STATUS OF THESIS

Title of thesis	Studies on CO ₂ solu hydrophobi	bility in <i>N</i> -Methyldiethanolamine and c ionic liquid binary mixtures
<u>I</u> <u>MAJID MAJEED AKBAR</u> do hereby allow my thesis to be placed at the Information Resource Center (IRC) of Universiti Teknologi PETRONAS (UTP) with the following conditions:		
1. The thesis b	becomes the property of UT	TP
2. The IRC of UTP may make copies of the thesis for academic purposes only.		
3. This thesis i	s classified as	
Con	nfidential	
	n-confidential	
If this thesis is confidential, please state the reason:		
The contents of the thesis will remain confidential for years. Remarks on disclosure:		
		Endorsed by
Signature of Au	thor	Signature of Supervisor
Permanent address: 245-D-II, Wapda Town, Lahore, Pakistan.		Name of Supervisor Prof. Dr. Thanabalan Murugesan
Date :		Date :

UNIVERSITI TEKNOLOGI PETRONAS

THERMOPHYSICAL PROPERTIES AND CO₂ SOLUBILITY IN IONIC LIQUIDS, *N*-METHYLDIETHANOLAMINE AND THEIR BINARY MIXTURES

by

MAJID MAJEED AKBAR

The undersigned certify that they have read, and recommend to the Postgraduate Studies Programme for acceptance of this thesis for the fulfillment of the requirements for the degree stated.

Signature:

Main Supervisor:

Prof. Dr. Thanabalan Murugesan

Signature:

Head of Department:

Dr. Suriati Sufian

Date:

STUDIES ON CO₂ SOLUBILITY IN *N*-METHYLDIETHANOLAMINE AND HYDROPHOBIC IONIC LIQUID BINARY MIXTURES

by

MAJID MAJEED AKBAR

A Thesis

SUBMITTED TO THE POSTGRADUATE STUDIES PROGRAMME

AS A REQUIREMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPY IN CHEMICAL ENGINEERING CHEMICAL ENGINEERING DEPARTMENT

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SERI ISKANDAR,

PERAK

MAY 2013

DECLARATION OF THESIS

Title of thesis

Ι

STUDIES ON CO₂ SOLUBILITY IN *N*-METHYLDIETHANOLAMINE AND HYDROPHOBIC IONIC LIQUID BINARY MIXTURES

MAJID MAJEED AKBAR

do hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UTP or other institutions.

Witnessed by

Signature of Author

Permanent address: 245-D-II, Wapda Town, Lahore, Pakistan.

Signature of Supervisor

Name of Supervisor Prof. Dr. Thanabalan Murugesan

Date : _____

Date : _____

To my Parents, To my Brothers; Engr. Khalid, Dr. Tariq, Engr. Abid, To my wife Memmona, To my Son Sanan Majid

ACKNOWLEDGEMENTS

All the praises for Almighty Allah, whose uniqueness, oneness and wholeness are unchangeable, guided us in lacerate and congenial circumstances. All respects for the Holy Propher Hazrat Muhammad (PBUH), who enabled us to recognize our creator. I am highly indebted to my supervisor Prof. Dr. Thanabalan Murugesan. He deserves a great deal of credit, due to his kind encouragement, able guidance and intellectual discerning power; I have been able to complete this work. He always provided generous time for technical discussions and guided me in each and every step of this research. I am extremely thankful to Dr. Khashayar, for his kind support and value able time rendered for technical discussions. I am grateful to the administration of the Universiti Teknologi PETRONAS (UTP) and its Chemical Engineering Department. Staff members of UTP library and laboratories deserve a great deal of credit for providing conducive environment to the researchers during their studies. I am thankful to the numerous unknown reviewers who helped to improve this work. I express my heartedly and deep feelings to all my family members, especially my father, Dr. Akbar Ali, who has always taught me to be a good human being and urged for higher education. My mother, at the knees of her, I learnt every aspect of life, she has always encouraged me to be courteous and helpful to others. My brothers, Engr. Khalid Saeed Akbar, Dr. Tariq Saeed Akbar, Engr. Abid Majeed Akbar and my loving sisters (Shabnum, Robina, Samina) and their families (Imtiaz, Rafique, Rehmat) deserve a great deal of credit. I am thankful to my sister in law Sheza Khilji for providing necessary research papers. I am very much grateful to all my friends, Junaid, Subhan, Ayoub, Naseeb, Sikandar, Murshid, Anees and Awais, for their support and motivation to achieve this goal. Finally, I would like to thank my beloved wife (Memmona) for providing such a wonderful companionship and help to accomplish this task. She always gave me every kind of support and encouragement and without her help this work would have not been completed. I pray for the departed loved one (My Mamoo, Khala, Phopo) who passed away during my stay in Malaysia.

