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Abstract: 

Venepuncture as a mode of gaining intravenous access has been a prime practice in surgical 

procedures and other conventional drug administering into a patient. Biomedical engineering 

has stressed relatively high scale of importance in the spectroscopic analysis of vein imaging 

as a sparky approach to promote a non-invasive catheterization. However, medical personnel 

are challenged by the physiological circumstances of skin tone, presence of scars and 

irregularity of the epidermal topology, when performing subcutaneous vein localization, which 

led them to increase number of insertion attempts. Hence, this paper proposes an optimized 

solution to provide enhanced visual aids for personnel to achieve successful vein 

catheterization at first attempt. Vein localization using various stages of formulated analysis; 

multidimensional array pixel evaluations using intensity and reflectance contrasts using 

CLAHE algorithm are performed in the Near Infrared spectral band as a novel study to produce 

an automated illuminant selection for an enhanced vein visualization. Subjects of study are 

categorized in four separate classes based on their Luminance value of each skin tone to extract 

the optimum illuminant parameter for each category on a reduced spectrum. The intensity and 

reflectance contrast datasets obtained deduce the selection of the best illuminant value at which 

the contrast anticipated will be the highest. Results from modelling will be translated in to a 

prototype system called the Smart Vein Locator, which will autonomously select the best 

illuminant based on different topological factors of the subject.     

KEYWORDS: Near Infrared, Spectroscopy, Intravenous (IV) Catheterization, optimum 

illuminant, wavelengths, Contrast-Limited Adaptive Histogram Equalization (CLAHE), 

Reflectance. 
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1.0 INTRODUCTION 

 

1.1 Background 

 

Studies till date have underlined venepuncture or catheter insertion into a patient as an essential 

yet a crucial practice in the biomedical fields; where administering drugs and acquiring blood 

samples are crucial point-of-care applications [1], for pathological analysis requires the 

intravenous (IV) catheterization. At this present day, these practices are still performed 

manually by medical personnel and it is envisioned to be superseded by an automated 

technology.  

The cardinal drive for the evolvements in this narrowed area of study in phlebotomy imaging 

is to ensure a non-invasive blood vessel localization and catheter insertion; so as to counter 

pain and extravasations imposed onto the patient’s integument.   

The Near Infrared (NIR) light’s spectrum serves an effective propagation characteristic in 

retrieving spatial variable data in tissues and blood volume present in the region of interest 

(ROI) of a skin, based on their spectroscopic optical absorption coefficient. Due to low 

absorption characteristics of the hypodermal environment (i.e. oxy- (HbO2) and 

deoxyhemoglobin (HbR), melanin and H2O) in the Near Infrared spectrum, penetration of light 

rays in the hypodermis layer are at its peak [2], enabling subcutaneous vessels localization.  

Multispectral approaches has been used to enhance vein images, but provided no liable 

estimation of varying physiological properties of skin surfaces, like skin tone and topological 

factors like marks and hair presence. Subjects of dark skin tone complicates the classification 

of illuminants, resulting in poor and ambiguous results of vein contrasts.  

This extended documentation presents the progress of the initiative of utilising the multiple 

high-speed IR emitting diodes prototype to compliment with the simulated multispectral image 

results, to select the optimum combination of wavelengths, λ (illuminants) classifications of 

varying skin tones of different subjects, to deduce the precise vein contrast.  This concept is 

proven by a holistic identification study on the trait given discretely by each wavelength in the 

electromagnetic spectrum towards the clarity of venous enhancement, taking into consideration 

the reflective nature of the physiological environment on the outermost layer of the integument.  
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1.2 Problem Statement 
 

Barton, et al. [3] studied that 2.18 catheter insertions are required on an average patient without 

assistance from vein localizing technologies. Infants are the majority of patients who suffer 

from the multiple unsuccessful catheterization attempts, which lead to tissue infiltration and 

extravasations, triggering potential surgeries due to diffusion or accumulation of administered 

substance in the tissue [4]. This paper addresses the biomedical complexity with a real-time 

visualization approach to aid in vein detection. This study analyses 40 subjects or patients 

classified into FOUR (4) categories of skin tones with respect to their Luminance (L) values 

