LIST OF FIGURES

Figure 1.1: Basic Traffic Light System	1
Figure 1.2: Actuated Traffic Light System Components	2
Figure 1.3: Latest Traffic Light System Components	2
Figure 2.1: Traffic Light System Architecture	11
Figure 2.2: Traffic Light Phase Details	13
Figure 3.1: Standard Four-Leg Intersection	29
Figure 3.2: VANET Network Infrastructure With Additional Per-Lane-Vehicle Detection Belts	29
Figure 3.3: Vehicles Detection (Sensor Belt Example)	32
Figure 3.4: Message Type MtAE Function Examples: (a) Queue-2 Length Is More Than 30 Vehicles; (b) Queue-2 Length Is Less Than 30 Vehicles	34
Figure 3.5: Message Type MtAF Function Example	35
Figure 3.6: Sequence Diagram for the "Relation between MtAD, MtAE, and MtAF"	36
Figure 3.7: Sequence Diagramme for "The Relation between MtAA, MtAB, and MtAC"	39
Figure 3.8: Sequence Diagram for Nearby Road Status Delivery	41
Figure 3.9: Traffic Light Controller with Developed Algorithm Core	42
Figure 3.10: Developed Protocol Direction's Load Calculation Stage	43
Figure 3.11: Direction's Load Calculation Algorithm	44

Figure 3.12: The Developed Protocol for the Decision Making of the Next	
Phase Green Lights	2
Figure 3.13: Phase Transition Map As Seen By the Developed Approach	Z
Figure 3.14: The Developed Next Phase Green Light Decision Making	
Algorithm	2
Figure 3.15: Next Traffic Light Phase Light Decision Making Example	Z
Figure 3.16: The Developed Approach's Next Phase Time Decision Maker	Z
Figure 3.17: The Developed Algorithm Core Internal Architecture	Z
Figure 3.18: The Developed Next Phase Time Decision Making Algorithm	4
Figure 3.19: The Customized Simulation Tool Function (.m Files) Map	4
Figure 3.20: Simulator's Traffic Light Block Diagram Model	-
Figure 3.21: Traffic Light Phase Management Model	-
Figure 3.22: Vehicle Departure Model	4
Figure 3.23: Testing Procedure Flow Chart	,
Figure 3.24: Ranking System Operational Example	,
Figure 4.1: Customized Simulation Tool Architecture	,
Figure 4.2: Standard Four Leg Intersection	,
Figure 4.3: Experimental Process Flow	,
Figure 4.4: Customized Simulator Vs. ASidra Intersection Simulator Validation.	,
Figure 4.5: Experiment-M Output-to-Input Response	
Figure 4.6: Maximum Queue Length for the Five Methods at Five Different	
Levels of the Vehicle Arrival Flow Rates	1
Figure 4.7: Average Queue Length for the Five Methods at Five Different	
Levels of the Vehicle Arrival Flow Rates	1

Figure 4.8: Average Waiting Time for the Five Methods at Five Different	
Levels of the Vehicle Arrival Flow Rates	121
Figure 4.9: Given Green Time Utilization Achieved by the Five Controllers	122
Figure 4.10: Overall Performance for the Five Methods at the Five Different	
Levels of Demand	126

LIST OF TABLES

Table 2.1: Performance Evaluation Measures	12
Table 3.1: Terms of the Input Features and Properties Used Within This Thesis	26
Table 3.2: Terms of the Output Features and Properties Used Within This	
Thesis	27
Table 3.3: Queue Length Detection Required Messages	33
Table 3.4: The Messages Used When Hand Shaking and During Emergency	
Vehicle Detection	38
Table 3.5: Emergency Level Calculation	40
Table 3.6: The Messages Used to Deliver the Nearby Road's Status	41
Table 3.7: Next Phase Green Time Determination Examples	53
Table 3.8: Road Status Variable List	63
Table 3.9: Simulator's Collected Result Variables	64
Table 3.10: Simulator's Calculated Result Variables List	65
Table 4.1: Simulation Tool Validation Process Results	78
Table 4.2: Experiment-M Simulation Parameters	83
Table 4.3: Experiment-M Simulation Evaluation Measures	84
Table 4.4: First Experiment Simulation Parameters	86
Table 4.5: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Very-Small Volume to BM1 Controller	87

Table 4.6: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Very-Small Volume to BM2 Controller	87
Table 4.7: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Very-Small Volume to NM1 Controller	88
Table 4.8: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Very-Small Volume to NM2 Controller	88
Table 4.9: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Very-Small Volume to DT3P Controller	89
Table 4.10: The Five Methods' Achievements in Terms of Avg.Q.L., Avg.W.T.,	
Max.Q.L., and Max.W.T When Very-Small Volume Applied	89
Table 4.11: Given Green Time Utilization When Applying a Very-Small Level	
of Demand on an Intersection	90
Table 4.12: Second Experiment Simulation Parameters	92
Table 4.13: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Small Volume to BM1 Controller	93
Table 4.14: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Small Volume to BM2 Controller	93
Table 4.15: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Small Volume to NM1 Controller	94
Table 4.16: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Small Volume to NM2 Controller	94
Table 4.17: Vehicles Departure-to-Arrival Relationship and the Given Green	0.7
Time When Applying Small Volume to DT3P Controller	95

