TABLE OF CONTENTS

STATUS OF THESIS	i
DECLARATION OF THESIS	iv
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
TABLE OF CONTENTS	xiii
LIST OF FIGURES	xviii
LIST OF TABLES	XXV
LIST OF ABBREVIATIONS	xxix
LIST OF SYMBOLS	xxxi

CHAPTER 1: INTRODUCTION

1.0 Overview	1
1.1 Sulfur Compound in Petroleum	2
1.2 Sulfur Limitation in Petroleum Product	5
1.3 Sulfur Removal Technology	7
1.3.1 Hydrodesulfurization (HDS)	8
1.3.2 Oxidative Desulfurization	9
1.3.3 Reactive Desulfurization	9
1.3.4 Adsorption in Desulfurization	10
1.3.5 Biodesulfurization	10
1.3.6 Extractive Desulfurization	11
1.4 Problem Statement	11
1.5 Research Objective	13
1.6 Thesis Organization	13

CHAPTER 2: LITERATURE REVIEW

2.0 Overview	17
2.1 Ionic Liquids (ILs)	17
2.1.1 Types of ILs	20
2.1.2 Physical and Thermodynamic Properties of ILs	23
xiji	

2.1.3 Mapping and Correlation using Physical Properties of ILs	24
2.2 Interaction of ILs	24
2.2.1 Interaction Mechanism in COSMO-RS	25
2.2.2 Interaction Mechanism in Extractive Desulfurization	30
2.2.3 Aromaticity Index (AI)	32
2.3.4 Double-bond Equivalent (DBE)	33
2.3 Selection of ILs for Extractive Desulfurization	34
2.3.1 Predictive Approach	35
2.3.2 Experimental Approach	35
2.4 Extractive Desulfurization	37
2.4.1 Extractive Desulfurization on Model Oil	39
2.4.1.1 Sulfur species study	39
2.4.1.2 Alkyl side-chain study	40
2.4.1.3 Stirring speed study	41
2.4.1.4 Extraction time study	41
2.4.1.5 Water content study	41
2.4.1.6 Mass ratio study	41
2.4.1.7 Initial concentration study	42
2.4.1.8 Temperature study	42
2.4.2 Extractive Desulfurization on Model Fuel	42
2.4.3 Extractive Desulfurization on Actual Diesel	43
2.5 Optimization Studies	43
2.5.1 Response Surface Methodology (RSM)	43
2.5.2 Central Composite Design (CCD)	44
2.5.3 Data Analysis	45
2.5.4 Model Fitting and Validation	46
2.6 Ternary Diagram Studies	47
2.7 Regeneration Studies	48
2.8 Summary	50

CHAPTER 3: MATERIAL AND METHOD

3.0 Overview		53
3.1 Chemical and Reagent		53
	xiv	

3.1.1 Chemicals for ILs Synthesis	53
3.1.2 Chemicals for Extractive Desulfurization	54
3.2 Overall Experimental Flowchart	
3.3 ILs Screening	57
3.3.1 Application of COSMO-RS for ILs Screening	57
3.3.2 AI assisted COSMO-RS for ILs Screening	58
3.3.3 DBE assisted COSMO-RS for ILs Screening	58
3.4 ILs Synthesis	59
3.4.1 Metathesis	59
3.4.1.1 Preparation of [bmim][DHP]	59
3.4.1.2 Preparation of [bmim][Imd] and [bmim][Pyd]	60
3.4.1.3 Preparation of [bmim][SCL]	61
3.4.2 Alkylation	62
3.4.2.1 Preparation of Sulfate-based ILs	62
3.4.2.2 Preparation of Phosphate-based ILs	65
3.4.3 Neutralization	67
3.5 ILs Characterization	69
3.5.1 Structure Characterization	70
3.5.1.1 Nuclear Magnetic Resonance Spectroscopy	70
3.5.1.2 Interaction Study using Raman Spectroscopy	70
3.5.1.3 BT Identification using Fourier Transform Infrared	71
3.5.2 Elemental Analysis	71
3.5.3 Water Content Evaluation	71
3.5.4 Halide Content Evaluation	72
3.5.5 Density Measurement	72
3.5.6 Refractive Index Measurement	73
3.6 Data Mapping and Correlation	73
3.7 Ternary Study	74
3.8 Extractive Desulfurization on Model Oil	75
3.8.1 Composition Analysis	76
3.8.2 Stirring Speed Effect	77
3.8.3 Extraction Time Effect	77
3.8.4 Water Content Effect	77