ABSTRACT

A fundamental and systematic investigation on the potential application of hybrid mixtures {comprising of ionic liquid (IL) + MDEA} for CO₂ removal has been presented. The binary mixtures of three imidazolium based ILs namely; 1-hexyl-3methylimidazolium tetrafluoroborate ([hmim][BF4]), 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide $([hmim][Tf_2N]),$ 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([hmim][FAP]) with N-methyldiethanolamine (MDEA) were prepared and the CO₂ solubility was measured in the pure solvents as well as in the binary mixtures at three temperatures (298.15, 313.15, 323.15) K and at eight different pressures (\leq 3000 kPa). Prior to CO₂ solubility the basic thermophysical properties (ρ , η , n_D , TGA) were established. The excess properties namely; excess molar volumes, viscosity and refractive index deviation were deduced from the measured physical properties. The effects of pressures, temperatures, concentrations, and anions on CO₂ solubility were studied in detail. The temperature depended parameters of solubility namely; Henry's constants, enthalpy, entropy were also deduced. The experimental CO₂ solubility results were modelled with the help of Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) equations of states (EOS) with van der Waals (vdW) and Mathias-Klotz-Prausnitz (MK) mixing rules. The pure liquids and the selected binary mixtures which were once used for CO₂ solubility were regenerated and used again to investigate their potential applicability for recycling. The PR EOS with MK mixing rule yielded good results in comparison to the PR-vdW, SRK-MK and SRK-vdW. The solvent regeneration studies validated the potential of these solvents for recycling purposes, as fresh and recycled solvents showed almost identical solubility values. The binary mixtures of ILs ([hmim][FAP], $[hmim][Tf_2N]$) with MDEA exhibited lower values of CO₂ solubility in comparison to pure ILs at all concentrations. The binary mixtures of IL ([hmim][BF4]) with MDEA at concentrations {1:4, 1:1 (molar ratio of IL to MDEA)} showed slightly higher values of absorption in comparison to the pure IL. The display of lower values of CO₂ solubility in the binary mixtures ([hmim][FAP]+MDEA, [hmim][Tf₂N]+MDEA) and inappreciable enhancement in ([hmim][BF4] + MDEA) binary mixtures led to

investigate more binary {MDEA + ILs (other than $[hmim][BF_4]$, [hmim][FAP], $[hmim][Tf_2N])$ and even ternary (IL + amine + water) mixtures for CO₂ solubility. It was done to investigate that whether these mixtures display the same trend (decreased or substantially increased solubility) or show appreciably high CO₂ solubility. The binary mixtures of ILs namely: bis(2-hydroxyethyl)ammonium acetate ([bheaa]), 1butyl-3-methylimidazolium tetrafluoroborate $([bmim][BF_4]),$ 1-butyl-3methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([bmim][FAP]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][Tf₂N]) with MDEA were used for CO₂ solubility. The aqueous IL solutions used for CO₂ solubility were of comprised the ILs: 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]), 1-ethyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide $([emim][Tf_2N])$ with monoethanolamine (MEA) or diethanolamine (DEA). The same trends were observed for the case of binary mixtures that CO₂ solubility decreased and in some cases increased substantially. The binary mixtures of ILs ([bmim][FAP], [bmim][Tf₂N]) with MDEA showed lower values of solubility than pure ILs. The binary mixtures of ILs ([bmim][BF4], [bheaa]) with MDEA showed slightly higher values of solubility. The aqueous mixtures of ILs showed lower values of solubility than aqueous amine solutions. The addition of IL (at all concentrations) did not prove fruitful to aqueous amine solutions in terms of CO₂ solubility.

