STATUS OF THESIS

Title of thesis	TORREFACTION AND FAST PYROLYSIS OF OIL PALM BIOMASS
Ι	WISSAM NOAMAN OMAR AL-ASHAQ

hereby allow my thesis to be placed at the Information Resource Center (IRC) of Universiti Teknologi PETRONAS (UTP) with the following conditions:

- 1. The thesis becomes the property of UTP
- 2. The IRC of UTP may make copies of the thesis for academic purposes only.
- 3. This thesis is classified as

 $\sqrt{}$ Confidential

Non-confidential

If this thesis is confidential, please state the reason:

The present study is part of a major funded research project (Mitsubishi fund) which is governed by the confidentiality agreement with the funding body.

The contents of the thesis will remain confidential for 5 years.

Remarks on disclosure:

Endorsed by

Signature of Author

Permanent address:_____

No. 8, Al-Jubaila Street

Al-Basrah city

Basra, Iraq

Date : _____

Signature of Supervisor

Name of Supervisor Prof. Yoshimitsu Uemura

Date : _____

UNIVERSITI TEKNOLOGI PETRONAS

TORREFACTION AND FAST PYROLYSIS OF OIL PALM BIOMASS

by

WISSAM NOAMAN OMAR AL-ASHAQ

The undersigned certify that they have read, and recommend to the Postgraduate Studies Programme for acceptance this thesis for the fulfillment of the requirements for the degree stated.

Signature:	
Main Supervisor:	Prof. Yoshimitsu Uemura
Signature:	
Co-Supervisor:	Assoc. Prof. Dr. Suzana Yusup
Signature:	
Head of Department:	Assoc. Prof. Dr. Suriati Sufian
Date:	

TORREFACTION AND FAST PYROLYSIS OF OIL PALM BIOMASS

by

WISSAM NOAMAN OMAR AL-ASHAQ

A Thesis

Submitted to the Postgraduate Studies Programme as a Requirement for the Degree of

DOCTOR OF PHILOSOPHY

CHEMICAL ENGINEERING DEPARTMENT

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SERI ISKANDAR,

PERAK

JUNE 2014

DECLARATION OF THESIS

Title of thesis	TORREFACTION AND FAST PYROLYSIS OF OIL PALM BIOMASS
I	WISSAM NOAMAN OMAR AL-ASHAQ
hereby declare t citations which previously or co	hat the thesis is based on my original work except for quotations and have been duly acknowledged. I also declare that it has not been ncurrently submitted for any other degree at UTP or other institutions.
	Witnessed by

Г

Signature of Supervisor

Name of Supervisor

Prof. Yoshimitsu Uemura

Date : _____

DEDICATION

To my life partner Rafah....

and our 4 angels....

Rayyan, Rawan, Ali, and Malak

ACKNOWLEDGEMENTS

I would like to thank my supervisor and project leader, Prof. Yoshimitsu Uemura for his guidance and instructions to me, also his belief and patience on me during the course of my research at Universiti Teknologi Petronas. I have learned from him more than the content of this thesis, I have learned values and wisdom that inspired me and will guide me forever. I also acknowledge our MOR director Dr. Suzana Yusup for supporting all of us and serving on my committee.

Many thanks are given to Mitsubishi foundation for their financial support during my study. Special thanks to all CBBR members for their support, we really worked as a team (Dr. Ahmad, Dr. Noridah, Zilla, Sajid, Nor, Hafizah, Marwan, and the rest of the team).

Lastly, I would like to thank my wife, Rafah, for her patient and support during my study, without your encouragements I will never make it.

ABSTRACT

The present research focuses on torrefaction and fast pyrolysis of Malaysian oil palm residue (empty fruit bunches, palm mesocarp fibre, and palm kernel shell), these biomass types were selected due to their abundant quantity in the country, the current inefficient recycling methods, and the little availability of the decomposition data from few published studies. Torrefaction experiments were carried out in fabricated torrefaction reactor, while fast pyrolysis experiment conducted in newly invented and designed novel drop type pyrolyzer featuring the ability to recover all pyrolysis products with high recover percentage up to 98%.

Catalytic fast pyrolysis was investigated using Pyrolysis-Gas Chromatography/ Mass Spectrometry (Py-GC/MS), two groups of commercially available catalysts were investigated (silica and zeolites). The effect of catalyst on the product distribution of the pyrolysis vapors were investigated.