3.8.5 Optimization Study on Extractive Desulfurization of Model Oil	78
3.9 Extractive Desulfurization on Model Fuel	80
3.10 Extractive Desulfurization on Actual Diesel	81
3.11 Regeneration of ILs	81
3.11.1 Re-extraction Technique using Water/n-heptane	82
3.11.2 Electrochemical Technique	82

CHAPTER 4: SCREENING AND CHARACTERIZATION OF SELECTED IONIC LIQUIDS

4.0 Overview	83
4.1 Comparison Study of Interaction Mechanism between ILs and	
Sulfur Compounds	83
4.2 Interaction Mechanism Study between $[bmim][OSO_4]$ and BT	
using Raman Spectroscopy	86
4.3 Selection of Potential ILs for Extractive Desulfurization	88
4.4 Characterization of Potential ILs	93
4.4.1 Structural, Elemental Composition, Water and	
Halide Content Evaluation	93
4.4.2 Physical Properties Evaluation	98
4.4.2.1 Density Analysis	98
4.4.2.2 Refractive Index Analysis	103
4.4.3 Thermodynamic Properties Evaluation	105

CHAPTER 5: EXTRACTIVE DESULFURIZATION OF SELECTED

IONIC LIQUIDS

5.0 Overview	111
5.1 Validation Study of AI and DBE assisted COSMO-RS	111
5.2 Mapping and Correlation Study	115
5.3 Extractive Desulfurization Study on Model Oil	122
5.3.1 Effect of Stirring Speed	122
5.3.2 Effect of Extraction Time	123
5.3.3 Effect of Water Content	124
5.3.4 Effect of Concentration of [bmim][TCM] on Extraction	125
XVI	

5.4 Optimization using RSM	128
5.4.1 Regression Analysis	128
5.4.2 Optimization Study	133
5.5 Ternary System Study	135
5.6 Extractive Desulfurization Study on Model Fuel	139
5.7 Extractive Desulfurization Study on Commercial Diesel	147
5.7.1 Speciation and Extraction Performance Study	147
5.7.2 Extraction Cycle Study	151
5.8 Regeneration Study	153
5.8.1 Re-extraction Technique using Water/n-Heptane	153
5.8.2 Electrochemical Technique	155
CHAPTER 6: CONCLUSIONS	159
CHAPTER 7: RECOMMENDATIONS FOR FUTURE RESEARCH	163
REFERENCES	165
LIST OF PUBLICATIONS	179
APPENDIX	
Appendix A: Calculations	181
Appendix B: Calibration Curves	183
Appendix C: Tables	188
Appendix D: Chromatograms & Spectra	192
Appendix E: Photos	209