[26], retrieving the best illuminant for each category. This study is done within the 

multispectral band range window of 412nm to 1027nm, (with a spectral resolution of 2nm) 

which is the specification of a multispectral image taken from a Specim® spectral camera. This 

reduced spectroscopic modelling of THREE stages enable an automated selection of illuminant 

during a real-time experimentation, by translating the illuminant into High Speed Infrared LED 

to be installed in the existing Smart Vein Locator prototype. The sequential modelling process 

takes on a tedious procedure to extract the highest reflectance contrast information contributed 

individually by both vessel and skin tissue information on a randomly selected ROI, across 

700nm-950nm spectrum. The final stage deduces the functionality of the Contrast-Limited 

Adaptive Histogram Equalization as an efficient enhancement scheme to aid in automatic 

vessel extraction with its contrast limiting algorithm. 
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1.3 Objectives & Scope of Study 

 

This study is to develop an automated classification of patient’s skin surface traits in function 

of the luminance reflected from their skin colour based on a reduced spectrum, eliminating 

ambiguities in classifying physiological factors present in venous imaging and enhancing the 

contrast in resulting images. This research analyses the multispectral image of a subject’s 

forearm retrieved from the Specim® multispectral camera, in order to evaluate the information 

of the vessel pixel to the function of skin tissue and background reflectance. This analysis is to 

further improve the precision of NIR wavelength range of selection, in discriminating the 

venous and skin topological illuminants. This study uses EIGHT subjects of each skin tone in 

all FOUR stages of spectroscopic modelling to attain a high percentage of accuracy for 

computing, analysing and constricting the precision of wavelength selection(s) on a reduced 

spectroscopy. The best illuminant (wavelength) selection is capable of enhancing the visibility 

of the venous contrast, respect to the physiological disturbances and reflectance noises along 

the NIR spectrum of study. This study will further contribute to illuminant unification (best 

selected single wavelength) as an illumination device will be mounted on the Smart Vein 

Locator prototype, once the developed concept of modelling is proven with favourable trends 

from all THREE stages of modelling.  
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Figure 1: Illustrative description of the scope of study of this research 

 

2.0 LITERATURE REVIEW & THEORY 

 

In the early stages of blood vessel spectroscopies, vein detection in dark pigmented skins served 

high difficulties to the naked eye [5] and introduced inaccurate vein depth and diameter 

information at the enhanced vein contrast projections [6].  

The theory of wave propagation in biological tissues is infused into biomedical imaging to 

localize subcutaneous veins sitting in the hypodermal layer of the integumentary structure. One 

of the branches of this theory is the optical tomography which offers a non-invasive, cost 

effectively repeatable and experimentally simplified method of vein contrast imaging and 

enhancements [7]. 

 

DESIGN 

MANIPULATIVE 

FACTOR 

EXPECTED 

OUTCOME 

A dummy circuit of High-Speed Infrared LED’s is built as an 

experimental modelling approach correlating to Stage II Empirical 

Modelling to physically deduce the best illuminant for the 

particular ROI, where the vessel segment is best discriminated 

from the skin tissues, in a real time imaging. 

Thirty-two subjects of multispectral images were modelled to 

hypothize the optimum illuminant selection for best clarity of 

vessel contrast respect to skin tissue and background ROI 

reflectance index. ROI of study were subjected to various 

topological parameters, such as, scars, skin color, pigmentations, 

tattoos and presence of hair, which contributed a fairly high 

disturbance to the multidimensional modelling. 

