the learning skills of the practitioner in a 

haptic dominant environment such as palpation. Thus, in the field of palpation dealing 

with elastic objects, a complete evaluation is needed [4]. 

Even though the visio-haptic modality could enhance skill learning, the 

implementation and timely coordination of these cues are computationally expensive. 

The reason being a refresh rate for realistic visualization is 30-40 Hz, while the 

refresh rate of the realistic haptic rendering is 500-1000 Hz [15]. The two most widely 

used methods in physics based deformable models are Mass Spring Model (MSM),  
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and Finite Element Method (FEM) [14]. Mass Spring Model is easy to implement and 

efficient, but still computationally expensive for high-resolution models [15-22; 14]. 

Finite Element Method, although accurate due to its continuous nature but 

computationally more expensive, when compared to the Mass  Spring Model, and is 

therefore not suitable for real time interactive applications in its pure form [16; 23-

26]. Using visio-haptic modalities as compared to visual only or haptic only requires 

more computation and proper synchronization of the two modalities. Therefore, 

efficient visio-haptic deformable models are required for the realization of visio-

haptic cues in the palpation simulators based on the underlying physical properties, 

and without any special graphics or processing hardware. Further, in addition to the 

development of visio-haptic deformable models for the visio-haptic modalities, there 

is also a need for finding the extent of visual cue and haptic cue to be present in a 

haptic dominant simulator such as for the palpation procedure because beyond such 

extent, realism is counterproductive [27]. 

1.3 Research Objectives 

The research objectives of this thesis are: 

 To develop visio-haptic deformable models for a palpation simulator that 

satisfies minimum rendering requirements.  

 To implement the models into a haptic dominant palpation simulator. 

 To evaluate the haptic only and, visio-haptic parameters of the palpation 

simulator for learning skill enhancement. 

 To assess the extent in which the visual and haptic cues are important in the 

visio-haptic modality in terms of the visual and haptic rendering requirements. 

1.4 Thesis Contribution 

The main contributions of this thesis are as follows. 
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1. The development of visio-haptic deformable models that satisfied minimum 

rendering requirements for interactive haptic dominant palpation training 

simulator. 

2. An empirical study on the haptic only and visio-haptic modalities of learning 

skills development. 

 That involves both the instructor and trainee 

 For short-term and long- term memory 

3.  A validation study on the importance of multimodal cues in a haptic dominant 

palpation simulator. 

1.5 Scope of the Thesis 

Even though there is a wide variety of palpation simulator, here the focus of this 

thesis is on palpation simulators in the field of veterinary for teaching and training the 

skills of finding different features in the reproductive tract and the pregnancy levels. 

The reason for choosing palpation simulator in the field of veterinary is twofold: 

firstly, it is a haptic dominant palpation simulator, interacting with the soft objects, 

and the best candidate to evaluate multimodal cues in such a single cue dominant 

environment. Secondly, the existing simulators as reported in [28-31], lack the 

realistic visual and haptic cues based on the underlying physical properties. The visio-

haptic deformable models developed in this thesis are specifically for the palpation 

simulators in the field of veterinary, and the prototype development involves an 

animal internal organ. 

As the main idea is the development of visio-haptic deformable model that is 

adequate in a haptic dominant simulator, and the evaluation of the multimodal cues 

for the enhancement of skills in learning a procedure, therefore, it is not necessary to 

test this model with the vet students in particular. What important is to have a 

prototype as a test bed for the evaluation. In addition, suturing, cutting, and pinching 

of the internal delicate organs are not necessary in palpation, and are therefore out of 

the scope of this thesis. 
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1.6 Thesis Outline 

The contents of this thesis are divided into eight chapters as shown in Figure 1.1. 

 
Figure  1.1: The flow chart of the thesis structure 
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The outline of the subsequent chapters is as follows. 

Chapter 2 presents the related work that starts with issues on multisensory 

modality, followed by palpation simulator, and deformable modelling techniques. The 

choice of modelling techniques is discussed next. The levels of detail are also 

discussed in this chapter. 

Chapter 3 presents the research methodology for this research work. First section 

discusses the model development. Second section discusses the simulation based 

performance evaluation. Third section discusses the experiments, and the 

experimental design. 

Chapter 4 presents the first model that involves vertex based visio-haptic 

deformable method using slope intercept form of a line equation. Shape preservation 

springs are introduced to achieve elastic deformation. For fast collision detection 

between the PHANToM force feedback device and the model, an octree is 

implemented only for haptic cue and; furthermore, for fast rendering two-

neighbourhood method is used for the haptic cue as well. The visio-haptic deformable 

model is simple in implementation, yet efficient. The haptic rendering implements 

Hooke's Law for the haptic sensation when interacting with the deformable model 

during simulation in order to evaluate the effect of visual cue on the enhancement of 

learning skills in a haptic dominant palpation simulator. 

Chapter 5 presents the second visio-haptic deformable model, namely an adaptive 

area based visio-haptic deformable model that is implemented on both the surface 

based as well as volume based mesh models. The region of interest during an 

interactive simulation is refined based on the triangles' area. Mass Spring Model is 

used in a physically realistic tissue representation as well as visually realistic. The 

mass spring model is refined in the region of interest both in the visual and haptic 

cues in order to feel the model at the point of contact visually and haptically realistic. 

The new masses, stiffness, and damping coefficients are computed in order to 

maintain the same physical properties in the refined region as were before refinement. 

The octree space partitioning method is also implemented for the haptic cue and shape 

preservation springs are used in order to maintain the overall shape of the model  
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during palpation in the case of the surface mesh model only. The reaction forces 

computed from the mass spring model are sent back to the user in order to feel the 

object in the haptic channel. 

 Chapter 6 presents four experiments for the evaluation of multimodal cues from 

simple to more realistic in terms of visio-haptic cue, and haptic only for the 

enhancement of short-term and long-term learning skills, the effectiveness of visual 

cue in a collaborative, and the haptic dominant environment, and the extent of visual 

and haptic cue needed in the simulator. The first experiment presents an empirical 

study on the importance of visual cue, for the instructor guiding the trainee during 

skill learning procedure in a collaborative and haptic dominant environment. The 

second experiment statistically analyses visio-haptic modality and haptic only for 

short-term learning skills enhancement, while the third experiment evaluates visio-

haptic modality and haptic only for long-term learning skill enhancement. The last 

experiment evaluates the extent of visual and haptic cues, using one of the proposed 

models with different resolution of multimodal cues for learning skills enhancement, 

as beyond realism, computation is counterproductive. These experiments also validate 

the two visio-haptic deformable models proposed in this thesis. 

Chapter 7 discusses the work presented in chapters four, five, and six. The first 

section discusses the results of the two proposed visio-haptic deformable models 

presented in chapters four and five respectively. The subsequent section discusses the 

experimental work presented in chapter six. 

Chapter 8 presents a summary of the contributions achieved in this work, 

conclusions and possible future work from the thesis. 

1.7 Summary 

This chapter introduced the background study, problem formulation, research 

objectives, main research contribution, and the thesis outline. The main objective of 

this research is to develop visio-haptic deformable models, and then to evaluate visio-

haptic modality versus haptic only modality in a haptic dominant environment as well 

as the extent of visual and haptic cues to be included for realism, as beyond realism,  
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computation is counterproductive. The next chapter presents related work in the field 

of multisensory modality, palpation simulators, and deformable modelling techniques 

specifically for the simulators involving haptic cues. 
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CHAPTER 2 

RELATED WORK 

This chapter presents the related work in the field of multimodal cues, palpation 

simulator, and deformable modelling techniques. The intention is to provide a basis to 

examine the reported work in a similar area in preparation to achieve the research 

objectives specified in chapter 1.  

2.1 Multimodal Cues for Learning Skills Enhancement 

Humans interact with their environment through several modalities: vision, touch, 

audition, gustatory, olfactory. Among these modalities, vision and touch play an 

important role in gathering information from the surrounding environment and store 

representation of the environmental objects. Eighty percent of learning is done 

through vision and estimated above fifty percent of the brain activity are devoted to 

the visual input [32; 33]. Multisensory modality that includes touch is more 

informative and helps users to learn quickly different shapes or procedure as 

compared to single modality [8]. Haptic or touch feedback has become an integral 

component of teaching surgical skills as in [34-36]. Haptics can best contribute to the 

user's learning of skills [37], and to user perceptions of virtual shape objects [38]. 

The results of recent work suggest that haptic and vision when used in 

combination, improved learning skills than any of these modalities used individually 

[8]. Huang et al., [39] used three learning paradigm containing visual only, haptic 

only, and visio-haptic modalities. In all these paradigms, the participants were 

required to excite a virtual oscillator. The finding reveals that visio-haptic modality 

were superior to the other modalities.  
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The authors in [38], examined the impact of haptic feedback on perception of 

unknown objects. They used three treatment groups of students, i.e. visual, haptic, and 

visual plus haptic feedback to explore a set of virtual objects. They found that the 

visual plus haptic group was more accurate in identifying objects than the visual or 

haptic only groups. The authors in [40] found that haptic constraints provide 

significant benefit for both performing, and learning movement patterns. In another 

study, Morris et al., [10], used the three paradigms as a visual display of normal force 

(V), haptic display of normal force (H), and visio-haptic display of normal force (VH) 

for learning a sequence of forces. The  study findings show that using the visual and 

haptic (VH) modalities, the participants are better able to memorize the instructed 

force sequences, and therefore, enhanced force learning skills of the participants as 

compared to visual (V) and haptic (H) modality. Kalenine et al., [9], showed that 

Visual and Haptic (VH) intervention have progressed in learning different shapes as 

compared to Visual (V) intervention. In another study, the authors in [41], used two 

training paradigms, i.e. visual-haptic (VH), and visual (V) for handwriting learning. 

The result showed the improvements of VH training on letter recognition and 

handwriting quality were higher than the improvements after V training. 

A contrast to the above findings, Srimathveeravalli and Thenkurussi [11], in their 

work on the positional information recall, stated that visio-haptic is insignificant. The 

subjects in [42], were asked to reproduce a novel three-dimensional path after 

practising with the mechanical guidance from a robot using haptic guidance with 

visual and visual demonstration. The results showed that the ability to reproduce the 

novel path is improved using both haptic guidance, and visual demonstration. There 

was nearly significant trend for the visual demonstration to be better than the haptic 

guidance [42]. In another work, Xing-Dong et al. [12], reported two experimental 

studies for the investigation of the effectiveness of visio-haptic modality in helping 

people develop  short-term, and long-term motor skills. In the experiment for 

developing the short-term motor skills, the findings of the experiment stated that 

visio-haptic is insignificant. The second experiment shows promising results in 

helping people develop long-term motor skills. Huegel and O'Malley, [13] performed 

an experiment and showed that a visio-haptic modality is effective in the beginning of 

the skill learning and gave same learning results in the post-training. 
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 Due to these conflicting results, a complete evaluation of the haptic only and 

visio-haptic modalities need to be performed in applications, which are only haptic 

dominant in the physical world such as a palpation simulator for the learning skills 

enhancement [4]. The studies in the literature have mainly focused on the learning 

skills enhancement, dealing with the hard objects. Palpation simulators deal with the 

underlying soft and deformable objects. Therefore, a complete evaluation of the 

haptic only and visio-haptic modalities are required in the deformable objects. The 

authors in [43] presented a model that suggests different behaviour using haptic or 

visual information will be exhibited depending on the degree of discrepancy between 

haptic and visual information. Therefore, the next concern is to find the effect of the 

extent of visual and haptic cue to be present in a haptic dominant palpation simulator. 

These two issues are the last two research objectives mentioned in chapter one, and 

along with the visio-haptic deformable model development, are the main subject 

matter of this thesis. 

2.2 Palpation Simulators 

Palpation is a procedure in which the expert with the help of their fingers presses the 

soft body in order to diagnose various abnormalities and/ or features through locating 

the landmarks beneath the patient's skin. The veterans also use this procedure for the 

diagnoses of various stages of pregnancy in animals. The ethical issues, huge number 

of experiments per patient, and the non-availability of patients at the right time are the 

driving forces behind the development of palpation simulators. 

The first simulator developed was a knee palpation simulator, reported in [44]. 

Rutgers Master was used for the force feedback to the simulator. This is then followed 

by a tumour palpation simulator, developed in [45]. In this simulator, the trainee 

palpates the liver to find the hard object as tumour using the Rutgers Master II force 

feedback device. A simulator for prostate cancer was developed in [46]. They used 

PHANToM haptic force feedback for applying force and providing forces back to the 

trainee. The device has in fact influenced the development of other training simulators 

as it is mainly used in the real-time interactions. 
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A palpation simulator for laparoscopic surgery was developed in [47]. The 

PHANToM force feedback was used for rendering the reaction forces during 

interaction with the human liver in the simulator. A haptic pulse palpation simulator 

was developed in [48]. In this simulator, the user is allowed to explore human body 

skin. Once the user reaches the virtual skin through the force feedback devices, he/she 

can feel the pulses generated. In another study, a custom thimble for a PHANToM 

Omni haptic device has been fabricated in a brachial pulse palpation simulation [49]. 

This fabricated thimble transfers the force to a single finger. The pulse intensity 

depends upon the force applied by the user on a particular point on the skin. This is 

shown in Figure 2.1. 

 

Figure  2.1: A haptic pulse palpation simulator [49] 

Other studies that involve palpation training simulators and using the PHANToM 

haptic device in a more effective way could be seen in [50-52]. A Virtual Haptic Back 

(VHB) palpation simulator was developed by [50-52], as an aid for teaching and 

learning palpatory diagnosis. Two PHANToM ® 3.0 force feedback devices were 

used as a haptic interface through which the trainees are allowed to explore the virtual 
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model of the human back. Two PHANToM devices were used in order to use both 

hands in the palpation of the human back. This is shown in Figure 2.2. 

 

Figure  2.2: A virtual haptic back palpation simulator 

The authors in [53] developed a remote diagnosis simulator.  The simulator 

designed for diagnosis of malignancy in the head and neck region. A 3D surface 

model created from computed tomography (CT) is used in the simulation with which 

the user interacts with the PHANToM desktop force feedback device. 

The work on a haptic palpation simulator that supports multiple contact points of 

interaction could be found in [54; 55]. They developed a breast palpation simulator. In 

this simulator, they used multi-finger haptic device named Haptic Interface Robot 

(HIRO), which allow multiple contact points during interaction with the virtual 

model. Mechanical model of the breast with tumours were implemented using finite 

element method. Collision detection resolves multiple contact point, which was the 

focus of this work. The simulation was rendered on a computer monitor but no visio-

haptic collocation was provided. 

The authors in [56; 29] have developed PalpSim for training femoral palpation 

and needle insertion. They also developed a novel low cost device for femoral 

palpation. User can use both of his hands during training through PalpSim with 5 
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degrees of freedom as shown in Figure 2.3. In this simulator, the haptic devices 

integrated with augmented reality. This is the first simulator that uses Chroma-key 

technology for immersive augmented reality environment. The benefit of such 

environment is that haptic tools are seamlessly collocated with the virtual patient in 

the simulator. 

 
Figure  2.3: An illustration of virtual patient palpation in PalpSim [56] 

 Recently Sebastian [57] proposed a novel approach for tissue dragging in a haptic 

palpation for medical simulation. The stylus of the PHANToM force feedback device 

is modified by adding a lightweight palpation pad. They provided a detailed 

description of an extensive user study for the face validity of the simulator. 

In the field of veterinary medicine, a rectal palpation simulator has been 

developed in the Royal Veterinary College, London United Kingdom. The first 

palpation simulator developed was Horse Ovary Palpation Simulator (HOPS) by [28]. 

The horse ovary is palpated through the PHANToM force feedback device. This 

training simulator is using a simple graphics interface and is used to palpate and 

diagnose the ovary only. 

Following the development of HOPS from the same university, another simulator 

called bovine rectal palpation simulator for identifying through palpation the various 

structures such cervix, ovary, and uterus in the reproductive tract of a cow are 
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developed by [30]. The PHANToM force feedback device is positioned inside a 

fibreglass model of a cow as shown in Figure 2.4. 

 

Figure  2.4: An instructor is training trainee during palpation [30] 

A mixed reality palpation simulator is developed for Feline abdominal palpation 

containing the physical model and virtual reality [58]. Two PHANToM force 

feedback devices are used for palpating the physical model. 

The simulators developed in the field of veterinary [30; 31; 28; 58] have a simple 

graphical model but lack the interactive visual deformation during the simulation. 

This lack of visual cue, in addition, restrict an instructor in properly guiding the 

trainee, learning is a collaborative process in which instructors and trainees work 

together toward a common goal: knowledge transfer [59]. Most importantly, the 

haptic sensation needs to be based on the physical properties of the soft tissue. A 

further improvement on the deformable modelling methods in order to improve 

realism, both in the visual and haptic sensation, allows mimicking the gap between 

virtual and real. In addition, the haptic sensation is based on the Hook's Law, and not 

on the underlying physical properties [58; 31; 30]. Therefore, realistic visual and 
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haptic cues are required in the veterinary palpation simulators to enhance the learning 

skills of the trainees. 

In this thesis, a bovine rectal palpation simulator is chosen as a Testbed for the 

implementation and validation of the proposed visio-haptic deformable models. The 

simulator is also used for the evaluation of haptic only and visio-haptic modalities for 

the enhancement of short-term and long-term learning skills. The assessment of the 

extent of visio-haptic cues for learning skills enhancement is carried out using this 

palpation simulator. Furthermore, the simulator is also used for the evaluation of 

multimodal cues due to the lack of interactive visual deformation and without having 

realistic haptic sensation based on the physical properties of the soft tissue in the 

existing simulators. 

2.3 Deformation Modelling Techniques 

Soft tissue has the property of elasticity in which the shape of the tissue is retained 

when the external forces are removed. Therefore, methods for modelling soft tissue 

must consider rapid response during such a manipulation. It should closely 

approximate the behaviour of soft tissue while deforming and should appear realistic, 

as one has to feel dealing with the real soft tissue. If augmented with haptic feedback, 

the model also has to calculate the reaction forces. Although there are many 

techniques for soft tissue simulation in the literature, but here the focus will be on the 

techniques of real-time in which there is an interaction of users with the soft tissue 

through force feedback devices. 

Deformable models could be defined based on the dimension. It may be one-

dimensional (Lines and Curves), two-dimensional (surfaces) and three-dimensional 

(Solid Objects). Irrespective of the dimensionality of the deformable models, these 

models can be divided into two broad categories, nonphysical deformable and 

physical deformable models. The subsequent sections discuss these categories in 

detail. 
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2.3.1 Nonphysical Modelling 

This category is also known as geometric modelling. In nonphysical modelling, the 

geometry of the model is directly manipulated, but the internal physics and dynamic 

interactions are not considered. These techniques are computationally efficient and 

greatly rely on the skills of the designer rather on the principles of physics. Two 

approaches in geometry based are vertex based and spline based used for deformation 

[60]. 

2.3.1.1 Vertex Based Modelling 

In this method, while deforming an object visually, the vertices of the body are 

manipulated directly. All the points in the region of interest are deformed in such a 

way that shows realistic deformation visually. This is the most basic and efficient 

method of visual deformation. 

A vertex based deformation is used in laparoscopic simulation for visual 

deformation [61]. In order to deform the soft tissue locally, they translated all vertices 

within a certain range, called the radius of influence, of the collision point along the 

surgical instrument. The magnitude of translation is controlled by the second order 

polynomial while the shape of the deformation is by the degree and the coefficients of 

the polynomial. This method is only applied for visual deformation. In real-time 

interactive simulation, this method is very efficient in terms of ease of computation 

and implementation but lack the physical properties of the soft tissue. 

2.3.1.2 Spline Based Modelling 

This method is mainly used for Freeform deformation. In a Freeform deformation, the 

object to be deformed is embedded in a linear cube of the grid. This grid acts as a 

handle for the deformation of objects. Changing the handle position deforms the 

object embedded in it as shown in Figure 2.5. 
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Figure  2.5: NURBS (Non-Uniform Rational B-Spline) surface. (a) A light grey 

surface at the centre is controlled by yellow points. (b) Deformation of surface by 

moving control points 

Sederberg and Pary [62], who deform objects by distorting the space in which it 

contains, propose the pioneering work in this field. This method was used both for 

local and global deformation and the method is based on trivariate Bernstein 

polynomials. Davis and Burton [63] used Rational Bernstein bases. The authors 

Lamousin and Waggenspack [56] used Non-Uniform Rational B-Spline (NURBS) to 

achieve Freeform deformation. Griessmair and Purgathofer [64] used a trivariate 

basis-spline (B-spline). Hsu et al., [65], proposed a method in which points on the 

surface of the embedded object is manipulated directly. Song, and Yang [66];  

proposed a weighted T- spline free form deformation (w-TFFD) method. The main 

advantage of this method is that multi-resolution control lattices can approximate any 

complex shapes tightly and automatically. 

Although this technique is useful for model building and for computer animation, 

it is inappropriate for real-time simulation. The reason is that it does not work on the 

geometry of the model directly. Soft tissue properties lay in the geometry and hence 

this technique does not consider these properties in the simulation. To cope with this 

situation some works have been done as in [15]. It combined the Spline based 

deformation with the mass spring model. This method incorporates the physical 

behaviour of the system. 
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2.3.1.3 Skeleton Subspace Deformation 

Skeleton Subspace Deformation (SSD) is the most widely used methods in interactive 

applications especially in the interactive video game industry. The reason for its 

popularity in the video game industry is its ease of implementation and computational 

efficiency and produces good visual results during simulation. 

Skeleton Subspace Deformation techniques as shown in Figure 2.6 combine the 

surface geometry of the model with or the internal vertices with the skeleton by 

assigning a set of bones and a weight for each influence to each vertex. The position 

of the deformable vertex is obtained by transforming this vertex rigidly related to each 

of its effect weights and then these weights are used as coefficients to compute a 

linear combination of these transformed positions as the final position [67]. 

 

Figure  2.6: An example of skeletal deformation [68] 

In SSD, two main drawbacks are that deformation is restricted only to the 

subspace and if some of the bones are out of the subspace, it cannot affect the 

deformation although they should do so. The second drawback is that users are not 

allowed to manipulate the vertices directly [67; 69]. 
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2.3.2 Physical Modelling 

These models simulate the physical behaviour of objects and consider the internal and 

external forces. These methods are more appropriate in soft tissue modelling and 

therefore have been used extensively in the medical application such as training. In 

physical modelling, there are three popular methods for simulating deformable 

models in real-time simulation. These are the Mass Spring Model (MSM), Finite 

Element Method (FEM), and the Boundary Element Method (BEM). 

These methods are discussed in detail in the subsequent subsections. 

2.3.2.1 Mass Spring Model (MSM) 

An MSM is a popular approach in physics based deformation. The reason for its 

popularity is that it is efficient and easy to implement. The MSM considers a 3D 

surface or volume as a finite set of discrete mass points, also known as nodes. These 

nodes are then connected with each other through massless springs forming a lattice 

as shown in Figure 2.7. The total mass of the object being modelled is distributed 

among these nodes. The deformation occurs when some external forces such as 

gravity or user-applied forces displace the nodes, and internal forces in the form of 

spring force. Stronger the spring force, the stiffer is the object it represents. 

 
Figure  2.7: A mass spring model with nodes connected through springs 
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The discretization of the model may be triangular patches in which springs 

represents the edges of the polygonal surface mesh and, nodes are the vertices as 

shown in Figure 2.8, [70-76], or Ti - meshes in which each vertex of the mesh is 

connected with the constant number of i+1 next vertices as shown in Figure 2.9 for T2 

- mesh, [77-79].  In the Ti - meshes, T2 -meshes are chosen because of its resemblance 

with the triangular meshes and most of the graphics cards are typically optimized for 

triangular surface meshes [80]. 

Various numerical methods are used for defining positions of nodes and thus 

important to retain the shape of the object. 

 

Figure  2.8: A triangular mesh with springs forming triangular elements 

 

Figure  2.9: A T2 -mesh having every node connected to its three neighbours 

Spring exerts spring force on both of the nodes connected to it. Rest length l is the 

length of spring in the initial configuration that defines the shape of the body. When a 
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node is allowed to change its position from u1 to u2 and its velocity from v1 to v2 then 

the internal force intF  can be calculated according to Hooke’s law as [81]: 
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where  int
1F  and int

2F  are the spring forces on nodes 1 and 2 respectively. In an 

Equation 2.1, sk  is a spring constant and dk  is a damping coefficient for the 

resistance against the relative motion between nodes 1 and 2. l  is the rest length of the 

spring. 21 uuu   , is the actual distance between two point masses, and 21 vvv   

is the difference of velocities of two point masses. Spring force is proportional to the 

difference in length of the spring and damping force is proportional to the difference 

of velocity of the point mass. 

As each node is connected through springs to many other nodes in the model 

therefore, all these neighbours exert forces on this node and this force is the sum of all 

spring forces acting on it and is calculated using Equation 2.3 [81]. 
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where ௜ܰ is the set of nodes connected through springs with node i, i
jk  is the spring 

stiffness between node i and node j, while  || ij uu   and 0|| ij uu  are its current 

and initial length, respectively. 

The dynamics of N nodes in an MSM under the external force extF  is governed by 

Newton’s law of motion and is given in Equation 2.4. 

ݑ̈ܯ + ݑ̇ܥ + ݑܭ =  ௘௫௧                   (Eq. 2.4)ܨ

where M, C, and K are the 3N X 3N mass, damping and stiffness matrices, 

respectively. The vector extF  is a 3N- dimensional vector representing the total 
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external force on the node. The system has evolved forward through time by 

rearranging Equation 2.4 as a system of first order differential equations: 

ݑ̇ = Mିଵ(−ݒܥ − ݑܭ  ௘௫௧)                   (Eq. 2.5)ܨ	+

 

vu                       (Eq. 2.6) 

where v is the velocity vector of the system of nodes. During a simulation, the 

acceleration, velocity, and position of each node are updated at discrete time points 

spaced by discrete time steps and therefore known as discrete time system.  

There are many numerical integration techniques available which is used to find u 

and v as a function of time such as finite Euler’s differences [71; 73; 82; 83] and 

Runge Kutta order four methods. The fourth order Runge Kutta solution for the first 

order differential equation of the form [84]: 

(ݔ)ᇱݕ = ,x)ܨ y)                                           (Eq. 2.7) 

is found by iterating the equation: 

௡ାଵݕ = ௡ݕ +
ଵ
଺
(݇ଵ + 2݇ଶ + 2݇ଷ + ݇ସ)       (Eq. 2.8) 

Where  ݇ଵ	, ݇ଶ, ݇ଷ , and ݇ସ are constants and calculated as: 

      ݇ଵ = ,௡ݔ)ܨ	ݔ∆  ௡)                                               (Eq. 2.9)ݕ

݇ଶ = ௡ݔ)ܨ	ݔ∆ +
∆௫
ଶ
, ௡ݕ +

௞భ
ଶ
)                            (Eq. 2.10) 

݇ଷ = ௡ݔ)ܨ	ݔ∆ +
∆௫
ଶ
, ௡ݕ +

௞మ
ଶ
)                            (Eq. 2.11) 

݇ସ = ௡ݔ)ܨ	ݔ∆ + ,ݔ∆ ௡ݕ + ݇ଷ)                          (Eq. 2.12) 

Runge Kutta method is more stable than Euler's methods and because of its 

stability, larger time steps can be used in the simulation. The acceleration factor of 

two with respect to Euler's method could be achieved when the Runge Kutta method 

is implemented in the simulation [85-87]. 
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The pioneering work and giving the name deformable models for the first time 

goes to [88; 89]. In [19], the author applied dynamic mass spring systems to facial 

modelling. As a human face have three layers of tissue namely the dermis, a layer of 

subcutaneous fatty tissue, and the muscle layer. They constructed a three-layer mesh 

of nodes as shown in Figure 2.10. 

 

Figure  2.10: A three-layer mesh representation of skin used by [19] 

Different spring constants were used to model different tissue layers based on 

tissue properties. 

After the pioneering work done [88; 89; 19], this approach has been used for cloth 

simulation [90; 91], face animation  [92], and importantly for soft tissue behaviour 

modelling in surgery training simulator. 

In the field of surgery and training simulators, the authors in [14], were the first 

who presented real-time models for surgery simulation. They used a simple surface 

based MSM for simulating the real-time deformation of the gallbladder. The authors 

in [93], made a prostate model. This model is based on MSM for the underlying 

physical properties of prostate. The model simulates tissue deformation in real-time 

environment due to resection. The authors in [94] and [20] applied the MSM to the 

simulation of interactive cutting of deformable anatomy. The mass spring model is 

used for both visual and haptic rendering of progressive suturing in [21]. Real-time 

simulation of heart deformation is also implemented using the mass spring model in 
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[22]. Their model consists of an inner and outer surface. The two surfaces are also 

connected with each other to simulate the forces between surfaces. They later 

incorporated the model with GPU (Graphics Processing Unit) acceleration, for 

simulation of operations such as cutting and opening of the heart [95]. They provided 

a powerful tool for cardiac surgeons to examine the anatomical structure of the 

patient’s heart easily, and to practice possible surgical operations before real surgery. 

The authors in [96] proposed an improved mass spring model for surgery 

simulation. Although the model is a mix of mass spring model and FEM for 

nonlinear, incompressible, and anisotropic soft tissue but it maintained the advantages 

of mass spring models such as simple architecture, low memory and fast computation. 

The model is used to simulate the human kidney at an update rate of 100 Hz for a 

mesh of about 1000 tetrahedrons (on a PC Intel ® Core™ quad 2.40 GHz, 1GB 

RAM, and an NVIDIA GeForce 8800GTX GPU). 