LIST OF FIGURES

Figure 1.1	A simplified schematic diagram of diesel processing from	2
	petroleum	
Figure 1.2	Classification of typical sulfur compounds in petroleum	3
Figure 1.3	Structures of refractory sulfur compounds	4
Figure 1.4	Simple crude oil distillation	5
Figure 1.5	A typical reaction during hydrodesulfurization	8
Figure 1.6	A typical reaction during oxidative desulfurization	9
Figure 1.7	A reaction route of biodesulfurization by bacteria	11
Figure 2.1	Simulated model of ILs showing awkward molecules packing	18
Figure 2.2	Typical anions and cations of Ils used in desulfurization	21
Figure 2.3	COSMO-RS calculation of thermodynamic properties	27
Figure 2.4	Screening charge distribution and σ -profile of BT	28
Figure 2.5	Possible contributing theories of interaction mechanism in	30
	extractive desulfurization by Ils	
Figure 2.6	Three types of central composite designs	45
Figure 3.1	Flowchart of overall experimental activities involved in this	56
	study	
Figure 3.2	Synthesis via metathesis of [bmim][Cl] with KHDP to	60
	produce [bmim][DHP] and by-product KCl in acetone/water	
	mixture. The volume ratio of acetone/water (7/3) was used to	
	completely dissolve KDHP in the mixture during stirring	
	process	
Figure 3.3	Synthesis route of [bmim][Imd] and [bmim][Pyd]	61
Figure 3.4	Metathesis synthesis of [bmim][SCL]. Here, acetone is	62
	preferred as a solvent for easy removal of sodium chloride,	
	NaCl which is insoluble in this solvent	
Figure 3.5	Synthesis route of sulfate-based Ils	65

Figure 3.6	Direct alkylation of two types of phosphate-based Ils.	66
	Biphasic separation occurred between diethyl ether and	
	phosphate-based IIs, but the IL was miscible with the reactants	
Figure 3.7	Batch experiment set-up reactor used for Ils synthesis	67
Figure 3.8	Two step reaction which initially produces [bmim][OH], the	68
	main reactant in the second step for producing [bmim][BZT],	
	the final product	
Figure 3.9	Batch experiment set-up used for extraction process	75
Figure 4.1	Extractability variations of the sulfur compounds using	85
	[bmim][OSO ₄] for collected and predicted data	
Figure 4.2	Sigma profile for [bmim][OSO ₄] and respective sulfur species	86
Figure 4.3	Raman spectra of { x BT + (1- x) [bmim][OSO ₄]} over the	87
	range of $1570 - 1550 \text{ cm}^{-1}$ with the mole fraction increases	
	from 0.22 to 0.72 BT	
Figure 4.4	Raman spectra of { x BT + (1- x) [bmim][OSO ₄]} over the	88
	range of $1435 - 1405$ cm ⁻¹ with the mole fraction increases	
	from 0.22 to 0.72 BT	
Figure 4.5	Comparison of extractability (K _d value) aromatic sulfur	89
	compounds collected from literature and AI value	
Figure 4.6	Density of sulfate-based IIs at various temperatures	99
Figure 4.7	Density of phosphate-based IIs at various temperatures	100
Figure 4.8	Plot of experimental refractive index of four sulfate-based as a	104
	function of temperature, $T = (298.15 - 348.15) \text{ K}$	
Figure 4.9	Molecular volume ($nm^3/molecule$) vs. number of carbon (n)	107
	for phosphate-based and sulfate-based Ils. The least square	
	fitted equation are V_m (nm ³) = 0.0491 <i>n</i> + 0.3609 for	
	phosphate-based IIs and V_m (nm ³) = $0.0299n + 0.3096$ for	
	sulfate-based IIs	
Figure 4.10	Lattice potential energy, U_{POT} vs. number of carbon (n) for	107
	phosphate-based and sulfate-based Ils	
Figure 4.11	Entropy at ambient temperature, S_{298} vs. number of carbon (<i>n</i>)	108
	for phosphate-based and sulfate-based Ils	