Table 4.18: The Five Methods' Achievements in Terms of Avg.Q.L., Avg.W.T.,	
Max.Q.L., and Max.W.T when Small Volume Applied	95
Table 4.19: Given Green Time Utilization When Applying a Small Level of Demand on an Intersection	96
Table 4.20: Third Experiment Simulation Parameters	98
Table 4.21: Vehicles Departure-to-Arrival Relationship and the Given GreenTime When Applying Medium Volume to BM1 Controller	99
Table 4.22: Vehicles Departure-to-Arrival Relationship and the Given GreenTime When Applying Medium Volume to BM2 Controller	99
Table 4.23: Vehicles Departure-to-Arrival Relationship and the Given GreenTime When Applying Medium Volume to NM1 Controller	100
Table 4.24: Vehicles Departure-to-Arrival Relationship and the Given GreenTime When Applying Medium Volume to NM2 Controller	100
Table 4.25: Vehicles Departure-to-Arrival Relationship and the Given GreenTime When Applying Medium Volume to DT3P Controller	101
Table 4.26: The Five Methods' Achievements in Terms of Avg.Q.L., Avg.W.T.,Max.Q.L., and Max.W.T When Medium Volume Applied	101
Table 4.27: Given Green Time Utilization When Applying a Medium Level of Demand on an Intersection.	102
Table 4.28: Fourth Experiment Simulation Parameters	103
Table 4.29: Vehicles Departure-to-Arrival Relationship and the Given GreenTime When Applying Large Volume to BM1 Controller	104
Table 4.30: Vehicles Departure-to-Arrival Relationship and the Given GreenTime When Applying Large Volume to BM2 Controller	105

Table 4.31: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Large Volume to NM1 Controller	105
Table 4.32: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Large Volume to NM2 Controller	106
Table 4.33: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Large Volume to DT3P Controller	106
Table 4.34: The Five Methods' Achievements in Terms of Avg.Q.L., Avg.W.T.,	
Max.Q.L., and Max.W.T When Large Volume Applied	107
Table 4.35: Given Green Time Utilization When Applying a Large Level of	
Demand on an Intersection	107
Table 4.36: Fifth Experiment Simulation Parameters	109
Table 4.37: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Very-Large Volume to BM1 Controller	110
Table 4.38: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Very-Large Volume to BM2 Controller	110
Table 4.39: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Very-Large Volume to NM1 Controller	111
Table 4.40: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Very-Large Volume to NM2 Controller	111
Table 4.41: Vehicles Departure-to-Arrival Relationship and the Given Green	
Time When Applying Very-Large Volume to DT3P Controller	112
Table 4.42: The Five Methods' Achievements in Terms of Avg.Q.L., Avg.W.T.,	
Max.Q.L., and Max.W.T when Very-Large Volume Applied	112

Table 4.43: Given Green Time Utilization When Applying a Very Large Level	
of Demand on an Intersection	113
Table 4.44: Experimental and Analytical Results for Experiment-1 (Very-Small	
Arrival Flow Rate)	114
Table 4.45: Experimental and Analytical Results for Experiment-2 (Small Arrival Flow Rate)	115
Table 4.46: Experimental and Analytical Results for Experiment-3 (Medium Arrival Flow Rate).	115
Table 4.47: Experimental and Analytical Results for the Experiment-4 (Large Arrival Flow Rate).	116
Table 4.48: Experimental and Analytical Results for Experiment-5 (Very-Large	
Arrival Flow Rate)	116
Table 4.40: Experimental and Analytical Decults for Experiment 1 offer	
Table 4.49: Experimental and Analytical Results for Experiment-1 afterApplying the Ranking System (Very-Small Arrival Flow Rate)	123
Apprying the Kanking System (very-Sman Antvar Flow Kate)	123
Table 4.50: Experimental and Analytical Results for Experiment-2 after	
Applying the Ranking System (Small Arrival Flow Rate)	123
Table 4.51: Experimental and Analytical Results for Experiment-3 after	
Applying the Ranking System (Medium Arrival Flow Rate)	124
Table 4.52: Experimental and Analytical Results for Experiment-4 after	
Applying the Ranking System (Large Arrival Flow Rate)	124
Table 4.53: Experimental and Analytical Results for Experiment-5 after	
Applying the Ranking System (Very-Large Arrival Flow Rate)	125