Basafa and Farahmand [97] used mass spring-damper model for real-time 

simulation of soft tissue deformation due to laparoscopic surgical indenter and the 

algorithms developed to achieve an update rate of 150 Hz for the haptic manipulation. 

Despite its extended use in various types of deformable models, there are 

unsolved problems with the mass spring model for modelling soft tissue. There are 

two main problems in a mass spring model for modelling soft tissue. 

 As soft tissue is nonlinear, anisotropic, and inhomogeneous, therefore 

setting its stiffness parameters is a big challenge. 

 Further problems can occur during the simulation of stiffer materials. 

Large values of stiffness constants if used can lead to numerical instability 

and small step is a compromise on performance.  

Research is still ongoing about addressing the first problem of parameter finding 

for the mass spring model. Etzmuss et al [98], established a link between mass spring 

model and the classical theory of elasticity. Bianchi et al., [99] used genetic 

optimization algorithm  to find the topology of the mass spring system. D'Aulignac et 

al., [100] used a layer of 2D linear springs and dashpots supported by nonlinear 

springs is used in the dynamical deformation of the human thigh and is simulated. 
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Baran and Basdogan [17], used a novel approach which first conduct static 

indentation, stress relaxation experiments on the Finite Element (FE) model to record 

force versus displacement and force versus time responses of the surface nodes, and 

used this data to calibrate the mass spring model. Natsupakpong and Cenk [18], used 

a method to determine mass and spring constants of the mass spring model using a 

FEM as a reference model by minimizing the error of stiffness matrices of FEM and 

MSM through an optimization. However, practically acquiring such a reference model 

is also a problem in itself. 

The second problem with the mass spring model is numerical instability. 

Increasing the stiffness value for modelling stiffer materials can lead to instability 

problems and the system blows up after a few iterations. One solution to this problem 

is to use small step size but in doing this way will increase computational burden, 

which is not feasible in real-time interactive simulation. 

 

2.3.2.2 Finite Element Method (FEM) 

FEM is the most common and accurate method for modelling soft body behaviour. It 

formulates soft tissue deformation in a continuous domain. It is directly dependent on 

the theory of elasticity and therefore provides a good approximation for the complex 

geometry of deformable models. The main principle of FEM is that it models the 

stress-strain relationship of soft object by discretizing it into a set of polygonal or 

polyhedral elements (usually triangular elements in 2D and tetrahedral elements in 

3D) as shown in Figure 2.11. At the boundaries of the elements are the nodes. 

The displacement of any point within an element is achieved by interpolating the 

nodal displacements of that element. Deformation of each element is first evaluated 

based on the stress-strain relationship and then assembled to yield the deformation of 

the original object [16].  
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Figure  2.11: An illustration of elements and its boundary nodes [101] 

Both the linear and nonlinear FEM have been used for modelling the mechanics 

of soft tissue. These linear and nonlinear FEMs cannot be simulated in real-time in its 

pure form due to the steps involved in setting-up and running a finite element 

calculation. Therefore, researchers in both linear and nonlinear FEM have focused 

efforts on optimizing finite element based computational techniques to be applicable 

in real-time simulations. 

a) Linear Finite Element Methods 

Linear elasticity based FEM are the most widely used techniques for modelling soft 

tissue deformation in surgical simulations. Linear FEM considers the linear material 

mechanics. It is computationally fast and stable simulation is possible because the 

stiffness matrix is constant. In addition, most of the computation is done in the offline 

before actually starting real-time simulation, which further guarantees efficiency 

[102]. In this method, only two constants Young’s Modulus (E) and Poisson’s Ratio 

(v) are required to describe isotropic and homogeneous materials, therefore  
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implementation is simple and computationally efficient and hence enables real-time 

haptic rendering. This method is most suitable in simulations where small 

deformation is required because it can model deformation accurately up to 1%. 

Bro-Nielsen was one of the first researchers to apply the FEM for real-time soft 

tissue modelling [103]. In [104], the authors proposed a condensation method. By 

using the condensation method, he removed the internal nodes from the matrix, which 

allowed selective matrix multiplication and therefore minimized the computational 

cost. Although the model was volumetric, they simulated only the surface nodes and 

ignored the internal nodes. In this they achieved a refresh rate of 20 frames per second 

for a human leg from the Visible Human Data Set made of 700 system nodes (only 

surface nodes), when the force was applied to three nodes. The simulation was 

implemented on Silicon Graphics ONYX with four MIPS R4400 processors using the 

SGI Performer library. However, in those cases when the topology of the model 

changes then with this change in topology, the stiffness matrix needs to be updated 

which affect the performance of the simulation.  

A novel method is proposed for deforming a volumetric model in real-time as in 

[105]. Linear static model is used which allows haptic interaction in real-time. FEM is 

built on a mesh of tetrahedral elements. They used two types of nodes, fixed which 

cannot be displaced in space and free nodes, which are free to move upon applying 

force during haptic interaction. The reaction forces were computed by FEM using the 

formulation of the elasticity theory. In order to decrease the memory for storage of 

tensor, only those tensors were kept in the memory whose maximum eigenvalue was 

greater than the predefined threshold. In this way, for a live model of 940 nodes, 60% 

memory consumption was reduced. To achieve interactive simulation, the 

computation of displacement field and the reaction forces were reduced to a linear 

combination. The real-time interactive deformation of liver during surgery with a 

force feedback device is shown in Figure 2.12. 
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Figure  2.12: Left: Surgeon moves a virtual tool via force feedback device, Right: 

Real-time deformation of liver [104] 

In [104], the authors developed real-time haptic surgical simulation based on a 

modified FEM. The huge computations were performed during the preprocessing 

stage of finite element calculation and the results were stored in files to be used 

directly in the simulator. They also developed three-dimensional anatomical models 

of liver using data from computed tomography and used linear elasticity based 

modelling to simulate its real-time deformation. They achieved a high frequency 

(>300Hz) for touch sensation in the simulator. The surgeons tested the simulator and 

proved that generated sensations were close to reality. 

Rhomberg [106], and Székely, et al., [107], have been proposed a parallel 

framework for fast soft tissue deformation. The linear system representing internal 

forces that were assembled and solved at the elementary level. Then the forces 

between elements were balanced using interconnecting nodes. As the framework is 

parallel, each finite element model can be assigned to a different processor computing 

the internal forces of several elements. The different processor has communication 

with each other therefore if forces between several elements can be balanced by 

interchanging the data. For an efficient communication between processors, the 

optimal distribution of elements among processors is required. 

The model described above was also implemented in Endoscopic Gynaecology. 

The main goal was to achieve haptic real-time interaction using a PHANToM haptic 

device and a cluster of PCs performing the computations. The prototype of the 
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simulator was described in [107]. The simulation of interactive deformation is shown 

in Figure 2.13. 

 

Figure  2.13: Left: A Finite element model of Uterus containing 200 

elements. Middle and right: Simulated deformation of the corpus and 

Fallopian tube of the uterus [107] 

The above model was used in the project named as Epidaure and were 

successfully implemented in the haptic surgery simulator, using Alpha station for 

computations and Pentium station with Laparoscopic Impulse Engine for interaction 

[108]. 

A static model of linear elastic finite element model for simulating real-time 

interaction in haptic virtual environment was presented in [109]. To achieve the 

higher refresh rate for the real-time haptic interaction, the small area paradigm is 

introduced. It is assumed that the area affected by the haptic device is small. This 

made the computation faster and possible for real-time simulations. They simulated a 

model made of 10,000 tetrahedra on Silicon Graphics ONYX2 with eight 250MHz 

processor and showed good results during real-time interaction. The combination of 

pre-computation and condensation is proposed in [110]. The complex computation of 

finite element equation was performed offline and the results were stored in a file for 

on-line usage. This method increased on-line simulation process by a factor of one 

thousand. The model can be deformed interactively at a graphics speed of 20 frames 

per second using SGI/Onyx2 300 MHz MIPS R12000. The authors in [111] 

developed a banded matrix technique for FEM in real-time deformation and force 

feedback. Banded Matrix is used to optimize finite element model for calculation in 

real-time interaction with soft tissue. In this technique, only surface nodes were 

considered and internal nodes were ignored. The author reported that banded matrix 
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method was superior to conventional finite element equations based on calculation 

time requirement. The limitation of this technique is that the original mesh could be 

changed while running the simulation. 

A robust adaptive method for simulating dynamic deformations of a viscoelastic 

object in real-time was developed in [75]. They used a novel automatic space and 

time adaptive level of detail technique, along with a large displacement (Green) strain 

tensor formulation. In this method, they partitioned the model into a non-nested 

multiresolutional hierarchy of tetrahedral meshes. The model is refined at the point of 

deformation. The user interacts in real-time with the dynamic object through the 

control of a rigid tool, attached to a haptic device driven by forces derived from the 

method. Their method ran in the visio-haptic simulator. The technique is shown in 

Figure 2.14 in which different models are deformed using a force feedback device. 

 

 

Figure  2.14: Top Left: Liver model deformation. Top right: Multi-resolution model of 

liver. Bottom Left: Toy model deformation. Bottom Right: Multi-resolution model of 

a toy [102] 

A linear viscoelastic model was developed in [25]. The approach was based on 

pre-calculation phase: first, the force response of a surface node and the 
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displacements of the neighbouring nodes were recorded for a unit step displacement, 

being applied for 30 seconds, the recovery of the nodes during 30 seconds was 

computed and stored after1 ms unit step force was applied. The two sets of the data 

were then used for stable haptic interaction. 

b) Nonlinear Finite Element Methods 

The physical behaviour of soft tissue may be considered linear if the deformation of 

soft tissue remains small i.e. less than 10% of the total mesh size [112; 113]. As soft 

tissue is nonlinear therefore linear FEM are not suitable for soft tissue modelling. 

Therefore, limitations of linear FEM is that it is not suitable for simulating the 

nonlinear behaviour of soft tissue and large deformation. To achieve high realism, 

considering nonlinearity is important although difficulties in implementation. 

 Authors in [114], proposed a real-time deformable model based on nonlinear 

elasticity and anisotropic behaviour and finite element method. By introducing this 

nonlinear elastic component, they overcome the elongation limit of 10% of the total 

mesh size with reasonable accuracy. The elasticity of soft tissue was modelled using 

St Venanat Kirchhoff elasticity model. To simplify the finite element equations, the 

mass lumping method was used and the explicit scheme was used for real-time 

simulation. The results of the deformable model concerning rotation showed that 

nonlinear model was more realistic than the linear model. The constraint of 

incompressibility was also added which posed check on the growth of individual 

elements. In case of force computation, nonlinearity is included in the area of contact 

with the soft tissue while the rest of the model is treated as linear. The method works 

as; for each vertex in the model, first linear part of the force is computed and then the 

nonlinear part is included only if the displacement of the vertex is larger than a 

threshold. In this way, a refresh rate of 25 Hz for a mesh of 2000 tetrahedra was 

achieved. The realistic haptic interaction was provided using force extrapolation. The 

main drawback of this model is however, the computation time required. Going 

beyond the threshold during simulation there is a shift from a linear model to fully 

nonlinear model and the update rate due to this shift for the liver model they simulate 
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dropped from 45Hz to 8Hz, which is an 82% decrease in the update rate. In real-time, 

however this can be an expensive choice. 

The authors in [115], proposed an adaptive refinement scheme based on dynamic 

progressive meshes for realistic simulation of deformable objects using nonlinear 

FEM. They considered both geometric and material nonlinearities. Most of the 

computation is performed offline for a short time to be used during real-time mesh 

refinement. For this purpose, they used a hierarchical mesh structure, and the 

geometric and finite element parameters were pre-calculated offline for each level of 

the hierarchy. In their method for stability, they used explicit time integration scheme 

with the central difference method. Modelling a liver tissue made up of a mesh of 

2200 vertices was simulated at a refresh rate of 20 frames per second on an 800 MHz 

Pentium III PC as shown in Figure 2.15. 

 

Figure  2.15: Tetrahedral liver model simulated using nonlinear FEM [115] 

Although both types of nonlinearity were considered, the main limitation of the 

concept was redistributing vertices for optimal mesh quality. 

The authors in [23] proposed a graphics processing unit (GPU) based algorithm 

for interactive simulation of nonlinear soft tissue. They implemented nonlinear total 

Langrangian explicit dynamics (TLED) algorithm on the GPU. They compared their 

GPU based algorithm with the CPU (Central Processing Unit) only based algorithm 

and found speed improvement of 18.6X. 
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A suite of finite element algorithms for accurate computation of soft tissue 

deformation is presented in [116]. The main theme of these algorithms is to use the 

total Langrangian formulation for the solution of finite element problems. The 

algorithms also cover important issues that were related to time integration, hour 

glassing, volumetric locking, and contacts. Nonlinear model was used for large 

deformation. Reaction forces of 1000 Hz for a mesh containing 2000 hexahedral 

elements were achieved during simulation on a simple PC workstation. 

Interactive deformation using modal analysis was presented in [24]. It transforms 

the nonlinear equations of a system into a good linear approximation and then finding 

a coordinate system that diagonalises the linear approximation. This method deformed 

complex models in interactive manner. However, for long, thin, and highly 

deformable objects where nonlinearity dominates, this method is not feasible. 

An approach based on pre-computation is proposed in [117]. This method allows 

interacting with complex objects having nonlinear geometric properties in real-time 

using force feedback devices. Although geometrically nonlinear but the model 

material properties they used were linear. A new computational approach was 

presented in [25], for visio-haptic interaction with a finite element model of a human 

liver. The model has nonlinear material and geometric properties. This method works 

in two steps: a pre-computation of the configuration space of all deformation 

configurations of the model and the interpolation of the precomputed data for the 

calculation of the nodal displacement and reaction forces that are displayed to the user 

through the real-time interaction through a visual display and haptic device, 

respectively. The simulation using this method is shown in Figure 2.16. 

 

Figure  2.16: Different deformation profiles during a simulation [25] 
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The main limitation of this method is computational time required for the pre-

computations. Also computing configuration spaces for each model and parameter 

setting is inconvenient.  

A hybrid technique for real-time haptic interaction with the nonlinear human liver 

model is presented in [26]. In this method model order reduction (MOR) known as 

Karhunen – Loeve was used to reduce system complexities. The refresh rate for visual 

and haptic was achieved for liver simulation. 

2.3.2.3 Boundary Element Method (BEM) 

In this method, the surface of the deformable object is discretized into a finite number 

of elements. The interior of the object is not discretized which results in reducing the 

size of equations to be solved as compared to FEM. The BEM has an edge in the VR 

applications that requires real-time interaction with the forces being applied to the 

deformable objects.    

The authors in [118], used BEM for the real-time simulation of linear elastic 

model incorporating the force feedback device and suggested surgical simulation as 

an application. In [119], the authors designed a VR simulator for neurosurgery based 

on BEM also with the force feedback device. They implemented operations such as 

prodding, pinching, and cutting of deformable objects.  

Although many techniques for deformable model exist, there are no one 

techniques which has all of the characteristics i.e. speed, robustness, physiological 

realism, and topological flexibility which is needed in virtual reality applications such 

as surgical simulation [120]. 

2.4 Choice of Modelling Technique 

The above section discussed many techniques, but mass spring model and finite 

element method are two main techniques for modelling soft tissue behaviour. 

Choosing any one technique depends upon the application. Each method has its own 

advantages and disadvantages. However, in case of interactive deformable models 
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only computation time is the most important factor to consider. The other factors are 

accurate responding, mechanical feedback, real-time simulation, nonlinear and non-

homogenous model, and type of user interaction such as deformation, prodding, and 

cutting. 

If an accurate response and mechanical feedback are the requirement in the 

simulation, then both finite element method and mass spring model can be used. Also 

for linear and nonlinear material properties, both methods could be used. However, 

the key factor in choosing a modelling technique is the computation time required in 

real-time interaction. The model must fulfill real-time performance while not 

comprising on the accuracy as well. 

To compare the performance of the mass spring model with linear FEM, Zhou et 

al., [121] showed that computation time for a linear elastic finite element was 45% 

more than the one observed in mass spring model for small deformation. Now to 

compare the mass spring model with nonlinear FEM, we need to see the work of 

Rasmusson, Mosegaard, and Sorensen [122], and Comas et al., [123]. In [122] for a 

heart modelled using mass-spring-damper system with 88347 degrees of freedom, 

their implementation of GPU reached 5515 frames per second. On the other hand in 

[123], a GPU implementation of a TLED using a cube with 89373 degrees of 

freedom, obtained a simulated performance of 1000 frames per second. These two 

results show that the mass spring model performs 5.5 times faster than the nonlinear 

FEM under the same conditions. 

Therefore considering the above facts it is clear that the mass spring model is a 

good choice for soft tissue modelling. In this thesis, mass spring model is considered 

for soft tissue modelling as well. 

2.5 Levels of Detail 

Due to the ease of implementation and efficient, mass spring model has been used 

extensively in the animations and real-time interactive applications [124]. Simulation 

and the accuracy of the model in mass spring models are largely dependent on the 

number of nodes and springs used in the simulation. In each time step these nodes and 
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springs needs to be updated. In an interactive real-time simulation using the force 

feedback device, there is a very short time for updating nodes and springs. Therefore, 

if the number of nodes and springs are increased in the model, then the realistic 

simulation using the mass spring model is even a challenge. 

In case of complex mass spring model, the nodes affected by the external force 

are only a subset of the total nodes. The rest of the nodes usually remain stationary or 

oscillate invisibly. When all the nodes of the model are used for the computation of 

deformation, the numerical computation becomes larger and becomes a hinder in the 

real-time interactive applications. In most of the real-time interactive applications, the 

user is mainly interacting with the small portion of the model through a force 

feedback device. Therefore, levels of detail (LoD) methods are combined with the 

physics based methods in order to reduce the computational load [125]. 

The first attempt made in surface based deformable modelling is the simulation of 

draped cloth by refining the cloth in the region of high curvature [126]. An adaptive 

mass spring model was used for cloth representation. In this method, there was no 

simplification method. The authors in [92] used loop subdivision to refine the region 

of high deformation in the rendering of physics based facial animation system. They 

applied their proposed method to surface based deformation. 

In volumetric based deformable models, authors in [127; 128; 75] used to 

combine linear finite volume based mechanical model with the non-hierarchical 

refinement method, which was based on a Voronoi's concept and was adaptive in 

nature in both time and space. They used ghost nodes, which transmitted the 

mechanical behaviour of the model from one resolution level to the next different 

resolution level. An adaptive scheme used with nonlinear FEM is proposed in [115]. 

The proposed scheme for mesh adaptation was based on an extension of the 

progressive mesh concept. A diagonal mass matrix was produced to allow real-time 

computation. The authors in [129], used a similar strategy as in [127] to represent the 

deformation of complex objects using a hierarchical basis that was constructed using 

the volumetric subdivision. The authors in [130], also used a hierarchical approach in 

which a hierarchy of mass spring models was built in order to manipulate deformable 

objects. In this method from coarse to refine representation of the mass spring model 
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were used based on the degree of deformation. The authors in [125], used an adaptive 

deformable surface model using the mass spring model and butterfly subdivision 

scheme for the mesh refinement. They also proposed a model simplification method 

for bringing back the deformable model to the coarse model once the external force is 

relaxed. The refined model used changes the topology of the deformable model. In 

addition, the area is refined irrespective of the triangular area in the region of interest. 

The authors in [131], proposed a Delauny triangulation -based online re-mesh 

deformation model. However, the computation complexity of the model is O (n3), 

where n is the number of nodes in the mesh, is therefore, not suitable for real time 

interaction. The authors in [132], proposed a multi-rate rigid body simulator. 

However, this approach was not applied to elastic objects. 

In this thesis, two visio-haptic deformable models are proposed. One is the vertex 

based visio-haptic deformable model using slope intercept form of a line equation. 

The model mainly developed for visual interactive deformation while having the same 

haptic sensation as in [30; 31; 58], and is used on the surface based triangular mesh 

model. A slope intercept form of a line equation is used which computes the 

deformation quickly in the haptic rendering as compared to [52; 61]. Second visio-

haptic deformable model is based on the levels of detail, namely, an adaptive area 

based visio-haptic deformable model, which refines the region of interest based on the 

triangle's area in that region. The current methods refine the region of interest 

uniformly [133; 125].  Furthermore, the visio-haptic deformable model works on the 

volumetric mesh model made up of tetrahedral mesh, in order to represent the internal 

physical properties of the soft tissue as compared to [125; 133],  which works on the 

surface based mesh models. Once after refinement of the region of interest, a 

modified scheme based on [125; 133] is presented which adjust the physical 

parameters of the model. In this thesis, the scheme of parameter identification is 

extended and is applied to the volumetric mesh model. The parameter for refinement 

of the region of interest depends on the threshold of the external force applied by the 

trainee using force feedback devices during the real-time interaction with the model. 

In addition, when the external force is relaxed in the region of interest, this region is 

returned to the original coarse model and physical parameters are readjusted. 
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2.6 Summary of Related work 

The following tables summarize the previous work in visio-haptic modalities for 

learning skills enhancement (Table 2.1), veterinary palpation simulators (Table 2.2), 

Visio-haptic deformable models (Table 2.4), and levels of detail (Table 2.4). 

Table  2.1: Previous work related to learning skill enhancement due to multimodal 

cues 

 

 

 

 

 

 

Multimodal 
Cues 

Author Year Modality 
Comparison 

Result Hard 
Object 

Soft 
Object 

Short
-term 

Long-
term 

Hang et al. [13] 2004 V,H, & VH VH better √ X √ X 

Jones et al. [38] 2005 V,H & VH VH better √ X √ X 

O'Malley et al. [40] 2006 V, H & VH VH better √ X √ X 

Morris et al. [10] 2007 V, H & VH VH better √ X √ X 

Kalenine et al. [9] 2011 V, H & VH VH better √ X √ X 

Bara & Gentaz [41] 2011 V & VH VH better √ X √ X 

Srimathveervalli & 
Thenkurussi [11] 

2005 V, H & VH VH not 
better 

√ X √ √ 

Liu et al. [42] 2006 H, V Same √ X √ X 

Xing-Dong et al. 

[12] 

2008 V, H & VH Long-term 
VH not sig 

Short-term 
VH sig 

√ X √ √ 

Huegel et al. [13] 2010 V, H & VH VH sig in 
short-term, 
VH not sig 

in long-term 

√ X √ √ 

Table 2.1 shows that most of the work done for the learning skills enhancement 

dealing with the hard objects. Soft objects, which are highly deformable, are different 

from the hard object during real time interaction. Furthermore, most of the previous 

work considers the short-term learning skill enhancement. A few discussed the long-

term learning skills enhancement [11], [12], and [13], and showed contrast results for 

long-term skill enhancement. Therefore, visio-haptic modalities need to be evaluated 

in palpation simulator, which is deformable, for the long-term learning skill 

enhancement. 
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Table  2.2: Previous work related to veterinary palpation simulators 

In Table 2.2, the work done in the field of palpation simulator is presented. The 

previous work has the non-deformable interactive visual model, and the haptic 

sensation is based on Hooke's Law. Further investigation is required in order to 

evaluate the effect of interactive visual deformation, and the haptic sensation based on 

the underlying physical properties on the learning skills enhancement. 

Table  2.3: Previous work related to visio-haptic deformable models 

 

 

 

 

 

 

Visio-Haptic 

deformable models 

Author Year Limitations 
 

Song & Yang 
[66] 

2005 1. Not suitable for real time 
interaction 

Ji [52] 2008 1. More computation for visio-     
haptic deformation 

2. Surface based model 
Taylor et al. 

[23] 
2008 1. Used special hardware for 

processing (GPU) 
Baran & 

Basdogan [17] 
2010 1. Calibration of Mass Spring 

Model is time consuming 
Natsupakpong 

& Cenk [18] 

2010 1. Mass spring model is 
calibrated from Finite 
Element Model. Practically 
acquiring such a model is a 
problem itself 

Peterlik et al. 

[25] 

2010 1. Computational time required 
to pre-computations 

2. Computing configuration 
spaces for each model and 
parameter is inconvenient 

 

 

 

 

Palpation 
Simulator 

Author Year Simulator 
Name 

Limitation 

Crossan et al. 
[28] 

2001 HOPS 

 

1. Non-Deformable visual model 
2. Haptic sensation is based on 

Hooke's Law 

Baillie et al. [30] 2005 Haptic 
Cow 

1. Non-Deformable visual model 
2. Haptic sensation is based on 

Hooke's Law 

Parkes et al. [58] 2009 Feline 
Abdominal 
Palpation 

1. Non-Deformable visual model 
2. Haptic sensation is based on 

Hooke's Law 

Baillie et al. [31] 2010 Automated 
Palpation 

1. Non-Deformable visual model 
2. Haptic sensation is based on 

Hooke's Law 
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In Table 2.3, the limitations of the previous visio-haptic deformable models are 

presented. For the evaluation of visio-haptic cue, efficient visio-haptic deformable 

models are required in order to satisfy minimum rendering requirements of the visual 

(30 Hz) and haptic (1000Hz). In this thesis, two visio-haptic deformable models are 

presented, one is vertex based visio-haptic deformable model for surface based object 

representation, and second is adaptive area based visio-haptic deformable model for 

volumetric model representation. 

Table  2.4: Previous work related to levels of detail 
 
 
 
 
 
 

Levels of Detail 

Author Year Limitations 
 

Hutchinson 
[126] 

1996 1. No simplification method 
 

Kahler[92] 2001 1. Only in graphics rendering 
2. Surface based model 
 

Debunne et 
al.[75] 

2001 1. Different resolution models are 
connected with share nodes, 
additional computation cost is 
required  

 
Payandeh et 
al.[133] 

2005 1. Uniform refinement 
2. Surface based model 
 

Choi et al.[20] 2005 1. Uniform refinement 
2. Surface based model 

Paloc et al.[131] 2006 1. Computation complexity is O(n3) 
 

Susa[132] 2011 1. Not applicable to elastic objects 
 

Although refinement techniques in the field of computer graphics are very mature, 

Table 2.4 only shows the previous work of refinement techniques in the field of 

graphics and haptic. An adaptive area based technique is proposed that refines the 

region of interest based on the area of a triangle in the region. This produces a lesser 

number of faces, node, and spring and greatly improves the performance. 

2.7 Summary 

This chapter discussed related work in three different areas, which are multisensory 

modality, palpation simulator, and deformable modelling techniques. In the first 

section, multisensory modality is discussed. Multimodal cues are informative and help 

in skill learning [8], but the previous work shows conflicting results especially for 
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haptics and vision modalities. Therefore, multimodal cues need further evaluation in a 

haptic dominant environment for the skills learning enhancement. In the second 

section, a detailed literature review of palpation simulators is presented. Palpation 

simulators, in general, are reviewed as well as in the field of veterinary. For the 

veterinary students, currently available training simulators are HOPS, and bovine 

rectal palpation simulator. These simulators have a static visual model, and simple 

haptic sensation based on the Hooke's law, and during training the focus is on the 

haptic sensation. The interactive visual deformation part is missing which could allow 

the instructor to better control the palpation forces of the trainee during an interactive 

simulation. Although multimodal cues, including visual and haptic sensation are 

computationally expensive, however, multimodal cues are more helpful than any 

single cue for skills learning enhancement Fredembach et al., [8]. Furthermore, 

despite its single cue dominance, an investigation of multimodal cues for enhancing 

learning skills is required in general for the palpation simulators, and in particular in 

the bovine rectal palpation simulator. Such an investigation has not yet reported in the 

domain of palpation simulator.  

In the third section, various modelling techniques were presented. The techniques 

mainly discussed here are in the field of real-time simulation. The most widely used 

techniques are MSM and FEM. Finite element is the most accurate method for soft 

tissue modelling but computationally more expensive. Therefore, it is not a candidate 

for real-time simulation in its pure form. Many optimization techniques such as 

condensation, graded mesh, and dynamic adaptive mesh has been proposed for 

making finite element modelling to work in the real-time simulation. For pure 

deformation such as palpation, finite element is too costly in terms of computation, as 

it requires constant updating matrices. On the other hand, the mass spring model is 

very efficient in terms of computation and this feature makes a good candidate for 

real-time simulation. In real-time visual and haptic simulation, performance is the 

most pronounced factor. Therefore, the mass spring model has been widely used for 

real-time interactive simulation. 

In computer based palpation simulation, to ensure realistic visio-haptic modalities, 

the models need to be deformable visually as well as haptically based on the 

underlying physical properties of the real model it represents. Efficient algorithms 
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must be developed for the deformable models having visual and haptic modality in 

order to improve realism in the virtual reality (VR) environment without using any 

costly special hardware. The algorithms developed so far are application specific and 

there are no such universal algorithms suitable for most of the applications [52]. Finite 

Element Method (FEM), [116; 110; 23], and a Mass Spring Model (MSM) [134-136; 

96; 97] are the two most widely used techniques for representing and simulation of 

the soft tissue deformation. These techniques can provide realistic deformations, but 

have poor computational efficiency.  

Although the mass spring model has an edge over FEM but the main drawback of 

an MSM considered is its lack of proper parameter identification. It is shown that 

current research has mainly focused on this issue and many techniques proposed have 

been discussed. Research is still open in this area to find proper parameters for the 

MSM in general.  