ABSTRAK

Sebuah kajian asas dan sistematik tentang potensi applikasi campuran hibrid (terdiri daripada cecair berion + MDEA) untuk penyingkiran CO₂ telah ditunjukkan. Campuran binary tiga imidazolium berasaskan ILs iaitu; 1-hexyl-3methylimidazolium tetrafluoroborate ([hmim][BF4]), 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide $([hmim][Tf_2N]),$ 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([hmim][FAP]) dengan Nmethyldiethanolamine (MDEA) telah disediakan dan kelarutan CO₂ telah diukur di dalam pelarut tulen sebagaimana di dalam campuran binary pada tiga suhu (298.15, 313.15, 323.15) K dan pada lapan tekanan yang berlainan (\leq 3000 kPa). Sebelum kepada kelarutan CO₂ ciri-ciri termofizikal asas (ρ , η , n_D , TGA) dibangunkan. Ciriciri lebihan seperti; isipadu molar berlebihan, kelikatan dan sisihan indeks biasan telah disimpulkan daripada ciri-ciri fizikal yang diukur. Kesan tekanan, suhu, kepekatan dan anion pada kelarutan CO₂ telah dikaji secara terperinci. Parameter bergantungan suhu bagi kearutan iaitu; pemalar Henry, entalpi, entropi telah disimpulkan. Keputusan eksperimen kelarutan CO₂ telah dimodelkan dengan bantuan persamaan keadaan Peng-Robinson (PR) dan Soave-Redlich-Kwong (SRK) dengan van der Waals dan Klotz-Prausnitz (MK) undang-undang campuran. Cecair asli dan campuran binary terpilih yang mana digunakan untuk kelarutan CO₂ telah dijanakan dan digunakan kembali untuk mengkaji potensi aplikasi bagi kitar semula. PR EOS dengan undang-undang campuran MK menghasilkan keputusan yang bagus berbanding dengan PR-vdW, SRK-MK dan SRK-vdW. Kajian penjanaan pelarut mengesahkan potensi pelarut bagi tujuan kitar semula, sebagaimana pelarut baru dan kitar semula menunjukkan nilai kelarutan yang hampir sama. Campuran binary ILs ([hmim][FAP], [hmim][Tf₂N]) dengan MDEA menunjukkan nilai kelarutan CO₂ lebih rendah berbanding ILs asli pada kesemua kepekatan. Campuran binari IL ([hmim][BF₄]) dengan MDEA pada kepekatan {1:4, 1:1 (ratio molar IL kepada MDEA)} menunjukkan nilai penyerapan yang sedikit tinggi berbanding IL asli. CO_2 Paparan nilai kelarutan yang rendah dalam campuran binari ([hmim][FAP]+MDEA, [hmim][Tf₂N]+MDEA) dan peningkatan yang tidak ketara

dalam campuran binari ([hmim][BF4] + MDEA) telah mendorong kepada kajian binari lain {MDEA + ILs (other than $[hmim][BF_4]$, [hmim][FAP], $[hmim][Tf_2N]$)} dan campuran ternari sekata (IL + amine + air) bagi kelarutan CO_2 . Ia telah dilakukan bagi mengkaji samada campuran-campuran ini menunjukkan trend yang sama (penurunan atau peningkatan kelarutan yang ketara) atau menunjukkan kelarutan CO₂ Campuran binari tinggi yang ketara. bagi ILs iaitu: bis(2yang hydroxyethyl)ammonium ([bheaa]), 1-butyl-3-methylimidazolium acetate 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF₄]), ([bmim][FAP]), tris(pentafluoroethyl)trifluorophosphate 1-butyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][Tf₂N]) with MDEA telah digunakan bagi kelarutan CO₂. Larutan akues IL yang digunakan untuk kelarutan daripada 1-ethyl-3-methylimidazolium CO_2 terdiri ILs: tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]), 1-ethyl-3bis(trifluoromethylsulfonyl)imide methylimidazolium $([emim][Tf_2N])$ dengan monoethanolamine (MEA) atau diethanolamine (DEA). Trend yang sama turut diperhatikan bagi kes campuran binari yang kelarutan CO₂ menurun dan kes yang lain meningkat dengan ketaranya. Campuran binari ILs ([bmim][FAP], [bmim][Tf₂N] dengan MDEA menunjukkan nilai kelarutan yang rendah berbanding ILs asli. Campuran binari ILs ([bmim][BF4], [bheaa]) dengan MDEA menunjukkan nilai kelarutan yang sedikit tinggi. Campuran akues ILs menunjukkan nilai yang rendah bagi kelarutan berbanding larutan akues amine. Penambahan IL (pada kesemua kepekatan) tidak membuktikan keberhasilan untuk larutan akues amine dalam terma kelarutan CO₂.