In the torrefaction experiments, both palm mesocarp fiber and palm kernel shell exhibited excellent energy ratio values of 96 and 100%, respectively. EFB, on the other hand, exhibited a rather poor energy ratio of 56%. In the fast pyrolysis experiments, the optimal conditions that were found to maximize bio-oil yield are palm kernel shell as biomass type, 0.235 mm as average particle size, and 500 °C as the pyrolysis temperature. At higher temperature less bio-oil was recovered and more non condensable gases were produced due to the activation of secondary cracking reactions. The same low bio-oil yield was observed for bigger particle sizes as they promotes slow heat transfer and mass diffusion of the pyrolysis vapors resulting in secondary gasification and solidification reaction.

Catalytic Py-GC/MS results showed that the effect of different silica catalysts on improving the product distribution of the pyrolysis vapors is rather limited, they have

no selectivity for aromatics and very low selectivity for esters. Zeolites showed a high selectivity for aromatics. High acidic HZSM-5 was found to be the best zeolite type to produce higher yield of aromatics suggesting that a bio-oil with transport fuel properties is achievable.

The drop type pyrolyzer is proved to be able to achieve high liquid yields (greater than 50 wt.%), and produces bio-oil and bio-char products that are physically and chemically similar to products from other fast pyrolysis reactors and it has the advantage over other reactors (such as fluidized bed) in its superior product recovery which is crucial in mass and energy design calculations. It also can support catalytic fast pyrolysis experiments by feeding a mixture of the biomass and the catalyst or connect it with separate catalytic reactor for online pyrolysis oil upgrading.

ABSTRAK

Kajian ini tertumpu kepada torefikasi dan pirolisis pantas bahan biojisim kelapa sawit Malaysia (tandan kosong, sabut kelapa sawit, dan tempurung kelapa sawit). Biojisim jenis ini dipilih kerana kuantiti mereka yang banyak di negara ini, disamping kaedah kitar semula untuk biojisim sawit yang sedia ada kurang berkesan, dan kekurangan data mengenai pereputan biojisim ini yang telah dilaporkan.

Pirolisis pantas telah dikaji menggunakan pirolisis-gas kromatografi spectroskop jisim (Py-GC/MS) dengan kehadiran mangkin komersil (silika dan zeolite). Kesan kehadiran terhadap taburan hasil tindakan pemangkinan wap pirolisis telah dikaji.

Hasil kajian torefikasi kedua-dua sabut kelapa dan tempurung kelapa sawit menunjukkan nilai nasibah tenaga yang baik iaitu 96 dan 100%. Bagaimanapun torefikasi tandan kosong kelapa sawit menunjukkan nasibah tenaga yang agak rendah pada 56%. Bagi pirolisis pantas, keadaan optima bagi penghasilan minyak-bio tertinggi adalah mengunakan biojisim tempurung kelapa sawit dengan purata saiz partikel 0.235 mm dan suhu 500 C. Sekiranya suhu lebih tinggi digunakan, hanya sedikit minyak-bio yang dapat dihasilkan dan lebih banyak hasil gas akibat tindak balas peretakan sekunder. Begitu juga sekiranya saiz partikel yang besar digunakan, hasil minyak-bio yang rendah diperolehi kerana proses pemindahan haba yang perlahan disamping penyebaran jisim wap pirolisis yang rendah sehingga menyebabkan berlakunya tindakbalas gasifikasi dan pemejalan sekunder.

Penggunaan pelbagai mangkin silica tidak Berjaya memperbaiki taburan produk dari peretakan wap pirolisis menggunakan Py-GC/MS di mana silika tidak mempunyai keselektifan kepada kumpulan hidrokarbon aromatik dan keselektifan yang amat rendah kepada hidrokarbon ester. Mangkin zeolite bagaimanapun menunjukkan keselektifan yang amat tinggi kepada hidrokarbon aromatik menunjukkan penghasilan cecair yang sesuai sebagai bahan api kenderaan.