Automated classification of illuminant as a contrast enhancer in 

real-time vein detection imaging, using the Contrast-Limited 

Adaptive Histogram Equalization (CLAHE) algorithm, which 

extract the peak reflectance contrast of all subjects from all classes 

of skin tones (Fair, Light Brown, Dark Brown and Dark). 
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2.1 NIR Imaging in Vein Localization 

 

NIR imaging is a derivative of a light propagation property where it possesses the behaviour 

of reflectance, absorptivity and sparse (scattering) which sits at the range of 650nm-940nm 

(0.78 to 2.50 microns) [8] of the electromagnetic spectrum. Looking at the quantum mechanics 

[9], overtone and combination vibrations of the CH-, OH-, and the NH- molecules are 

constrained to a specific band window of vibration energy. Compared to other electromagnetic 

mediums, NIR display a versatile property of electronic and vibrational transitions. NIR is 

unique from its neighbouring spectrums due to its weak overtone and combination modes 

which are forbidden transitions at this range. Hence, this trait gives the NIR band a fairly large  

 

Figure 2: NIR behaviour in human skin optics [10] 

transition window to rays of high frequency (radiation). This deduces an undisrupted travel of 

light within the NIR regions, where absorption will be low.  

The principle of NIR application introduced in this study is based on the Beer-Lambert Law, 

which defines the correlation of chemical’s strength of light molar absorptivity, 𝜺 with the 

given pathlength, l following the formula (1): 

𝑨 =  𝜺𝒄𝒍                (1) 

Where A is the actual absorbance. NIR’s versatility in the integumentary system, as illustrated 

in Figure 2, explains its ability to penetrate deep into the hypodermal layer of the system, where 

chromophores H2O (Water), HbR (De-Oxygenated Hemoglobin) and HbO2 (Oxygenated 

Hemoglobin) have a relatively low absorption strength in that transition window. This 

characteristics enables extraction of vascular information, which contributes to computed-
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tomographic (CT) studies, resonance imaging and the most anticipated, subcutaneous vessel 

localization.  

 

 

Figure 3: Relative absorption characteristics of chromophores in the NIR band. [2] 
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2.2 Comparative Analysis of Previous Literature  
 

The literature of Shahzad, et al. [11] studies, phlebotomy localization is done using three 

theories, namely, Transillumination [12], Combined Photoacoustic and Ultrasonic [13] and 

Near Infrared Imaging Technique. Transillumination procedure returned a drawback since it 

required the need of direct contact of device on the patient’s skin which may risk spreading of 

viruses or diseases from one patient to another. The use of single selection of wavelength in 

this method offered unfavourable results in veins localization. The Photoacoustic method 

provided vein depth and diameter parameters but failed to identify its positioning and shape, 

due to its tendency of generating noise, as a consequence of reduction in the signal to noise 

ratio (SNR) [14].  

The Near Infrared imaging method, whereas, works on the theory of light propagation, which 

possess absorption, reflection, refraction and sparse behaviour has a high penetration ability in 

the low absorption coefficient range of the hypodermis layer [2, 11, 15].   

 

Figure 4: Molar Absorptivity behaviour of chromophores in NIR. 

The curve above (Figure 4) shows the relatively low absorption coefficients of primary light 

absorbers called chromophores (oxyhemoglobin, HbO2, deoxyhemoglobin, HbR and water, 

H2O) in the NIR window [11, 16]. In the perspective of the absorption and reflectance 

characteristics of the skin and the chromosphores (in this case the deoxyhemoglobin, HbR of 

the subcutaneous veins), both skin tissues and HbR can be distinguished significantly from 

their respective resultant images, where veins appear darker compared to the skin tissues due 

to the former’s high absorption coefficient at the NIR window [17]. 
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Zeman, et al. [18] pioneered the Vein Contrast Enhancer (VCE) and the VeinViewer which 

captures the multispectral image of skin in the Near Infrared (NIR) spectral range, projecting 

back greater than 0.06mm enhanced vein image [19] onto the skin  surface  as an aid for 

venepuncture.  