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the university, the copyright of this thesis has been reassigned by the author to the legal entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained in, or derived from, this thesis.

© MAJID MAJEED AKBAR, 2013 Institute of Technology PETRONAS Sdn Bhd All rights reserved.

TABLE OF CONTENTS

LIST OF TABLESxiii
LIST OF FIGURESxv
LIST OF ABBREVIATIONSxxii
CHAPTER 1: INTRODUCTION
1.0 Overview
1.1 Research Background1
1.1.1 Carbon Dioxide1
1.1.2 Current Processes for CO ₂ removal2
1.1.3 Common Solvents used for CO ₂ capture4
1.1.4 Ionic Liquids8
1.2 Problem Statement
1.3 Research Objectives
1.4 The scope of study12
1.5 Organization of thesis
CHAPTER 2: LITERATURE REVIEW
2.0 Introduction
2.1 Thermophysical properties of the solvents used16
2.1.1 Density
2.1.2 Viscosity
2.1.3 Refractive Index
2.1.4 Thermal Stability
2.2 Excess Properties
2.3 Carbon Dioxide Solubility
2.3.1 Introduction
2.3.2 Solubility of CO ₂ in alkanolamine solvents
2.3.3 CO ₂ solubility in Ionic Liquids42
2.4 Thermodynamic Modelling48
2.5 Summary
CHAPTER 3: MATERIALS AND METHODS
3.0 Overview

3.1 Materials	
3.1.1 Ionic Liquids	53
3.1.2 Alkanolamines	
3.1.3 Gasses	55
3.2 Methods	55
3.2.1 Preparation of Binary Mixtures	55
3.2.2 Preparation of Ternary Mixtures	56
3.2.3 Density	
3.2.4 Viscosity	57
3.2.5 Refractive Index	57
3.2.6 TGA (Thermogravimetric Analysis)	58
3.3 Carbon Dioxide Solubility	
3.4 Procedure to Measure CO ₂ solubility in Solvents	59
CHAPTER 4: RESULTS AND DISCUSSIONS	64
4.0 Introduction	64
4.1 Density	65
4.1.1 Binary Mixtures	69
4.2 Viscosity	72
4.2.1 Binary Mixtures	76
4.3 Refractive Index	79
4.3.1 Binary Mixtures	82
4.4 Thermal Stability	
4.5 Excess Properties	89
4.5.1 Excess Molar Volumes	92
4.5.1.1 Binary Mixtures	92
4.5.2 Viscosity Deviations	96
4.5.2.1 Binary Mixtures	97
4.5.3 Refractive Index Deviations	100
4.5.3.1 Binary Mixtures	100
4.6 Solubility of CO ₂	
4.6.1 CO ₂ solubility in pure liquids	
4.6.2 CO ₂ solubility in the binary mixtures	109
4.7 Effects of concentrations of MDEA	114

4.7.1 MDEA concentration is less than ILs	
(Molar ratio (4:1) IL to MDEA)	116
4.7.2 MDEA concentration is equal to ILs	
(Molar ratio (1:1) IL to MDEA)	116
4.7.3 MDEA concentration is higher than ILs	
(Molar ratio (1:4) IL to MDEA)	117
4.8 Effect of Temperatures and Pressures	119
4.9 Effect of anion	123
4.9.1 Effect of anion on CO ₂ solubility in pure ILs	123
4.9.2 Effect of anion on CO ₂ loading in binary mixtures	123
4.10 CO ₂ solubility in some more Binary and Aqueous IL mixtures	127
4.11 Thermodynamic Modelling	130
4.12 Solvent regeneration studies	149
4.12.1 Recycled Pure Liquids	149
4.12.2 Recycled Binary Mixtures	151
4.13 Summary	153
CHAPTER 5: CONCLUSIONS	
5.0 Conclusions	155
5.1 Recommendations	157
REFERENCES	158
PUBLICATIONS	
APPENDICES	
Appendix A	190
Appendix B	201
Appendix C	206