Kajian ini menunjukkan pirolizer jenis lepas jatuh mampu mmemberikan hasil cecair yang tinggi (lebih dari 50% jisim) dan menghasilkan produk minyak-bio dan arang-bio yang mempunyai ciri-ciri fizikal dan kimia yang sama seperti produk dari reaktor pirolisis pantas yang lain dan ia memiliki kelebihan dibandingkan dengan reaktor lain (contoh lapisan terbendalir) dalam keupayaan menghasilkan produk yang amat penting dari segi pengiraan rekabentuk jisim dan tenaga. Ia juga boleh menyokong eksperimen pemangkin pirolisis pantas dengan penyuapan campuran biojisim dengan mangkin atau penyambungan reactor pirolisis jenis lepas jatuh ini dengan reaktor pemangkin yang lain untuk penambahbaik kualiti minyak pirolisis.

COPYRIGHT

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the university, the copyright of this thesis has been reassigned by the author to the legal entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained in, or derived from, this thesis.

© Wissam Noaman Omar Al-Ashaq, 2014 Institute of Technology PETRONAS Sdn Bhd All rights reserved.

TABLE OF CONTENTS

DEDICATIONS	v
ACKNOWLEDGMENT	vi
ABSTRACT	vii
COPYRIGHT	xi
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS	XXV
NOMENCLATURE	xxvi

Chapter

1.	INTRODUCT	ION	1
	1.1 His	storical background	1
	1.2 Lig	nocellulosic biomass	1
	1.3 To	rrefaction	3
	1.4 Fas	st pyrolysis	4
	1.5 Ca	alytic fast pyrolysis	5
	1.6 Pro	blem statement	6
	1.7 Re	search objective	8
	1.8 Sco	ope of study	9
	1.9 Or	ganization of the thesis	10
2.	LITERATURI	EREVIEW	11
	2.1 In	roduction	11
	2.2 Bi	omass	12
	2.2.	Biomass classification and resources	13
	2.2.2	2 Lignocellulosic biomass	14
	2.2.	3 Malaysian biomass and energy scenario	16
	2.2.4	Biomass generation in Malaysia	17

2.	2.5	Palm oil	industry in Malaysia	20
2.3	Torre	efaction .		21
2.	3.1	Advanta	ges of torrefaction	25
2.4	Fast	pyrolysis		31
2.	4.1	Fast pyr	olysis reactors	33
		2.4.1.1	Fluidized bed reactor (FBD)	33
		2.4.1.2	Circulating and transported fluidized bed (CFD)	25
		2.4.1.3	Rotating cone	35 36
		2.4.1.4	Ablative pyrolysis	37
		2.4.1.5	Screw and augur reactors	39
		2.4.1.6	Microwave reactors	40
2.	4.2	Bio-oil .		41
2.	4.3	Bio-cha	r	43
2.	4.4	Non con	densable gases (NCG)	44
2.5	Bio-	oil upgrad	ding	47
2.	5.1	Physical	upgrading of bio-oil	47
2.	5.2	Upgradi	ng by emulsification with diesel	48
2.	5.3	Catalytic	c fast pyrolysis (catalytic upgrading of bio-oil)	48
		2.5.3.1	Pyrolysis –gas chromatography–mass	50
		2.5.3.2	Hydrotreating (hydrodeoxygenation)	50 50
		2.5.3.3	Zeolite cracking	51
2.6	Bior	efinery	- -	57
3. METHOD C	OF IN	VESTIC	GATION	59
3.1	Intro	duction.		59
3.2	Bion	nass samp	ples	61
3.	2.1	Biomass	s types and source	61
3.	2.2	Biomass	collection and preservation	61
3.	2.3	Biomass	preparation	62
3.3	Char	acterizati	on of biomass	63
3.	3.1	Apparen	t particle size (APS)	63
3.	3.2	Moisture	e content	64