Figure 5.1	Comparison of AI value and desulfurization partition coefficient (K_d value) of cations	113
Figure 5.2	Comparison of DBE value and desulfurization partition coefficient (K_d value) of anions	114
Figure 5.3	Classified DBE value and average K_d value of anions	115
Figure 5.4	Graphical presentation for original data of 23 Ils of density (ρ)	116
	against molecular weight (M_w), where fill-dotted $K_d > 1.5$	
	while others $K_d < 1.5$	
Figure 5.5	Graphical presentation of original data of the 23 Ils of density	118
	(ρ) against molecular weight (M_W) with identified group;	
	(cyano-based IIs, circle plot; phosphate-based IIs, filled-	
	triangle plot; fluoro-based Ils, rectangular plot; sulphate-based	
	Ils, filled-rectangular plot)	
Figure 5.6	Chemical structures of cyano-based Ils: (i) [bmim][TCM], (ii)	119
	[bmim][DCA], and (iii) [bmim][SCN]	
Figure 5.7	Standardized data of density (ρ) plotted against molecular	120
	weight (M_W) of IIs with cyano-based IIs	
Figure 5.8	Standardized data of density (ρ) plotted against molecular	120
	weight (M_W) of IIs with phosphate-based IIs	
Figure 5.9	Standardized data of density (ρ) plotted against molecular	121
	weight (M_W) of IIs with fluoro-based IIs	
Figure 5.10	Standardized data of density (ρ) plotted against molecular	122
	weight (M_W) of sulfate-based IIs, $R^2 = 0.9175$, (filled-dots	
	represent $K_d > 1.5$ while others represent $K_d < 1.5$)	
Figure 5.11	The effect of stirring speed on sulfur extraction efficiency (K_d	123
	value) by [bmim][TCM]. (Conditions: Extraction time - 10	
	min, mass ratio Ils/model $oil - 1/1$, room temperature, initial	
	BT concentration in model oil – 2000 ppm)	
Figure 5.12	The effect of extraction time on sulfur extraction efficiency	124
	(K _d value) by [bmim][TCM] (Conditions: Stirring speed – 500	
	rpm, mass ratio Ils/model oil – $1/1$, room temperature, initial	
	BT concentration in model oil – 2000 ppm)	

- Figure 5.13 The effect of water content on sulfur extraction efficiency (K_d 125 value) by [bmim][TCM]. (Conditions: Stirring speed 500 rpm, extraction time 30 min, mass ratio Ils/model oil 1/1, room temperature, initial BT concentration in model oil 2000 ppm)
- Figure 5.14 Relationship between K_d value and [bmim][TCM] 126 concentration
- Figure 5.15 Relationship between loading factor and initial concentration 127 of [bmim][TCM] (Conditions: Stirring speed – 500 rpm, extraction time – 30 min, mass ratio Ils/model oil – 1/1, room temperature, initial BT concentration in model oil – 2000 ppm)
- Figure 5.16 One factor plot for (a) mass ratio, (b) initial concentration and 129 (c) temperature against average response
- Figure 5.17 Actual data versus predicted data values for percentage of BT 131 removed
- Figure 5.18 Response surface plot for BT removal with respect to mass 133 ratio (A) and initial concentration (B)
- Figure 5.19 Response surface plot for BT removal with respect to mass 133 ratio (A) and temperature (C)
- Figure 5.20 Desirability plot at temperature © of 30°C for obtaining 135 desired optimum operation of mass ratio (A) and initial concentration (B)
- Figure 5.21 Experimental tie-lines for the LLE of the ternary system 137 $([bmim][TCM] + BT + n-C_{12})$ at 27°C
- Figure 5.22 Experimental tie-lines for the LLE of the ternary system 137 $([bmim][TCM] + BT + n-C_6)$ at 27°C
- Figure 5.23 Experimental tie-lines for the LLE of the ternary system 138 ([bmim][TCM] + BT + p-xylene) at 27°C
- Figure 5.24 Extractive desulfurization performance of [bmim][OSO₄] on 142 model fuel
- Figure 5.25 Extractive desulfurization performance of [bmim][DCA] on 143