LIST OF TABLES

Table 1.1: List of common CO_2 capture processes based on Physical Solvents5
Table 2.1: Literature review for the determination of densities of pure MDEA as well as its aqueous solutions
Table 2.2: Literature review on the determination of density of the mixtures of MDEA with solvents (other than amines)
Table 2.3: Literature review on the determination of densities of ILs namely; [hmim][BF ₄], [hmim][Tf ₂ N], [hmim][FAP] and their mixtures (if any) with other solvents at atmospheric pressure
Table 2.4: Literature review on the determination of viscosities of MDEA, $[hmim][BF_4]$, $[hmim][Tf_2N]$ and $[hmim][FAP]$ at the atmospheric pressures25
Table 2.5: Literature review on the determination of viscosity of the non aqueous solutions of MDEA and mixtures of IL ([hmim][BF ₄]) with other solvents27
Table 2.6: Literature review on the determination of refractive index of pure and aquous MDEA and the ILs namely [hmim][BF ₄], [hmim][Tf ₂ N]29
Table 2.7: Excess molar volumes for the aqueous and non aqueous solutions of MDEA and for the mixtures of the ILs ([hmim][BF ₄], [hmim][Tf ₂ N]) with other solvents
Table 2.8: Viscosity deviations values for the different mixtures of solvents involving amines or ILs.
Table 2.9: Refractive index deviations for the different mixtures of solvents involving ILs or amines
Table 2.10: List of common alkanolamine (other than MDEA) used for CO2 absorption
Table 2.11: List of aqueous MDEA solutions used by the researchers for CO2 absorption
Table 2.12: Common Ionic Liquids (ILs) used for CO2 absorption45
Table 2.13: CO2 solubility comparison among the ILs having the same anion but different cations
Table 3.1: Detail of aqueous IL mixtures prepared
Table 4.1: Fitting parameters of Eq. (4.1) for the correlation of density <i>or</i> viscosity <i>or</i> refractive index as a function of temperature and concentration, for the binary systems ([hmim][BF ₄] <i>or</i> [hmim][Tf ₂ N] <i>or</i> [hmim][FAP] (1) + MDEA (2)) along with the values of standard deviations (σ)
Table 4.2: <i>T_{start}</i> and <i>T_{onset}</i> for the pure and binary mixtures
Table 4.3: Estimated Henry's constants of the solvents

Table 4.4: Estimated values of enthalpies and entropies of CO ₂ dissolution solvents	ion in 121
Table 4.5: Critical properties of the ionic liquids, MDEA and CO2	137
Table 4.6: Binary interaction parameters for the binary systems	140
Table 4.7: Binary interaction parameters for the ternary systems	140
Table 4.8: The experimental and the estimated equilibrium pressures for the solvents.	e pure 145
Table 4.9: The experimental and the estimated equilibrium pressures for [hmim][BF ₄]+MDEA system	or the146
Table 4.10: The experimental and the estimated equilibrium pressures for [hmim][Tf ₂ N]+MDEA binary system	or the
Table 4.11: The experimental and the estimated equilibrium pressures for [hmim][FAP] +MDEA binary system.	or the148
Table 4.12: List of binary mixtures used for recycling	151