3.3.3	Ash content	65
3.3.4	Calorific value	65
3.3.5	CHN elementary analysis	66
3.3.6	Thermogravimertric analysis (TGA)	66
3.4 Char	racteristics of bio-oil	67
3.4.1	Acidity	67
3.4.2	Water content	67
3.4.3	Detection of main chemical components by GC-MS	68
3.4.4	Quantification of main bio-oil components by GC-FID	68
3.5 Low	temperature decomposition	69
3.5.1	Torrefaction reactor	69
3.6 Med	lium temperature pyrolysis	71
3.6.1	Py-GC/MS	72
3.6.2	Fast pyrolysis using drop type pyrolyzer	73
	3.6.2.1 Design of fast pyrolysis experiments	79
3.7 Cata	llytic pyrolysis	79
3.7.1	Catalytic Py-GC/MS using silica catalysts	81
3.7.2	Catalytic Py-GC/MS using zeolite catalysts	82
3.7.3	Catalytic drop type pyrolyzer (mixed mode)	83
3.7.4	Catalytic drop type pyrolysis (fixed bed)	85
3.8 Ana	lysis of NCG using GC-TCD	88
4. ANALYSIS OF	DATA & DISCUSSION OF RESULTS	89
4.1 Intro	oduction	89
4.1.1	Characteristics of palm kernel shell (PKS), empty fruit	
4.1.2	bunches (EFB) and palm mesocarp fiber (PMF) Proximate and ultimate analysis	89 97
4.1.3	Thermogravimetric analysis (TGA)	98
4.2 Torr	efaction experiments	101
4.2.1	Mass yield of torrefaction	102
4.2.2	Calorific, CHN, and ash content of torrefied biomass	106
4.2.3	Relationships between calorific value and elementary	
4.2.4	composition of torrefied lignocellulosic biomass Mass and energy balance of torrefaction	111 115

4.2.5	Comparison of EFB, PMF, and PKS with other lignocellulosic biomass	119
4.3 Resu	Its of Py-GC/MS experiments	123
4.3.1	Effect of biomass type on the product distribution of the	124
4.3.2	Effect of silica catalyst on the product distribution of the purelysis vapour of PKS	124
4.3.3	Effect of zeolites catalyst on the product distribution of the	122
4.4 Fast	pyrolysis using drop type pyrolyzer	133 140
4.4.1	Mass and energy yield of fast pyrolysis	141
4.4.2	Feedstock comparison	147
4.4.3	Effect of temperature on product distribution	148
4.4.4	Effect of apparent particle size (APS) on product	
4.4.5	distribution Calorific, CHN, and ash content of bio-char, bio-oil, and	153
	NCG	156
	4.4.5.2 Bio-char	161
446	Vield of the main compounds in bio-oil	164
4.4.0	Vield of the main gases	166
448	Reaction time	170
4.4.9	CHO ternary diagram	172
4.5 Catal	vtic fast pyrolysis using drop type pyrolyzer	175
4.5 Catal	yte fast pyfolysis using drop type pyfolyzer	175
5. CONCLUSIONS	AND RECOMMENDATIONS	181
5.1 Conc	lusions	181
5.2 Reco	mmendations of future work	183
References		. 185
Publications		209
APPENDIX A		211
APPENDIX B		215
APPENDIX C		225
APPENDIX D		241

LIST OF TABLES

Table 2.1:	Classification and sources of harvested biomass	14
Table 2.2:	Generation rate of residues from oil palm industry	18
Table 2.3:	Estimated generation amount of oil palm residues	18
Table 2.4:	Biomass potential generation in Malaysia	19
Table 2.5:	Most recent published works on torrefaction	23
Table 2.6:	Properties of torrefied biomass compared with other solid fuels, adopted from reference [110]	30
Table 2.7:	Yield of solid, liquid, and gas at different conditions	32
Table 2.8:	Bio-oil properties for different biomass compared with heavy fuel oil	42
Table 2.9:	Summary of recent advances in fast pyrolysis of lingocellulosic biomass in Malaysia and worldwide	45
Table 2.10:	Recent advancement in catalytic fast pyrolysis and bio-oil upgrading works	54
Table 3.1:	Summary of biomass particle sizes used in this study	63
Table 3.2:	Design of the fast pyrolysis experimental conditions	80
Table 3.3:	Main physical properties of different standard CARiACT [®] silica catalysts	81
Table 3.4:	Types of zeolites utilized in this study	83
Table 4.1:	Empty fruit bunches (EFB) samples used in this study and their properties compared to selected literature	91
Table 4.2:	Palm mesocarp fiber (PMF) samples used in this study and their properties compared to selected literature	92
Table 4.3:	Palm kernel shell (PKS) samples used in this study and their properties compared to selected literature	93