In the last section, an overview of the refinement techniques was discussed. These 

techniques combined with the physics based deformable model greatly improve the 

computation time in the real-time interactive simulation. Previous techniques are for 

surface based deformable models and volumetric models. In real-time interactive 

simulation, the user interact with the soft tissue, therefore during interaction with the 

region of interest, that region is refined. Once the user left the region of interest, that 

portion needs to be reverted to the original coarse model. Most of the techniques 

available mainly focus on the refinement approach and often neglect the 

simplification methods. In addition, when the levels of detail are combined with the 

physics based method; such techniques require the dynamic adjustment of the 

parameters of the mass spring model among different levels of detail during 

simulation. In the next chapter, the research methodology and approach used in this 

thesis are discussed in detail. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

The purpose of this chapter is to indicate the research methodology and research 

method for achieving the research objectives discussed in chapter one. In this chapter, 

the overall methodology of the thesis is described. In this thesis, mixed paradigm is 

used which allows choosing research methodologies from both of the basic paradigm. 

The underlying principle provided by Leech and Onwuegbuzie [137] suggests that the 

main benefits of mixed methods research come from capitalizing on the strengths of 

the methodologies and reinforcing one’s techniques with the techniques of the other, 

in comparison to either quantitative or qualitative methodologies. Research 

approaches used in the mixed paradigm are literature - review, formulative - 

algorithm, evaluative - interpretive, experimentation [138]. 

An appropriate research methodology and research method used in this work will 

be selected based on the research objectives outlined in chapter one. Research 

methods used in this thesis are developmental, simulation based performance 

evaluation, experiments and statistical analysis techniques. These are shown in Figure 

4.1, and are discussed in the subsequent sections. 
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Figure  3.1: Research Methodology Framework 

3.1 Model Development 

This phase of the research methodology deals with the visio-haptic deformable model 

development. The simulators developed for training the veterinary students are the 

HOPS [28], Haptic Cow [30], and Feline abdominal palpation simulators [58]. These 

simulators lack the interactive visual deformation. In addition, the haptic sensation 

needs to be based on the underlying physical properties of the soft tissue. In the 

domain of the palpation simulators, which are haptic dominant, further investigation 

is required to evaluate the effectiveness of the multimodal cues [4]. In order to 

develop realistic vision-haptic deformation, and investigate the effect of multimodal 

cues on learning skills enhancement, two visio-haptic deformable models developed 

are (i) a vertex based visio-haptic deformable model, and (ii) an adaptive area based 

visio-haptic deformable model and are discussed in detail in chapters four and five 

respectively of this thesis. Reason for the two model development is the assessment of 

visio-haptic cues for the learning skills enhancement. For fast access to the node in 

the region of interest, efficient methods are required. For this purpose, an octree space 

partitioning (OSP) technique is implemented in order to quickly access the desired 

node in the 3D model. Further, for improving fast rendering of the model in the haptic 



46 

 

loop, the neighbourhood algorithm is developed, and used for improving the 

performance in terms of rendering in the haptic loop. 

Two of the research objectives as stated in chapter one, i.e. (i) To develop visio-

haptic deformable models for a palpation simulator that satisfy minimum rendering 

requirements, and (ii) To implement the models into a haptic dominant palpation 

simulator could be achieved upon completion of the research method in this phase. 

3.2 Simulation Based Performance Evaluation 

In this step the evaluation of the proposed visio-haptic deformable models is 

conducted based on the execution time in the haptic and graphics loop. The visio-

haptic deformable models developed are implemented in the real-time interactive 

simulator and the results are compared with the corresponding existing techniques. 

The results are presented in chapters four, and five, and then are discussed in chapter 

seven. 

3.3 Experiments 

According to [139],  experiments are "only experience carefully planned in advance, 

and designed to form a secure basis for new knowledge". The most important 

characteristics of an experiment are (i) manipulation of one or more independent 

variables; (ii) use of controls such as randomly assigning participants or experimental 

units to one or more independent variables; and (iii) careful observation or 

measurement of one or more dependent variables [140]. 
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3.3.1 Types of an Experiment 

There are three types of experiments [141]. 

3.3.1.1 Laboratory / Controlled Experiment 

This type of experiment is conducted in a controlled environment, not necessarily a 

laboratory. However, accurate results are possible. The advantage of this type is easy 

to replicate, and controlled the extra independent variables. 

3.3.1.2 Field Experiment 

Such experiments are performed in real life, while still manipulating the independent 

variable. The advantage is the experiment real reflection due to its natural setting. The 

disadvantage is that it could suffer from contamination [141]. 

3.3.1.3 Natural Experiments 

These experiments are conducted in the real life environment of the participants but 

the experimenter has no control over the independent variables. The main limitation is 

not controlling the extra independent variable that may affect the results of the 

experiment [141]. 

In this thesis, laboratory experiment is used. Four experiments have been 

conducted for the last two research objectives outlined in chapter one, i.e. (i) to 

evaluate the haptic only and, visio-haptic parameters of the simulator for learning skill 

enhancement, and (ii) to assess the extent in which the visual and haptic cues are 

important in the visio-haptic modality in terms of the visual and haptic rendering 

requirements. In three of these experiments, three prototype simulators will be used. 

One containing haptic only, and named as prototype-A, the other two contains visio-

haptic modalities, named prototype-B, and prototype-C. In prototype-B, the visio-

haptic deformable model discussed in chapter four, namely, a vertex based visio-

haptic deformable model is implemented. In prototype-C, the visio-haptic deformable 
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model discussed in chapter five, namely, an adaptive area based visio-haptic 

deformable model is implemented. The first experiment is conducted for evaluating 

the visual cue effect on skills learning enhancement in an instructor-trainee interactive 

environment when the instructor as a guidance tool uses visual cue for controlling the 

palpation forces applied by the trainee. The second experiment evaluates the effect of 

visio-haptic cue for short-term memory as compared to the haptic only for learning 

skills enhancement. The third experiment evaluates the visio-haptic cue for long-term 

memory as compared to the haptic only for learning skills enhancement. The fourth 

experiment is conducted to evaluate the effect of the extent of visual cue on the 

enhancement of learning skills. 

In the first three experiments, three prototype simulators will be used, and ten 

participants will be using each of the three prototypes. In the first experiment, only the 

palpation force applied by the participant is recorded, while in the second and third 

experiments, the palpation force as well as exploration time will be recorded for each 

participant. The fourth experiment will use prototype-C with two different resolutions 

of the model, in which one prototype has a model with twice the resolution of the 

other. Ten participants will be used for each of the two prototypes in this experiment. 

This experiment evaluates the effect of the extent of the visual cue. 

3.3.2 Experimental Design 

An experimental design is a plan for assigning experimental units to treatment levels 

and the statistical analysis associated with the plan [142]. 

In order to achieve the last two objectives, it is necessary to select an appropriate 

experimental design, and appropriate method of statistical analysis. According to 

Miller (1974), in the experimental control, there are three possible methods: (i) the 

repeated measures design, (ii) the matched participants design, and (iii) the 

independent group design. The experimental control selected for the evaluation of 

multimodal cues is the independent group design where the participants in the groups 

for using the three prototypes are entirely different, thereby eliminating the biases in 

the results. 
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From the statistical analysis techniques, two- sample independent tests will be 

used. Data collected in the experiments will be statistically analysed and the main 

study will be descriptive-statistics such as mean, standard deviation etc., and 

inferential-statistics such as two sample independent tests. The significance among 

data will be evaluated using an ANOVA (Analysis of Variance). An independent 

sample t-test will be used for the evaluation of the data of the two groups. 

3.4 Summary 

In this chapter, the research methods used to conduct the work in this thesis are 

discussed. The research methods are model development, simulation based 

evaluation, and experiments. Data collected will be analysed using statistical analysis 

techniques. In a statistical analysis, the techniques used will be a descriptive statistical 

analysis for measuring the performance significance and an inferential statistical 

analysis for measuring the significant differences between each of the two groups. 

The next chapter presents the first proposed visio-haptic deformable model based 

on the slope intercept form of a line equation. The proposed method uses a surface 

based triangular mesh model. In this model, the haptic sensation remains the same 

available in the currently available bovine rectal palpation simulators, while the 

interactive visual deformation is achieved using the proposed algorithm. 
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CHAPTER 4 

VERTEX BASED VISIO-HAPTIC DEFORMABLE MODEL 

In this chapter, the first proposed model that involves visio-haptic deformable model 

is presented, namely, a vertex based visio-haptic deformable model using a slope 

intercept form of a line equation for deformation in the region of interest. In Section 

4.1, the model representation is discussed. In Section 4.2, a visio-haptic deformation 

based on the slope intercept form of a line equation is presented in detail. As the 

deformation in the proposed work is local, therefore two-neighbourhoods of the 

touched node are used for deformation along the touched node itself using different 

slopes. The ring of neighbour searching and storing algorithm is presented in 

Subsection 4.2.1. In the next Subsection 4.2.2, the proposed algorithms are presented 

for visual and haptic deformation. When the external force is relaxed in the region of 

interest then the deformable model comes to the original position. This is achieved 

using shape preservation method and is presented in Subsection 4.2.3. Collision 

detection (CD) plays an important role in the real-time interactive simulation and this 

is discussed in Section 4.3. As the haptic loop runs approximately 20 times faster than 

the visual loop, therefore rendering few triangles in the haptic loop improves 

performance and such technique proposed in this thesis are discussed in Section 4.4. 

Section 4.5, presents the results and Section 4.6, summarizes the chapter.  

4.1 Model Representation 

The model is made up of a surface triangular mesh containing nodes and edges. 

Separate lists are used for nodes and triangles in the model. 
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Information stored in the node class as.  

class Node 
{ 
Vertex3D position; 
int numNodes; 
std::vector<int>firstRingNeigh; 
std::vecor <int> secondRingNeigh; 
int  numFirstRingNeigh; 
int  numSecondRingNeigh; 
}; 
 
In addition, the class declaration for a triangle is  

class Triangle 
{ 
int vertIndex [3]; 
double area; 
… 
}; 

In this representation, all of the information is stored in the node as we are mainly 

dealing with the nodes in this vertex based visio-haptic deformation technique. Each 

node of the model has 3D position in the model. It has the first ring of neighbours 

which are directly connected with this node (one - neighbourhood) and second ring of 

neighbours (two - neighbourhood) that are directly connected to its first ring of 

neighbours. The Triangle class is used to collect information for the node in the 

preprocessing step. It is also used to render the model in the graphics as well as in 

haptic loop.  

Two types of nodes are used, one is fixed node that contains only position 

information. When the model is loaded then fixed node are filled with the original 

position of each node. This node is used for maintaining the shape of the model and is 

discussed in the next section. Another type of node is a deformable node that contains 

position information as well as information about its first and second rings of 

neighbours. This node is free to move when the force is applied to it. Therefore, two 

lists are maintained in the simulation, one contains fixed node and the other list 

contain deformable nodes. 
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The triangle list uses nodes from the list of deformable nodes for graphic and 

haptic simulation. Fixed nodes are only used for maintaining the shape or bringing the 

deformable nodes back to its original position once the external force is removed. 

4.2 Vertex Based Visio – Haptic Deformable Model 

In a vertex based visio-haptic deformation, the vertices, or nodes of the model are 

manipulated directly. The advantage of vertex based deformation is its efficiency and 

ease of implementation. In this method, the nodes of the model are manipulated 

directly upon the interaction of the user with the force feedback device. For this 

purpose, a slope intercept form of a line equation is used as a constraint that restricts 

the movement of nodes along the direction of external force applied through a haptic 

force feedback device.  

The slope intercept form of a line equation is given as       

ݕ = ݔ݉ + ܾ                                                (Eq. 4.1) 

 

An Equation 4.2 is modified form of an Equation 4.1, and is given as 

 

ܲ௜ାଵ(ݔ, ,ݕ (ݖ = ܲ௜(ݔ, ,ݕ (ݖ 	+ ݉ଵ ∗ ,ݔ)ܨ ,ݕ (ݖ +	ܾଵ             (Eq. 4.2) 

 

An Equation 4.2 calculates the new position of the node as a function of external 

force applied to it. Here  zyx
iP ,,  is the ith node current position and  zyx

iP ,,
1  is its 

next position. Here 1m  acts as step size for the new position of the contacted node 

and b1 is the intercept and it is set to zero.  zyxF ,,  is the force applied to the node 

 zyx
iP ,,  through a haptic force feedback device, PHANToM Desktop [143]. Equation 

4.2 calculates the new position for the node contacted through the haptic force 

feedback device only. 
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When an external force is applied to the one of the nodes in the model, then it 

changes its position and this position is determined using the slope intercept form of a 

line equation. However, for a realistic deformation, the surrounding nodes of the 

touched node needs also be deformed in such a way that it looks realistic. For this 

purpose, the first ring of neighbours and the second ring of neighbours of the touched 

node is also deformed using the slope intercept form of a line equation. For each node 

of the model, these first and second rings of neighbours are calculated and stored in 

the preprocessing step and is performed before the simulation starts. These two rings 

of neighbours are deformed with different slopes. In the proposed algorithm, these 

two rings of neighbour are sufficient for visually appealing deformation of the soft 

tissue. Equation 4.3 is used for first ring of neighbour and Equation 4.4 is used for the 

second ring of neighbour and is given as  

 

ܲܰ௜ାଵ(ݔ, ,ݕ (ݖ = ܲܰ௜(ݔ, ,ݕ (ݖ 	+ ݉ଶ ∗ ,ݔ)ܨ ,ݕ (ݖ +	ܾଶ               (Eq. 4.3) 

 

ܲܰܰ௜ାଵ(ݔ, ,ݕ (ݖ = ܲܰܰ௜(ݔ, ,ݕ (ݖ 	+ ݉ଷ ∗ ,ݔ)ܨ ,ݕ (ݖ +	ܾଷ          (Eq. 4.4) 

 

In Equation 4.2, Equation 4.3, and Equation 4.4, 0321  bbb , and ݉ଵ, ݉ଶ, 

and ݉ଷ are negative, and in the range of [0,-1], exclusive of 0 and -1, and must satisfy the 

condition: ݉ଵ > ݉ଶ > ݉ଷ. 

  To find the next node position on the first and second ring of neighbours of the 

contacted node, the same modified slope intercept form is used but with different 

slopes. 

4.2.1 Ring of Neighbour Algorithm 

When a user touches the model with the force feedback device then it affects one of 

the nodes of the model on which the user force is concentrated. In order to deform the 

model in a realistic way, all other surrounding nodes need to be deformed. To achieve 

a realistic deformation in this region of interest, the neighbours of the touched node  
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need to be deformed as well. For this purpose, there is a need for calculating the 

neighbours of this touched node. Such neighbours are calculated for each node of the 

model in the preprocessing step before the interactive simulation starts. 

The neighbours are divided into two rings, first ring, and second ring. The first 

ring also known as one-neighbourhood contains those nodes that are directly 

connected with the touched node and the second ring also known as two-

neighbourhood contains those nodes that are one node distance apart from the touched 

node. These two rings are sufficient for the local deformation during simulation. 

The touched node along with its first ring (nodes A1 to A6) and second ring 

(nodes B1 to B12) of neighbours is shown in Figure 4.1. 

 

Figure  4.1:  A touched node with its first and second ring neighbours 

In Figure 4.1, node O is the touched node, nodes A1 to A6 are the nodes in the 

first ring of neighbours, and B1 to B12 represent the nodes in the second ring of 

neighbours.   

The algorithm to find and store the first ring of neighbours and the second ring of 

neighbour is given as follows in a pseudo-code form. These two rings of neighbour 

are calculated for every node of the model. 
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Vertex3D position; 

FINDFIRSTRINGNEIGHBOUR (maxNodes ) 

INPUT: An array of maxNodes 

OUTPUT: An array of firstringneighbour nodes 

for   i       1 to  maxNodes-1 do 

for  j        1 to maxNodes-1 do 

 search(i, j) 

 node[i].neighbour        j  

CALL FINDSECONDRINGNEIGHBOUR () 

FINDSECONDRINGNEIGHBOUR (maxNodes) 

INPUT: An array of maxNodes 

OUTPUT: An array of secondringneighbour nodes 

for   i      1 to  maxNodes-1 do 

for  j       1 to nodes[i].maxNeighbour do // first ring of neighbours for  
       //  each node 

 index=0                                         //Index for    
                   //secondringneighbour array 

 for   i       1 to  maxNodes-1 do  

 search (node[i].Neighbour[j],  k)                 // search k in the   
                           // firstringneighbour 

 node[i].SecondNeighbor[index++]         k  // store as a   
               //secondringneighbour 

 

This pseudo-code finds the two rings of circular neighbours for every node in the 

model. As mentioned above, this algorithm runs and gathers the two rings of 

neighbour (two-neighbourhood) for each node of the model, before the actual 

simulation starts. Therefore, the performance of this algorithm is not an issue. 
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When the node of the model is touched with the force feedback device and 

palpation force is applied then the touched node deforms along the force vector. In a 

similar way, its first and second ring of neighbours also deforms. Deformation profile 

due to the different step size of touching node and its first and second rings of 

neighbour is shown in Figure 4.2. 

 

Figure  4.2: A deformation profile due to variable step size for touching node and its 

neighbours 

In Figure 4.2, the black squares represent the original node positions and the red 

circles are its deformed positions. The depth of deformation for each node is 

controlled by the slope value m and is known as the step size. 

4.2.2 Algorithm for Visual and Haptic Deformation 

As mentioned there are two separate loops, one is for visual channel and the other is 

for haptic channel. Therefore, the code for both the loops is different, and is given as:  

Preprocessing Step: Find out all neighbours in the first and second ring of every 

node using the algorithm discussed above and store to get a constant searching time 

both for haptic and visual channel. 

4.2.2.1 Visual Deformation 

Detect collision between a Haptic Contact Point (HCP) and node in the model 
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if (Collision between HCP and Model) 

{ 

Get the force applied  ),,( zyxF  through the haptic probe. 

If collision between HCP & Model 

node[i]          ),,( zyxF    // Apply force to the ith node 

111 ),,(),,(),,( bzyxFmzyxpzyxp ii     // Get the new  
            //position for the  
           //contacted node 

for   i      1 to  nodes[p].numFirstRingNeigh-1 do 

 221 ),,(),,(),,( bzyxFmzyxpNzyxpN ii   //Loop  
          

        //through all first ring of 
        //nodes of p and update 
        //position 

for   i      1 to  nodes[p].numSecondRingNeigh-1 do 
 
 331 ),,(),,(),,( bzyxFmzyxpNNzyxpNN ii   
        //through all first ring of 

        //nodes of p and update 
        //position 

 
else if Touched && !Collision 

)()( 2121 vvkxxkf ds
i

s   // Bring the touched node to rest position 

for   i      1 to  nodes[p].numFirstRingNeigh-1 do 

)()( 2121 vvkxxkf ds
N

s
i    //Bring the first ring nodes to 

       //rest position 

for   i      1 to  nodes[p].numSecondRingNeigh-1 do 

)()( 2121 vvkxxkf ds
NN

s
i   //Bring the second ring nodes to 

       //rest position 
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4.2.2.2 Haptic Deformation 

In haptic deformation, the forces generated are rendered to the user so that he/she can 

feel the object being palpated. When the user touches, the model then fixed node acts 

as an initial node and the deformable node act as a final node. The force is calculated 

using Hooke’s law and rendered to the user as shown in Figure 4.3.  

 
Figure  4.3: Force computation and rendering mechanism during interaction with the 

model 

Haptic deformation pseudo-code for haptic loop is given as. 

if touchedModel 

  
ݏ݋ܲݐ݅݊݅ ←  Get the position of fixed node touched //          [ℎ݁݀ܿݑ݋ܶ]݁݀݋݊

ݏ݋݈݂ܲܽ݊݅ ← ,ݔ)௜݌ ,ݕ (ݖ + 	݉ଵݔ)ܨ, ,ݕ (ݖ +	ܾଵ	 // Get the final position using 
       // Equation 4.2 
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,ݔ)݁ܿݎ݋ܨݎ݁݀݊݁ݎ ,ݕ (ݖ ← ݏ݋݈݂ܲܽ݊݅)	݇−	 −  Render force to the  // 	(ݏ݋ܲݐ݅݊݅
        //user calculated using 
        //Hooke's Law 

ݎ݁ݏݑ ← ,ݔ)݁ܿݎ݋ܨݎ݁݀݊݁ݎ ,ݕ  Apply render force to the user // 	(ݖ

 

In this visio-haptic deformable model, the haptic sensation is the same as in the 

currently available bovine rectal palpation simulator. 

4.2.3 Shape Preservation 

The description mentioned above achieves a plastic deformation in which the nodes 

once deformed does not come back to its original position. As the soft tissue is elastic 

meaning when the external force is removed then the nodes need to come to its resting 

position in order to maintain the shape of the model. Therefore, to maintain the shape 

while external force is removed, shape preservation springs are used. This spring 

known as home spring brings the deformable node to fixed node, which is its resting 

position once the external force is relaxed. A home spring ensures that the distance 

between a fixed node and deformable node is zero. In an initial setup, both fixed node 

and deformable node are at the same position in space and its initial spring length is 

zero. When the external force is applied to the node then the deformable node is free 

to move while there is no effect on the fixed node. Once the external force is relaxed 

then home spring comes into play and brings the deformable node to its resting 

position. Home spring connecting deformable node with the fixed node is shown in  

Figure 4.4 for the surface based triangular mesh model of the reproductive tract. 
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Figure  4.4: Home springs between a fixed and deformable node for shape 

preservation 

As these two nodes are connected through a spring, the spring applies force only 

on the deformable node to bring it to the initial configuration. Figure 4.5 (a), shows 

the initial configuration of fixed and deformable nodes which shares the same space. 

Figure 4.5 (b), shows the configuration after an external force is applied. The springs 

are connecting these two nodes.  

 

Figure  4.5: (a) Initial Configuration, (b) Configuration after force applied 
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The spring force between a fixed node and a deformable node is unidirectional 

and from a fixed node towards a deformable node. This spring force will cease to exist 

when the distance between fixed and deformable node is zero and comes into play 

otherwise.  

As the spring connecting two nodes oscillates, therefore mathematical formula 

needs to be derived for a home spring, which bring a deformable node to its original 

position in time and avoid oscillating it. For this purpose, there is a need of a function 

C such that [81] 

2121 ),( xxxxC     (Eq. 4.5) 

 

Which says two points x1 and x2 needs to be in the same position in space. In an 

Equation 4.5, x1 represents a fixed node and x2 represents a deformable node. We 

need to convert this equation into force law. However, when two points are stretched 

then kinetic energy is converted into potential energy. This is given as  

 

CCkE s .
2
1


    (Eq. 4.6) 

Where ks is the spring stiffness coefficient. Since force due to scalar potential is 

minus the energy gradient, the force on node xi due to C is  

i
s

i
i x

CCk
x
Ef









   

(Eq. 4.7) 

Here 
ix

C


  is the transpose of the Jacobian Matrix. This force will oscillate the 

system about C=0, therefore we need damping force. To add damping force, then 

Equation 4.7 becomes as: 

i
dsi x

CCkCkf






)(
                                       

(Eq. 4.8) 

As shown in Equation 4.5 that C = x1 – x2, so 

I
x
C





1

and                  I
x
C





2
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Where I is the identity matrix. Putting these values in Equation 4.8, we get 

 

)()( 21211 vvkxxkf ds                           (Eq. 4.9) 

 

)()( 21212 vvkxxkf ds                                      (Eq. 4.10) 

where f1 and f2 are the two opposite spring forces that attracts fixed and deformable 

nodes toward zero–length spring [81]. In this work, the fixed node is not movable so 

there is no need to apply the spring force on it. The only spring force is on the 

deformable node that brings it to its rest position. 

Therefore the spring force needs to bring a deformable node to its original 

position is given in Equation 4.11. 

)(*)(* 2121 vvkxxkf dss               (Eq. 4.11) 

 

This is the force law for the zero-rest-length damped spring. This spring force is 

used to bring the deformable node to its original position once the user relaxes the 

external force. 

4.3 Collision Detection (CD) 

Collision detection is an important component in the medical simulators. A better 

collision detection technique greatly improves the performance of the simulator. In 

this thesis, the model is made up of nodes and triangles. The HCP is also treated as a 

3D node. Checking an HCP with every node for collision is a very slow process and 

furthermore, as the haptic loop runs at 1000Hz, then it becomes impractical to use the 

linear searching method, available in the OpenHaptics API (Application Programming 

Interface) [144]. To avoid the slip through of the HCP into the model during 

interaction, an efficient method is required for searching the touched node. Therefore, 

there is always a need for fast and efficient collision in order to make it faster. In this 

thesis, a space partitioning technique is used in the haptic channel, and is discussed in 

the next section. 
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4.3.1 Space Partitioning 

In this technique, the space occupied by the model is divided. During collision most 

of the unwanted region is quickly removed to narrow down the region of interest. 

There is a different space partitioning techniques such Binary Space Partitioning 

(BSP) and octree space partitioning (OSP). In this thesis, an OSP is used and its brief 

overview is given in the next section. 

4.3.1.1 Octree Space Partitioning (OSP) 

In this method, the whole space is divided into sub-spaces. First, the whole model is 

considered as a bounding box and then it is divided into eight sub-spaces and each is 

called an octant. The process repeats until a certain threshold for stopping the 

recursion is reached. In the proposed work, stopping condition is the number of nodes 

per octant and level of subdivisions. The nodes are stored in the leaves only. This 

technique is implemented only in the haptic rendering loop for quick access of a 

particular node of the model. The octree subdivision mechanism is shown Figure 4.6. 

 

Figure  4.6: Example of an octree space partitioning method 
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As a starting point, the whole model is bounded by one box and is stored in the 

root node of the octree. Then the process of subdivision starts which divide the space 

into eight sub-spaces in its first level and then recursively continued. The model 

shown in Figure 4.7 contains 1500 nodes and 3000 triangles, and these nodes are 

stored in the leaves of an octree. The threshold value set for stopping this recursive 

subdivision is 100 nodes per leaf. This is shown in Figure 4.7. 

 

Figure  4.7: Model partitioning using an octree method 

 The HCP is constantly checked with an octree for collision in the collision thread. 

In this collision, the main task is to find the node of the model with which HCP 

collides. Once found the desired node, then information about its first and second ring 

of neighbours is already stored in it. This node position is then changed using the 

slope intercept form as well as its first and second ring of neighbours each with 

different slope.  

4.4 Haptic Rendering of an Octant and Two Rings of Neighbours 

In a haptic channel, only the octant which is touched by the haptic force feedback is 

rendered for fast rendering. All the triangles belonging to this octant are rendered in 
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the haptic loop for the haptic sensation of the model. Another method is to render the 

two rings of neighbours in order to further reduce the number of triangles rendered in 

the haptic loop. This further reduces the rendering time as only the neighbours are 

haptically rendered and not the whole octant. Figure 4.8 shows the different snapshots 

taken during an interactive real-time simulation for rendering the two rings of 

neighbours of the touched node.  

 

Figure  4.8: Snapshots of an interactive simulation for rendering the two rings of 

neighbour in haptic loop 

Similarly, Figure 4.9 shows snapshots taken during an interactive real-time 

simulation for rendering an octant of the touched node. 
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.  

Figure  4.9: Snapshots of an interactive simulation for rendering an octant of the 

touched node in the haptic loop 

4.5 Results on the Performances of the Model 

A vertex based visio-haptic deformable model using slope intercept form of a line 

equation is first implemented for visual and haptic deformation. The deformation of 

the soft model is local meaning that only the region near the haptic force feedback 

device is deformed. Deformation using proposed algorithm is shown in Figure 4.10 

for stomach model and in Figure 4.11 for sphere model. The algorithm is fast in visual 

deformation without needing efficient data structures for mesh. The proposed vertex 

based visio-haptic deformable model is best suitable for tissue whose properties are 

linear which means force versus displacement relationship is linear, isotropic means 

force versus displacement relationship is the same in all directions, and homogeneous 

which means the behaviour of soft objects does not change with the volume. 

Without an octree space partitioning method, and using linear search for the 

touched node of the model with the force feedback device, the algorithm works fine 

on the models resolution of up to 20,000 triangles.  



67 

 

 

Figure  4.10: An interactive deformation of the stomach model 

 

Figure  4.11: An interactive deformation of the sphere model 

4.5.1 Octree Implementation for Fast Collision Detection 

As mentioned above, the algorithm works realistic for model resolution of up to 

20,000 triangles in the model. Beyond this limit, rendering becomes slower for haptic 

sensations and lapses occur during the interactive simulation. The reason for these 

lapses is not the computation complexity of the proposed algorithm, but the time 

required for linearly searching for the touched node during an interactive simulation. 

Further improvement is required on the collision detection part of the simulator, and 

hence, an efficient technique is required to access quickly the touched node of the 

model. 
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 In order to get to the node of the model touched with the force feedback device, 

an OSP technique is implemented. For the haptic sensation in this thesis, an 

OpenHaptics API (Application Programming Interface) [144] is used and it does not 

provide octree implementation therefore in this thesis an OSP is implemented for 

accessing the node touched with the force feedback device within the haptic loop. In 

this way, the touched node is accessed quickly. Once reached to the contacted node, 

the slope intercept form of the line equation is used to deform the touched node and 

its two-neighbourhood based on the force applied.  

In Table 4.1, accessing time for the touched node is presented using linear search 

and octree search method. The linear search uses nearest neighbour algorithm to find 

the node from the list of model close to HCP, which is available in the OpenHaptics 

APIs. In an octree, the same algorithm is applied once the correct octant with which 

the HCP collided is found. 