However, Paquit, et al. [20] criticised this prototype as it suffered minimal functionality in 

estimating the relative depth or diameters of veins present on the enhanced image projection, 

and decreased in performance based on ambiguity in classifications of varying skin tones. Early 

researches in multispectral vein imaging have evaluated the best NIR wavelengths selection 

for the optimum vein contrast in subject to the manipulated variables such as skin colour, 

presence of hair on the forearm surface and varying skin topography. However, Wang, et al. 

[21] hypothecated the use of single-wavelength methods in the preliminary researches had 

many limitations addressed in the multispectral vein detection due to the back ground skin 

reflectance and post-processing algorithms [20-22]. Its single wavelength of 740nm resulted in 

an evidently poor variation light wave penetrations into the skin tissues [15]. 

 

Figure 5: Comparative deduction of techniques and shortcomings of previous NIR studies [18-20] 
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To counter these complexities of physiological factors in phlebotomy imaging subject to skin 

curvatures, vein depth and diameters, Nishidate, et al. [23] came up with the Monte Carlo 

modelling theory, using diffuse reflectance images of the region of interest (ROI) to locate and 

measure depth and diameters of veins at multiple wavelength parameters. The following 

problem statement here remains to be the accurate classification of the varying subject skin 

colours into four categories of dark, dark brown, light brown and fair. Shahzad, et al. [11], [15] 

uses the principal component analysis (PCA) to compute the Eigen vectors of retrieved high-

dimensional multispectral images analysed on a reduced spectrum, to define the optimum 

wavelength combination within the NIR range used to illuminate the ROI. 

 

2.3 Comparative Analysis of Previous Researches in Vein Imaging 

using Different Techniques 
 

.  

Table 1: Comparative implementation of different techniques [24] 

Theories Transilluminance Combines Photoacoustic & 

Ultrasound Technique 

Technique Uses single wavelength from the visible range 

of the electromagnetic spectrum 

Light and ultrasound waves to 

obtain real-time high resolution 

image of veins 

Available 

Prototypes 

Veinlite, Venoscope, Wee Sight and Vein 

Locator 

 

 

 

 

 

Technique 

Shortcomings 

• Need of direct contact with the skin 

of the patient which may lead to 

spread of viruses from one patient to 

the next. 

• Costly cleaning and disinfection 

processes before using on the next 

patient 

• Single visible wavelength 

illumination used in this devices are 

not of high precision in terms of 

localizing veins in all the cases due to 

low penetration capabilities in the 

hypodermis. 

 

• Provide depth and diameter 

information of the vein, 

BUT not about the position, 

shape and orientation 

• This technique has a high 

tendency of generating an 

echo signal (spread noisy 

waves), which reduces the 

returning signal’s SNR 

• High expenses due to 

usage of ultrasonic gel 

which aids in ambient noise 

reduction 
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3.0 METHODOLOGY 

 

This documentation presents a sequential progress of modelling and analyses to develop a 

theory of optimum illuminant identification as a projection aide for real-time vein imaging, as 

an initiative to serve the biomedical field in the initiative of encouraging medical practices to 

be done non-invasively. 

This analysis is performed by modelling the contrast of multispectral images using MATLAB, 

which normalizes the three-dimensional subject image data into two-dimensional mean image. 

The Stage I of analysis will be the computerization of contrasts from the Reflectance (R) 

properties of the subjects. This modelling proves the property of light reflectivity at the 

arbitrarily-modelled Near Infrared wavelength respect to the absorptivity coefficient of vein 

and melanin (skin), which deduces which NIR spectrum/range/value contributes to the 

optimum vein enhancement of any experimented multispectral image regardless of its 

Luminance (skin tone or topology) characteristics.  

The reflectance images computed is then Gaussian-smoothed with 26 wavelength Gaussians 

of 700nm to 950nm to empirically deduce vessel contrast clarity of all Gaussian-smoothed 

images. This stage of modelling is the Stage II – Empirical Modelling, where the results of the 

modelling are 2D smoothed images, which physically display at which wavelength the vessel 

contrasts seem to be at its best clarity and which wavelength value contributes to noises.  