model fuel

- Figure 5.26 Extractive desulfurization performance of [bmim][SCL] on 143 model fuel
- Figure 5.27 Extractive desulfurization performance of [bmim][BZT] on 144 model fuel
- Figure 5.28 Extractive desulfurization performance of [bmim][TCM] on 144 model fuel
- Figure 5.29 K_d values for BT and DBT with [bmim][TCM] as extractant 146 on model fuel system
- Figure 5.30 Percentage removal of identified species in Diesel A, a 148 comparison of three selected IIs at room temperature
- Figure 5.31 Percentage removal of identified species in Diesel B, a 150 comparison of three selected IIs at room temperature
- Figure 5.32 Total sulfur concentration in Diesel A and Diesel B after 151 multiple extraction with [bmim][TCM] at room temperature
- Figure 5.33 Density differences of [bmim][TCM] value against the 152 function of temperature
- Figure 5.34 Effect of recycling on total sulfur concentration in 154 [bmim][TCM]
- Figure 5.35 Cyclic voltammogram of [bmim][DCA], [bmim][OSO₄] and 156 [bmim][TCM] relative to Ag/AgCl quasi-reference electrode, with glassy carbon as working electrode and Pt as counter electrode at 25 °C
- Figure 5.36 Cyclic voltammogram of BT in [bmim][DCA] with scan rate 157 1 mV s⁻¹
- Figure 5.37 Total sulfur concentration in spent [bmim][DCA] over time 158 during the electrochemical technique
- Figure 5.38 FTIR spectra of pure BT (IR_BT) and deposited BT 158 (IR_electrode) at glassy carbon electrode
- Figure B1Calibration curve of BT concentration using HPLC183
- Figure B2 Calibration curve of BT and *p*-xylene in model fuel mixture 184 using HPLC

Figure B3	Calibration curve of DBT and <i>p</i> -xylene in model fuel mixture	184
	using HPLC	
Figure B4	Calibration curve of BT in model fuel mixture using HPLC.	185
	Concentration of benzene was measured using GC-MS	
Figure B5	Calibration curve of DBT in model fuel mixture using HPLC.	185
	Concentration of benzene was measured using GC-MS.	
Figure B6	Calibration curve of (a) BT and (b) DBT in model fuel	186
	mixture using HPLC	
Figure B7	Calibration curve of BT concentration in Diesel A based on	187
	standard additional method using GC-MS	
Figure D1	Chromatogram for halide quantification using Ion	192
	Chromatography	
Figure D2	Spectra for [bmim][Imd] for proton (¹ H) identification using	193
	NMR	
Figure D3	Spectra for [mmPy][MSO ₄] for proton (¹ H) identification	194
	using NMR	
Figure D4	Spectra for [bmim][BSO ₄] for proton (¹ H) identification using	195
	NMR	
Figure D5	Spectra for [mmBzim][MSO ₄] for proton (¹ H) identification	196
	using NMR	
Figure D6	Spectra for [bmim][BZT] for proton (¹ H) identification using	197
	NMR	
Figure D7	Spectra for [bmim][DBP] for proton (¹ H) identification using	198
	NMR	
Figure D8	Spectra for [bmim][DHP] for proton (¹ H) identification using	199
	NMR	
Figure D9	Spectra for [bmim][DMP] for proton (¹ H) identification using	200
	NMR	
Figure D10	Spectra for [bmim][Pyd] for proton (¹ H) identification using	201
	NMR	
Figure D11	Spectra for [bmim][SCL] for proton (¹ H) identification using	202