Searching in an octant instead of searching the whole list is much faster. In this 

thesis, during the implementation of an octree method, fifty nodes of the model are 

stored in each leaf node, and the subdivision level is three. The condition set is 

whichever comes first. 
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Table  4.1: Time taken in (ms) for searching touched node using a linear and an octree 

method 

Model 

Resolution 

Time Taken in (ms)  

(Only Finding Touched Node) 

Linear Method Octree Method 

Vertices: 994 

Triangles:1985 

1.05 0.17 

Vertices: 3970 

Triangles:7937 

4.08 0.24 

Vertices: 5762 

Triangles:11521 

5.94 0.30 

Vertices: 8664 

Triangles:17325 

8.94 0.92 

Vertices:14392 

Triangles:28781 

14.84 1.10 
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Figure  4.12: Comparison of a linear and an octree search method for different model 

resolution 

Figure 4.12 compares the search time using a linear search method and an octree 

search method for accessing the touched node. The access time using an OSP is much 

smaller than linear search method, which uses nearest neighbour algorithm for 

searching the touched node. Although the search time is much smaller, still increasing 

the number of nodes increases the time required for searching a touched node. This 

could be improved further by increasing subdivision levels. In Figure 4.11, results 

were collected for three levels of subdivisions. If the subdivision levels are increased 

further, then the time required will be further reduced. 

 Access time is directly related to the number of nodes stored in the leaf and 

indirectly related to the number of subdivision levels. This relationship is shown in 

the Equation 4.12 as. 

௔௖௖௘௦௦ݐ =
݂݈ܽ݁ݎ݁݌ݏ݁݀݋݂ܰ݋݋ܰ

ൗݏ݈݁ݒ݈݁݊݋݅ݏ݅ݒ݅݀ݑݏ݂݋݋ܰ                        (Eq. 4.12) 
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Increasing the subdivision levels greatly improves the performance in terms of 

quickly reaching the collided node. Although increased levels of subdivision are very 

efficient, care must be taken while combining this method with haptically rendering 

the model. 

An octree method is implemented for searching the touched node. Once located 

the touched node in the model, the proposed algorithm is applied to deform the model. 

The whole model is rendered in haptic channel for the haptic sensation, while 

manipulating the object in order to avoid slipping inside the object. When the model 

is complex, then rendering it in the haptic loop consumes many haptic cycles. An 

octree method for searching improves the overall performance but if the whole model 

is rendered in the haptic loop, then still it degrades the performance. Therefore, 

methods need for efficient rendering as well. If only the touched octant is used then 

rendering is greatly improved. As this is a soft object simulation, therefore the node 

deforms during simulation and changes its position. The octree needs to be dynamic 

in order to accommodate this change of position of the nodes. Nevertheless, 

recalculating the octree in real-time simulation is itself computationally expensive. 

4.5.2 Efficient Collision Detection and Rendering 

An octree method for accessing the touched node is advantageous in terms of speed 

but if the whole model is rendered in the haptic loop for haptic sensation, then this 

rendering still becomes computationally expensive. Therefore, we need to render as 

few triangles as possible in the haptic rendering pipeline while maintaining the 

realism. As the user moves over the object then it is sufficient to render only the 

triangles in the close vicinity of the HCP.  

A new method is developed for searching and rendering in the haptic loop to 

improve efficiency. This method uses an octree method for searching the touched 

node during an interactive simulation. Once found the touched node, only two circular 

rings of this touched node are rendered in the haptic loop for improving efficiency 

while maintaining the same haptic sensation of the object. The search method is fast 

enough to locate quickly the touched node and as well the rendering method which 

runs quickly to feel the object at that point.  



72 

 

Table 4.2 compares the results of a combination of various searching and 

rendering techniques for improving the performance. In the first type of simulation, a 

linear search using nearest neighbour node is used for searching the touched node 

while whole model is rendered in the haptic loop for the haptic sensation. In the 

second type of simulation, an octree method is used for searching the touched node 

and the whole model is rendered in the haptic loop [50; 69]. While in the third type of 

simulation, a proposed method, which uses an octree method for searching and two 

rings of the neighbour of the touched node for rendering in the haptic loop, is 

presented. One level of subdivision using an octree is used for this simulation and the 

two rings of neighbour are calculated and stored in each node in a preprocessing step. 

All these simulations use the proposed algorithm for deformation and force 

generation. 
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Table  4.2: Time required for different search and rendering techniques 

 

Model 

Resolution 

Time Taken In Microseconds ( Haptic Rendering 

Loop) 

Linear 

Search, Whole 

Model In Haptic 

Rendering, Force 

Generation 

Octree 

Method, Whole 

Model In Haptic 

Rendering, Force 

Generation 

Octree 

Method, Rings Of 

Neighbour In 

Haptic 

Rendering, Force 

Generation 

Vertices: 1442 

Triangles:2880 

4.8 3.8 0.90 

Vertices: 3970 

Triangles:7937 

13.50 10.10 1.40 

Vertices: 5762 

Triangles:11521 

19.50 12.50 1.85 

Vertices: 8664 

Triangles:17325 

30.10 21.50 2.70 
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Figure  4.13: A plot for Table 4.2 

It is clear from Figure 4.13 that time required for rendering increases with the 

increase of model resolution while rendering time is greatly improved when rendering 

only the triangles that are in close vicinity of the touched node in the haptic loop. The 

running time complexity of the proposed model is O(log2N), running time complexity 

of Octree method, and whole model rendering is O(N log N). Similarly, running time 

complexity of the linear search, and whole model rendering in the haptic loop is 

quadratic O(N2). Increasing the levels of space partitioning using an octree method, 

further reduces the time required for searching the touched node. 

4.6 Summary 

In this chapter, a vertex based visio-haptic deformable model based on the slope 

intercept form of a line equation is presented for an interactive deformation of soft 

tissue using the force feedback device. This slope intercept form of a line equation is 

used to manipulate directly nodes of the model. An algorithm is also discussed for 

finding neighbours of every node in the model. For every node, two rings named as 

first ring and second ring of neighbours are calculated and stored in a preprocessing 

step. The node is deformed along with its circular first and second rings of neighbours 

whenever touched by the user through the force feedback device. For a realistic 



75 

 

deformation, the touched node, and its first and second ring of neighbours are 

deformed using the slope intercept form but with different slopes. 

As the soft tissue is viscoelastic, therefore when the external force is removed the 

nodes come to its original position. To achieve this during visio-haptic deformable 

model simulation, shape preserving springs are used that connects the deformable 

nodes with the fixed nodes. When the user manipulates the deformable nodes then 

these springs brought it back to the original position once the external force is relaxed. 

As the model is getting complex, searching for the touched node is also becoming 

time consuming. Therefore, to improve the performance an octree method is 

implemented to get to the touched node quickly. An octree method divides the space 

occupied by the model into octants and stores the nodes in the leaves. This helps 

quickly locating the touched node when searching. 

If the whole model is rendered in the haptic rendering then even octree 

implementation for searching is less pronounced. Therefore, to make rendering faster 

in the haptic loop, two rings of neighbours are used to render in the haptic loop. This 

method along with the octree method for searching is implemented and the results 

shown here provide improved performance. 

In the next chapter, a second visio-haptic deformable model proposed is discussed 

which is based on volumetric mesh model for incorporating the physical properties of 

the soft tissue and is more realistic in terms of visual and haptic sensations. The 

proposed also works on surface mesh models, and presented in the next chapter, but in 

this thesis, volumetric model is used for the evaluation study. 
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CHAPTER 5 

ADAPTIVE AREA BASED VISIO-HAPTIC DEFORMABLE MODEL 

In this chapter, the second proposed visio-haptic deformable model using levels of 

detail in the region of interest, based on the area of a triangle is presented. The 

algorithm is applied to both the triangular mesh representing the surface of the model, 

and tetrahedral mesh for considering the internal volume of the model for realistic 

visual and haptic sensation. This method is more realistic than the method discussed 

in chapter 4 for the volumetric models. This method, using the volumetric models, is 

not only different in realistic visual deformation, but also in realistic haptic sensation 

calculated based on the physical properties of the soft tissue. These physical 

properties are implemented using mass spring model (MSM) implementation of a 

tetrahedral mesh model that considers the volume of the soft tissue. Section 5.1 

presents the surface and volumetric model representation. In Section 5.2, an adaptive 

area based visio-haptic deformable model is presented which is implemented using 

the surface based mesh model as well as volumetric mesh model. This model includes 

four main components, which are an MSM, refinement, simplification in the region of 

interest, and parameter identifications for the different levels of detail, and shape 

preservation upon interaction, and are presented in the subsections of 5.2 respectively. 

In a real-time interactive simulation, the area is refined dynamically based on the user 

interaction with the portion of the model. There is a need for criteria of refinement 

and this is discussed in Section 5.3. To ensure real-time interactivity with the complex 

model during simulation, fast access methods are required and for this purpose in the 

proposed model, an OSP is used, discussed in Section 5.4. Results are discussed in 

Section 5.5, and Section 5.6, summarizes the chapter. 
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5.1 Model Representation 

Model representation is important in order to capture the physical properties. Two 

model representations are surface model and volumetric model. A surface model is 

efficient in rendering but has no internal physical properties, while volumetric model 

capture the internal physical properties of the model it represent. The two models are 

discussed in the next section. 

5.1.1 Surface Model 

The reproductive tract is modelled as a triangular mesh representing the surface of the 

model. In this way, few triangles are rendered. This model is faster in rendering but 

did not capture the internal physical properties correctly due to the fact that it is 

hollowed from inside. Therefore this type of model is best for the soft tissue that is 

hollowed from inside such as vessels and the gallbladder [145]. Surface model of the 

reproductive tract of a cow is shown in Figure 5.1. 

 

Figure  5.1: A surface mesh representation of the reproductive tract of a cow 
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5.1.2 Volumetric Model 

This model is more accurate and can capture the internal physical properties of the 

soft tissue than the surface model but computationally expensive due to the 

complexity of the model. In this thesis, tetrahedral model is used to capture the 

internal physical properties of the soft tissue. The tetrahedral model of the 

reproductive tract of the cow in a wire mesh is shown in Figure 5.2, and the cross 

section in Figure 5.3. This tetrahedral model is created using the tetgen [146] 

software. 

 

Figure  5.2: Volumetric model made of tetrahedra of the reproductive tract of a cow 

 

Figure  5.3: Cross section showing internal tetrahedra of the reproductive tract of a 

cow 
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5.2 Adaptive Area Based Visio-Haptic Deformable Model 

An adaptive area based visio-haptic deformable model is proposed for surface mesh 

model that comprises of four main components and for a volumetric mesh model that 

comprises three components. The first component is the MSM, which is used for 

capturing the physical properties of the soft tissue being modelled. The second 

component is the proposed method of refinement and simplification of the region of 

interest based on its triangle's area during real-time interaction with the model. The 

third component is the proposed method for adjustment of physical parameters among 

different levels of detail during simulation. The fourth component used only in the 

surface mesh model is the shape preservation, which maintains the shape of the model 

during simulation due to the fact that the model is hollow inside. The following 

subsections discuss these components. 

5.2.1 Mass Spring Model 

A Mass Spring Model is of one the physics based method and is famous for its ease of 

implementation and efficiency. These two properties make this technique more 

pronounced for the soft tissue modelling. A mass spring model is a discrete alternative 

to the continuous model. An MSM consist of nodes and massless springs that 

connects these nodes to form a lattice. The mass of the model is concentrated and 

distributed in these nodes. The spring keeps the two nodes at its ends a fixed distance 

apart. The deformation occurs when the nodes are displaced by some external forces 

such as the force applied by the user. The stiffness of the spring determines the 

hardness of an object. 

The proposed visio-haptic deformable model is made up of triangular mesh both 

for the surface and for volumetric representation of the model. Each triangle has three 

vertices and three edges. This triangular mesh is converted to MSM in order to 

incorporate the physical properties of the soft tissue. Each vertex is then converted 

into a node and each edge is converted into a spring. Each spring has two nodes, one 

at each end. When an external force is applied, it disturbs the nodes and these springs 

come into play to bring the nodes back to its rest position. An MSM with nodes and 

springs forming a lattice is shown in Figure 5.4. 
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Figure  5.4: A mass spring model with the nodes connected through spring 

In the visio-haptic deformable model, for the surface mesh model, and volumetric 

model, the structure springs are used. Each spring connects two nodes. In the surface 

mesh model, there are only springs on the surface of the model while in the 

volumetric mesh model, as it is made up of tetrahedra, so the internal springs are also 

present. This configuration is shown in Figure 5.5. 

 

Figure  5.5: A mass spring model for tetrahedral mesh 

Each node in the model is exerted with the mutual spring force. In the initial 

configuration, rest length l is the length of the spring that defines the shape of the 

body. When a node is allowed to change its position from ݑଵ to ݑଶthen the internal 
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force intF  can be calculated according to Hooke’s law, given in an Equation 5.1 [84; 

81]. 

௜௡௧ଵܨ = ݇௦(|∆ݑ| − 	݈) ∗ 	 (௨మି௨భ)
|௨మି௨భ|

                          (Eq. 5.1) 

int
1

int
2 FF                   (Eq. 5.2) 

where  int
1F  and int

2F  are the spring forces on nodes ݑଵ and ݑଶ respectively. In 

the Equation 5.1, sk  is a spring constant, and l is the rest length of the spring. 

21 uuu   , is the actual distance between two nodes. Spring force is proportional 

to the difference in length of the spring. 

The spring force alone exhibits an elastic behaviour. Soft tissue exhibits 

viscoelastic behaviour. Therefore, for a realistic deformation of soft tissue based on 

the mass spring model, damping component (dashpot) is introduced. Soft tissue is 

modelled with the springs and the dashpot, in which spring models the elastic 

behaviour, and dashpot models the viscous behaviour. Three models used for soft 

tissue modelling are (i) Maxwell, (ii) Kelvin-Voigt or Voigt, and (iii) Kelvin, or 

standard linear [112]. Each of these models differs in the arrangement of springs and 

dashpots as shown in Figure 5.6. 
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Figure  5.6:  Standard viscoelastic models used to represent the soft tissues (a)  

          Maxwell (b) Kelvin-Voigt or Voigt (c) Kelvin, or standard linear [112] 

For  modelling the biological tissue, the authors in [147; 148] used Maxwell 

model for ex-vivo bovine liver. Kelvin, or standard linear model is used by the authors 

in [149], for ex-vivo kidney, and  authors in [150] for in-vivo porcine liver. The 

authors in [151] used Voigt model for bovine liver. The authors in [152] used Voigt 

model for viscoelastic deformable objects. 

In this thesis, the interactive deformation is local. Therefore, the mass spring 

model based on Voigt model is used for soft tissue modelling. The Voigt model is 

more appropriate for the viscoelastic material [153]. In addition to the force computed 

with Equation 5.1, each spring exerts a viscous force, which can be computed as the 

difference of velocities at its ends weighted by a damping coefficient ݇ௗ. Therefore, 

Equation 5.1, after adding the damping component becomes as given in Equation 5.3 

[81]. 
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Where 21 vvv   is the difference of velocities of two nodes. Spring force is 

proportional to the difference in length of the spring and the damping force is 

proportional to the difference in velocity of the node. The damping coefficient dk  is 

the resistance against the relative motion between the two nodes attached at the end of 

the spring. 

As each node is connected through springs to many other nodes in the model, 

therefore, all these neighbours springs exerts force on this node, and this force is the 

sum of all spring forces acting on it and is calculated as given in Equation 5.4. 
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Where ௜ܰ is the set of nodes connected through springs with the node i, i
jk  is the 

spring stiffness between node i and node j, while  || ij uu   and 0|| ij uu  are its 

current and initial lengths, respectively. 

The dynamics of N nodes in a mass spring model under the external force extF  is 

governed by Newton’s law of motion and is given as in Equation 5.5. 

extFKuuCuM                                                      (Eq. 5.5) 

Where M, C, and K are the 3N X 3N mass, damping and stiffness matrices, 

respectively. The vector extF  is a 3N- dimensional vector representing the total 

external force on the node. The system has evolved forward through time by 

rearranging Equation 5.5 as a system of first order differential equations: 

)(1
extFKuCvMu                               (Eq. 5.6) 

vu                                                (Eq. 5.7) 



84 

 

where v is the velocity vector of the system of nodes. During simulation, the 

acceleration, velocity, and position of each node are updated at discrete time points 

spaced by discrete time steps and therefore known as discrete time system.  

5.2.1.1 Stable Numerical Integration 

There are many numerical integration techniques available to find u and v as a 

function of time such as Euler’s explicit method, Euler’s implicit method, and Runge 

Kutta order 4 methods (RK4). 

The explicit Euler integration method is a fast and easy choice for numerical 

integration. However, the system becomes unstable if the spring stiffness coefficient 

or the time step of the simulation is very large. If the time step is kept small in the 

explicit Euler integration, then it takes too much time for producing an animation 

results of the mass spring model [154]. The solution for this instability problem is to 

use implicit Euler integration method [90; 155]. 

To update the velocity and position of each node in the mass spring model, this 

thesis uses an implicit Euler integration and the equations are given below [81]. 

v୧୲ା୦ = v୧୲ + F୧୲ା୦
୦
୫౟
	 																														 (Eq. 5.8) 

u୧୲ା୦ = u୧୲ + v୧୲ା୦ ∗ h                                    (Eq. 5.9) 

Using the implicit Euler’s integration method guarantees stability of the system, 

therefore this allows large time steps to be taken in the animation. In this work, 

Euler’s implicit method has been used due to its stability in during simulation. 

5.2.2 Adaptive Area Based Refinement and Simplification Technique 

In an adaptive area based refinement technique, the triangles whose area greater than 

the predefined area are subdivided. The predefined area also known as thresholdArea 

is chosen based on hit and trial method to achieve realism. Figure 5.7 is the simplified  
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version of the reproductive tract model taken using a 3D digital scanner. It is clear 

that not all triangle's area is about the same size. In many modelling software the 

smoothing technique is available which smoothen the triangles and after some 

iteration all the triangles achieves the same triangular area but this is at the expense of 

loosing topological details. 

 

Figure  5.7: A coarse triangular mesh of having varied triangle areas 

It is clear in Figure 5.7, that some triangles have a larger area while the other has 

small area. If such a mesh is divided by any existing subdivision techniques then all 

triangles will be divided irrespective of its area. Therefore, shortcoming of applying 

the existing techniques is that extra triangles need to be rendered and new nodes, extra 

spring force computation, and integration are required, which affects the performance 

of the simulation. 

A simplification technique is the process in which the refined region of interest is 

returned to the original position, when an external force is relaxed in that region. 
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5.2.2.1 Data Structure for Surface Mesh Model 

A 3D model of reproductive system of a Malaysian cow is scanned through a 3D 

digital scanner and then simplified and edited at different resolution levels using 3D 

modelling software such as Blender [156], and MeshLab [157]. The 3D model is 

shown in Figure 5.8. 

 

Figure  5.8: Reproductive tract of a cow. Left:  A textured model, Right: A wireframe 

model 

The above model comprises of a triangular mesh that contains 3D Points known 

as nodes and triangles. Following is the description of these for rendering. 
 

Class Node 

{ 

hduVector3Dd position; 

hduVector3Dd force; 
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hudVector3Dd velocity; 

Edge* edge; 

int nodeID; 

For triangles the class is as  
Class Triangle 

{ 

int nodeIndex[3]; 

double triangleArea; 

... 

}; 

Another class called the Spring class is also used which is shown here and will be 

discussed in the next section. 
Class Spring 

{ 

int nodeA; 

int nodeB; 

double KS; 

double KD; 

double restLength; 

}; 

The Edge class is used to maintain the connectivity information during the 

subdivision process. Each edge has its starting and ending nodes, next edge in the list, 

opposite edge in the list and the face to which this edge belongs. This class plays an 

important role during the subdivision process. Half-edge implementation guarantees 

constant search time for one-neighbourhood of any node in the model that is touched 

with the force feedback device at any level of resolution of the model.  
 

Class Edge 

{ 

unsigned int vert1; 

unsigned int vert2; 

unsigned int next; 

unsigned int opposite; 

unsigned int face; 
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}; 

The last class is the Mesh class that contains all of the nodes and triangles in the 

model along with the springs connecting these nodes. This is a simple mesh 

representation method in which three lists are maintained for nodes, triangles, and 

springs in the model. 
class Mesh 

{ 

std::vector<Triangle> triangleList; 

std::vector <Node> nodeList; 

std::vector <Spring> springList; 

std::vector<Edge> edgeList; 

int numTriangles; 

int numNodes; 

int numSprings; 

int numEdges; 

}; 

The connectivity information is important during the subdivision process in order 

to subdivide adaptively the model during simulation. 

The following is the snapshot of an octree class that encompasses the model. 
class Octree 

{ 

Mesh * m_Mesh; 

Octree * m_ChileNode[8]; 

creatNode() 

createNewNode() 

AssignFacesToNode() 

PointBasedCollision() 

} 

The two meshes of the same model are maintained during simulation of the 

surface based model, while for the volumetric model only one mesh is maintained. 

For the surface mesh model, one is the original mesh and the other is the deformable 

mesh. The deformable mesh is allowed to deform the interactive simulation. In the  
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preprocessing step, the coarse model is refined based on the proposed algorithm and 

all the information regarding masses, stiffness and damping coefficients are calculated 

and stored. Only new masses, stiffness, and damping coefficients are calculated 

during the interactive simulation. 

5.2.2.2 Data Structure for Volumetric Mesh Model 

The surface mesh model is converted into a volumetric mesh model using tetgen 

software. The tetgen software creates the volumetric model and stores the data in 

different text files. These files have the extensions as node, face, and neigh. The files 

are read in the program. The node file contains the nodes present in the model, the 

face files contain all the faces in each tetrahedron, and the neigh file contains the 

neighbour of each tetrahedron in the model. Each tetrahedron contains four triangles 

(faces). The remaining data structure is almost the same as discussed in the previous 

section. 

5.2.2.3 Description of the Adaptive Area Based Refinement Algorithm 

The Haptic Contact Point (HCP) is used as an interaction tip in the simulation. The 

user applies force with the force feedback device. The phantom cursor is modelled as 

an HCP. We check constantly the collision between HCP and the nodes present in the 

model. When it collides with any node in the model and concentrates the force at the 

collided node, and such concentrated force goes beyond the threshold force set for the 

refinement algorithm then this node's one-neighbourhood is locally refined. 

Increasing the model complexity increases searching time for touching the node on 

the model, and this degrades the performance of the overall system. Therefore, to 

optimize this collision, an OSP method is implemented. This method is discussed 

later. In the preprocessing step, the triangle area of all the triangles in the model is 

calculated and stored. 
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The description of the steps in this algorithm is as follows. 

1. During simulation, the collision between Haptic Contact Point and nodes 

of a model is detected.  

2. Loop through one-neighbourhood faces of this touched node. 

1. Check the area of each face against the thresholdArea. If it is 

greater than the thresholdArea then subdivides it into four triangles  

 Increase the subdivision level l by one and SLoD (Sub-levels of 

Detail) = 4. 

 Now check each of the four newly created triangle’s area with 

the thresholdArea. 

 If all four triangles are chosen for subdivision, increase 

subdivision level l by one and SLoD =4. 

 Else set SLoD = i  where i = 1,2, or three triangles subdivided. 

 Stop when the subdivision condition is false. 

 Deactivate its old masses, stiffness constant and damping 

coefficients. 

 Deactivate old time step. 

 Load its new masses, stiffness constant and damping 

coefficients. 

 Activate and change its time step. 

2. Next face 

3. End loop. 

During the subdivision process, Sub-levels of Detail (SLoD) are maintained. If in 

the next subdivision only one triangle is subdivided further, then its SLoD is one. If  
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two triangles are subdivided then SLoD is two. If three triangles are subdivided then 

its SLoD is three and if all triangles are subdivided then SLoD is four. SLoD increase 

with the number of triangles subdivided irrespective of the position of the triangles. 

This is shown in Figure 5.9. In Figure 5.9, (a), (b) and (c), only one triangle is 

subdivided therefore its SLoD is one. This is also shown for two, three, and four 

triangles subdivisions. 

 

Figure  5.9:  A second level of subdivision based on triangles' area. In (a), (b) and (c), 

SLoD =1, (d), (e) and (f), SLoD = 2, (g), (h), and (i), SLoD = 3, (j) SLoD = 4 
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During interactive simulation, the user touches the nodes of the model with the 

force feedback device. The touched node and its one-neighbourhood is refined based 

on the area of a triangle. This is shown in Figure 5.10 for the various nodes touched 

during an interaction with the model using the force feedback device. 

 

Figure  5.10:  Visualizing neighbour triangles during collision of an HCP with two 

different nodes 

5.2.2.4 Description of the Simplification Algorithm 

If the user interacts with a particular node then this touched node and its one-

neighbourhood is refined. However, once the user moves from this node then this 

node and its one-neighbourhood needs to return to the coarse mesh in order to lighten 

the computational burden. For this purpose a simplified algorithm is applied which 

revert the mesh back to the original coarser mesh. 

The steps in the simplification algorithm are as under. 

1. During simulation, the collision between Haptic Contact Point and 

nodes of a model is checked.  
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2. If (isSubdivided && notTouched) 

i. Loop through one-neighbourhood faces of this touched 

node. 

1. Load old Face. 

2. Deactivate new masses, stiffness constants, and 

damping coefficients. 

3. Deactivate new time step. 

4. Load old masses, stiffness constants, and damping 

coefficients. 

5. Load old time step. 

ii. Next Face 

iii.  End loop. 

3. End if 

5.2.3 Parameter Identification 

In an adaptive area based visio-haptic deformable model, when the region of interest 

is refined then new nodes and springs are produced. In order to maintain the physical 

properties of the soft tissue after refining the region of interest, new nodes, and 

springs created must be adjusted so that it does not affect the physical properties of 

soft tissue in that region. For this purpose new masses, spring stiffness, and damping 

coefficients are recalculated such that physical properties remain the same before and 

after subdivision.  

The physical properties of the original model are calculated based on the Young's 

Modulus of the soft tissue. These physical properties are represented by the mass, 

spring stiffness and damping constant of the mass spring model. Therefore, during 

real-time interaction with the addition of new nodes and new springs, these physical  
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properties changes, and thus needs proper readjustment. The following sections 

describe the method for adjusting these parameters during real-time interaction among 

the different levels of detail (LoD). 

5.2.3.1 Mass Identification 

In an adaptive subdivision process, each level of subdivision creates new nodes that 

need to be assigned new masses such that the total mass of the model remains the 

same. Assigning the same mass to the newly created nodes will increase the total 

mass of the model. Therefore, after each subdivision level, it is necessary to 

recalculate the mass of each node in order to preserve the overall mass of the model.  

In the subdivision process, there are two types of nodes, old nodes and newly 

created nodes. To find new mass for the old nodes, the formula is given in Equation 

5.10. 

N
NMM old

i
new

i


 *                         (Eq. 5.10) 

To find the mass of newly created nodes, Equation 5.2 is used as 

N
MMNM old

i
old

i

new
i







*2
)(* 1

   (Eq. 5.11) 

 

Whereas N is the number of old nodes and N’ is the number of new nodes. 

These equations are used for finding the masses of old and new nodes in the 

preprocessing step. During the simulation as only selected faces are subdivided 

therefore, some nodes especially the boundary nodes could be at the different levels of 

detail. The mass of such nodes needs to be recalculated in order to maintain the 

overall mass of the model. Consider the red node shown in Figure 5.11; it is 

connected with nodes that exist at different levels of detail. Therefore, although it has 

recalculated mass using Equation 5.10 and Equation 5.11 but these equations does not 

guarantee the stability of the model during an interactive simulation. So the mass of 
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such a node is recalculated again during the simulation. For the red node in Figure 

5.11, the mass is recalculated as given in Equation 5.12, [125]. 

5/)4*1*)(
20 LLnew MMM                     (Eq.  5.12) 

Where 
0LM is the mass of a node at zero-level of the subdivision and 

2LM is the mass 

of a node at 2nd level of subdivision. Red node has one edge with zero-level node and 

four edges with 2nd level node. 

 
Figure  5.11: Adjustment of mass in different levels of subdivision 

The general equation is  

 

௡௘௪ܯ =
ெಽబ∗ே௢௢௙ாௗ௚௘௦௔௧௅బା	ெಽ೔∗ே௢௢௙ாௗ௚௘௦௔௧௅೔

ே௢௢௙ாௗ௚௘௦௔௧௅బାே௢௢௙ாௗ௚௘௦௔௧௅೔
             (Eq.  5.13) 

 

In this case, as the subdivision is based on the area of a triangle therefore during 

simulation, the nodes exist at various levels of subdivision and not only either at the  
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zero-level or at the highest level. Therefore, we modified and generalized Equation 

5.13 for finding the new mass of nodes present in various levels of subdivision other 

than zero-level. The general equation becomes then is  

 

௡௘௪ܯ =
ெಽ೔∗ே௢௢௙ாௗ௚௘௦௔௧௅೔ା	ெಽ೔శభ∗ே௢௢௙ாௗ௚௘௦௔௧௅೔శభ

ே௢௢௙ாௗ௚௘௦௔௧௅೔ାே௢௢௙ாௗ௚௘௦௔௧௅೔శభ
                    (Eq. 5.14) 

 

Here Li is the ith  level of subdivision while L i+1  is the next level of subdivision. 

5.2.3.2 Spring Stiffness and Damping Coefficient Identification 

An adaptive refinement process also creates new springs. The spring stiffness sk , 

and damping coefficient dk  need to be recalculated so that the surface reflects the 

same force through haptic force feedback as before the subdivision, otherwise the 

surface will feel stiffer. In the proposed algorithm, when the haptic force feedback 

device touches a node, then its one-neighbourhood triangles are refined based on the 

threshold area set as a refinement criterion. The subdivision process creates variable 

numbers of springs in different parts of the region of interest. These new springs must 

be assigned proper spring stiffness and damping coefficients so that it requires the 

same force for deformation as before subdivision and same force reflection during 

interaction as before the subdivision. 