LIST OF FIGURES

Figure 1.1: Gas absorption column with a regenerator
Figure 1.2: Structures of the primary, secondary, tertiary and sterically hindred amines
Figure 2.1: Comparison of CO ₂ solubility 4.2 M aqueous amine solvents at $T = 373.15$ K. ×; MDEA, \Box , MEA; Δ , DEA (Dawodu et. al. 1994)
Figure 3.1: Structures of the ILs ([hmim][BF ₄],[hmim][Tf ₂ N],[hmim][FAP], [bheaa]) and MDEA
Figure 3.2: Schematic diagram of SOLTEQ-BP22 high pressure solubility cell used in the present study. B1, mixing cell; B2, equilibrium cell; B3, heating jacket for B1; B4, heating jacket for B2; B6, liquid degassing unit; M1, static mixer; M2, magnetic stirrer; T1, thermostat heating bath; P1, gas booster; P2, vacuum pump; P3, liquid pump
Figure 4.1: Plot of experimental densities for the pure liquids [hmim][BF ₄],[hmim][Tf ₂ N],[hmim][FAP], MDEA against temperatures66
Figure 4.2: Comparison of the experimental density data for pure MDEA with literature: \diamond , this work; \Box , Al-Ghawas et. al. (1989); \times , Maham et. al. (1995); Δ , Bernal-Garcia et. al. (2003); *, Muhammad et. al. (2008)67
Figure 4.3: Comparison of the experimental density data for pure [hmim][BF ₄] with literature: \Diamond , this work; \Box , Vakili-Nezhaad et. al. 2012; Δ , Garcia-Miaja et. al. 2009; *, Muhammad et. al. 2008; \circ , Navia et. al. 2007
Figure 4.4: Comparison of the experimental density data for pure [hmim][Tf ₂ N] with literature: \diamond , this work; \Box , Azevedo et. al. 2005; *, Widegren et. al. 2007; Δ , Jacquemin et. al. 2008; ×, Muhammad et. al. 2008
Figure 4.5: Comparison of the experimental density data for pure [hmim][FAP] with literature: \Diamond , this work; \Box , Jacquemin et. al. 2008; Δ , Guang Li et. al. 2011
Figure 4.6: Plot of experimental values of density ρ , vs mole fraction of IL, for the system [hmim][BF ₄] (1) + MDEA (2), at several temperatures. \diamond , 298.15K; Δ , 303.15 K; *, 308.15 K, +, 313.15 K, -, 318.15 K, \Box , 323.15 K. The solid curves were calculated by using Eq.4.1
Figure 4.7: Plot of experimental values of density ρ , vs mole fraction of IL, for the system [hmim][Tf ₂ N] (1) + MDEA (2), at several temperatures. \Diamond , 298.15K; Δ , 303.15 K; *, 308.15 K, +, 313.15 K, -, 318.15 K, \Box , 323.15 K. The solid curves were calculated by using Eq. 4.1
Figure 4.8: Plot of experimental values of density ρ , vs mole fraction of IL, for the system [hmim][FAP] (1) + MDEA (2), at several temperatures. \Diamond , 298.15K; Δ , 303.15

Figure 4.9: Plot of experimental viscosites for the pure liquids against temperatures. \Diamond , MDEA; \Box , [hmim][BF4]; Δ , [hmim][Tf₂N]; \times , [hmim][FAP].....74

Figure 4.16: Plot of experimental refractive index for the pure liquids against temperatures. \Diamond , MDEA; \Box , [hmim][BF₄]; Δ , [hmim][Tf₂N]; ×, [hmim][FAP]......80

Figure 4.19: Comparison of the experimental refractive index data for pure MDEA with literature: \Diamond , this work; \Box , Lagalante et. al. 2000; Δ , Muhammad et. al. 2008...81

Figure 4.23: Plot of thermal decomposition of a) MDEA; b) [hmim][BF₄]; c) [hmim][Tf₂N]; d) [hmim][FAP] at a heating rate of $10 \text{ }^{\circ}\text{C.min}^{-1}$90-91