Table 4.4:	Proximate and ultimate analyses for EFB, PMF, and PKS used in this study	99
Table 4.5:	Results of mass measurements for dry and torrefied biomass	103
Table 4.6:	Mass yields based on dry and wet basis for EFB, PMF and PKS at 300 °C and 30 min holding time	105
Table 4.7:	Chemical composition of EFB, PMF and PKS from reference [234]	106
Table 4.8:	Results of calorimetry, elementary and ash analyses for dry and torrefied EFB, PMF, and PKS	109
Table 4.9:	Prediction of untreated and torrefied biomass using different correlations from the literature	112
Table 4.10:	Assignment of main components and their functional group for EFB, PMF and PKS from Py-GC/MS analysis	126
Table 4.11:	List of bio-oil collection points with pictures	140
Table 4.12:	Product distribution for the fast pyrolysis of EFB, PMF and PKS	143
Table 4.13:	Properties of the feedstock and the fast pyrolysis products of PKS	157
Table 4.14:	Main compounds in the bio-oil from PKS detected by GC-MS	165
Table 4.15:	Product distribution of catalytic fast pyrolysis of PKS (APS= 0.235 mm) and HZSM-5 (Si/Al=15) at 500 °C	175

LIST OF FIGURES

Fig. 1.1:	Structure of lignocellulosic biomass [2]	2
Fig. 1.2:	Products formed during torrefaction of lignocellulosic biomass [7]	3
Fig. 1.3:	Applications of fast pyrolysis products [13]	4
Fig. 2.1:	World energy outlook (1990 -2035) from reference [43]	12
Fig. 2.2 :	Schematic representation of cellulose, hemicellulose, and lignin before and after breaking down by different treatment methods (adapted from Mosier et al. [55])	15
Fig. 2.3:	Energy supply in Malaysia for 2010 [57]	16
Fig. 2.4:	Typical waste from palm oil industry	20
Fig. 2.5:	Typical process flowchart of palm milling factory [73]	21
Fig. 2.6:	Basic process of torrefaction	22
Fig. 2.7:	Improvement of grindability with torrefaction temperature [102]	26
Fig. 2.8:	Production of the torrefied biomass pellets	27
Fig. 2.9:	Integrated torrefaction/gasification concepts [83]	29
Fig. 2.10:	Main thermal conversion technologies for lignocellulosic biomass, from reference [13]	31
Fig. 2.11:	Schematic diagram of fluidized bed reactor system installed at Centre for Biofuel and Biochemical Research (CBBR) at UTP (2010-present)	34
Fig. 2.12:	Schematic diagram of CBR for the fast pyrolysis of biomass [25]	36
Fig. 2.13:	Rotating cone reactor integrated in the BTG-BTL process [13]	37
Fig. 2.14:	Ablative fast pyrolysis reactor	38

Fig. 2.15:	Augur reactor setup [135]	39
Fig. 2.16:	Schematic diagram of microwave-assisted pyrolysis system of PKS [19]	40
Fig. 2.17:	Current scenarios for the catalytic fast pyrolysis upgrading works	49
Fig. 2.18:	Upgrading paths of bio-oil into fuels and chemicals [13]	51
Fig. 2.19:	ZSM-5 pore structure [202]	52
Fig. 2.20:	Main catalytic cracking pyrolysis reactions with ZSM-5 catalyst	53
Fig. 2.21:	Transport fuels and chemicals from biorefinery concept based on integrated biological and thermal process [13]	57
Fig. 3.1:	Summary of the experimental methodology in this study	60
Fig. 3.2:	Biomass types used in this study	62
Fig. 3.3:	Sieves Column setup and size distribution	64
Fig. 3.4:	Schematic diagram of the torrefaction reactor	70
Fig. 3.5:	Actual torrefaction reactor rig	71
Fig. 3.6:	Drop type pyrolyzer setup	77
Fig. 3.7:	Actual photo for the drop type pyrolyzer used in this study	78
Fig. 3.8:	Sample holder for PKS and silica catalysts	82
Fig. 3.9:	Catalytic drop type pyrolyzer setup (mixed mode)	84
Fig. 3.10:	Summary of experimental procedure of the catalytic drop type pyrolysis (mixed mode)	84
Fig. 3.11:	Catalytic drop type pyrolyzer (fixed bed mode)	85
Fig. 3.12:	Actual setup of the catalytic drop type pyrolyzer (fixed bed mode)	87