NMR

Figure D12	Spectra for [bmim][DBP] for carbon (¹³ C) identification using	203
	NMR	
Figure D13	Spectra for [bmim][DMP] for carbon (¹³ C) identification using	204
	NMR	
Figure D14	Spectra for [bmim][DHP] for carbon (¹³ C) identification using	205
	NMR	
Figure D15	Chromatogram of BT and BT/p -xylene mixture in n-C ₁₂ using	206
	HPLC	
Figure D16	Chromatogram of Diesel A analyzed using GC-SCD-FID	207
Figure D17	Chromatogram of Diesel B analyzed using GC-MS	208
Figure E1	Image of the Synthesized Ils (1) [bmim][DHP]; (2)	209
	[bmim][Imd]; (3) [bmim][Pyd]; (4) [bmim][SCL]; (5)	
	[bmim][BZT]	
Figure E2	Image of the Synthesized sulfate-based and phosphate-based	210
	Ils (1) [mmBzim][MSO ₄]; (2) [mmim][MSO ₄]; (3)	
	[bmim][BSO ₄]; (4) [mmpy][MSO ₄]; (5) [mmpyz][MSO ₄]; (6)	
	[mmpyrr][MSO ₄]; (7) [bmim][DMP]; (8) [bmim][DBP]	

LIST OF TABLES

Table 1.1	Elemental analysis of typical petroleum	3
Table 1.2	Diesel regulatory outlook in some countries	6
Table 2.1	Summary of cation and anion types along with their general	22
	description	
Table 2.2	Results of DBT removal using some ILs in extractive	36
	desulfurization	
Table 3.1	List of precursors, chemicals and reagents for synthesizing ILs	54
Table 3.2	List of ILs and reagents for extractive desulfurization	55
Table 3.3	List of synthesized ILs for further characterization and	69
	extraction study	
Table 3.4	Instrument settings for LECO CHNS-932	71
Table 3.5	Mass of each component in the ternary sample mixture	74
Table 3.6	Analytical conditions for HPLC analysis	76
Table 3.7	Values of other variables	77
Table 3.8	Experimental range and levels of the process variables	78
Table 3.9	Experimental conditions of CCD applied in this study	79
Table 4.1	The activity coefficient (Act. Coeff.) at infinite dilution	84
	determined from the COSMO-RS software, calculated	
	selectivity (Sel.), capacity (Cap.) and performance index (PI)	
Table 4.2	Calculated aromaticity index (AI) and double-bond equivalent	91
	(DBE) value for common cation and anion	
Table 4.3	Selected combination of cation and anion for ionic liquids with	92
	their respective calculated AI and DBE values	
Table 4.4	List of potential ILs with their respective water and halide	97
	content	
Table 4.5	Fitting parameters of Eq. 4.1 to correlate density of 23 ILs and	101
	standard deviation (SD) calculated using Eq. 4.2	

Table 4.6	Thermal expansion coefficients (α_p) of 23 ILs calculated using	102
	Eq. 4.3	
Table 4.7	Data used for the validation of equipment for refractive index,	103
	n_D measurement at T = 298.15 K	
Table 4.8	Fitting parameters of Eq. 4.4 to correlate refractive index of 23	105
	ILs and standard deviation (SD) calculated using Eq. 4.2	
Table 4.9	Calculated thermodynamic properties of 23 ILs	106
Table 5.1	Selected combination of cation and anion for ionic liquids with	112
	their respective calculated AI and DBE values	
Table 5.2	List of ILs with their respective physical properties and	117
	desulfurization performance	
Table 5.3	Experimental design result for BT removal	128
Table 5.4	ANOVA of the reduced quadratic regression model and	130
	respective model terms	
Table 5.5	Statistical parameters obtained from ANOVA for the reduced	131
	quadratic regression model	
Table 5.6	The pre-set goal with the constraints for all the independent	134
	factors and response in numerical optimization	
Table 5.7	Optimum operation conditions found by CCD for BT removal	134
Table 5.8	Composition of the experimental tie-line ends and values of the	136
	solute distribution ratio (β) and selectivity (S) for the ternary	
	systems ([bmim][TCM] + BT + n - C_{12}); ([bmim][TCM] + BT +	
	<i>n</i> -C ₆) and ([bmim][TCM] + BT + <i>p</i> -xylene) at 27° C	
Table 5.9	Tabulation of % removal and K_d value of model fuels extracted	141
	by five selected ILs	
Table 5.10	Removal percentage and partition coefficient $\left(K_{d}\right)$ of BT and	146
	DBT with different concentration of <i>p</i> -xylene extracted by	
	[bmim][TCM] from n -C ₁₂	
Table 5.11	Concentration of identified species in Diesel A after extraction	148
	with three selected ILs	
Table 5.12	Concentration of identified species in Diesel B after extraction	149
	with three selected ILs	