The acceleration of a node is important in the subdivision process. The 

acceleration of a node should be kept the same in all levels of subdivision as was in 

the coarse model. Acceleration depends upon the external force, the spring force, and 

mass of the nodes in the model. The external force applied is the same for the coarse 

model as well as for the refined models of all levels. The spring force changes, if the 

spring stiffness and damping coefficient remain the same in the refined model as was 

in the coarse mass spring model. Therefore, to maintain the same acceleration of the 

node before, and after the subdivision process, the spring stiffness and damping 

stiffness need to be recalculated. 
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According to [125], the spring stiffness and damping coefficients are calculated as  

 

݇௦(௥௘௙௜௡௘) = 2௟ ∗ ݇௦(௖௢௔௥௦௘)∗	
(∑ ெ௔௦௦(௩))ೡ∈ುೝ೐೑೔೙೐ ேೝ೐೑೔೙೐ൗ

(∑ ெ௔௦௦(௩))ೡ∈ು೎೚ೌೝೞ೐ ே೎೚ೌೝೞ೐⁄
                 (Eq. 5.15) 

 

In the proposed algorithm, in each level of subdivision, one triangle is subdivided 

into four using the midpoint subdivision based on the threshold area. As mentioned in 

the algorithm description section, if a triangle is divided into four we increase the 

subdivision level l. Each subdivision level l contains four sub-levels denoted as SLoD. 

If in any level l, one triangle is further subdivided then its sub-level SLoD = 1. If two 

triangles are divided then SLoD = 2 and so if three triangles are subdivided then it’s 

SLoD = 3 and similarly if all the triangles are subdivided then it’s SLoD = 4 and this 

is equal to level l + 1. There are four sub-levels with each level of subdivision. To 

find the stiffness coefficient for the area based subdivision, an Equation 5.6 is 

modified, and given in Equation 5.16 as 

݇௦(௥௘௙௜௡௘) =
ௌ௅௢஽

ே௢௢௙ௌ௨௕௟௘௩௘௟
∗ 2௟ ∗ ݇௦(௖௢௔௥௦௘)∗	

(∑ ெ௔௦௦(௩))ೡ∈ುೝ೐೑೔೙೐ ேೝ೐೑೔೙೐ൗ

(∑ ெ௔௦௦(௩))ೡ∈ು೎೚ೌೝೞ೐ ே೎೚ೌೝೞ೐⁄
     (Eq. 5.16) 

 

Similarly, the damping coefficient becomes as 

 

݇ௗ(௥௘௙௜௡௘) =	
ௌ௅௢஽

ே௢௢௙ௌ௨௕௟௘௩௘௟௦
∗ (݇ௗ(௖௢௔௥௦௘) ∗ 	

௞ೞ(ೝ೐೑೔೙೐)
௞ೞ(೎೚ೌೝೞ೐)

)                       (Eq. 5.17) 

 

Acceleration of the node also depends upon the time step used during the 

simulation. This parameter also needs modification. The time step for the refined level 

is given as ([125]) 
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݌݁ݐܵ݁݉݅ݐ = 	 ௧௜௠௘ௌ௧௘௣೎೚ೌೝೞ೐
ଶ೗

                                      (Eq. 5.18) 

where timeStepcoarse is the time step used in rendering of the coarse model and l  

represents the level of subdivision. 

5.2.4 Shape Preservation 

As discussed in the previous section, Structure springs are used which connects the 

surface nodes of the model. These structure springs are not enough to maintain the 

shape of the model during simulation as the model blows up after a few iterations. 

In order to preserve the shape of the model during simulation two separate 

lists of nodes are maintained for the same model. One list contains nodes that are 

fixed in space and has no effect of any internal or external force on it. These are 

known as fixed nodes. Another list contains nodes that change its position whenever 

any internal or external force is applied to it. These are known as deformable nodes. 

Springs known as home springs are used which connect each of the nodes from the 

fixed nodes to its corresponding node from the deformable nodes. These home springs 

actually maintain the shape of the model and comes into play whenever any external 

force is added to the deformable node. In the initial configuration, home spring length 

is zero meaning that the deformable node and fixed node are at the same position in 

space. A deformable node is allowed to change its place in space upon the external 

force effect while the fixed node is held in its place, as there is no effect of force on it 

and acts as an anchor node for the deformable node. Structure springs and home 

springs are shown in Figure 5.12. 
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Figure  5.12: Model made up of structural springs, and home springs 

Home spring maintains its zero length and tries to maintain this zero length during 

the entire simulation. When the deformable node is deformed then the home spring 

comes into play to bring it back to its rest position. 

Shape preservation springs are used only on the surface based mesh model. The 

tetrahedral mesh model is an exception from these types of shape preservation 

springs. 

5.3 Criteria for Refinement 

During simulation, the user interacts with the soft object through the force feedback 

device. The user pushes or pulls the soft object during simulation. In palpation 

simulation the user applies the force on the object whenever trying to palpate different 

organs. Therefore, an external force is used as a refinement criterion. A threshold  
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force is set. When the user applies the force, and this force is greater than the 

threshold force then that particular region is refined for increasing the resolution level 

to achieve a realistic interactive deformation. 

5.4 Octree Space Partitioning (OSP) 

An octree space partitioning method is used in the haptic loop to find the touched 

node in an interactive simulation. This method is discussed in much detail in the 

previous chapter. The space occupied by the model is partitioned using this OSP, and 

the nodes of the model are stored in the leaves of an octree. The HCP is constantly 

searching for collision detection with the model during an interactive simulation, only 

in the haptic loop. The main idea of an OSP implementation in this research work is 

to access the touched node quickly in an interactive simulation. Therefore, once the 

collided node of the model is accessed, then its one-neighbourhood faces could be 

used for further processing using the proposed method of refinement. As the model is 

implemented using half-edge data structure, the search time for the one-

neighbourhood of any node in the model is constant. 

5.5 Results on the Performances of the Model 

As the simulator, have many components which all having the potential for improving 

its performance. In this thesis, the overall performance of the simulator is also 

considered. For fast and quick collision response, an OSP technique is implemented. 

For local deformation, only one-neighbourhood of the touched node is considered for 

further processing. For a realistic visual appearance, an adaptive area based 

subdivision algorithm is proposed which refines only the region of interest based on 

the area of a triangle and leaves the rest of the model coarser. All these components 

greatly improve the performance of the simulator in general. Results are presented for 

each of these components in the following section. The results are presented using the 

surface based triangular mesh model and the tetrahedral based model to incorporate 

the internal physical properties of the model. 
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5.5.1 Surface Mesh Model 

Surface mesh model represents the surface of the real model without considering the 

interior of the model. This representation is useful for soft tissue that is hollow from 

inside such as vessels and gall bladder.  

5.5.1.1 Triangular Mesh Reduction 

Adaptive area based subdivision algorithm dynamically refines the region of interest 

upon the interaction with the force feedback device. As the model is made up of 

triangles whose area varies therefore dividing all the triangles smoothly irrespective 

of the area increase overhead in terms of computation. Here the adaptive area based 

subdivision is compared with the midpoint subdivision algorithm, which divides the 

region of interest irrespective of the area of a triangle. Figure 5.13 shows the coarse 

model on which adaptive area based subdivision and conventional adaptive 

subdivision algorithms apply to the same region contacted by the force feedback 

device. 
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Figure  5.13: Top: The coarse model, Middle: conventional adaptive subdivision, 

Bottom: adaptive area based subdivision 

In Figure 5.13, only the number of triangles produced after using the proposed 

method and the conventional adaptive subdivision method is applied to the same 

model. In this experiment, an MSM is not considered. Figure 5.14 shows the total 

number of triangles in the coarse model, triangles produced using an adaptive area 

based subdivision method, and conventional adaptive subdivision method. 
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Figure  5.14: Triangles produced using the proposed algorithm and conventional 

adaptive subdivision algorithm 

It is clear from the graph shown in Figure 5.14 for the triangular mesh model 

given in Figure 5.13 that the proposed algorithm produces a lesser number of triangles 

(almost 50% lesser) after the same level of subdivision as compared to the 

conventional adaptive algorithm while maintaining the same resolution. Therefore, for 

this model, the rendering speed is almost double as compared to the conventional 

adaptive subdivision. Fewer triangles are produced when the variation among the 

triangles is high. 

5.5.1.2 Reduction in Number of New Masses, Spring Stiffness and Damping 

Coefficients 

In a conventional adaptive subdivision, the region of interest is divided irrespective of 

the area of a triangle. In this way, smaller triangle divides more and is densely refined 

as compared to its neighbour triangle with the larger area. The result is that extra and 

unnecessary triangles need to be rendered. This also produces extra nodes and springs 

which further consumes time in the computation during simulation for force 

calculation and node position integration. 
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As an adaptive area based subdivision is implemented along with the MSM, 

therefore new nodes, stiffness and damping coefficients are produced. This number is 

directly proportional to the increase in the variation of the triangle's area and to the 

threshold area, chosen for the refinement. Figure 5.15 shows the human stomach 

model made up of triangular mesh and modelled in Blender free 3D modelling 

software. The coarse stomach model is made up of 192 nodes, 372 faces, and having 

564 springs. This model is divided using the proposed adaptive area based subdivision 

and conventional adaptive subdivision techniques. The number of new masses, 

stiffness, and damping coefficients created during a simulation of the same touched 

node are compared in Table 5.1. Reducing the number of these parameters further 

reduces the rendering time. Due to the lesser number of new nodes, few springs are 

produced, and therefore this also reduces the integration time for new nodes, and 

springs while maintaining the same physical properties in that region during the 

simulation. 

As mentioned before, the number of new masses, stiffness coefficients and 

damping coefficients depend upon the large variation of triangle area in the model and 

the threshold chosen for a subdivision. A stomach model shown in Figure 5.15 is 

chosen for comparing the proposed method with the conventional adaptive 

subdivision for producing new masses, stiffness coefficients and damping constants. 

Figure 5.16 (a) shows the touched node subdivided using the proposed method and 

Figure 5.16 (b) shows the same touched node subdivided using conventional adaptive 

subdivision method. The subdivision level of conventional adaptive subdivision is set 

to three i.e. l = 3. A threshold area in Figure 5.16 (b) is set and it resembles visually 

the same with the subdivision details shown in Figure 5.16 (a). 
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Figure  5.15: A stomach model used in simulation 

 

Figure  5.16:(a)  A touched node subdivision using proposed algorithm and (b) using 

conventional adaptive subdivision 
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Table 5.1, shows the data collected for the same touched node using conventional 

adaptive subdivision and the proposed algorithm. For the same level of subdivision, 

lesser number of triangles is produced as compared to the conventional subdivision 

method. This means that a lesser number of new masses, stiffness, and damping 

coefficients need to be assigned. This improves the performance of the simulation. 

Table  5.1: Parameters created during Conventional Adaptive Subdivision and Area 

Based Adaptive Subdivision Algorithms for the same surface mesh model 

It is apparent from Table 5.1 that the proposed method produced a lesser number 

of new masses, spring stiffness, and damping coefficients, when compared with the 

conventional adaptive subdivision. The visual realism is the same in both of these 

methods. This difference could be improved further having triangles in the 

neighbourhood of greater variation in its area. 

5.5.2 Tetrahedral Mesh Reduction 

The tetrahedral mesh model is more complex than the surface mesh model, due to the 

extra nodes and springs for the internal physical properties. This model is more 

realistic and suitable for the soft tissue representation. The following sections show 

that a lesser number of nodes, and springs are produced, using the proposed method 

on the tetrahedral mesh models. 

Parameters Conventional Adaptive 

Subdivision 

Area Based Adaptive 

Subdivision 

New Masses 91 81 

New Stiffness 

Coefficients (ks) 

234 214 

New Damping 

Coefficients (kd) 

234 214 
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5.5.2.1 Model Reduction 

An adaptive area based subdivision algorithm dynamically refines the region of 

interest upon the force feedback device. As the model is made up of the tetrahedron 

whose area varies therefore dividing all the triangles smoothly irrespective of the area 

increase overhead in terms of computation. In this tetrahedral model, only the surface 

faces are refined and the internal faces are not considered in the refinement. Here the 

adaptive area based subdivision is compared with the midpoint subdivision algorithm, 

which divides the region of interest irrespective of the area of a triangle. Figure 5.17 

shows the coarse tetrahedral model on which adaptive area based subdivision and 

conventional adaptive subdivision algorithms apply to the same region contacted by 

the force feedback device. The original tetrahedral model contains five tetrahedral 

with 18 faces. When this model is refined using the proposed method, then for the 

same visual appearance, it produces 118 faces using the threshold area (for Figure 

5.17, thresholdArea =0. 08). While for the same visual appearance, conventional 

adaptive subdivision produces 144 faces using two levels of refinement. 

 

Figure  5.17:(a) A tetrahedral mesh model, (b) Portion of coarse tetrahedral mesh 

model (c), Adaptive area based subdivision, (d) Conventional adaptive subdivision 
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5.5.2.2 Reduction in Number of New Masses, Spring Stiffness and Damping 

Coefficients 

In a conventional adaptive subdivision, the region of interest is divided irrespective of 

the area of a triangle. This way smaller triangle divides more and is more refined as 

compared to its neighbour triangle with the larger area. The result is that extra and 

unnecessary triangles need to be rendered. This also produces extra nodes and springs 

which further consumes time in the computation during simulation for force 

calculation and node position integration. 

As the area based adaptive subdivision is implemented along with the MSM,   

therefore new masses, stiffness and damping coefficients are produced. The number 

of new masses, stiffness, and damping coefficients also depends on the variation of 

the area of a triangle in the model, and value of the threshold area. The surface mesh 

model of the reproductive tract model contains 1500 nodes, and 3000 faces, is 

modelled in Blender free 3D modelling software. This surface model is then 

converted into a tetrahedral mesh using tetgen software. The coarse tetrahedral model 

contains 8744 tetrahedral, 2487 nodes, and 4974 boundary faces. In Figure 5.16 (b), a 

portion of tetrahedral mesh is chosen that contains5tetrahedral, 8 nodes, 18 faces, and 

19 springs. This model is divided using the proposed adaptive area based subdivision 

method with the threshold area is 0.08, and conventional adaptive subdivision 

techniques using two levels of subdivision. The number of new masses, stiffness, and 

damping coefficients created during a simulation of the same touched node are 

compared in Table 5.2. Reducing the number of these parameters further reduces the 

rendering time. Besides this, with lesser number of nodes are produced as well as 

spring length calculation, the spring force calculation is reduced. 
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Table  5.2: Parameters created during conventional adaptive subdivision and adaptive 

area based subdivision algorithms for the same tetrahedral mesh model 

5.5.3 Collision Detection Using Space Partitioning Method 

Collision detection plays a very important role in the simulation, especially in the 

visio-haptic simulation. In this thesis, an octree space partitioning method is used for 

collision detection as shown in Figure 5.18. In addition, point based collision 

detection is used. As this is a deformable model, therefore, a point based collision 

detection method is the best method. The reason is that the nodes in the soft tissue 

changing the position constantly. In this thesis, as HCP act as a 3D point, its collision 

is detected with the node in the model. For this purpose, we used an OSP to partition 

the space and then used the nearest neighbour to find the nearest node to an HCP in 

the corresponding octant. 

Parameters Conventional Adaptive 

Subdivision 

Area Based Adaptive 

Subdivision 

New Masses 62 50 

New Stiffness 

Coefficients (ks) 

199 161 

New Damping 

Coefficients (kd) 

199 161 
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Figure  5.18: A stomach model partitioned using an octree method 

In the half-edge based data structure, once the touched node is found then there 

one-neighbourhood can be found in constant time. Therefore, for subdivision we 

choose this one-neighbourhood of a touched node once the external force on this node 

exceeds the threshold force. The octree method is implemented in the haptic loop for 

locating quickly the touched node with the haptic force feedback device.  

 Table 5.2 shows a comparison of the collision detection using an OSP and nearest 

neighbour, which is available in the OpenHaptics API for models having different 

resolution. An OpenHaptics provides nearest neighbour algorithm, which searches the 

entire list of nodes in the model for finding the closest node with HCP. If the model is 

complex then this technique becomes too expensive in terms of time, which makes 

unrealistic real-time interactive simulation. Therefore, algorithms are required, which 

reduce time required for searching the touched node in the model. In Table 5.2, for an 

OSP technique, three levels of subdivisions are used, and the number of nodes stored 
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at each leaf of an octree is 25. The levels of subdivision, and the number of nodes are 

ANDed for stopping the subdivision process, and the storage of nodes per leaf 

whenever whichever comes first. 

Table  5.3: Search time for touching node using octree and nearest neighbour method 

for models of different resolution 

Model Resolution Search Time (Microseconds) 

Octree Space Partitioning 

(Nodes per leaf  =25) 

Nearest 

Neighbour 

Level of Subdivision 

1 2 3 

Vertices: 642 

Triangles: 1281 
0.15 0.12 0.11 0.60 

Vertices: 1442 

Triangles: 2881 
0.83 0.20 0.12 1.25 

Vertices: 1552 

Triangles: 3041 
0.84 0.22 0.15 1.33 

Vertices: 2282 

Triangles: 4561 
1.22 0.37 0.21 2.06 

Vertices: 9122 

Triangles: 18241 
2.72 1.35 0.48 8.54 

Vertices: 23522 

Triangles: 47041 
13.50 4.92 1.35 22.26 
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Figure  5.19: A graph for Table 5.2 

Figure 5.19 that depicts graphically the data of Table 5.3 shows that the space 

partitioning method gives faster access to the collided node during the simulation. 

This is shown only for the three levels of the subdivision process. The rendering time 

could be reduced further if more subdivision levels are used. The choice of node per 

leaf and levels of subdivision also depends on the model resolution. For the last model 

in Table 5.3 that is more complex, the rendering time could be reduced further, when 

the levels of subdivision are increased. 

5.5.4 Deformation Using Adaptive Subdivision Algorithm 

The proposed algorithm is compared with refined model and with the conventional 

adaptive method. The following sections show the results obtained during the 

simulation. 
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5.5.4.1 Comparison of the Proposed Algorithm with the Refined Model 

The proposed algorithm is compared with the refined model. The proposed algorithm 

adaptively subdivided the region of interest whenever touched with the force feedback 

device. Deformation of the model occurs in this region of interest when touched by 

the force feedback device.  

The refined method, subdivides the whole model, irrespective of the region of 

interest. This way more faces are produced and need to be rendered that also involves 

extra computation for the mass spring model. In Table 5.4, two models are used, one 

is a human stomach model, and the other is the reproductive tract of the cow. In these 

models, number of faces, nodes, and springs produced due to refined method, and the 

proposed method are shown. The next column in Table 5.4 shows the execution time 

measured in microseconds for the refined and the proposed methods. The execution 

time is shown separately in the graphic loop, and the haptic loop. Figure 5.20 shows 

the interactive deformation using the refine model, and using the proposed. 

 

Figure  5.20: Stomach model (Left) Deformation using adaptive area based method 

(Right) Deformation using refined model 

Both the refined method and the proposed method implements an octree space 

partitioning (OSP) method for fast collision detection of an HCP with the nodes of the 

model. In addition, both methods use one-neighbourhood of the touched node for the 

haptic rendering and for simulating the local deformation. 
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Table  5.4: Comparison of proposed method with the refined model 

Model 

Type 

Model Resolution Execution Time (ms) 

Refined Method Proposed   
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Further analysis of the data in Table 5.4 shows that the execution time difference 

in the refined and the proposed method in the graphics loop for the simulation of the 

stomach model is 25.97 microseconds, and in the haptic loop the difference is 3.91 

microseconds. Similarly, the execution time difference in the refined method and the 

proposed method in the graphics loop for the simulation of the reproductive tract 

model is 105.26 microseconds, and in the haptic loop the difference is 15.37 

microseconds. 

What is interesting in the data given in Table 5.4 is that the execution time 

increases exponentially with the increase in the resolution of the model for the refined 

method, while there is a slight change in the execution time for the proposed method. 

In Table 5.4, using the proposed method, the execution time difference between the 

stomach and reproductive tract model in the haptic loop is 0.02 microseconds, while 

this difference using the refined method is 11.78 microseconds. Similarly, the  
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execution time difference between these two models in the graphic loop using the 

proposed method is 1.97 microseconds, while this difference using the refined method 

is 81.20 microseconds. 

5.5.4.2 Comparison of Proposed Algorithm with Conventional Adaptive Subdivision 

Method 

The proposed method is compared with the conventional adaptive subdivision method 

available in the literature [125]. Two simulators were used on the same platform. One 

simulator used the proposed method for the refinement, while the other simulator used 

conventional adaptive subdivision method. A mass spring model is used and 

implemented in both the simulators. The two methods were used on two models, the 

human stomach model, and the bovine reproductive tract model, having different 

resolution. The models were interactively refined and deformed, using the proposed, 

and conventional adaptive method. Figure 5.21 shows the interactive deformation, 

and the refinement of the stomach model using the proposed and conventional 

adaptive method. The triangles are shown here for visualizing the refined region 

during an interactive deformation of the stomach model. 

 

Figure  5.21: Stomach Model (Left) adaptively refined area deformation using the 

proposed method (Right) adaptively refined area deformation using the 

 conventional method 
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Both the proposed method and the conventional adaptive refinement method use 

one-neighbourhood of the touched node for the refinement. In addition, both methods 

use the one-neighbourhood of the touched node for rendering in the haptic loop for 

touch sensation. Figure 5.22 shows the real-time interactive deformation of the 

touched node along with its one-neighbourhood with the force feedback device. 

 

Figure  5.22: Deformation of the touched node with the force feedback device 

The execution time includes the time required for the refinement, the time 

required for the new nodes, and spring creation, the integration time for computing 

the new nodes position, and the spring force computation time. The execution time is 

recorded separately in the graphic and haptic loops for both the models. Table 5.5 

shows the rendering time in the graphic and haptic loops for the proposed, and 

conventional adaptive refinement method. Both these methods were applied to the 
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human stomach model, and reproductive tract model. The two models were different 

in the resolution.  

Table  5.5: Comparison of the proposed method with a conventional adaptive 

subdivision method based on collision detection techniques 

Model 

Type 

Model Resolution Execution Time (ms) 
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Adaptive 
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Further analysis of the data in Table 5.5 shows that the execution time difference 

in the refined and the proposed method in the graphics loop for the simulation of the 

stomach model is 1.50 microseconds, and in the haptic loop the difference is 0.99 

microseconds. Similarly, the execution time difference in the refined method and the 

proposed method in the graphics loop for the simulation of the reproductive tract 

model is 6.40 microseconds, and in the haptic loop the difference is 2.71 

microseconds 

What is interesting in the data given in Table 5.5 is that the increase in execution 

time with an increase in the model complexity is higher for the conventional adaptive 

subdivision method as compared to the proposed method. In Table 5.5, using the 
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proposed method, the execution time difference between the stomach and 

reproductive tract model in the haptic loop is 0.02 microseconds, while this difference 

using the conventional adaptive subdivision method is 1.7 microseconds. Similarly, 

the execution time difference between these two models in the graphic loop using the 

proposed method is 1.97 microseconds, while this difference using the refined method 

is 6.87 microseconds. 

5.6 Summary 

In this chapter, an adaptive area based visio-haptic deformable model was introduced. 

This model uses the mass spring model for representing the physical properties of the 

soft tissue. An adaptive area based refinement algorithm was used in this deformable 

model in order to refine the region of interest based on the area of a triangle present in 

that region. In this way, few triangles were produced during rendering while 

maintaining the realistic view. This reduced the rendering time in the graphic as well 

as in the haptic loops. Another main advantage of few triangles productions was that 

lesser new masses, stiffness coefficients, and damping constants were produced. In 

addition, the calculation involved with the masses, stiffness coefficients, and damping 

constants were reduced. 

The proposed method was applied to the surface based triangular mesh as well as 

to the tetrahedral mesh for encoding the physical properties of the soft tissue. In using 

both the surface based mesh model, and the tetrahedral mesh model, the refinement 

during an interactive visio-haptic deformation produced new nodes, and new springs. 

In order to maintain the physical properties of the soft tissue after the refinement, 

during the simulation new masses were assigned to the newly created nodes and new 

spring stiffness and damping coefficients were assigned to the newly created springs. 

The formulae were presented in the assignment of new masses, spring stiffness, and 

damping coefficients that guaranteed the same physical properties of the soft tissue 

before and after the refinement of the region of interest. The conventional adaptive 

technique divided the region of interest without considering the triangle area and 

therefore produced more triangles to be rendered and more computation required in 

terms of parameter calculation and re-assigning as compared to the proposed method. 
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The proposed adaptive area based refinement method, divided the region of 

interest based on the area of a triangle. Due to the varied area of the triangle in the 

region of interest, the refinement is not uniform. This produced more triangles in one 

part and few in the other part in the region of interest. This issue was also considered 

in the formulae presented for the new masses, spring stiffness, and damping 

coefficients in such non-uniform region of interest. 

A simplification algorithm was also presented that was applied after the 

refinement of the region of interest. During the interactive deformation, when the user 

left the region of interest by relaxing the external force, the simplification algorithm 

was used. The simplification algorithm brought back the old masses, spring stiffness 

and damping coefficients in that region in order to maintain the same physical 

properties in the region as was before the refinement method applied. 

When the user interacts with the soft tissue during the simulation, OpenHaptics 

API provides a nearest neighbour method to search linearly the node of the model 

touched by the user with the force feedback device. For the complex model with high 

resolution, this method degrades the performance and becomes impractical for the 

real-time interactive applications. In order to make this process quick and practical for 

the real-time interactive simulation, an octree space partitioning method was used. 

This method is faster than the method available in OpenHaptics API as shown by 

experiments in the results section above. 

The octree space partitioning method was implemented in the haptic loop only for 

quickly detecting the collision between the node of the model and the HCP. Once 

found the collided node of the model then its one-neighbourhood was used for the 

refinement and further processing. 

In the last section of this chapter, the performance results were presented. In the 

first part of the results, it was shown that the proposed method created a lesser number 

of faces, while maintained the same visual appearance of the model during an 

interactive deformation. This reduced the time required for its rendering in the 

graphics and haptic loop during each cycle as shown next in the results. As this 

method was implemented in the mass spring model, therefore, further time was 

reduced that was required for the computation of new nodes position, velocity, and 
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stiffness and damping coefficients. In the OpenHaptics API, the available method for 

searching a node is a linear search method. In this research work, an octree method is 

implemented and the result showed its applicability in the real-time interactive 

environment, and outperformed the methods available in the OpenHaptics APIs. 

Lastly, the proposed subdivision was compared with the refined model of the stomach 

and reproductive model of the cow and the results showed higher performance for the 

proposed method. The proposed method was also compared with the currently 

available adaptive subdivision methods and shows improvement in the performance 

both in the haptic and graphic loops. 

In the next chapter, an evaluation study is conducted for the investigation of 

multimodal cues, and the extent of visual and haptic cues in a haptic dominant 

palpation simulator. The evaluation study also validates the proposed visio-haptic 

deformable models presented in chapters four, and five, respectively. 
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CHAPTER 6 

EVALUATION STUDY 

The evaluation study presented in this chapter aims to address the last two research 

objectives in chapter one, which are as follows: 

 To evaluate the haptic only and, visio-haptic parameters of the palpation 

simulator for learning skill enhancement. 

 To assess the extent in which the visual and haptic cues are important in the 

visio-haptic modality in terms of the visual and haptic rendering requirements. 

Section 6.1 presents the objectives of the evaluation study. Section 6.2, Section 

6.3, Section 6.3, and Section 6.4, discusses experiment1, experiment 2, experiment3, 

and experiment 4 respectively. The results obtained from the four experiments are 

presented in Section 6.5. Section 6.6 summarizes the chapter. 

6.1 Objectives of the Evaluation Study 

The objectives of the evaluation study were formulated to address the last two 

research objectives of this thesis presented above. The objectives of the study are as 

follows: 

1. To evaluate the haptic only and visio-haptic modalities under guidance in the 

haptic dominant palpation simulator 

Experiment 1 is conducted for the evaluation of this objective. Three prototypes 

discussed in Section 6.2.3 are used. In this experiment, the visual cue is for the 

instructor and the haptic sensation for the trainee in order to evaluate its effect on the 

learning skills enhancement. 
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2. To evaluate the haptic only, and visio-haptic modalities for learning skills 

enhancement in a haptic dominant palpation simulator 

Experiment 2 and 3 are used to evaluate this objective. Experiment 2 is for the 

evaluation of haptic only and visio-haptic modalities for short-term skills 

enhancement. This means that the skills learned are evaluated just after the training. 

However, according to [158], just acquired motor skills can be lost rapidly in the 

absence of haptic assistance, even after an intensive training phase. It is believed that 

a continuous practice of a desired task in a long-term is a practical way to gain a 

permanent motor skill [12]. Therefore, to avoid biased results, an experiment 3 is 

conducted to evaluate the haptic only and visio-haptic modalities in a one-week long 

experiment for long-term skills enhancement. 

3. To assess the extent of visual and haptic cues  

Experiment 4 is conducted to assess the extent of visual and haptic cues necessary 

in visio-haptic deformable models. One of the proposed visio-haptic deformable is 

used with different visual and haptic resolution to evaluate the effect on learning skills 

enhancement. 