Fig. 4.1:	Carbon content (dry basis) of EFB, PMF and PKS with some selected biomass from the literature (Wheat straw & Switch grass [230], Willow & Beach wood [174], Soft wood [231], Rice husk [232], and Rice straw [97])	95
Fig. 4.2:	Hydrogen content of EFB, PMF and PKS with some selected biomass from the literature (Wheat straw & Switch grass [230], Willow & Beach wood [174], Soft wood [231], Rice husk [232], and Rice straw [97])	96
Fig. 4.3:	Oxygen content of EFB, PMF and PKS with some selected biomass from the literature (Wheat straw & Switch grass [230], Willow & Beach wood [174], Soft wood [231], Rice husk [232], and Rice straw [97])	96
Fig. 4.4:	Thermogravimetric and differential thermal analysis of dry EFB, PMF, and PKS samples at 10 °C/min under nitrogen atmosphere	100
Fig. 4.5:	EFB, PMF and PKS feedstock collected and used in the torrefaction experiments	101
Fig. 4.6:	Photos of raw and torrefied EFB, PMF, and PKS at 220 °C, 250 °C and 300 °C, and 30 min holding time	102
Fig. 4.7:	Change in calorific value (torrefied against dry) for EFB, PMF and PKS versus different torrefaction temperatures (220 $^{\circ}$ C, 250 $^{\circ}$ C, and 300 $^{\circ}$ C)	107
Fig. 4.8a:	Change in carbon content (torrefied against dry) for EFB, PMF and PKS versus different torrefaction temperatures (220 °C, 250 °C, and 300 °C)	107
Fig. 4.8b:	Change in hydrogen content (torrefied against dry) for EFB, PMF and PKS versus different torrefaction temperatures (220 °C, 250 °C, and 300 °C)	108
Fig. 4.8c:	Change in oxygen content (torrefied against dry) for EFB, PMF and PKS versus different torrefaction temperatures (220 °C, 250 °C, and 300 °C)	110
Fig. 4.9:	Change in ash content (torrefied against dry) for EFB, PMF and PKS versus different torrefaction temperatures (220 $^{\circ}$ C, 250 $^{\circ}$ C, and 300 $^{\circ}$ C)	110
Fig. 4.10:	Comparison between calculated and observed HHV of untreated biomass	113

Fig. 4.11:	Comparison between calculated and observed HHV of torrefied biomass	113
Fig. 4.12:	Comparison between calculated and observed HHV of torrefied biomass (separately plotted)	114
Fig. 4.13a:	Mass yield, energy ratio, and net energy yield for EFB at different treatment conditions	117
Fig. 4.13b:	Mass yield, energy ratio, and net energy yield for PMF at different treatment conditions	118
Fig. 4.13c:	Mass yield, energy ratio, and net energy yield for PKS at different treatment conditions	118
Fig. 4.14:	Van Krevelen diagram for EFB, PMF and PKS compared with selected lignocellulosic biomass from the literature	120
Fig. 4.15:	Triangle plot of C, H and O for torrefied EFB, PMF and PKS with selected decomposed biomass from the literature; a) Couhert et al. [79], b) Arias et al. [11], c) Bridgeman et al. [8], d) Prins et al. [83], e) Demirbas [249]	122
Fig. 4.16:	Py-GC/MS pyrograms from fast pyrolysis of oil palm biomass at 500 °C	125
Fig. 4.17:	Total RPAP for different groups from the pyrolysis of EFB, PMF and PKS	128
Fig. 4.18a:	Peak area of acids, aldehydes and phenols from Py-GC/MS of EFB, PMF and PKS alongside selected biomass from literature: sawdust [193], fir wood, cotton straw, rice husk [205], poplar wood [255], canary and switch grass [233]	129
Fig. 4.18b:	Peak area of esters, alcohols, ketones and furans from Py-GC/MS of EFB, PMF and PKS alongside selected biomass from literature: fir wood, cotton straw, rice husk [205]	129
Fig. 4.19:	Distribution of the main organic fraction groups in the pyrolysis vapor of PKS at 500 °C	131
Fig. 4.20:	Effect of different silica catalysts on the yield of acids, aldehydes, phenols, and esters in the pyrolysis vapors of PKS at 500 °C	132