Stage III is the final modelling stage, where this stage is a tremendous improvisation of the 

previous modelling process, with an added formulation known as Contrast-Limited Adaptive 

Histogram Equalization (CLAHE). The CLAHE algorithm enhances contrast of every pixel 

scatter on an image ROI, which in turn, improves the vessel discretization respect to the skin 

tissues. Hence, Stage I Reflectance Modelling is repeated on the CLAHE formulated images 

to observe the best selection of illuminants, based on the study on 32 different images of 

different skin tones and topological behaviours.  

The comprehensive elaboration of the sequential methodology will be further explained in the 

Results & Discussion section of this documentation. 
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Figure 6: Methodology of vein localization technique 

.  

3.1 Data Acquisition 

 

Since this study requires acquisition of vessel information in a NIR spectroscopy, subjects were 

acquired (captured) using a Specim® multispectral camera, which functions under a 

specifications of spectrum range between 400nm to 1000nm, with a 2nm resolution. Utilisation 
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of halogen lamps widened the spectrum of study from 350nm to 2500nm, providing suitable 

lighting condition for capturing lower arm area of the subjects. 

 

 

Figure 7: Specim® multispectral camera 

 

Figure 8: Four categories of skin tone based on the Luminance band. (a) Fair category, (b) Light 

Brown Category, (c) Dark Brown Category, and (d) Dark 

 

Subjects were classified into four categories based on the intensity of the Luminance they 

projected onto the Chroma Meter which registers the L, a, and b parameters of the subject’s 

skin [26]. The classification of subjects are displayed in Figure 8. However, spectral images 
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were translated into .mat files which loads as grayscale multi-dimensional images, ready to be 

studied on. 

3.2 Tools & Software Required 

 

 MATLAB to process multispectral images through algorithms, to parametrize image 

behaviours and autonomously classify them. 

 Specim® multispectral camera to retrieve still multispectral images for modelling 

purpose – available in CISIR Centre, Block 22. 

 Smart Vein Locator, a ready head-mounted glasses, in which, the illuminant source on 

it is to be improvised through this research - available in CISIR Centre, Block 22. 
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3.3 Flow Chart 

 

 

Figure 9: Flowchart of anticipated outcome from research 
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3.4 Project Gantt chart & Planned Future Expansion 

 

Table 2: Final Year Project Term I Gantt chart 

 

 Table 3: Final Year Project Term II Gantt chart 

 



 

16 
 

4.0 RESULTS & DISCUSSIONS 

  

The proof of concept of utilising more than one wavelength as the illuminant source is deduced 

to have produced an accurate classification of best contrasts for each category of skin tone, 

based on Luminance [26] bands. Luminance is the luminous intensity at the particular ROI, 

where brighter skin complexion will register a higher index of L. The concept Luminance 

derives from the Leibniz’s notation which defines it as follows: 

 

𝐿𝑉 =  
𝑑2∅𝑉

𝑑𝐴 𝑑𝛺 cos 𝜃
 

 

Where: 

𝐿𝑉 is the luminance in unit cd/m2. 

∅𝑉 is the luminous flux. 

𝜃  is the angle between normal line and fixed direction of light motion. 

A is the area of the ROI in unit m2. 

Ω is the solid angle. 

 

4.1 Modelling Stage I – Spectral Reflectance Algorithm 

The spectral reflectance algorithm is incorporated into the image modelling to extract the 

spectral reflectance index of each image and subsequently modelled across a range of 

illuminants within the band of 700nm-950nm to observe if this algorithm extracts the 

characteristics of each skin tone uniquely, through the vessel against skin tissue reflectance 

contrast trend computed at the end of this modelling. 

Reflectance is expressed as: 

𝑅(𝑥, 𝑦, λ) =  
𝐸𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 (𝑥,𝑦,λ)

𝐸𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 (𝑥,𝑦,λ)
                                  (2) 

R(x, y, λ) denotes reflectance index along (x, y) coordinates of an image across a set of λ, where 

it represents the ratio of reflected energy to received energy of a medium.  