Figure 4.33. CO ₂ solubility in [hmim][BF ₄] at $T = 298.15$ K. \Box , This work; \Diamond , values from Kim et. al. 2005106
Figure 4.34: CO ₂ solubility in 50% aq.MDEA solution at $T = 328.15$ K. \Box , This work; \Diamond , values from Ma'mun et. al. 2005
Figure 4.35: CO ₂ solubiility in pure [hmim][FAP] at $T = 298.15$ K. \Box , This work; \Diamond , values from Muldoon et. al. 2007
Figure 4.36: CO ₂ solubility in pure [hmim][Tf ₂ N]. \Box , This work; \Diamond , values from Aki et. al. 2004
Figure 4.37: CO ₂ solubility in the ionic liquids and amine: \Diamond , [hmim][BF ₄]; Δ , MDEA; *, [hmim][Tf ₂ N]; +, [hmim][FAP]108
Figure 4.38: CO ₂ solubility in pure [hmim][BF ₄], MDEA and binary mixtures of [hmim][BF ₄] + MDEA (with molar ratios 1:4, 1:1, 4:1 of the IL to MDEA): [hmim][BF ₄] (\diamond), MDEA (Δ), {[hmim][BF ₄]+MDEA (1:4)} (*), {[hmim][BF ₄]+MDEA (1:1)} (+), {[hmim][BF ₄]+MDEA (4:1)} (-)112
Figure 4.39: CO ₂ solubility in pure [hmim][Tf ₂ N], MDEA and binary mixtures of [hmim][Tf ₂ N] + MDEA (with molar ratios 1:4, 1:1, 4:1 of the IL to MDEA) : [hmim][Tf ₂ N] (\diamond), MDEA (Δ), {[hmim][Tf ₂ N]+MDEA (1:4)} (*), {[hmim][Tf ₂ N]+MDEA (1:1)} (+), {[hmim][Tf ₂ N]+MDEA (4:1)} (-)113
Figure 4.40: CO ₂ solubility in pure [hmim][FAP], MDEA and binary mixtures of [hmim][FAP] + MDEA (with molar ratios 1:4, 1:1, 4:1 of the IL to MDEA): [hmim][FAP] (\diamond), MDEA (Δ), {[hmim][FAP]+MDEA (1:4)} (*), {[hmim][FAP]+MDEA (1:1)} (+), {[hmim][FAP]+MDEA (4:1)} (-)115
Figure 4.41: Comparison of CO ₂ solubility in the binary mixtures of ([hmim][BF ₄]+MDEA), ([hmim][Tf ₂ N]+MDEA) and ([hmim][FAP]+MDEA) for the molar ratio of the IL to MDEA (4:1): ([hmim][BF ₄]+MDEA) (\diamond), ([hmim][FAP]+MDEA) (Δ), ([hmim][Tf ₂ N]+MDEA) (*)125
Figure 4.42: Comparison of CO ₂ solubility in the binary mixtures of ([hmim][BF ₄]+MDEA), ([hmim][Tf ₂ N]+MDEA) and ([hmim][FAP]+MDEA) for the molar ratio of the IL to MDEA (1:1). ([hmim][BF ₄]+MDEA) (\Diamond), ([hmim][FAP]+MDEA) (Δ), ([hmim][Tf ₂ N]+MDEA) (*)126
Figure 4.43: Comparison of CO ₂ solubility in the binary mixtures of ([hmim][BF ₄]+MDEA), ([hmim][Tf ₂ N]+MDEA) and ([hmim][FAP]+MDEA) for the molar ratio of the IL to MDEA (1:4): ([hmim][BF ₄]+MDEA) (\diamond), ([hmim][FAP]+MDEA) (Δ), ([hmim][Tf ₂ N]+MDEA) (*)
Figure 4.44: CO ₂ solubility in pure IL, MDEA and binary mixtures of IL+MDEA (with molar ratios 1:4, 1:1, 4:1 of the IL to MDEA): IL (\Box), MDEA (\Diamond), {IL+MDEA (1:4)} (*), {IL+MDEA (1:1)} (×), {IL+MDEA (4:1)} (Δ)
Figure 4.45: CO ₂ solubility in pure IL, MDEA and binary mixtures of IL+MDEA (with molar ratios 1:4, 1:1, 4:1 of the IL to MDEA): IL (\Box), MDEA (\Diamond), {IL+MDEA (1:4)} (Δ), {IL+MDEA (1:1)} (\times), {IL+MDEA (4:1)} (*)