Fig. 4.21:	Py-GC/MS pyrogram of PKS and HZSM-5 (15) mixture with 1:1 weight ratio at 500 °C	133
Fig. 4.22:	Py-GC/MS pyrogram of PKS and HZSM-5 (27) mixture with 1:1 weight ratio at 500 °C	134
Fig. 4.23:	Py-GC/MS pyrogram of PKS and HY(2.8) mixture with 1:1 weight ratio at 500 °C	134
Fig. 4.24:	Py-GC/MS pyrogram of pure PKS at 500 °C	135
Fig. 4.25:	Selectivity of aromatics in pyrolysis vapors of different zeolites at 1:1 catalyst to PKS ratio at 500 °C	136
Fig. 4.26:	Selectivity of aromatics in pyrolysis vapors for different HZSM-5 (Si/Al=15) to PKS ratios at 500 °C	137
Fig. 4.27:	Selectivity of phenols in pyrolysis vapors for different HZSM-5 (Si/Al=15) to PKS ratios at 500 °C	138
Fig. 4.28:	Selectivity of individual aromatics for HZSM-5 (Si/Al=15) to PKS ratio of 10:1 at 500 °C	138
Fig. 4.29:	Concentration of toluene and benzene in the pyrolysis vapor of PKS and cotton straw [205] mixed with HZSM-5 or HY at 2:1 catalyst to biomass ratio at 500 °C.	139
Fig. 4.30:	Product yield distribution for the fast pyrolysis of EFB	144
Fig. 4.31:	Product yield distribution for the fast pyrolysis of PMF	145
Fig. 4.32:	Product yield distribution for the fast pyrolysis of PKS	146
Fig. 4.33:	Comparison of bio-oil yield from EFB and PKS with different published sources (Abdullah et al. [170], Alina et al. [15], Kim et al. [20], and Assadullah et al. [18]	148
Fig. 4.34:	The yield of bio-oil, bio-char, and NCG versus temperature for EFB with different apparent particle sizes a) 0.235 mm, b) 0.750 mm, and c) 1.500 mm	150
Fig. 4.35:	The yield of bio-oil, bio-char, and NCG versus temperature for PMF with different apparent particle sizes a) 0.235 mm, b) 0.750 mm, and c) 1.500 mm	151

Fig. 4.36:	The yield of bio-oil, bio-char, and NCG versus temperature for PKS with different apparent particle sizes: a) 0.235 mm, b) 0.750 mm, and c) 1.500 mm	152
Fig. 4.37:	Structure SEM observation of PKS of APS =0.235 mm size	153
Fig. 4.38:	The yield of bio-oil, bio-char, and NCG versus apparent particle sizes of a) EFB, b) PMF, and c) PKS at 500 °C	155
Fig. 4.39:	Photos of bio-oil, bio-char, and NCG produced from the fast pyrolysis of PKS with apparent particle size of 0.235 mm at 500 °C	159
Fig. 4.40:	Water content tendency of bio-oil from PKS at different apparent particle sizes and pyrolysis temperatures	160
Fig. 4.41:	Low heat value tendency of bio-oil from PKS at different APS and pyrolysis temperature	161
Fig. 4.42:	Heat value tendency of bio-char from PKS at different apparent particle sizes and pyrolysis temperatures	162
Fig. 4.43:	Carbon content tendency of bio-char from PKS at different APS and pyrolysis temperature	163
Fig. 4.44:	Ash content tendency of bio-char from PKS at different APS and pyrolysis temperature	163
Fig. 4.45:	Ion chromatograph for PKS (APS=0.235 mm) at 500 °C	165
Fig. 4.46:	Ion chromatograph for the NCG of PKS (APS=0.235 mm) at 600 °C	166
Fig. 4.47:	Formation of main gases in NCG versus temperature from the pyrolysis of PKS with apparent particle size of 0.235 mm	167
Fig. 4.48:	Formation of main gases in NCG versus temperature from the pyrolysis of PKS with apparent particle size of 0.750 mm	167
Fig. 4.49:	Formation of main gases in NCG versus temperature from the pyrolysis of PKS with apparent particle size of 1.500 mm	168
Fig. 4.50:	Formation of main gases in NCG versus average particle size from the pyrolysis of PKS at 500 °C	169