The raw intensity parameters I(x, y, λ) by the multispectral experimental conditionings at point 

(x, y) across a set of λ can be represented as the following equation:   
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𝐼(𝑥, 𝑦, λ) = L(x, y, λ)S(x, y, λ) × R(x, y, λ) + O(x, y, λ)                               (3) 

L(x, y, λ) is the luminance vector, S(x, y, λ) is the spectral response of the multispectral camera 

setup and the O(x, y, λ) offset which contains the dark current and stray lighting setup of the 

experiment. 

The experimental imaging setup conditioning of Lambertian white and black background 

surface develops white and black reflectance constants of Rw(x, y, λ) and Rb(x, y, λ) registering 

0.98 and 0.05 respectively. Hence, substituting these two constants will eventually compute 

the IW(x, y, λ) and IB(x, y, λ) constants. 

Then, L(x, y, λ) × S(x, y, λ) can be obtained against a set of wavelengths discretely. 

𝐿(𝑥, 𝑦, λ) × 𝑆(𝑥, 𝑦, 𝜆) =  
𝐼𝑊(𝑥, 𝑦, 𝜆) − 𝐼𝐵(𝑥, 𝑦, 𝜆)

𝑅𝑊(𝑥, 𝑦, 𝜆) − 𝑅𝐵(𝑥, 𝑦, 𝜆)
                                      (4)  

By substituting equation (4) into equation (3), the offset parameters will be produced: 

𝑂(𝑥, 𝑦, λ) =
𝐼𝐵(𝑥, 𝑦, λ) × 𝑅𝑊(𝑥, 𝑦, λ) − 𝐼𝑊(𝑥, 𝑦, λ) × 𝑅𝑊(𝑥, 𝑦, λ)

𝑅𝑊(𝑥, 𝑦, λ) − 𝑅𝐵(𝑥, 𝑦, λ)
             (5)  

 

L(x, y, λ) × S(x, y, λ) and O(x, y, λ) constants are substituted in equation (3) to obtain resultant 

reflectance for each subject modelled. 

𝑅(𝑥, 𝑦, 𝜆)

=
{𝐼(𝑥, 𝑦, 𝜆) − 𝐼𝑊(𝑥, 𝑦, 𝜆)} × 𝑅𝑊(𝑥, 𝑦, 𝜆) − {𝐼(𝑥, 𝑦, 𝜆) − 𝐼𝑊(𝑥, 𝑦, 𝜆)} × 𝑅𝐵(𝑥, 𝑦, 𝜆)

𝐼𝑊(𝑥, 𝑦, 𝜆) − 𝐼𝐵(𝑥, 𝑦, 𝜆)
 (6) 
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Figure 10: Pixel characterization matrices between vein and skin ROI 

This figure displays pixel quantification in terms of reflectance weightage distribution across 

the ROI’s pixel matrices. For each patient, the central and neighbouring pixels within a selected 

skin or vein region are averaged to obtain the reflectance index of respective homogenous 

information. Discriminating the skin and vein ROIs by computing the mean value of 

reflectance will extract the contrast information of the vessel with respect to its background 

topology, in this case the skin tissue. N values of ROI’s of both vein and skin tissue were 

extracted and meaned to identify the accurate reflectance index of each patient image. 

Therefore, evaluating an accurate contrast for the simulated LED images. In this scenario, mean 

intensity of the vein ROI is computed as. 

Equation 7 and 8 show the computation for skin and tissue ROIs reflectance index values for 

N patient in a specific group, respectively. 