Figure 4.46: CO₂ solubility in aqueous IL + amine mixtures: Aqueous amine {15wt% MEA or 25wt% DEA} (◊), 5wt% [emim][FAP] (□), 10wt% [emim][FAP] (Δ), 15wt% Figure 4.47: CO_2 solubility in aqueous IL + amine mixtures: Aqueous amine {15wt% MEA or 25wt% DEA} (\Diamond), 5wt% [emim][Tf₂N] (\Box), 10wt% [emim][Tf₂N] (Δ), Figure 4.48: Comparison of the experimental Henry's constant with the calculated one for the pure solvents. Exp: (\Diamond), Calc: PR-MK (\Box), PR-vdW (Δ), SRK-MK (\times), SRKvdW (*).....141 Figure 4.49: Comparison of the experimental Henry's constant with the calculated one for the [hmim][BF₄] + MDEA system. Exp: (\Diamond), Calc: PR-MK (\Box), PR-vdW (Δ), SRK-MK (×), SRK-vdW (*).....142 Figure 4.50: Comparison of the experimental Henry's constant with the calculated one for the [hmim][Tf₂N] + MDEA system. Exp: (\Diamond), Calc: PR-MK (\Box), PR-vdW (Δ), SRK-MK (×), SRK-vdW (*).....143 Figure 4.51: Comparison of the experimental Henry's constant with the calculated one for the [hmim][FAP] + MDEA system. Exp: (\Diamond), Calc: PR-MK (\Box), PR-vdW (Δ), SRK-MK (×), SRK-vdW (*).....144 Figure 4.52: CO₂ solubility in the fresh and recycled IL ([hmim][BF₄]). For fresh IL: at T = 298.15 K (\Diamond), T = 313.15 K (Δ). For recycled IL: at T = 298.15 K (\Box), T =Figure 4.53: CO₂ solubility in the fresh and recycled IL ([hmim][Tf₂N]). For fresh IL: at T = 298.15 K (\Diamond), T = 313.15 K (Δ). For recycled IL: at T = 298.15 K (\Box), T =313.15 K (×)......150 Figure 4.54: CO₂ solubility in the fresh and recycled IL ([hmim][FAP]). For fresh IL: at T = 298.15 K (\Diamond), T = 313.15 K (Δ). For recycled IL: at T = 298.15 K (\Box), T =Figure 4.55: CO₂ solubility in the fresh and recycled MDEA. For fresh MDEA: at T =298.15 K (\diamond), T = 313.15 K (Δ). For recycled MDEA: at T = 298.15 K (\Box), T = 313.15 K (×)......151 Figure 4.56: CO₂ solubility in the fresh and recycled binary mixture ([hmim][BF₄]+MDEA) (1:4). For fresh (1:4): at T = 298.15 K (\Diamond), T = 313.15 K (Δ). Figure 4.57: CO₂ solubility in the fresh and recycled binary mixture ([hmim][Tf₂N]+MDEA) (4:1). For fresh (1:4): at T = 298.15 K (\Diamond), T = 313.15 K (Δ). Figure 4.58: CO₂ solubility in the fresh and recycled binary mixture ([hmim][FAP]+MDEA) (4:1). For fresh (1:4): at T = 298.15 K (\Diamond), T = 313.15 K (Δ).

LIST OF ABBREVIATIONS

[hmim][BF ₄]	1-hexyl-3-methylimidazolium tetrafluoroborate
[hmim][Tf ₂ N]	1-hexyl-3-methylimidazolium bis(trifluorosulfonyl)imide
[hmim][FAP]	1-hexyl-3-methylimidazolium
	tris(pentafluoroethyl)trifluorophosphate
MDEA	N-Methyldiethanolamine
PSA	Pressure swing adsorption
TSA	Temperature swing adsorption
ESA	Electric swing adsorption
TEGMME	Triethylene glycol monomethyl ether
DEG	Diethylene glycol
TEG	Triethylene glycol
NFM	N-formyl morpholine
DME	Dimethyl ether
DEPEG	Diethyl polyethylene glycol
MEA	Monoethanolamine
AMP	2-amino-2-methyl-1-propanol
PZ	Piperazine
DEA	Diethanolamine
DGA	Diglycolamine
DIPA	Di-isopropanolamine
Am	Amine
IL	Ionic liquid
ILs	Ionic liquids
RTIL	Room temperature ionic liquid

TSIL	Task specific ionic liquid
TGA	Thermogravimetric analysis
aq.MDEA	aqueous N-methyldiethanolamine
Р	Pressure
x	mole fraction
XMDEA	mole fraction of MDEA
XCO2	mole fraction of carbon dioxide
TEA	Triethanolamine
wt %	Weight percentage
V^E	Excess molar volume
nD	Refractive index
Δn_D	Refractive index deviation
EOS	Equation of state
PR	Peng Robinson equation of state
SRK	Soave Redlich Kwon equation of state
vdW	van der Waals mixing rule
МК	Mathias Klotz Prautniz mixing rule
T _c	Critical temperature
Pc	Critical pressure
Greek Symbols	
ρ	density
η	Viscosity

- $\Delta \eta$ Viscosity deviation
- ω Acentric factor