In all these experiments, an independent variable is the prototype simulators, 

while palpation force is the dependent variable. All of the four experiments are 

randomized experiments in which the trainees are assigned randomly (without 

considering the gender, and age) to the different prototypes used. Random assignment 

has three purposes. (i) It helps to distribute the idiosyncratic characteristics of the 

trainees over different prototypes used in these experiments, so they do not selectively 

bias the outcomes of the experiment. (ii) The unbiased estimation of error effects are 

not attributable to the manipulation of independent variable. (iii) It helps to ensure 

that the error effects are statistically independent [140; 159].  
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The following sections discuss these experiments. 

6.2 EXPERIMENT 1 

The objective of this experiment is to assess the impact of visual cue on the skills 

learning enhancement in the haptic dominant palpation simulator in an instructor-

trainee interactive training environment. In this experiment, three types of the 

simulator are used. An instructor guides the trainee to identify the feature and apply 

proper palpation forces in an interactive environment based on the extent of visual cue 

provided to the instructor in the three types of the simulator. The visual cue in these 

simulators is provided only to the instructor to observe visually and guides the trainee 

while, the trainee is provided with the haptic sensation for practicing the palpation 

procedure. The extent of visual cue provided is different in these three types of the 

simulator. 

6.2.1 Participants 

Forty volunteer participants took part from the Computer and Information Sciences 

Department of Universiti Teknologi PETRONAS. Out of these forty participants, ten 

were academic staff (instructors) and thirty were students (trainees). Out of the thirty 

trainees, twenty were male trainees and ten were female trainees. The trainees were 

divided into three groups, namely, group-A, group-B, and group-C, and each group 

consists of ten trainees. All the trainees were briefed on the purpose of the study and 

were given a training to interact with the haptic device. All the trainees reported a 

normal sense of touch and vision, and all of them were right-handed.  

6.2.2 Apparatus 

The training simulator for bovine rectal palpation was developed using VC++ as a 

development environment using the OpenGL graphics library for the visual cue, and 

an OpenHaptics APIs for incorporating the haptic sensation. The training simulator 

was run on Pentium IV 2.0 GHz processor and 1.43 GB of RAM without any special 
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processing or graphics hardware. A PHANToM force feedback device i.e. 

PHANToM Omni was used to feel the haptic sensation in the simulator. The 

experimental setup for an instructor-trainee real-time interactive simulation used in 

this study is shown in Figure 6.1. 

 

Figure  6.1: An instructor-trainee experimental setup of the training simulator 

6.2.3 Experimental Design 

The trainee was required to palpate and diagnose an ovary of the reproductive tract of 

a non-pregnant cow and apply palpation forces. The instructor was required to guide 

the trainees in identifying the ovary, and in controlling the palpation forces based on 

the extent of visual modality provided to the instructor.The visio-haptic deformable 

models developed in chapters four and five were implemented in the bovine rectal 

palpation simulator. Three prototypes of the visio-haptic deformable simulator were 

presented to the instructor to train the trainees, namely, prototype-A, prototype-B, and 

prototype-C, having a difference in the visual and haptic sensation. Three models of 

the reproductive tract of the healthy cow, having different resolutions were modelled 

using a Blender [156] free 3D modelling software, and named as a Model-A, Model-

B, and Model-C in order to make it similar to the name of the prototypes which are  
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using it. Model-A is a surface based triangular mesh that contains 1500 nodes, and 

3000 faces. Model-B is also a surface based triangular mesh that is more refined than 

the Model-A, and contains 6000 nodes and 12000 faces. Model-C is a volumetric 

model containing tetrahedral mesh in order to capture realistic physical properties of 

the soft tissue. Model-C contains 8744 tetrahedral, 2487 nodes and 4974 boundary 

faces. 

6.2.3.1 Prototype - A 

Prototype-A has haptic, audio, and visual cues but no interactive visual deformation 

for an instructor during the training sessions. In prototype-A, Model-A is used, having 

the same visual and haptic sensation used in the currently available simulator for the 

bovine rectal palpation simulator [28; 30]. 

6.2.3.2 Prototype - B 

In prototype-B, there are haptic and visual cues with interactive visual deformation. In 

this simulator, a visio-haptic deformable model from chapter four, namely, a vertex 

based visio-haptic deformable model is implemented. The haptic sensation in this 

prototype is similar to prototype-A. In addition, it has the interactive visual 

deformation based on the slope intercept form of a line equation, and Model-B is used 

in this prototype. 

6.2.3.3 Prototype - C 

In prototype-C, there are visual and haptic cues with interactive visual deformation. 

Prototype-C involves the visio-haptic deformable model from chapter five, namely, 

adaptive area based visio-haptic deformable model. In this prototype, realistic visual 

and haptic cues are present due to the proposed adaptive area based visio-haptic 

deformable model. In this prototype, Model-C is used for realistic visual and haptic 

sensation based on the physical properties of the soft tissue. 
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6.2.4 Procedure 

The experiment consists of (i) pre-training, (ii) training, and (iii) post-training phases 

for all the three prototypes. In a pre-training phase, both the instructors, and trainees 

were prepared mentally by giving a presentation about the nature of the experiment. 

The instructors and trainees were informed about their roles during the experiment. 

The main objective of the pre-training phase was to familiarize the participant with 

the manipulation of force feedback device and soft objects. An initial training about 

the usage of the bovine rectal palpation simulator was also given to the instructors. 

The instructors were trained also with the force versus the deformation curve in the 

visual cue included in the simulator. The instructors were trained only about the 

diagnosis and the palpation of an ovary in this study. 

The next step in this experiment was the training phase. The training phase 

consisted of four training sessions practiced by each trainee of all the three groups. 

The duration of each training session was five minutes. The trainees from group-A 

were allowed to use prototype-A, trainees from group-B were allowed to use 

prototype-B, and the trainees from group-C were allowed to use prototype-C. 

Instructors were the same for the three groups of the trainees. Each trainee from 

group-A performed randomly four training sessions with prototype-A, each trainee 

from group-B performed four training sessions with prototype-B, and similarly each 

trainee from group-C performed four training sessions with prototype-C. The 

instructors were different in all four sessions for each trainee. The assignment of 

instructors (I1 to I10) to different sessions (S1, S2, S3, and S4) for the trainees 

(Trainee 1 to Trainee 10) in all of the three groups is shown in Table 6.1.  
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Table 6.1: Assignment of the Instructors to different sessions of the trainees 

             

Sessions          

Trainees   

 

Group-A Sessions 

 

Group-B Sessions 

 

Group-C Sessions 

 

 

 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S
3 

S4 

 
Trainee 1 I1 I2 I3 I4 I9 I10 I3 I6 I5 I6 I7 I8 

Trainee 2 I1 I2 I3 I4 I9 I10 I3 I6 I5 I6 I7 I8 

Trainee 3 I1 I2 I3 I4 I9 I10 I3 I6 I5 I6 I7 I8 

Trainee 4 I1 I2 I3 I4 I9 I10 I3 I6 I5 I6 I7 I8 

Trainee 5 I1 I2 I3 I4 I9 I10 I3 I6 I5 I6 I7 I8 

Trainee 6 I1 I2 I3 I4 I9 I10 I3 I6 I5 I6 I7 I8 

Trainee 7 I1 I2 I3 I4 I9 I10 I3 I6 I5 I6 I7 I8 

Trainee 8 I1 I2 I3 I4 I9 I10 I3 I6 I5 I6 I7 I8 

Trainee 9 I1 I2 I3 I4 I9 I10 I3 I6 I5 I6 I7 I8 

Trainee 10 I1 I2 I3 I4 I9 I10 I3 I6 I5 I6 I7 I8 

The forces applied by the trainees during palpation were recorded in all of the 

training sessions. A Stopping Force Threshold (SFT) and Sound Threshold (ST) 

values were set in prototype-A, with the condition that ST < SFT. An SFT is the 

maximum force, which is applied on a particular part of the reproductive tract and is 

different for different parts. Similarly, ST is different for different parts as well. For 

prototype-B and prototype-C only an SFT value was set and same as in prototype-A. 

In prototype-A, when the trainee reaches ST, a sound is generated and the instructor 

guides the trainees to release the force. In prototype-B, and prototype-C, the instructor 

guides the trainees according to real-time interactive visual deformation implemented 

in the simulator, and there is no audio cue. In all of the three prototypes, the trainees 

were restricted by an instructor to reach the SFT and not exceed it as it is the upper 

bound of the force limit.  
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6.3 EXPERIMENT 2: Short-Term Skill Learning 

The objective of Experiment 2 is to assess the impact of the visio-haptic modality on 

the participant’s ability to identify the feature and learn the required palpation forces. 

Participants were presented with the three prototypes - A, B, and C as discussed 

above. In prototype-A, only the haptic cue is used. The participants were allowed to 

use the three prototypes for feature identification, and palpation of the ovary, and 

were asked to recall those position, and forces. 

6.3.1 Participants 

Thirty participants from the Al Jouf University participated in this study. All 

participants were male and in between the age of 22 to 27. All of the participants 

reported a normal sense of touch and vision, and all of them were right-handed. The 

experiment took about 30 minutes. All the participants were informed about the 

purpose of the experiment, possible risks, benefits and their role in the experiment. 

Participants were divided into three groups namely group-A, group-B, and group-C, 

and each contained ten participants. Group-A used prototype-A, group-B used 

prototype-B, and similarly group-C was allowed to use prototype-C. 

6.3.2 Apparatus 

A reproductive tract of a Malaysian healthy non-pregnant cow was modelled and used 

in this experiment. The reproductive tract is 35.5 cm long, 5 cm wide with the width 

of 14.5 cm at the top of the reproductive tract including the two uterine horns. 

The PHANToM Omni force feedback device was used for thematic sensation, and 

placed 90 cm from the ground suitable for the participants in a standing position and 

visual feedback was provided using 15-inch CRT (Cathode Ray Tube) monitor, which 

was at the distance of 40 cm away from the participants in a horizontal position. An 

experimental setup for visio-haptic modality is shown in Figure 6.2. 
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Figure  6.2: An experimental setup for visio-haptic modality 

The side view of the reproductive tract of the Malaysian healthy non-pregnant 

cow is shown in Figure 6.3 for clarity. The green sphere represents an HCP in an 

enlarge form for clear visualization. 
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Figure  6.3: Side view of the reproductive tract of a non-pregnant cow 

The reproductive tract was scanned through a 3D digital scanner, which was then 

refined and modelled using Blender [156] free 3D modelling software, and then 

further remishing and final touch using MeshLab [157] to obtain a surface based mesh 

model. The volumetric model was obtained using tetgen [146] free tetrahedral 

remishing software. The training simulator was developed using VC++ as a 

development environment with the OpenGL graphics library for the visual part, and 

OpenHaptics APIs for incorporating the haptic sensations and the whole simulator 

was run on a Pentium IV 2.0 GHz processor with 1.43 GB of RAM.  

Three types of the prototype simulator as discussed and presented in Experiment 1 

were used in this experiment as well. The only difference was to allow the 

participants to use both the visual and haptic sensations in the skill learning process. 
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6.3.3 Experimental Design 

All the participants were required to learn the procedure by identifying the feature and 

by practicing the required palpation force. The two parameters were noted in this 

experiment for all of the prototypes, which were palpation force and exploration time 

for reaching to a feature set for all the participants, which in this experiment was the 

identification of an ovary. Four sessions of 5 minutes were given to each participant 

of the three prototypes in order to practice the feature identification, and apply the 

required palpation force once identified the feature.  

The training was conducted using three prototypes namely prototype - A, 

prototype - B, and prototype - C which were already present and discussed in the first 

experiment of this chapter. Once the trainees practiced and trained in the 

corresponding simulator, and having learnt the procedure, the trainees were allowed 

to use a haptic only simulator for the identification of the feature and palpation of the 

required features. 

6.3.4 Procedure 

The participants in each group were allowed to use their corresponding training 

prototype and were allowed to practice in a warm-up session in order to be familiar 

with the force feedback device and experimental setup. 

The experiment consists of (i) pre-training, (ii) training, and (iii) post-training 

phases for all the three prototypes. In a pre-training phase, the participants were 

prepared mentally by giving a presentation about the nature of the experiment, 

Maximum Palpation Force (MPF) that is set differently in the three prototypes, and 

about the usage of the prototype. In a training phase, the participant practiced in the 

identification and palpation of the ovary in a reproductive tract of a healthy non-

pregnant cow. The training phase consists of four training sessions of five minutes 

each on its corresponding training simulator with a ten-minute gap between the two 

training sessions. An MPF value was set in all the simulators, and the participants 

were required in the training sessions to reach an MPF and avoid applying force  
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beyond an MPF during palpation. During all the training sessions, three parameters 

were recorded. The parameters are feature identification, which in this experiment 

was the identification of an ovary, exploration time, and palpation force. The post-

training phase consisted of only one session whose duration was two minutes. The 

participants were allowed to identify the feature based on their skills developed in the 

training phase on its corresponding training simulator. The simulator provided to all 

of the participants in the post-training phase contained haptic only modality. There 

was no visual or audio cue in this simulator. Exploration time and palpation forces 

were recorded for all the participants. 

6.4 EXPERIMENT 3: Long-Term Skill Learning 

The objective of Experiment 3 is to assess the impact of the three prototype using 

different cues on enhancing the long-term learning skills of the participants. 

Participants were presented with the three prototypes - A, B, and C as discussed 

above. In prototype-A, only the haptic cue is used. The participants were allowed to 

use the three prototypes for feature identification, and palpation of the ovary, and 

were asked to recall those position, and forces. 

6.4.1 Participants 

Twenty-four volunteer participants from the Al Jouf University participated in this 

study. None of these students took part in experiment 1. All participants were male 

and in between the age of 22 to 27. All of the participants reported a normal sense of 

touch and vision, and all of them were right-handed. All the participants were 

informed about the purpose of the experiment, possible risks, benefits and their role in 

the experiment. Participants were divided into three groups namely group-A, group-B, 

and group-C, and each contained eight participants. Group-A used prototype-A, 

group-B used prototype-B, and similarly group-C was allowed to use prototype-C. 
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6.4.2 Apparatus 

The apparatus used in this experiment was the same as used in experiment 1. 

6.4.3 Experimental Design 

All the participants were required to learn the procedure by identifying the feature and 

by practicing the required palpation force. The two parameters were noted in this 

experiment for all of the prototypes, which were palpation force and exploration time 

for reaching to a feature set for all the participants, which in this experiment was the 

identification of an ovary. Four sessions of five minutes were given to each 

participant of the three prototypes in order to practice the feature identification, and 

apply the required palpation force once identified the feature.  

The training was conducted using three prototypes namely prototype - A, 

prototype - B, and prototype - C which were already present and discussed in the first 

experiment of this chapter. Once the trainees practiced and trained in the 

corresponding simulator, and having learnt the procedure, the trainees were allowed 

to use a haptic only simulator for the identification of the feature and palpation of the 

required features. 

6.4.4 Procedure 

The participants in each group were allowed to use their corresponding training 

prototype and were allowed to practice in a warm-up session in order to be familiar 

with the force feedback device and experimental setup. 

The experiment consists of (i) pre-training, (ii) training, and (iii) post-training 

phases for all the three prototypes. In a pre-training phase, the participants were 

prepared mentally by giving a presentation about the nature of the experiment, 

Maximum Palpation Force (MPF) that is set using different cues in the three 

prototypes, and about the usage of the prototype. In a training phase, the participant 

practiced in the identification and palpation of the ovary in a reproductive tract of a  
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healthy non-pregnant cow. The training phase started on the next day of the pre-

training phase. The training phase consists of four training sessions of five minutes 

each on its corresponding training simulator on separate days. Four training sessions 

were conducted in four separate days. An MPF value was set in all the simulators, and 

the participants were required in the training sessions to reach an MPF and avoid 

applying force beyond an MPF during palpation. During all the training sessions, 

three parameters were recorded. The parameters are feature identification, which in 

this experiment was the identification of an ovary, exploration time, and palpation 

force. The post-training phase, conducted on the seventh day, consisted of only one 

session whose duration was two minutes. The participants were allowed to identify 

the feature based on their skills developed in the training phase on its corresponding 

training simulator. The simulator provided to all of the participants in the post-

training phase contained haptic only modality. There was no visual or audio cue in 

this simulator. Exploration time and palpation forces were recorded for all the 

participants. 

6.5 EXPERIMENT 4: Extent of Visio-Haptic Cues 

In this experiment, an extent of visual and haptic cues necessary for palpation force 

and its effect on the learning skills was considered. The visio-haptic deformable 

model from chapter five of this thesis was considered for this experiment. 

6.5.1 Participants 

Twenty participants from the Al Jouf University participated in this study. All the 

participants were male and in between the age of 22 to 27. All of the participants 

reported a normal sense of touch and vision, and all of them were right-handed. The 

experiment took about 30 minutes. All the participants were informed about the 

purpose of the experiment, possible risks, benefits and their role in the experiment. 

The participants were divided into two groups namely group-A, and group-B.  
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6.5.2 Apparatus 

In this experiment, only a prototype-C is used as in Experiment 1, but with two 

different resolutions in the region of interest during simulation. One has a resolution 

which refines the region of interest with the thresholdArea (AtC1) named as prototype-

C1 and the other with the resolution which refines the region of interest using 

thresholdArea(AtC2) named prototype-C2 where 

௧஼ଶܣ =
௧஼ଵܣ

2ൗ  

The rest of the apparatus, the experimental design, and procedure of conducting 

were the same as discussed in the second experiment. 

6.6 Results 

This section presents the results of the four experiments conducted to evaluate the 

effectiveness of the visio-haptic modality in a haptic dominant environment, as well 

as validate the proposed visio-haptic deformable models, and the significance of the 

extent of visual and haptic cues to be considered in the design and implementation of 

visio-haptic simulators. In all these experiments, data were collected and was 

statistically analysed using the MINITAB [160] statistical software. An alpha level of 

.05 was used for all statistical tests. 

6.6.1 Experiment 1 

The maximum palpation forces (MPF) applied by the trainees during different 

training sessions under the interactive visual guidance of the instructors were pooled 

to compare the three prototypes used in the evaluation for the learning skill 

enhancement. A one-way ANOVA was performed using MINITAB statistical 

software. The hypotheses are as follows: 

1. There is no significant effect on learning palpation force using the three 

prototypes - A, B, and C. 
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2.  There is a significant effect on learning palpation force using the three 

prototypes - A, B, and C.  

A one-way ANOVA using MINITAB statistical software confirmed a significant 

difference among the three training prototypes F (2, 117) = 19.83, p < .001, (see 

Appendix B) and hence rejected the null hypothesis that there was no difference 

among the three prototypes. To find the prototype that enhanced the skill learning best 

among the three types of the prototypes, an independent  sample t- test using 

MINITAB statistical software was performed between the  

1. Prototype -A and prototype- B 

2. Prototype- A and prototype-C 

3. Prototype- B and prototype- C 

An independent t- test using MINITAB statistical software confirmed that there 

was a significant difference between prototype - A (M = 2.824, SD = 0.250) and 

prototype-B (M = 2.635, SD = 0.198), t (78) = 3.76, p < .001 (two-tailed test). 

Similarly there was a very clear significant difference between the performance 

improvement using prototype - A (M = 2.824, SD = 0.250) and prototype - C (M = 

2.563, SD = 0.092), t (78) = 6.20, p < .001. Similarly there was also a difference in the 

performance of prototype - B (M = 2.635, SD = 0.198) and prototype - C (M = 2.563, 

SD = 0.092), t (78) = 2.07, p = .042. (see Appendix B) 

The mean and variance of all the three prototypes is compared and shown in 

Figure 6.4. The mean of prototype-C is very close to the SFT and then prototype-B as 

compared to prototype-A 
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Figure  6.4:  Mean and variance of palpation force for prototype-A, B, and C 

Similarly, Figure 6.5 shows the accuracy percentage for the three prototypes. The 

accuracy is higher for prototype-C as compared to prototype-A and B. 

 

Figure  6.5:  Accuracy per percent for prototype-A, B, and C 
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Prototype-B and C were better than prototype-A due to the fact of interactive 

visual cue present in these two types. Out of the three prototypes, prototype-C was 

better due to the realistic visual and haptic deformation as well as proper and realistic 

coordination between the haptic and visual modality. 

Experiment one showed that visio-haptic modality outperformed haptic only 

modality in an instructor-trainee interactive environment, in which the visual modality 

for the instructor allowed to better control the palpation forces applied by the trainee.  

6.6.2 Experiment 2 

Data collected in the post-training phase of prototype-A, B, and, C, were statistically 

analysed for the skill learning enhancement. An ANOVA was used to examine 

whether there was any significant difference among the three prototypes in terms of 

exploration time and palpation force recorded for each participant in a post-training 

phase. A significant difference was found among the three prototypes for the learning 

skill enhancement. The palpation force and exploration time were individually 

analysed in the following subsections. 

6.6.2.1 Palpation Force 

The maximum value of palpation forces recorded, once the feature was identified, for 

all the participants in the post-training phase were used for comparing the significance 

of the prototypes in terms of learning skill enhancement. An ANOVA using the 

MINITAB statistical software was used to analyse the significance of the data 

collected. The hypotheses are as follows: 

1. There is no significant effect on learning palpation force using the three 

prototypes-A, B, and C, and 

2. There is a significant effect on learning palpation force using the three 

prototypes-A, B, and C.  
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A one-way ANOVA using MINITAB statistical software confirmed a significant 

difference among palpation force for the three training prototypes F (2, 27) = 18.65,   

p < .001, and hence rejected the first hypothesis that is there was no difference among 

the three prototypes. Further to find the best among the three prototypes, independent 

sample t-test using MINITAB statistical software was performed between the 

following prototypes. 

1. Prototype -A and prototype- B 

2. Prototype- A and prototype-C 

3. Prototype- B and prototype-C  

An independent sample t-test confirmed that there was a significant difference 

between prototype - A (M = 2.98, SD = 0.220) and prototype-B (M = 2.67, SD = 

0.183), t (17) = 3.43, p = .003 (two-tailed test). Similarly there was a very clear 

significant difference between the performance improvement using prototype - A (M 

= 2.980, SD = 0.220) and prototype - C (M = 2.530, SD = 0.078), t (11) = 6.09,        

p< .001. Similarly there was also a slight difference in the performance of prototype-

B (M = 2.67, SD = 0.183) and prototype-C (M = 2.53, SD = 0.078), t (12) = 2.22,       

p = .046. The range box and mean of the palpation forces for the three prototypes is 

shown in Figure 6.6. The mean of prototype-C is closer to the MPF indicating that 

participants using prototype-C better learnt the skills. In addition, range box in Figure 

6.6, shows the variation in the palpation force values of the participants that falls 

around the MPF for prototype-C, (see Appendix B). 
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Figure  6.6:  Range Box and Mean for palpation force for the three prototypes 

Figure 6.7 shows the scatter plot for the palpation forces applied by the trainees 

during the post-training phase, using the three prototypes-A, B, and C. The graph 

shows the palpation forces applied using prototype-C is smoother and closer to the 

threshold palpation force. This indicates that the palpation forces applied by the 

participants are closer to the MPF using prototype-C as compared to prototype-A, and 

B. 

 
Figure  6.7:  Individual palpation force by the trainees for the three prototypes-A, B, 

and C in a post-training phase 
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6.6.2.2 Exploration Time 

In the reproductive tract of a cow, an ovary was set as a feature for identification 

discussed in the above section. The time taken from the initial position to the feature 

(finding an ovary) measured in seconds, and was termed as exploration time. The 

exploration time ends, once the participant identify the feature and starts palpating the 

feature. The exploration time was recorded for the three prototypes and was then 

analysed by an ANOVA using the MINITAB statistical software. The same 

hypothesis were set here as for palpation force. The hypotheses are as follows: 

1. There is no significant difference in the exploration time using the three 

prototypes-A, B, and C, and 

2. There is a significant difference in the exploration time using the three 

prototypes-A, B, and C.  

The analysis of the data recorded using an ANOVA confirmed a significant 

difference among exploration time for the three training prototypes F (2, 27) = 23.68, 

p < .001, and hence rejected the first hypothesis that is there was no difference among 

the three prototypes. To find the best among the three prototypes, an independent  

sample t- test for the exploratory time, using MINITAB statistical software was 

performed between the 

1. Prototype -A and prototype- B 

2. Prototype- A and prototype-C 

3. Prototype- B and prototype-C  

There was a significant difference between prototype - A (M = 43.40, SD = 8.32) 

and prototype-B (M = 29.90, SD = 3.90), t (12) = 4.65, p = .001 (two-tailed test) for 

the exploration time. Similarly there is a very clear significant difference between the 

performance improvement using prototype - A (M = 43.90, SD = 8.32) and prototype 

- C (M = 27.20, SD = 3.33), t (11) = 5.72, p < .001. Similarly, there was no difference 

in the exploration time between prototype - B (M = 29.90, SD = 3.90) and prototype - 

C (M = 27.20, SD = 3.33), t (17) = 1.67, p > .05, (p = .114), (see Appendix B). 
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The range box and mean of the exploration time for prototype-A, B, and C is 

shown in Figure 6.8. The range box shows that prototype-C is better than prototype-

A, and B. 

 
 

Figure  6.8:  Range Box and Mean of exploration time for prototype-A, B, and C 

This experiment showed that visio-haptic modality outperformed haptic only 

modality in learning skills enhancement in a haptic dominant palpation simulator for a 

short-term memory. This experiment also confirmed that prototype-C was better than 

prototype-A, and prototype-B, due to the realistic visual and haptic sensation. 

6.6.3 Experiment 3 

The statistical analysis results for the palpation force and exploration time for the 

long-term memory are presented in the following sections. 
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6.6.3.1 Palpation Force 

The same hypothesis were set here as in an Experiment 2 discussed above. A one-

way ANOVA confirmed a significant difference among palpation force for the three 

training prototypes F (2, 27) = 14.56, p < .001, and hence concluded that there was a 

significant difference among the three prototypes. Further, an independent sample t-

test between prototype - A (M = 3.01, SD = 0.223) and prototype-B (M = 2.81, SD = 

0.137), t (14) = 2.34, p = .035, (two-tailed test), shown a significant difference. 

Similarly there is a very clear significant difference between the performance 

improvement using prototype - A (M = 3.01, SD = 0.223) and prototype - C (M = 

2.61, SD = 0.0966), t (12) = 5.01, p < .001. Similarly there was a significant 

difference of the palpation force between prototype - B (M = 2.81, SD = 0.137) and 

prototype - C (M = 2.61, SD = 0.096), t (16) = 3.77, p = .002, (see Appendix B). 

6.6.3.2 Exploration Time 

The exploration time after one week for the three prototypes were analysed 

statistically using one-way ANOVA and shown a significant difference among the 

three prototypes F (2, 27) = 34.43, p < .001.  

There was a significant difference in the exploration time between prototype - A 

(M = 69.50, SD = 15.5) and prototype-B (M = 34.10, SD = 6.67), t (12) = 6.62,           

p < .001 for the exploration time. Similarly there was a very clear significant 

difference between the performance improvement using prototype - A (M = 69.95, SD 

= 15.5) and prototype - C (M = 35.20, SD = 8.2), t (13) = 6.18, p < .001. Similarly 

there was no difference in the exploration time between prototype - B (M = 34.10, SD 

= 6.67) and prototype - C (M = 35.20, SD = 8.2), t (17) =   -0.33, p > .05, (p = .746), 

(see Appendix B). 

The range box and mean of the three prototypes is shown in Figure 6.9. This also 

shows the maximum and minimum exploration time for each prototype. Although the 

range box for prototype-B, and C is different, but this difference is statistically 

insignificant. 
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Figure  6.9:  Range Box and mean of exploration time for the three prototypes 

The exploration time was better using the two proposed visio-haptic deformable 

model for the enhancement of long-term learning skills as compared to prototype-A. 

These findings suggest that visio-haptic modality allowed the participants to better 

recall positional information in a long-term memory. 

6.6.4 Experiment 4 

The maximum value of the palpation forces recorded, once the feature was identified, 

for all the participants in the post-training phase were used for comparing the 

significance of the two prototypes having different extents of visual realism, and 

touch sensations. An ANOVA using MINITAB statistical software was used to 

analyse the significance of the data collected. The hypotheses are as follows: 

1. There is no significant effect on learning palpation force using prototype-C1, 

and C2 which was having two different resolutions in the region of interest, 

and  

2. There is a significant effect on learning palpation force using prototype-C1, 

and C2.  
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A one-way ANOVA using MINITAB statistical software confirmed there is no 

significant difference among palpation force for the two resolutions F (1, 19) = 0.14, 

p > 0.05, ( p = .714), and hence could not reject the first hypothesis that there is no 

difference between the two prototypes. The two prototypes although different in the 

extent of visual cue in terms of computation but have no effect on the learning of the 

palpation force. Palpation force recorded for the participants using prototype-C1, and 

C2 is shown in Figure 6.10. 

 

Figure  6.10:  Palpation force recorded for the participants using prototype-C1, and C2 

6.7 Summary 

This chapter presented an evaluation study to validate the proposed visio-haptic 

deformable models as well as the multimodal cues. The first experiment showed that 

visio-haptic modality was better at learning a procedure than haptic under guidance. 

The visual cue allows instructors to better control the movements of the trainee during 

a procedure and guides better than the haptic only modality. In experiment two, the 

effect and extent of visual cue on the short-term memory for palpation force and 

exploration time were evaluated in a haptic dominant palpation simulator. The 

statistical analysis performed shows that prototype-B and C were better than  
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prototype - A, meaning that visio-haptic is better than haptic only modality for force 

and position recall. The experiment also shows the difference between prototype-B 

and C for palpation force only and there was no difference in exploration time. The 

third experiment was conducted for the evaluation of the effectiveness of multimodal 

cue for the enhancement of long-term learning skills. The study findings suggested 

that visio-haptic modality enhanced the force and position recall of the participants. In 

the fourth and last experiment, the effect and extent of visual and haptic cue were 

evaluated using different resolution of the proposed visio-haptic deformable model, 

and named as protoype-C1, and prototype-C2. The statistical analysis performed 

shown that there was no significant difference in the learning outcomes of the two 

models. This suggested that the extent of multimodal cues need to be considered in 

the development of such simulators.  