∑ 𝑅𝑆𝑘𝑖𝑛

𝑁

𝑥=1

= 𝑅𝑆𝑘𝑖𝑛𝑅𝑂𝐼(𝑖, 𝑗)𝑥=1 + 𝑅𝑆𝑘𝑖𝑛𝑅𝑂𝐼(𝑖, 𝑗)𝑥=2 + ⋯ + 𝑅𝑆𝑘𝑖𝑛𝑅𝑂𝐼(𝑖, 𝑗)𝑥=𝑁     (7) 

∑ 𝑅𝑉𝑒𝑖𝑛

𝑁

𝑥=1

= 𝑅𝑉𝑒𝑖𝑛𝑅𝑂𝐼(𝑖, 𝑗)𝑥=1 + 𝑅𝑉𝑒𝑖𝑛𝑅𝑂𝐼(𝑖, 𝑗)𝑥=2 + ⋯ + 𝑅𝑉𝑒𝑖𝑛𝑅𝑂𝐼(𝑖, 𝑗)𝑥=𝑁     (8) 
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The final contrast between skin and veins computation for a specific skin tone can be 

formulated as follows: 

𝐶𝑅 =
1

𝑁
∑ 𝑅𝑆𝑘𝑖𝑛

𝑁

𝑥=1

−
1

𝑁
∑ 𝑅𝑉𝑒𝑖𝑛

𝑁

𝑥=1

        (9) 

Subsequently, the contrast parameter is produced from each slice of image across the Gaussian 

function of wavelengths, where a trend characterization is made.  

 

Figure 11: Multispectral image slices in 10nm of spectral bandwidth 

 

Figure 12: Trend for Reflectance Contrast of 8 Multispectral Images of each skin class; Fair, Light 

Brown, Dark Brown and Dark 
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Figure 27 indicates best contrasts of vessels at the window of approximately 890nm till 920nm, 

where beyond that window, the trend experiences extremely high overshoots due to relatively 

noises present on the image at those slices of wavelengths. The trend experiences gradual 

increase in contrasts from 700nm till 890nm where the clarity of the vessel contrast 

enhancement increases as well.  

The presence of noises and unnecessary spikes beyond 920nm are due to the absence of 

histogram equalizations over the image pixel scatters, where a large region of homogenous 

property (i.e. skin tissue pixels) possess a large intensity index and in turn a large value of 

reflectance. Hence, image tend to over-amplify noises in highly homogenous areas. Typically, 

average reflectance index of skin is 220 and 30 for vein. Above 920nm, the image pixel 

equalization deteriorates, where single pixel index to the neighbouring pixels of a selected ROI, 

experiences a large deviation in reflectance index (at least 4-5 times). A tile of high reflectance 

homogenous skin information is prone to strong noise spikes, which results in large variability 

in the contrast trend above 920nm, as displayed in Figure 27. 

4.2 Modelling Stage II - Gaussian-Smoothing Algorithm 
 

The Gaussian Smoothing operation functions in a two-dimensional convolution computation 

where, two arrays of pixels of identical dimensions, but different intensities are multiplied 

together to produce a new array of numbers of identical dimension.  

This algorithm is to utilise the 2-D resultant normalized multispectral image as a point spread 

function (PSF) which is developed through a convolution operation.  

 

Figure 13: 2-Dimensional Gaussian distribution with μ=0 and σ=1 
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The empirical modelling using Gaussian-smoothing with FOUR values of illuminants (830nm, 

850nm, 890nm and 940nm) were an early identification of multispectral image reflectance 

trending, where contrast of the entire image was computed. This stage of modelling is to verify 

the effect of High Power Infrared Emitting Diode as a localization aid for vessel contrast 

extraction during real time imaging using the Smart Vein Locator.  

 

Figure 14: Gaussian functions of 830nm, 850nm, 890nm and 940nm illuminants 

Hence, in retrospect of the previous study, a new phase of modelling is produced which 

quantifies the discriminate of the vein and skin pixel region individually, to observe the trend 

of contrast across the range of the NIR spectrum window. This stage of study examines the 

visualization analysis of a multispectral image across wavelength slices of 750nm till 950nm. 

For this modelling, number of sets of Gaussian NIR wavelengths were increased to increase 

precision of visualization hypothesis. This stage indicates a rough visualization of image’s 

behaviour under 26 sequential wavelengths, and how the NIR spectrum segregates vessel-skin 

information. 