Table 5.13	Total sulfur in <i>n</i> -heptane and ILs phase before and after	153
	regeneration	
Table A1	Average value for CHNS analysis of [mmBzim][MSO ₄]	181
Table A2	List of element for [mmBzim][MSO ₄]	181
Table A3	List of mole ratio for [mmBzim][MSO ₄]	182
Table C1	Experimental density (ρ) values of sulfate-based ILs at T =	188
	(298.15 – 348.15)K	
Table C2	Fitting parameters of Eq. 4.1 to correlate density (ρ) of sulfate-	188
	based ILs, coefficient of determination (R^2) and standard	
	deviation (SD) calculated using Eq. 4.2	
Table C3	Experimental density (ρ) values of ILs at T = (298.15 –	188
	348.15)K	
Table C4	Fitting parameters of Eq. 4.1 to correlate density (ρ) of ILs,	188
	coefficient of determination (R^2) and standard deviation (SD)	
	calculated using Eq. 4.2	
Table C5	Experimental density (ρ) values of ILs at T = (298.15 –	189
	348.15)K	
Table C6	Fitting parameters of Eq. 4.1 to correlate density (ρ) of ILs,	189
	coefficient of determination (R^2) and standard deviation (SD)	
	calculated using Eq. 4.2	
Table C7	Experimental density (ρ) values of ILs at T = (298.15 –	189
	348.15)K	
Table C8	Fitting parameters of Eq. 4.1 to correlate density (ρ) of ILs,	189
	coefficient of determination (R^2) and standard deviation (SD)	
	calculated using Eq. 4.2	
Table C9	Experimental refractive index (RI) values of sulfate-based ILs at	190
	T = (298.15 - 348.15)K	
Table C10	Fitting parameters of Eq. 4.4 to correlate refractive index (RI) of	190
	sulfate-based ILs, coefficient of determination (R^2) and standard	
	deviation (SD) calculated using Eq. 4.2	
Table C11	Experimental refractive index (<i>RI</i>) values of ILs at $T = (298.15 - 1000)$	190
	348.15)K	

- Table C12Fitting parameters of Eq. 4.4 to correlate refractive index (*RI*) of190sulfate-based ILs, coefficient of determination (R²) and standarddeviation (SD) calculated using Eq. 4.2
- Table C13Experimental refractive index (RI) values of ILs at T = (298.15 191348.15)K
- Table C14Fitting parameters of Eq. 4.4 to correlate refractive index (*RI*) of191sulfate-based ILs, coefficient of determination (R²) and standarddeviation (SD) calculated using Eq. 4.2
- Table C15Experimental refractive index (RI) values of ILs at T = (298.15 191348.15)K
- Table C16Fitting parameters of Eq. 4.4 to correlate refractive index (*RI*) of191sulfate-based ILs, coefficient of determination (R²) and standarddeviation (SD) calculated using Eq. 4.2