The next chapter discusses the two visio-haptic deformable models presented in 

chapters four, and five, and the evaluation study presented in this chapter. 
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CHAPTER 7 

DISCUSSION 

This chapter presents the discussion of the two proposed visio-haptic deformable 

models and an investigation of multimodal cues in the haptic dominant palpation 

simulator. Section 7.1, discusses the two visio-haptic deformable models proposed in 

chapters four, and five respectively. Section 7.2 presents discussion of the evaluation 

study presented in chapter six. Section 7.3 summarizes the chapter. 

7.1 Visio - Haptic Deformable Models 

Real-time interactive deformation instead of sophisticated hardware has been in focus 

for the last two decades. For modelling the physical properties of the soft tissue 

mainly two methods: FEM [116; 110; 23] and MSM [134-136; 96; 97] have been 

widely used in which an MSM is the best choice because of its ease of 

implementation, fast response, and realistic deformation. For models of high 

resolution and the need of interactivity in the simulation including haptic sensation, 

makes these methods computationally expensive, when considering the whole model. 

Due to these reasons, a variation of MSM is used in this thesis in order to incorporate 

the physical properties of the soft tissue and achieve real-time interactive simulation 

of the soft tissue.  

The following subsections discusses the two proposed visio-haptic deformable 

models, namely, a vertex based visio-haptic deformable, and an adaptive area based 

visio-haptic deformable. 
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7.1.1 Vertex Based Visio-Haptic Deformable Model 

A vertex based visio-haptic deformable model was used to deform the touched node 

and its two rings of neighbours (two - neighbourhood) using the slope intercept form 

of a line equation. This model is very simple in its implementation and efficient in 

deforming the soft tissue upon applying the external force with the help of force 

feedback device. Deformation is faster because of fewer calculations required due to 

the slope intercept form of a line equation as compared to [61; 161]. This model 

deforms locally when interact in a real-time simulation, and is combined with the 

shape preserving springs in order to maintain the shape of the model during 

interactive deformation, once the external force is relaxed. For quickly accessing the 

touched node, an octree space partitioning technique is implemented in the haptic 

channel which is not available in the OpenHaptics APIs [144; 52]. Furthermore, a 

quick haptic rendering was achieved using only the two-neighbourhood of the 

touched node in the haptic channel. The overall performance of the visio-haptic 

deformable model is improved as compared to the existing methods [52; 60; 61]. 

7.1.1.1 Performance Analysis 

A novel approach based on the slope intercept form of the line equation is used for 

deforming the touched node, and all the nodes in the close vicinity of this touched 

node. For visually realistic deformation, the touched node and its two-neighbourhood 

nodes were deformed using the same line equation with different slopes, termed as the 

step size. For achieving an elastic deformation, the shape preserving springs were 

introduced to restore the soft tissue, once the external force was relaxed. 

For the models with high resolution, the interactive simulation degrades and the 

user could experience the lapses during simulation especially in the haptic sensation. 

This is because of the searching technique available in the OpenHaptics API for 

searching a node in the complex model [52; 144]. This searching is based on the 

nearest neighbour method, which chooses the node from the model closest to Haptic  
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Contact Point. The time complexity of this method is O(n). In addition, as the model 

is rendered twice in the haptic and the graphics loop so rendering complex model 

twice in the real-time interactive simulation counted for the lapses as well. Firstly, to 

overcome these lapses during the simulation of soft tissue due to searching, an octree 

space partitioning method has been implemented in the haptic loop for quick access to 

the touched node. The OSP is not required to be implemented in the graphics loop, as 

the whole model is needed to be rendered for visual appearance. The time complexity 

of an octree method is O(log(n)). The results (see Table 4.1) of the first proposed 

method for the same model of different resolutions showed 83% to 92% performance 

improvement when the octree partitioning method was implemented for searching the 

node. Secondly, to overcome the lapses during the simulation of soft tissue due to the 

complex, and whole model rendering, only two-neighbourhood nodes of the touched 

node were rendered for the haptic sensation. Therefore, when implementing two-

neighbourhood rendering in the haptic channel, the simulator performance was 

improved from 6.31% to 87.44% (see Table 4.2) as compared to the whole model 

rendering. This improvement was in the case when both of the simulators have octree 

method implemented for the quick access of the touched node. In addition, when one 

simulator has implemented two-neighbourhood for rendering and octree method for 

searching and the other simulator has whole model rendering and linear search 

method for searching, then in such simulators, the results showed the performance 

improvement from 81.25% to 91.02% (see Table 4.2). The percentages are given in 

the ranges due to the reason that models of different resolution have been used in the 

simulation. 

The results showed that the proposed vertex based visio-haptic deformable model, 

along with the octree space partitioning method and two-neighbourhood rendering has 

improved the performance up to 91.02% as compared to the currently available 

methods in the vertex based deformation for the interactive simulation of the model 

with the same resolution [61; 60]. The proposed model worked fine in a real-time 

interactive simulation for palpating the reproductive tract of the cow and the human 

stomach. In the proposed model, the model considered was hollowed from inside and 

the tissue properties considered were linear, isotropic, and homogenous. This 

proposed visio-haptic deformable model could be implemented in general for the soft  
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tissue, having hollow inside, such as vessels and gallbladder. However, the algorithm 

is unable to encompass the underlying physical properties of soft tissue, which are 

highly nonlinear, inhomogeneous, and anisotropic.  

7.1.2 Adaptive Area Based Visio-Haptic Deformable Model 

Subdivision is used as levels of detail in order to refine locally a deformable model in 

the region of interest. Many methods have been proposed in the literature, which 

combines levels of detail with the physics based deformable models for easing the 

computational load during simulation. The authors in [126] proposed an adaptively 

refined method for the rectangular shaped lattice of masses and springs. They 

modelled cloth and during simulation of the cloth, it was refined at the regions of high 

curvature. In this method only refinement at high curvature were provided but no 

simplification involved. The authors in [92] used loop subdivision to refine the region 

of interest in rendering of high deformation physics based facial animation system. 

Most of the existing soft deformation techniques that are combined with subdivisions 

for the levels of detail neglect to maintain dynamic behaviour of the model during 

simulation among different levels of details [125; 92; 126; 133]. The proposed 

adaptive area based visio-haptic deformable model, not only reduces the number of 

rendered triangles in the graphics, and haptic loop, but also takes care of the dynamic 

behaviour of the model during simulation. 

The authors in [133; 125; 92] used adaptive subdivision for the surface mesh 

models. In this thesis, volumetric model is used to capture the internal details of the 

soft tissue.  

7.1.2.1 Performance Analysis 

The authors in [125] used an adaptive surface deformable model for hollow objects 

while maintaining dynamic behaviour of the model among different levels of detail. 

They used modified butterfly interpolation subdivision method and a physical 

property adjustment scheme in order to preserve the overall behaviour of the model 



151 

 

during real-time interactive simulation. During simulation the topology of the model 

changes due to the technique, applied for refinement. 

In comparison with the previous models available in the literature, an adaptive 

area based visio-haptic deformable model enjoys several advantages. Firstly, in the 

proposed model, region of interest is refined based on the area of a triangle in the 

triangular mesh model. This allows that fewer triangles are produced and therefore, 

requires less time in graphics rendering. Comparing with the conventional adaptive 

subdivision model, the proposed model produced 2% less faces for the low resolution 

stomach model while 5% less faces for the higher resolution reproductive tract model 

(see Table 5.4) for the same visual appearance. This percentage increased with the 

increase in the variation of the area among triangles in the model.  

Secondly, due to the proposed adaptive area based visio-haptic deformable model, 

least number of new nodes, spring stiffness, and damping coefficients are created. 

Table 5.1 shows that 10.98% lesser new nodes are created using the proposed method 

for the surface based mesh model. Similarly, 8.5% lesser number of spring stiffness 

and damping coefficients are required to be used in the simulation. Table 5.2 shows 

that 19.35% lesser new nodes are created using the proposed method for the 

tetrahedral based mesh model. Similarly, 19.09% lesser number of spring stiffness 

and damping coefficients are required to be used in the simulation. The least number 

of nodes reduced the time of its creation, and also ceased to create the corresponding 

springs. The time required in the computation of the spring forces, nodes position was 

also eliminated during the real-time interaction, while maintaining the same visual 

realism and haptic sensation. The performance was improved for the models with 

higher variation in the area of its faces. 

In Figure 7.1, the comparison of the proposed adaptive area based visio-haptic 

deformable model with the conventional adaptive model for new node creation, along 

with the total nodes present in the coarse model. New nodes created in the proposed 

model are smaller than the conventional adaptive model. 
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Figure  7.1: New nodes created during the proposed and conventional adaptive 

 model with total nodes in the coarse model 

Similarly, Figure 7.2 shows the comparison of the proposed area based visio-

haptic deformable model with the conventional adaptive model for the creation of 

new springs, along with the total springs present in the coarse model. The proposed 

model creates a less number of springs that has also an advantage of eliminating the 

force computation for the spring stiffness and damping coefficients in the interactive 

simulation. 

 
Figure  7.2: New springs created during proposed and conventional adaptive model 

with total springs in coarse model 
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The proposed model was compared with the refined model and the results were 

shown in Table 5.4. In the graphics loop the performance has been improved by 

88.3% while in the haptic loop it was improved by 98.25% when rendering the 

stomach model and for the reproductive tract model, the performance in the graphics 

loop was improved by 99.48% and in the haptic loop the performance was improved 

by 95.12%. 

Next, the proposed adaptive area based visio-haptic deformable model was 

compared with the conventional adaptive subdivision model proposed in the 

literature. In both of these algorithms, MSM is used to incorporate the physical 

properties of the soft tissue. The results shown in Table 5.5 showed that for the 

stomach model, the performance in the graphics loop was improved by 30.4%, while 

in the haptic loop it was improved by 94.28%. Similarly, for the reproductive tract 

model the performance in the graphic loop was improved by 54.19% and in the 

graphics loop it was improved by 97.13%. 

The results presented showed that the proposed adaptive area based model gave a 

better performance in real-time visio-haptic interactive simulation of soft tissue 

deformation. As the resolution of the model increases, there is very little effect on the 

performance as compared to the refined and conventional adaptive models. In Figure 

7.3, the execution time required in the graphics, and haptic loop using the stomach 

model is separately compared among the proposed adaptive area based model, the 

refined model, and the conventional adaptive model. 
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Figure  7.3: Execution time comparison of different models for stomach in the graphic 

and haptic loop 

Similarly, in Figure 7.4, the execution time required in the graphics, and haptic 

loop using the reproductive tract model is separately compared among the proposed 

model, the refined model, and the conventional adaptive model. 
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Figure  7.4:  Execution time comparison of different models for reproductive tract in 

the graphic and haptic loop 

In Figure 7.4, the coarse model has higher resolution. For the refined model and 

conventional adaptive deformable model, the execution time increases exponentially 

while for the proposed model, the execution time is negligible with the increase in 

model resolution. 
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7.2 Evaluation Study Analysis 

Evaluation of the visio-haptic modality as well as the extent of visual and haptic cues 

in a haptic dominant environment was presented in chapter six. The evaluation study 

is meant to meet the last two research objectives stated in chapter one. Four 

experiments were involved in the evaluation study. 

7.2.1 Visio-Haptic Modality in Collaborative Environment 

The first experiment in chapter six shows the effectiveness of the visio-haptic 

modality in a collaborative environment of trainee and instructor. The instructor 

provided timely information to the trainee due to the interactive visual deformation. 

Both in the haptic only and visio-haptic environment, the trainees used only the haptic 

cue for practicing the palpation forces, but in a visio-haptic modality, the visual cue 

allowed the instructor to better control the palpation forces applied by the trainee 

during the skills learning process in a haptic dominant environment as compared to 

the haptic only [30; 28]. This experiment showed that visio-haptic modality allowed 

to improve the guidance of the participants and better controlled the participants' 

action during the training and hence enhanced the learning skills of the trainee. There 

was also a statistically significant difference between the performance of the two 

proposed visio-haptic deformable models due to implementation of realistic visual 

and haptic cues and its coordination. In prototype-B, the haptic sensation was similar 

to that of prototype-A, but with the aid of visual cue, there was statistically significant 

difference between the performance of prototype-A, and B. The statistical analysis of 

the data signified the importance of visual cue in a haptic dominant environment. 

Similarly, prototype-C was better than prototype-A, and B, due to realistic visual and 

haptic sensation and proper coordination of these cues.  
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7.2.2 Visio-Haptic Modality in Short-term and Long-term Skill Enhancement 

Multisensory modality is more informative and helps quickly learn different shapes or 

procedure as compared to single modality [8]. However, the study findings of 

Srimathveeravalli and Thenkurussi [11] stated that visio-haptic is insignificant for the 

positional information recall. In a similar findings, the authors in  [12] reported that 

visio-haptic training is not effective but showed promising results in long-term motor 

skills. Huegel and O'Malley, [13] showed that visio-haptic is effective in the 

beginning of the learning curve only. The second and third experiment in chapter six 

was conducted to investigate the effect of visio-haptic modality on the enhancement 

of short-term and long-term skills in a haptic dominant environment. 

 In the second experiment, the effect of visio-haptic modality was studied in a 

haptic dominant environment for short-term memory. The results showed that the 

learning skills were enhanced using visio-haptic modality than the haptic only in a 

haptic dominant environment. The visio-haptic modality was better in learning 

palpation force and had better exploration time. The extent of visual cue considered in 

this experiment by implementing the two proposed visio-haptic deformable models, 

showed a significant difference in the palpation force but there was no difference in 

the exploration time. There was also a statistically significant difference between the 

performance of the two proposed visio-haptic deformable models due to the 

implementation of realistic visual and haptic cues and its coordination. In prototype-

B, the haptic sensation was similar to that of prototype-A, but with the aid of visual 

cue, there was statistically significant difference between the performance of 

prototype-A, and B and enhanced the skills learning of the trainee. Similarly, 

prototype-C, which has the visio-haptic modality, (but these modalities were realistic 

and based on the physical properties of the soft tissue), showed better performance in 

learning skill enhancement than prototype - A, and B. In short, the visio-haptic 

modality enhanced skill learning for better force as well as position recall as 

compared to haptic only. In addition, the haptic sensation based on the physical 

properties of the soft tissue was better than the haptic sensation based on the Hooke's 

law implemented in the currently available bovine rectal palpation simulator [30; 31; 

28]. 
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In the third experiment, the effect of visio-haptic modality was studied in a haptic 

dominant environment for long-term memory. The results in this case also had shown 

better performance for visio-haptic modality. The participants trained using the 

proposed visio-haptic deformable models remembered well the palpation force and 

exploring the feature set during the experiment. The exploration time for the current 

haptic only modality were much higher for all the participants trained, almost 50% 

higher than the visio-haptic modality meaning that participants took longer time to 

explore and reach to the feature set during the experiment. Similarly, the mean 

palpation force for the haptic only was much higher than the threshold force set as 

compared to the two proposed visio-haptic deformable models. There was also a 

statistically significant difference between the two proposed visio-haptic deformable 

models for the palpation force but the difference in the exploration time was 

statistically not significant. In short, visio-haptic modality was better in long-term 

force as well as position recall as compared to haptic only, and hence enhanced the 

learning skills of the trainee. 

The results of experiment two, and experiment three reveals that visio-haptic 

modality enhanced the learning skills of the trainee as compared to the haptic only 

modality in a haptic dominant palpation simulators. In addition, the main difference 

between the two proposed visio-haptic deformable models is the extent of realism that 

they have in terms of visual and haptic sensation and this resulted in a difference in 

the performance of the participants. 

7.2.3 Visual and Haptic Modality 

The statistical results obtained in all experiments have shown that visio-haptic 

modality enhanced learning skills of the trainees as compared to the haptic only 

modality. Experiments were also conducted to show the effect of visual and haptic 

modality on the performance. 

In this research, prototype-B has a realistic interactive visual deformation and that 

haptic sensation was based on Hooke's Law as reported in [30; 31], while in 

prototype-C, the visual deformation was realistic as well as the haptic sensation which  
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was based on the reaction forces of the tetrahedral lattice of the mass spring model. 

The computed forces were provided to the participant through the force feedback 

device in a realistic way. The statistical results of prototype-B and C have shown a 

significant difference in learning skills enhancement, and in addition prototype-C was 

better than prototype-B, although both have the visio-haptic modality. This difference 

in performance was due to the extent of haptic cue present in prototype-C. The haptic 

sensation in prototype-C was more realistic than prototype-B, and therefore helped 

better in learning the palpation forces. The individual palpation force applied by 

participants using the three prototypes-A, B, and C for short-term learning skills are 

shown in Figure 7.5. The green square represents the palpation force applied by the 

participants using prototype-C, and shows that the palpation forces are close to the 

Maximum Palpation Force vicinity as compared to prototype-A, and B, represented 

by black circles and red squares respectively. 

 

Figure  7.5:  An individual palpation force by the participants using the three 

prototypes-A, B, and C for short-term force recall 

The individual palpation forces applied by participants using the three prototypes-

A, B, and C for long-term force recall are shown in Figure 7.6. In Figure 7.6, it is 

clear that palpation forces using prototype-C are closer to the Maximum Palpation 

Force (MFP) as compared to prototype-A, and B. 
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Figure  7.6:  An individual palpation force by the participants using prototypes-A, B, 

and C for long-term memory force recall 

In the fourth experiment, prototype-C was used with two different resolutions in 

the region of interest, in which the resolution of one prototype (prototype-C1) was 

double than the other (prototype-C2). The aim of this experiment was to evaluate the 

effect of extent of visual and haptic cues. The statistical analysis of the results 

obtained showed that the palpation forces recorded in both the simulators were 

insignificant and hence both trained the participants with the same degree of 

performance. The statistical analysis of this experiment revealed the importance of the 

extent of visual and haptic cue for developing visio-haptic simulator that should be 

considered because beyond the threshold perception, computation is 

counterproductive and wastage of resources  [27]. The results of this experiment 

suggest the extent of visio-haptic cue is important and need consideration in the 

development of such simulators but does not quantify the extent of each cue to be 

present. Figure 7.7, shows the visio-haptic realism versus skill enhancement. 

Increasing the visual realism and haptic sensation, increases the learning skills. The 

vertical red line shows the maximum learning skill outcomes at the particular visio-

haptic realism. Further increase in visio-haptic realism has no effect on learning  



161 

 

outcome; the computation is counterproductive and hence the wastage of resources. 

This is shown in Figure 7.7, with a red circle region of the graph. Beyond this region, 

increasing visio-haptic realism degrades the learning skills outcome, due to the lapses 

in the visual and haptic sensation. 

 

Figure  7.7:  Effect of the extent of visual and haptic cues on learning skills 

enhancement 

The statistical results obtained in experiments one, two, and three have shown that 

visio-haptic modality enhanced learning skills of the trainees as compared to the 

haptic only modality in a haptic dominant environment. In addition the results have 

shown the effect of extent of visual and haptic modality on the enhancement of 

learning skills. The statistical results of experiment four revealed the importance of 

the extent of visual and haptic cue for developing visio-haptic simulator that should 

be considered because beyond the threshold perception, computation is 

counterproductive and wastage of important resources. These results suggest the 

extent of visio-haptic cue is important and need consideration in the development of 

such simulators, but these results does not quantify the extent of these cues to be 

present in the simulators. 

The experiments conducted shows that visio-haptic cues enhanced learning skills 

of the trainees as compared to haptic only. The proposed visio-haptic deformable  
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models were implemented for the visio-haptic cues, which also validate the proposed 

visio-haptic deformable models. The difference between the learning outcomes of the 

two proposed models were due to the implementation of surface based model in one 

prototype and volumetric based model in the second prototype. As the proposed visio-

haptic deformable models enhanced the learning skills of the trainees and hence show 

the effectiveness of the proposed models. This is shown in Figure 7.8. The range box 

for short-term and long-term memory for palpation force using prototype-A, B, and C 

is shown in Figure 7.8. 

 

Figure  7.8:  Range Box for short-term, and long-term for palpation force using 

prototype-A, B, and C 

Red range box is the palpation forces applied by the trainees using prototype-A, green 

range box is the palpation forces applied by the trainees using prototype-B, and blue 

is for prototype-C. The horizontal line represents the Stopping Force Threshold. 

7.3 Summary 

This chapter discussed the results presented in chapters four, five, and six. In 

summary, the results from the evaluation study showed that the two proposed visio-
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haptic deformable models were efficient in terms of speed and suitable for a real-time 

interactive simulation.  

A vertex based visio-haptic deformable model using the slope intercept form of a 

line equation for soft tissue simulation, in combination with an octree space 

partitioning method, and two-neighbourhood method for local deformation has greatly 

improved the performance. Area based adaptive visio-haptic deformable model 

combined with an octree space partitioning and MSM for physical properties showed 

an improvement over the models available in the literature. The results showed that 

the proposed model gave better performance when compared with the refined model 

during interactive simulation. Similarly, the proposed model was compared with an 

adaptive deformable model available in the literature and the results shown 

improvement in both the graphics and haptic loop. It was also shown that the results 

could be further improved if the variation in the triangle area is high. It was shown 

that increasing the resolution of the coarse model for adaptive refinement, the increase 

in the execution time for the proposed model in the graphics and haptic loop is 

negligible while this was exponentially increased for the refined model as well as for 

the conventional adaptive model. 

The experiments show that visio-haptic modality is better at learning a procedure 

than haptic only in the haptic dominated environment. The visual cue was for the 

instructor to guide the trainee in an interactive environment, providing useful 

palpation force control to the trainees. This showed that in an instructor-trainee 

interaction environment visio-haptic modality was more informative than the haptic 

only modality, and enhanced the learning skills of the trainee. The two experiments 

for short-term and long-term memory have shown that visio-haptic modality was 

better than the haptic only. In prototype-B, and C, although visual realism was the 

same but the haptic sensation was different and showed a difference in the 

performance. Similarly, findings from the last experiment concluded that the extent of 

visual cue has an importance in a simulation and need to be considered, as beyond the 

users' perception of realism, the computation is counterproductive and have no such 

benefits. 
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In the next chapter, the conclusion of this thesis is presented, with the limitation, 

and future work directions from this work. 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

The aim of this chapter is to conclude the findings of this research work by relating 

them to the objectives set in the first chapter of this thesis. This chapter also presents 

future research directions as well as the limitations of the work. 

8.1 Deformable Modelling Techniques 

In this thesis, two visio-haptic deformable models have been proposed for real-time 

interactive visio-haptic deformation as presented in chapters four, and five, 

respectively. Deformable models developed so far mostly are highly application 

dependent. Therefore, during the proposed work in the thesis, the focus is on real-time 

visio-haptic deformation in bovine rectal palpation. The two visio-haptic deformable 

models, developed and implemented are namely vertex based visio-haptic deformable 

model using slope intercept form of a line equation, and adaptive area based visio-

haptic deformable model.  

In a vertex based visio-haptic deformable model, deformation occurs along the 

force vector using slope intercept form of a line equation. This deformation is 

unrealistic; as the deformed node does not come to the rest position once, the external 

force has been removed. To make the deformation elastic, shape preservation springs 

were used to bring it back to the original position once the external force is relaxed. 

An OSP is used to partition the space occupied by the model and implemented in the 

haptic loop in order to make the collision of the force feedback device with nodes 

faster. 

The next proposed model is an adaptive area based visio-haptic deformable 

model, which divides the region of contact dynamically based on the area of a
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triangle. This technique is implemented along with the mass spring model for 

incorporating physical properties of soft tissue. This algorithm has greatly removed 

unnecessary triangles, which greatly improved performance of graphic and haptic 

rendering. In addition, it avoids extra spring computation and integration. 

Furthermore, it also reduces new masses, spring stiffness, and damping coefficient 

calculations because of selected triangle subdivision. This does not affect the visual 

appearance of the model during simulation. 

In order to get a quick response in the haptic channel, an octree space partitioning 

method is implemented. An octree space partitioning is also used for fast rendering of 

selected nodes in the haptic channel. It has been shown that using an octree for 

rendering and collision detection has greatly improved performance. Furthermore, a 

one-neighbourhood, and two-neighbourhood are used in the proposed model in the 

region of interest for quick and efficient deformation. 

8.2 Evaluation Study 

Four experiments were conducted in order to validate that visio-haptic modality 

enhanced short-term and long-term learning skills as compared to the haptics only in a 

haptic dominant palpation simulator as well as to evaluate the extent of visual and 

haptic cues. The experiments also validate the visio-haptic deformable models 

proposed in this work.  

The first experiment is an evaluation of the effect of visual cue in an instructor-

trainee environment with interactive guidance of the instructor for controlling the 

palpation forces. Three types of simulators were used in which one containing haptic 

cue and the other two containing visio-haptic cues using the two visio-haptic 

deformable models presented in chapters four and five, respectively. The finding of 

this study reported that visual cue enhanced the skill learning process due to the 

interactive involvement of the instructor during palpation. The results of the two 

proposed visio-haptic models were also significantly different meant that increasing 

the haptic sensation improved the performance but up to certain threshold based on 
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the users' perception, as beyond the threshold perception, the visio-haptic modality 

has no effect on the learning skills enhancement. 

The second experiment was performed to evaluate the effectiveness of visio-

haptic modality in a haptic dominant environment for the enhancement of short-term 

learning skills. The same three prototypes were used as in experiment one, but the 

findings concerned only one subject. The report of this experiment revealed the 

effectiveness of the proposed model as well as the potency of visio-haptic cues for the 

enhancement of learning skills in a haptic dominant environment for short-term 

memory. The parameters used in this experiment were palpation force and exploration 

time. The study findings from this experiment showed that visio-haptic modality was 

better in learning skills as compared to haptic only in a haptic dominant environment. 

The third experiment was performed to see the effectiveness of the visio-haptic 

modality for the enhancement of long-term learning skills. The study findings showed 

that visio-haptic modality as compared to the haptic only, enhanced the learning skills 

of the participants. 

The fourth experiment was performed to see the extent of visual and haptic cues 

needed for the learning skills enhancement. Prototype-C was implemented using two 

different resolutions in the region of interest in which one resolution was twice the 

other. The results showed no significant difference statistically that advocates the 

extent of the visual and haptic cues need to be considered in order to improve the 

performance of the simulator. 

The empirical findings statistically analysed, reported that visio-haptic modality 

was better in learning skills enhancement than the haptic only modality even though 

in a haptic dominant environment. The effect was on the instructor guiding the trainee 

as well as in the short-term and long-term memory of the participants for force and 

position recall. The visual cue both in prototype-B, and prototype-C enhanced the 

learning skills of the trainees and was better in the recall of force and positional 

information than the trainees, which were trained with the haptic only modality. 
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8.3 Contribution 

The main contribution of this thesis could be described in the form of practical and 

substantive contributions. The practical contribution consists of the actual 

development, implementations of the two visio-haptic deformable models, namely 

vertex based visio-haptic deformable model, and an adaptive area based visio-haptic 

deformable model. Substantive contribution consists of the empirical findings of the 

effectiveness of visio-haptic modality in the haptic dominant palpation environment, 

the effect of the extent of the visual cue in the skill development process. 

8.3.1 Practical Contribution 

The practical contribution addresses the first two objectives of this thesis. The first 

objective is the development of visio-haptic deformable models for interactive 

simulation of visio-haptic modalities, while the second objective concerns with the 

implementation of visio-haptic deformable models developed in the haptic dominated 

environment. 

The main practical contributions can be summarized as: 

 Development of a visio-haptic deformable model, namely, a vertex based 

visio-haptic deformable model using slope intercept form of a line equation. 

The model is combined with the space partitioning techniques and two-

neighbourhoods, for further realistic visual and haptic deformation. 

 Development of a second visio-haptic deformable model, namely, an adaptive 

area based visio-haptic deformable model. In this model, the region of interest 

is refined based on the area of a triangle. If the triangle's area is greater than 

the threshold area then the region is refined. For switching between the 

physical properties of the model before and after refinement, new formulae 

for calculating mass of the new nodes, spring stiffness, and damping 

coefficients are presented. 
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8.3.2 Substantive Contribution 

A substantive contribution addresses the last two objectives of this thesis mentioned 

in chapter one, concerning the evaluation of the visio-haptic cues and the extent of 

visual and haptic cue for learning skills enhancement in a haptic dominant palpation 

simulator. This has been presented in the form of an evaluation study reporting four 

experiments in chapter six. The study findings suggest that: 

 The interactive visual deformation in a collaborative trainee-instructor 

environment used by the instructor, enhanced the learning skills of the trainee, 

and help better control the palpation forces during palpation procedure. 

 Visio-haptic modality as compared to haptic only, enhanced short-term and 

long-term learning skills in a haptic dominant environment. 

 The extent of visual and haptic cues is important in a palpation simulator and 

that the proportion of these two cues in the simulator should be based on the 

users' perception. 

 Prototype-B, and prototype-C, both enhanced short-term and long-term 

learning skills as compared to prototype-A, and therefore, validates the two 

visio-haptic deformable model proposed in this thesis. 

8.4 Recommendations for Future Work 

In this section, recommendations for future work, out of the work presented in this 

thesis are discussed. Here are few possible goals for research in this field. 