Fig. 4.51:	Measured versus calculated nitrogen concentration of NCG recovered from the pyrolysis of PKS with apparent particle size of 0.235 mm at 500 °C	170
Fig. 4.52:	Reaction time of PKS at different temperatures and apparent particle sizes	171
Fig. 4.53:	Images of the bio-char taken immediately after the pyrolysis at 500 °C	172
Fig. 4.54:	CHO ternary diagram for dry PKS, torrefied PKS, and the pyrolysis products	174
Fig. 4.55:	Product yield from catalytic fast pyrolysis of PKS mixed with HZSM-5 (15) at different ratios for 500 °C	176
Fig. 4.56:	Gas formation from the catalytic fast pyrolysis of PKS mixed with HZSM-5 (15) at different ratios for 500 °C	178
Fig. 4.57:	Yield of furfural and methylated phenols in the bio-oil from the catalytic fast pyrolysis of PKS (APS=0.235 mm) at 500 °C	179
Fig. 4.58:	Yield of acetic acid and phenol in the bio-oil from the catalytic fast pyrolysis of PKS (APS=0.235 mm) at 500 °C	180
Fig. 4.59:	Yield of aromatics in the bio-oil from the catalytic fast pyrolysis of PKS (APS=0.235 mm) at 500 °C	180

LIST OF ABBREVIATIONS

EFB	Empty fruit bunches
PMF	Palm mesocarp fiber
PKS	Palm kernel shell
APS	Average particle size
Py-GC/MS	Pyrolysis gas chromatography mass spectrometry
GC-MS	Gas chromatography mass spectrometry
GC	Gas chromatography
MS	Mass spectrometry
TGA	Thermogravimetric analysis
СНО	Carbon, hydrogen, and oxygen (wt.% or mole.%)
Mtoe	Million ton oil equivalent
NCG	Non condensable gases
GC-TCD	Gas chromatography with thermal conductivity detector
GC-FID	Gas chromatography with flame ionization detector

NOMENCLATURE

Variable	Description	Units
МС	Moisture content	wt.%
Ws	Weight of biomass before experiment	g
W_D	Weight of biomass after drying	G
ASH	Ash content	wt.%
W_A	Weight of biomass and crucible	g
W_E	Weight of dry crucible	g
HHV	High heat value	MJ/kg
LHV	Low heat value	MJ/kg
X_H	Hydrogen mass fraction	
X_W	Free water fraction	
0	Oxygen mass percentage	wt.%
Н	Hydrogen mass percentage	wt.%
Ν	Nitrogen mass percentage	wt.%
С	Carbon mass percentage	wt.%
$V_{ u}$	Volume of pyrolysis vapours	L
V_{wbv}	Total volume of the water and the Teflon gas bag containing the pyrolysis vapours	L
V_{wb}	Volume of the water and the empty Teflon gas bag	L
SSA	Specific surface area	m²/g

Si/Al	SiO ₂ to Al ₂ O ₃ molar ratio	mole ratio
Ymass	Mass yield of torrefied biomass	wt.%
Yenergy ratio	Energy ratio of torrefaction	%
Ynet energy	Net energy yield of torrefaction	%
H_S	Sensible heat of torrefaction	MJ/kg
H _{torref}	Heat of torrefaction reaction	MJ/kg
<i>M</i> _{biomass}	Mass fraction of dry matter in the fresh biomass	
M_{water}	Mass fraction of moisture in the fresh biomass	
CP _{biomass}	Specific heat of biomass	J/g.K
CP _{water vapor}	Specific heat of water vapor	J/g.K
<i>O/C</i>	Oxygen to carbon molar ratio	
H/C	Hydrogen to carbon molar ratio	
V_{sp}	Specific pore volume of catalyst	ml/g
Ssa	Specific surface area of catalyst	m^2/g
D _{pore}	Average pore diameter of catalyst	Nm
Wbio-char	Weight of bio-char from fast pyrolysis	g
W _{bio-oil}	Weight of bio-oil from fast pyrolysis	g
W _{NCG}	Weight of non condensable gases from fast pyrolysis	g
Ybio-char	Mass yield of bio-char	wt.%
Y _{bio-oil}	Mass yield of bio-oil	wt.%
Y _{NCG}	Mass yield of non condensable gases	wt.%