LIST OF ABBREVIATIONS

AI	Aromaticity index
ANOVA	Analysis of variance
BASIL	Biphasic Acid Scavenging utilizing Ionic Liquids
BT	Benzothiophene
CCD	Central Composite Design
COSMO-RS	Conductor-like Screening Model for Realistic Solvents
DBE	Double bond equivalent
DBT	Dibenzothiophene
DMDBT	Dimethyldibenzothiophene
DoE	Design of experiments
EPA	Environmental Protection Agency
FTIR	Fourier Transform Infrared spectroscopy
GC-MS	Gas Chromatography with Mass Spectroscopy
GC-SCD-FID	Gas Chromatography with Sulfur Chemiluminescence Detector and
	Flame Ionization Detector
H_2S	Hydrogen sulfide
H ₂ S HCl	Hydrogen sulfide Hydrogen chloride
H2S HCl HDS	Hydrogen sulfide Hydrogen chloride Hydrodesulfurization
H ₂ S HCl HDS HF	Hydrogen sulfide Hydrogen chloride Hydrodesulfurization Hydroden fluoride
H ₂ S HCl HDS HF HPLC	Hydrogen sulfideHydrogen chlorideHydrodesulfurizationHydroden fluorideHigh Performance Liquid Chromatography
H ₂ S HCl HDS HF HPLC ILs	Fiame Ionization DetectorHydrogen sulfideHydrogen chlorideHydrodesulfurizationHydroden fluorideHigh Performance Liquid ChromatographyIonic liquids
H ₂ S HCl HDS HF HPLC ILs KCl	Fiame Ionization DetectorHydrogen sulfideHydrogen chlorideHydrodesulfurizationHydroden fluorideHigh Performance Liquid ChromatographyIonic liquidsPotassium chloride
H ₂ S HCl HDS HF HPLC ILs KCl KDHP	Fiame Ionization DetectorHydrogen sulfideHydrogen chlorideHydrodesulfurizationHydroden fluorideHigh Performance Liquid ChromatographyIonic liquidsPotassium chloridePotassium dihydrogen phosphate
H ₂ S HCl HDS HF HPLC ILs KCl KDHP LLE	Fiame Ionization DetectorHydrogen sulfideHydrogen chlorideHydrodesulfurizationHydroden fluorideHigh Performance Liquid ChromatographyIonic liquidsPotassium chlorideLiquid-liquid extraction
H ₂ S HCl HDS HF HPLC ILs KCl KDHP LLE MATLAB	Fiame Ionization DetectorHydrogen sulfideHydrogen chlorideHydrodesulfurizationHydroden fluorideHigh Performance Liquid ChromatographyIonic liquidsPotassium chloridePotassium chlorideLiquid-liquid extractionMatrix Laboratory software
H ₂ S HCl HDS HF HPLC ILs KCl KDHP LLE MATLAB MDBT	Frame Ionization DetectorHydrogen sulfideHydrogen chlorideHydrodesulfurizationHydroden fluorideHigh Performance Liquid ChromatographyIonic liquidsPotassium chloridePotassium dihydrogen phosphateLiquid-liquid extractionMatrix Laboratory softwareMethyldibenzothiophene

NaCl Sodium Chloride

NMR	Nuclear Magnetic Resonance analyzer
PI	Performance Index
RI	Refractive index
RSM	Response Surface Methodology
SO_2	Sulfur dioxide
SO ₃	Sulfur trioxide
TS	Thiophene
UNIFAC	UNIQUAC Functional-group Activity Coefficients

LIST OF SYMBOLS

S_{298}	Absolute entropy
γ^{∞}	Activity coefficient at infinite dilution
Z_{Calc}	Calculated values
C^{∞}	Capacity at infinite dilution
α_p	Coefficient of thermal expansion
[C] ₁₁	Concentration of the ionic liquids
$[C]_{s,IL}$	Concentration of BT in ionic liquids phase
[C] _{s,MO}	Concentration of BT in model oil phase
ρ	Density
Z_{Expt}	Experimental values
U_{POT}	Lattice potential energy
R	Loading factor
\mathbf{V}_{m}	Molecular volume
M_w	Molecular weight
N_i	Number of atom
n _{DAT}	Number of experiment
V_i	Number of valence
K _d	Partition coefficient
<i>n</i> _D	Refractive index
S^{∞}	Selectivity at infinite dilution
β	Solute distribution ratio
K_{N}	Sulfur partition coefficient
V_{IL}	Volume of ionic liquid phase
V_{MO}	Volume of model oil phase