 The visio-haptic deformable models proposed in this thesis are used for local 

deformation. Further work needs to be done to expand it to global 

deformation for further mimicking the gap between real and virtual. 

 In an adaptive area based visio-haptic deformable model, all the refinement 

levels and its corresponding parameters are calculated in the preprocessing 

step before actually the simulation starts. Further work is required to make it  
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dynamic in order to improve the space. 

 During a user interaction with the simulation, when the user deforms the soft 

tissue, then the triangles in the region of interest enlarges due to the 

movement of its nodes. Such triangles should also be refined dynamically for 

realistic simulation using a threshold area for its refinement. 

 Cache memory can be used to store the most recently visited triangles so that 

haptic rendering pipeline can be further improved. 

 The visio-haptic deformable models developed need to be implemented in a 

bovine rectal palpation simulator as a whole and needs further exploration 

based on experts in the field of veterinary. Further evaluation based on having 

multi-layers collision and force interaction is required. 

 Further assessment of the extent of visual cue and haptic cue is required by 

changing the latency time between visual and haptic modality, and need to 

find an acceptable extent for the user. 
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APPENDIX A 

Calculating Neighbourhood Of A Touched Node. 

Code uses for haptic sensation OpenHaptics APIs [144].  

void removeDuplicate (); 
void removeDuplicate1(); 
void NieghborsofPointN(); 
void Compare(); 
void remove(); 
 
void PointNeighbour() 
{  int k; 
 for(int i= 0;i<numMass; i++) 
  {  
   k=0; 
   Pt[i].numNeighbour =0; 
   for (int j=0; j<numFace; j++) 
    { 
   
    if (i==tris[j].vIndex [0]) 
     { 
  
     Pt[i].Neighbour [k++] =tris[j].vIndex [1]; 
           
     Pt[i].Neighbour [k++] =tris[j].vIndex [2]; 
           
     Pt[i].numNeighbour += 2; 
    
    } 
    if (i==tris[j].vIndex [1]) 
      { 
           
     Pt[i].Neighbour [k++] =tris[j].vIndex [0]; 
           
     Pt[i].Neighbour [k++] =tris[j].vIndex [2]; 
    
     Pt[i].numNeighbor+=2; 
      
     } 
    if (i==tris[j].vIndex [2]) 
      {
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      Pt[i].Neighbour [k++] =tris[j].vIndex [0]; 
           
      Pt[i].Neighbour [k++] =tris[j].vIndex [1]; 
    
      Pt[i].numNeighbour+=2; 
      } 
     } 
   removeDuplicate ();  
   removeDuplicate (); 
   } 
 NieghborsofPointN (); 
 
} 
void removeDuplicate () 
{ 
 int i, j; 
 
 for (int k =0; k<numMass; k++) 
 { 
 
  for (i = 0; i<Pt[k].numNeighbor; i++) 
  { 
   for (j = i+1; j<Pt[k].numNeighbor; j++) 
   { 
 
    if (Pt [k] .Neighbour[i] == Pt[k].Neighbour[j]) 
   { 
    for (int m = j; m<Pt[k].numNeighbor; j++) 
    { 
     Pt[k].Neighbour[m] = Pt[k].Neighbour [m+1]; 
    } 
    Pt[k].numNeighbor--; 
   } 
    
   } 
  } 
 } 
 
} 
void removeDuplicate1 () 
{ 
 int i, j; 
 
 
 for (int k =0; k<numMass; k++) 
 { 
 
   
for (i = 0; i<Pt[k].numNeighbor; i++) 
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  { 
   For (j = i+1; j<Pt[k].numNeighbor; j++) 
   { 
 
    if (Pt [k] .NNeighbour [i] == Pt[k].NNeighbour [j]) 
   { 
    for (int m = j; m<Pt[k].numNeighbor; j++) 
    { 
    Pt[k].NNeighbour [m] = Pt[k].NNeighbour [m+1]; 
    } 
    Pt[k].numNNeighbor --; 
   } 
    
   } 
  } 
 } 
 
 Compare (); 
} 
void NieghborsofPointN () 
 
{ 
int p; 
int k =0 ; 
int i; 
 
 for( i = 0 ; i<numMass; i++) 
 { 
  p = 0; 
  Pt[i].numNNeighbor =0; 
 
  for(int j = 0; j<Pt[i].numNeighbor; j++) 
  { 
 
   k = Pt[i].Neighbour[j]; 
   
   
    for(int n = 0; n<Pt[k].numNeighbour; n++) 
    { 
     if(i != Pt[k].Neighbour[n]) 
     { 
     Pt[i].NNeighbour [p++] = Pt[k].Neighbour[n]; 
     Pt[i].numNNeighbor +=1; 
     } 
 
    } 
 
 } 
removeDuplicate1(); 
removeDuplicate1(); 
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 } 
 
 
} 
void remove( int i, int n) 
{ 
  for(int j = n; j<Pt[i].numNNeighbor ; j++) 
  { 
   Pt[i].NNeighbour [j] = Pt[i].NNeighbour[j+1]; 
  } 
  Pt[i].numNNeighbor --; 
 
 
} 
void Compare() 
{ 
  
 for(int i = 0 ; i<numMass; i++) 
 { 
  for(int j = 0; j<Pt[i].numNeighbor; j++) 
  { 
 
    for(int n = 0; n<Pt[i].numNNeighbor ; n++) 
        if(Pt[i].Neighbour[j] == Pt[i].NNeighbour[n])  
      remove( i, n); 
  } 
    
 } 
  
 
} 
 
3D Model Reading Using Half-Edge Data Structure. 
 
 
#ifndef MESH_H 
#define MESH_H 
 
class Triangle; 
class Edge; 
// Class for a 3D point in space 
class Mass 
{ 
public: 
 // Default Constructor 
 Mass(): position(0.0,0.0,0.0), 
    
 
   velocity(0.0,0.0,0.0),  
   force(0.0,0.0,0.0),  
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   mass(0.0),fixed(false){} 
  // Position of this Vertex in 3D (x, y, z) 
 hduVector3Df position; 
 // Velocity of this Vertex 
 hduVector3Df velocity; 
 // Force acted on this Vertex 
 hduVector3Df force; 
 float mass; 
 bool fixed; 
 Edge* edge;// edge emanating from this vertex 
}; 
 
 
class Triangle 
{ 
public: 
 Triangle() {edge = NULL;} 
 Triangle( int v0, int v1, int v2) 
 { 
  vIndex[0] = v0; 
  vIndex[1] = v1; 
  vIndex[2] = v2; 
 } 
 void setEdge(Edge * e) 
 { 
  assert(edge==NULL); 
  edge = e; 
 
 } 
 Edge* getEdge () 
 { 
  assert(edge!=NULL); 
  return edge; 
 } 
 void calculateTriangleArea (); 
 //  { 
 //   hduVector3Df  P1; 
 //    //,P2,P3; 
 //   P1 =  (hduVector3Df)this->edge->getVertex1()->position; 
 //   
 //  // P1 = tri->edge->getVertex1()->position; 
 //  // P2 = tri->edge->getNextEdge ()->getVertex1()->position; 
 //  // P3 = tri->edge->getNextEdge ()->getNextEdge ()-
>getVertex1()->position; 
  
  
 // } 
  
 
int vIndex[3]; 
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 float triangleArea; 
 Edge* edge; // one of the half edges bordering the face 
}; 
 
 
class Edge 
{ 
public: 
 Edge() 
 { 
  triangle = NULL; 
  m_nextEdge = NULL; 
  m_opposite = NULL; 
  m_vertex1 = NULL; 
  m_vertex2 = NULL; 
 } 
 // Edge(Mass* endvert, Triangle *tri) ; 
 void set(Mass * vert1,Mass * vert2, Triangle * tri); 
 Mass * m_vertex1; //first vertex of a half-edge //vertex at the end of the half-
edge 
 Mass * m_vertex2; // second vertex of a half-edge 
 Triangle * triangle; // triangle the half-edge borders; 
 Edge* m_nextEdge; //next half-edge around the face 
 Edge* m_opposite; // oppositely oriented half-edge 
 Edge* getNextEdge (); 
 Edge* getOppositeEdge (); 
 void setOppositeEdge (Edge * opposite); 
 void setNextEdge (Edge* next); 
 Mass* getVertex1(); 
 Mass * getVertex2(); 
 void setVertex1(hduVector3Df vert1); 
 void setVertex2(hduVector3Df vert2); 
 Triangle* getTriangle () 
 { 
  assert (triangle!=NULL); 
  return triangle; 
 } 
  
}; 
 
class Mesh 
{ 
public: 
 Mesh(); 
 ~Mesh(); 
 typedef std::vector<Mass *> MeshVertexList; 
 typedef std::vector<Triangle *> MeshTriangleList ; 
 typedef std::vector<Edge * > MeshEdgeList ; 
 // List of Vertex used for storing Points in OBJ file 
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MeshVertexList vertices; 
 // List of Triangle used for storing Triangles present in the OBJ file 
 MeshTriangleList triangles; 
 // List of edges present in the OBJ file 
 MeshEdgeList edges; 
 void drawModelUsingEdge (); 
int pointTouched ; 
 int numEdges; 
 int numVertices ; 
 int numTriangles; 
void AddVertex(float x, float y, float z); 
void AddTriangle ( int v1,  int v2,  int v3); 
void LoadModel (); 
void DrawModel (); 
void VertexNieghbors (); 
//unsigned int getVertexIndex (); 
Triangle* GetOneTriangle ( int index); 
//void FindNeighbor (); 
// Shows total number of neighbours of a vertex 
void ShowNeighbor (); 
// This Function gives information about total number of vertices and triangles in a 
mesh 
void MeshModelInfo (); 
void CalculateNormal (); 
void NeighborofVertexUsingEdge (); 
void drawTriangle (hduVector3Df P1,hduVector3Df P2,hduVector3Df P3); 
void subdivide(Triangle *tri); 
void firstPassSubdivision (Triangle *tri); 
void secondPassSubdivision (Triangle* tri); 
void drawPoints (); 
void drawTriangleGraphics (hduVector3Df P1,hduVector3Df P2,hduVector3Df P3); 
void drawModelGraphics (); 
}; 
 
 
#endif 
 
 
#include "Mesh.h" 
#include <assert.h> 
#include <set> 
#include <time.h> 
Edge * Edge::getNextEdge () 
{ 
 return(m_nextEdge); 
  
} 
Edge * Edge::getOppositeEdge () 
{ 
 return m_opposite; 



197 

 

} 
void Edge::setOppositeEdge (Edge * e) 
{ 
 assert (m_opposite == NULL);  
    assert (e != NULL); 
    assert (e->m_opposite == NULL); 
    m_opposite = e;  
    e->m_opposite = this;  
  
} 
void Edge::setNextEdge (Edge* e) 
{ 
 assert(m_nextEdge == NULL); 
 assert(e!=NULL); 
 m_nextEdge = e; 
} 
Mass * Edge::getVertex1() 
{ 
 return m_vertex1; 
} 
Mass * Edge::getVertex2() 
{ 
 return m_vertex2; 
} 
void Edge::set(Mass * vert1,Mass * vert2, Triangle *tri) 
{ 
  
 m_vertex1 = vert1; 
 m_vertex2 = vert2; 
 triangle = tri; 
} 
void Triangle::calculateTriangleArea () 
{ 
  
 hduVector3Df  P1,P2,P3; 
 //P1 =  (hduVector3Df)this->edge->getVertex1()->position; 
  
//   P1 = this->edge->getVertex1()->position; 
//   P2 = this->edge->getNextEdge ()->getVertex1()->position; 
//   P3 = this->edge->getNextEdge()->getNextEdge()->getVertex1()-
>position; 
   
   
//float mag =sqrt ( (P.x * P.x) + (P.y * P.y) + (P.z * P.z) ) ; 
//this->triangleArea = 0.5*mag; 
 
} 
Mesh::Mesh() 
{ 
 numVertices =0; 
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 numTriangles =0; 
 numEdges = 0; 
 pointTouched = -1; 
 
} 
Mesh::~Mesh() 
{ 
 for(int i=0;i<(int)vertices.size ();i++) 
   delete vertices[i]; 
  
 for( i=0;i<(int)triangles.size ();i++) 
   delete triangles[i]; 
 
} 
void Mesh::AddVertex(float x, float y, float z) 
{ 
 Mass *m = new Mass; 
 m->position.set (x, y, z); 
 vertices.push_back (m); 
} 
void Edge::setVertex1(hduVector3Df  v1) 
{ 
 m_vertex1->position = v1; 
} 
void Edge::setVertex2(hduVector3Df v2) 
{ 
 m_vertex2->position = v2; 
} 
void Mesh::AddTriangle ( int vert1,  int vert2,  int vert3) 
{ 
 Triangle* tri= new Triangle; 
 tri->vIndex[0] = vert1; 
 tri->vIndex[1] = vert2; 
 tri->vIndex[2] = vert3; 
 Edge* e = new Edge; 
 int k= 0; 
 
  Mass* v1 =new Mass; 
  Mass *v2 = new Mass; 
  Mass *v3 = new Mass; 
   
   
v1 = vertices[tri->vIndex[0]]; 
  v2 = vertices[tri->vIndex[1]]; 
  v3 = vertices[tri->vIndex[2]]; 
   
  Edge * edge1 = new Edge; 
  Edge * edge2 = new Edge; 
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Edge * edge3 = new Edge; 
 
  numEdges++; 
  edge1->set(v1,v2,tri); 
  numEdges++; 
  edge2->set(v2,v3,tri); 
  numEdges++; 
  edge3->set(v3,v1,tri); 
 
  edge1->setNextEdge (edge2); 
  edge2->setNextEdge (edge3); 
  edge3->setNextEdge (edge1); 
   
  edges.push_back (edge1); 
  edges.push_back(edge2); 
  edges.push_back(edge3); 
  tri->edge = edge1; 
  triangles.push_back(tri); 
} 
void Mesh::LoadModel() 
{ 
const char *filename = "trisphere.obj"; 
// const char *filename = "OvaryModelS.obj"; 
 FILE *fp = fopen(filename,"r"); 
// printf("Processing....\n"); 
  int v; 
  char buf[256]; 
 
  while (!feof (fp)) 
    { 
      /* Read whole line */ 
      fgets (buf, sizeof (buf), fp); 
 
      switch (buf[0]) 
 { 
 case 'v': 
   { 
     if (buf[1] == ' ') 
       { 
   
 
/* Vertex */ 
  numVertices++; 
       } 
        break; 
   } 
 
 case 'f': 
   { 
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     if (sscanf (buf + 2, "%d", &v) == 1) 
       { 
   
numTriangles++; 
   
       } 
     else 
       { 
  /* Should never be there or the model is very crappy */ 
  fprintf (stderr, "Error: found face with no vertex!\n"); 
       } 
 
     break; 
   } 
 
 default: 
   break; 
 } 
    } 
 
  /* Check if informations are valid */ 
 
 
  if (!numVertices) 
    { 
      fprintf (stderr, "error: no vertex found!\n"); 
 
    } 
rewind(fp); 
  char  *pbuf; 
  int i; 
float x,y,z; 
  while (!feof (fp)) 
    { 
      /* Read whole line */ 
      fgets (buf, sizeof (buf), fp); 
 
      switch (buf[0]) 
 { 
 case 'v': 
   { 
     if (buf[1] == ' ') 
       { 
  /* Vertex */ 
   
      if (sscanf (buf + 2, "%f %f %f", &x,&y,&z ) != 3) 
        { 
    fprintf (stderr, "Error reading vertex data!\n"); 
     
        } 



201 

 

      AddVertex(x,y,z); 
   
    } 
 
       break; 
   } 
 
 case 'f': 
   { 
     pbuf = buf; 
    // i = 0; 
   int index[3]; 
     for (i = 0; i < 3; ++i) 
     { 
  pbuf = strchr (pbuf, ' '); 
  pbuf++; /* Skip space */ 
  /* Try reading vertices */ 
      sscanf (pbuf, "%d", &index[i]); 
  /* Indices must start at 0 */ 
  index[i]--; 
  } 
   AddTriangle(index[0],index[1],index[2]); 
   
         
     break; 
   }  
   } 
  } 
//   printf("Finished Processing....\n"); 
// printf("Edge Linking to Vertex....\n");  
 for(i = 0;i<numVertices;i++) 
 { 
  for(int j=0;j<numEdges;j++) 
  { 
   if(vertices[i]->position == edges[j]->getVertex1()->position) 
    vertices[i]->edge = edges[j]; 
  } 
 } 
 
//  std::set< Edge*> uedges(edges.begin(),edges.end()); 
//  
//  printf("%d  ",edges.size()); 
//  printf("\n %d  ",uedges.size()); 
//  
//  printf("Finished Edge Linking to Vertex....\n\n"); 
// printf("Now Making Twins....\n\n\n"); 
for(i = 0;i<numEdges;i++) 
{ 
for(int j = 0;j<numEdges;j++) 
{ 
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 if(edges[j]->m_opposite == NULL && edges[i]->m_opposite == NULL) 
 { 
  if(edges[i]->m_vertex1 == edges[j]->m_vertex2  && edges[i]-
>m_vertex2 == edges[j]->m_vertex1 ) 
  { 
  
   edges[i]->setOppositeEdge(edges[j]); 
 // edges[i]->m_opposite = edges[j]; 
 // edges[j]->m_opposite = edges[i]; 
  } 
 } 
} 
} 
// printf("Finished Twins....\n"); 
 
  } 
 
 
Mass Spring Model. 
 
Initial Spring Calculation. 
void initAllSprings() 
{ 
 int sIndex = 0; 
 double x1,x2,y1,y2,z1,z2;  // positions of spring points p1, p2 
 double r12d;   // length of p1 - p2 vector 
 double vx12;   // vx1 - vx2 
 double vy12,vz12;   // vy1 - vy2 
 double f;    // hooke force value 
 double Fx,Fy,Fz;   // force vector 
   
 for(int i = 0;i<numFace;i++) 
 { 
   
  
   
  
 
 spring[sIndex].imass1 = tris[i].vIndex[0]; 
  spring[sIndex].imass2 = tris[i].vIndex[2]; 
   x1 = Pt[tris[i].vIndex[0]].position[0]; 
   x2 = Pt[tris[i].vIndex[2]].position[0]; 
    
   y1 = Pt[tris[i].vIndex[0]].position[1]; 
   y2 = Pt[tris[i].vIndex[2]].position[1]; 
    
   z1 = Pt[tris[i].vIndex[0]].position[2]; 
   z2 = Pt[tris[i].vIndex[2]].position[2]; 
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  spring[sIndex].naturalLength = sqrt ( (x1 - x2) *(x1 - x2)  +  (y1 - y2) 
* (y1 - y2) + (z1 - z2)*(z1 - z2) ); // square 
 
   
 sIndex++; 
  spring[sIndex].imass1 = tris[i].vIndex[2]; 
  spring[sIndex].imass2 = tris[i].vIndex[1]; 
   
  x1 = Pt[tris[i].vIndex[2]].position[0]; 
  x2 = Pt[tris[i].vIndex[1]].position[0]; 
   
  y1 = Pt[tris[i].vIndex[2]].position[1]; 
  y2 = Pt[tris[i].vIndex[1]].position[1]; 
   
  z1 = Pt[tris[i].vIndex[2]].position[2]; 
  z2 = Pt[tris[i].vIndex[1]].position[2]; 
  spring[sIndex].naturalLength = sqrt ( (x1 - x2) *(x1 - x2)  +  (y1 - y2) 
* (y1 - y2) + (z1 - z2)*(z1 - z2) ); // square 
  
 sIndex++; 
  spring[sIndex].imass1 = tris[i].vIndex[1]; 
  spring[sIndex].imass2 = tris[i].vIndex[0]; 
  x1 = Pt[tris[i].vIndex[1]].position[0]; 
  x2 = Pt[tris[i].vIndex[0]].position[0]; 
   
  y1 = Pt[tris[i].vIndex[1]].position[1]; 
  y2 = Pt[tris[i].vIndex[0]].position[1]; 
   
  z1 = Pt[tris[i].vIndex[1]].position[2]; 
  z2 = Pt[tris[i].vIndex[0]].position[2]; 
  spring[sIndex].naturalLength = sqrt ( (x1 - x2) *(x1 - x2)  +  (y1 - y2) 
* (y1 - y2) + (z1 - z2)*(z1 - z2) ); // square 
 
  sIndex++; 
  
} 
numSpring = sIndex-1; 
sIndex=0; 
} 
 
Force Accumulation. 
 
void accumulateForce() 
{ 
 
 for(int i= 0;i<numMass;i++) 
 { 
  Pt[i].sforce[0]=0.0; 
  Pt[i].sforce[1]=.0.0; 
  Pt[i].sforce[2]=0.0; 
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 } 
 
  
 
double x1,x2,y1,y2,z1,z2;  // positions of spring points p1, p2 
 double r12d;   // length of p1 - p2 vector 
 double vx12;   // vx1 - vx2 
 double vy12,vz12;   // vy1 - vy2 
 double f;    // hooke force value 
 double Fx,Fy,Fz;   // force vector 
  
  
 for( i=0 ; i < numSpring ; i++) 
 { 
  x1 = Pt[spring[i].imass1].position[0]; 
  x2 = Pt[spring[i].imass2].position[0]; 
   
  y1 = Pt[spring[i].imass1].position[1]; 
  y2 = Pt[spring[i].imass2].position[1]; 
   
  z1 = Pt[spring[i].imass1].position[2]; 
  z2 = Pt[spring[i].imass2].position[2]; 
  r12d = sqrt ( (x1 - x2) *(x1 - x2)  +  (y1 - y2) * (y1 - y2) + (z1 - 
z2)*(z1 - z2) ); // square 
   
  // root  of the distance 
   
  vx12 =  Pt[spring[i].imass1].velocity[0] - 
Pt[spring[i].imass2].velocity[0]; 
  vy12 =  Pt[spring[i].imass1].velocity[1] - 
Pt[spring[i].imass2].velocity[1]; 
  vz12 =  Pt[spring[i].imass1].velocity[2] - 
Pt[spring[i].imass2].velocity[2]; 
  f = (r12d -  spring[i].naturalLength) *2+ (vx12 * (x1 - x2) + vy12 * (y1 
- y2)+ vz12*(z1 - z2)) *.01 / r12d; 
  hduVector3Dd F; 
  F[0] = ((x1 - x2) / r12d ) * f; 
  F[1] = ((y1 - y2) / r12d ) * f; 
  F[2] = ((z1 - z2) / r12d ) * f; 
   
  Pt[spring[i].imass1].sforce[0]-=F[0]; 
  Pt[spring[i].imass1].sforce[1]-=F[1]; 
  Pt[spring[i].imass1].sforce[2]-=F[2]; 
 
  Pt[spring[i].imass2].sforce[0]+=F[0]; 
  Pt[spring[i].imass2].sforce[1]+=F[1]; 
  Pt[spring[i].imass2].sforce[2]+=F[2]; 
 
 }  
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} 
 
 
Force Integration For Two-neighbourhood 
 
void Integrate(double tPrev, double tCurr) 
{ 
 int SCRSIZE =5; 
 static double lastTime=tPrev; 
 double currentTime=tCurr; 
 
 double timePassed=currentTime-lastTime; 
 
 Pt[massTouched].velocity = Pt[massTouched].velocity+ 
 (Pt[massTouched].sforce / Pt[massTouched].mass)* timePassed; 
 hduVector3Dd drx = Pt[massTouched].velocity* timePassed; 
  
 Pt[massTouched].position= Pt[massTouched].position + drx; 
// First ring of neighbour  
for(int k=0;k<Pt[massTouched].numNeighbor;k++) 
 { 
  int i = Pt[massTouched].Neighbour[k]; 
  Pt[i].velocity = Pt[i].velocity+ (Pt[i].sforce / Pt[i].mass)* timePassed; 
  hduVector3Dd drx = Pt[i].velocity* timePassed; 
    
  Pt[i].position= Pt[i].position + drx; 
  
 } 
// Second ring of neighbours 
  
for( k=0;k<Pt[massTouched].numNNeighbor;k++) 
 { 
   
 
 
  int i = Pt[massTouched].NNeighbour[k]; 
  Pt[i].velocity = Pt[i].velocity+ (Pt[i].sforce / Pt[i].mass)* timePassed; 
  hduVector3Dd drx = Pt[i].velocity* timePassed; 
    
  Pt[i].position= Pt[i].position + drx; 
  
 } 
 
} 
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Volume Calculation Of The Soft Body 
 
void calcPressure() 
{ 
 double Volume = 0.0; 
 hduVector3Dd Area; 
  
 double Pressure = .0; 
 hduVector3Dd Force ; 
  
  
for(int i = 0;i<numFace;i++) 
 { 
   
  int a,b,c; 
  a = tris[i].vIndex[0]; 
  b = tris[i].vIndex[1]; 
  c = tris[i].vIndex[2]; 
 
 // Volume= fabs(-Pt[c].Pos.x*      Pt[b].Pos.y*      Pt[a].Pos.z  +    
Pt[b].Pos.x  *    Pt[c].Pos.y*      Pt[a].Pos.z+      Pt[c].Pos.x*      Pt[a].Pos.y*      
Pt[b].Pos.z -       Pt[a].Pos.x*      Pt[c].Pos.y*      Pt[b].Pos.z-      Pt[b].Pos.x*      
Pt[a].Pos.y*      Pt[c].Pos.z+      Pt[a].Pos.x*      Pt[b].Pos.y*      Pt[c].Pos.z)/6.0; 
 
Volume= fabs 
(Pt[c].position[0]*Pt[b].position[1]*Pt[a].position[2]+Pt[b].position[0]*Pt[c].position[
1]*Pt[a].position[2]+Pt[c].position[0]*Pt[a].position[1]*Pt[b].position[2] - 
Pt[a].position[0]*Pt[c].position[1]*Pt[b].position[2]-
Pt[b].position[0]*Pt[a].position[1]*Pt[c].position[2]+Pt[a].position[0]*Pt[b].position[
1]*Pt[c].position[2])/6.0; 
 
   hduVector3Dd e1,e2; 
 
  e1[0] = Pt[b].position[0]- Pt[a].position[0]; 
  e1[1] = Pt[b].position[1]- Pt[a].position[1]; 
  e1[2] = Pt[b].position[2]- Pt[a].position[2]; 
    
   
  e2[0] = Pt[c].position[0]- Pt[a].position[0]; 
  e2[1] = Pt[c].position[1]- Pt[a].position[1]; 
  e2[2] = Pt[c].position[2]- Pt[a].position[2]; 
   
  hduVector3Dd Normal; 
  //Vector Normal; 
 // Normal = e1->crossProduct(e2); 
 
Normal[0] = (e1[1]*e2[2]) -(e1[2]*e2[1]); 
Normal[1] = (e1[2]*e2[0]) -(e1[0]*e2[2]); 
Normal[2] = (e1[0]*e2[1]) -(e1[1]*e2[0]); 
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//   Normal.x = (e1.y * e2.z) - (e1.z*e2.y); 
//   Normal.y = (e1.z * e2.x) - (e1.x*e2.z); 
//   Normal.z = (e1.x * e2.y) - (e1.y*e2.x); 
   
  Area[0] = abs((e1[1] * e2[2]) - (e1[2]*e2[1]))/2.0; 
  Area[1] = abs((e1[2] * e2[0]) - (e1[0]*e2[2]))/2.0; 
  Area[2] = abs((e1[0] * e2[1]) - (e1[1]*e2[0]))/2.0; 
  //For trisphere OBJ Object temperature is set as 0.5 
   
  //Pressure = (0.5*8.314*0.5)*(1.0/Volume); 
  Pressure = (0.05*8.314*.5)*(1.0/Volume); 
  Force[0] = Pressure*Normal[0]*Area[0]; 
  Force[1] = Pressure*Normal[1]*Area[1]; 
  Force[2] = Pressure*Normal[2]*Area[2]; 
 
 
//  Area.x = fabs((e1.y * e2.z) - (e1.z*e2.y))/2.0; 
//  Area.y = fabs((e1.z * e2.x) - (e1.x*e2.z))/2.0; 
//  Area.z = fabs((e1.x * e2.y) - (e1.y*e2.x))/2.0; 
  //double NormMag; 
  
 //NormMag = 
sqrt((Normal.x*Normal.x)+(Normal.y*Normal.y)+(Normal.z*Normal.z)); 
 
  //Area= fabs(Pt[a].Pos.y*Pt[b].Pos.z - Pt[b].Pos.y*Pt[a].Pos.z -  
 
Pt[a].Pos.x*Pt[b].Pos.y+Pt[a].Pos.y*Pt[b].Pos.x)/2.0; 
 
//  Pressure = (0.5*8.314*26)*(1.0/Volume); 
//  Force.x = Pressure*Normal.x*Area.x; 
//  Force.y = Pressure*Normal.y*Area.y; 
 
//      Force.z = Pressure*Normal.z*Area.z; 
 
 
   
  Pt[a].sforce[0]+=Force[0]/3.0; 
  Pt[a].sforce[1]+=Force[1]/3.0; 
  Pt[a].sforce[2]+=Force[2]/3.0; 
   
  Pt[b].sforce[0]+=Force[0]/3.0; 
  Pt[b].sforce[1]+=Force[1]/3.0; 
  Pt[b].sforce[2]+=Force[2]/3.0; 
   
  Pt[c].sforce[0]+=Force[0]/3.0; 
  Pt[c].sforce[1]+=Force[1]/3.0; 
  Pt[c].sforce[2]+=Force[2]/3.0; 
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 } 
 
 
}
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APPENDIX B 

Experimental Results 
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