 

22 
 

 

Figure 15: Gaussian function curves of illuminants range of 700nm-890nm with a step increment of 

10nm 

 

The Gaussian function which has been incorporated in this study is as follows: 

𝑓(𝑥) = 𝑎 𝑒𝑥𝑝 (−
(𝑥 − 𝑏)2

2𝑐2
) 

The c parameter is Full Width at Half Maximum (FWHM) where its relationship is showed as 

follows: 

FWHM = 2√2 ln 2  𝑐 ≅ 2.35482𝑐 

The parameter c can also be defined as the dual inflection points on the function, which too 

acts as a bandwidth at x = b - c and x = b + c. This analytic function gives a zero when x 

approaches infinity.  

Provided the Gaussian is the probability density function of a normal distribution, where the b 

parameter will be mean, μ and the c parameter will become variance, σ, then the function 

becomes a probability Gaussian function of: 

𝑔(𝑥) =  
1

𝜎√2𝜋
𝑒−

1
2

(
𝑥−𝜇

𝜎
)2

 

The parameter x denotes the set range of the wavelengths in the NIR window, μ will represent 

the wavelength selection of the filter and the σ represents the standard deviation of NIR 
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bandwidths which differ from one spectrum to another. For the High Power Infrared Emitting 

Diodes with wavelengths from 700nm till 890nm registers an σ of 16.982349 whereas, from 

900nm and beyond registers 21.2330451. This specification is stated the datasheet from Vishay 

Semiconductors manufacturers.  

 

Figure 16: Raw multispectral image of subject with (a) Dark skin tone (b) Dark Brown skin tone (c) 

Light Brown skin tone (d) Fair skin tone 

 

The Gaussian function of these four illuminants, 830nm, 850nm, 890nm and 940nm were 

Gaussian-smoothed with all forty subjects to develop a dataset of contrasts which deduces the 

behaviour of the vein contrast respect to different illuminant, λ sources. This stage is a stage of 

preliminary physical observation of the behaviour of vein localization in the NIR spectrum. 

Hence, these four illuminant values were pre-selected as there were only these available High-

Speed Infrared LED’s of Vishay Model, which were translated into a dummy circuit shown in 

the last section of this dissertation.  

The results of this analysis are displayed in the following. The results to be displayed in this 

documentation shows the behaviour of a selected subject from each category of skin tone, and 

the improvements on the ROI’s vein contrast, as compared to the pre-enhanced images as 

shown in Figure 10. The modelling phases are divided into THREE phases. It is observable 

that the vessel information is fairly enhanced to a visible state. However, human visualization 

is never a benchmarking factor in determining image quality, hence, sequels of modelling 

stages were implemented to further enhance the extraction of vessel information with respect 

to the skin tissue which vary in Luminance (L).  
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Figure 17: Multispectral images of a dark skin toned subject enhanced with (a) 830nm (b) 850nm (c) 

890nm (d) 940nm 

 

Figure 11 shows an enhancement in intensity contrast quality from the original image shown 

in Figure 10(a). It is observed that minute and discrete noise scatters in the image is 

eliminated or even meaned by the Gaussian normal distribution.  

This justification applies to images of all skin tones, where even hidden or visibly topological 

parameters come to high visibility.   
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Figure 18: Multispectral images of a dark brown skin toned subject enhanced with (a) 830nm (b) 

850nm (c) 890nm (d) 940nm 

 

 

Figure 19: Original Multispectral (normalized) of a dark brown skin toned subject 
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Figure 12 displays enhancements in multiple folds of vein contrast from the original image of 

the subject as shown Figure 13. 

 

Figure 20: Multispectral images of a light brown skin toned subject enhanced with (a) 830nm (b) 

850nm (c) 890nm (d) 940nm 

 



 

27 
 

 

Figure 21: Original Multispectral (normalized) of a light brown skin toned subject 

 

Figure 22: Multispectral images of a fair skin toned subject enhanced with (a) 830nm (b) 850nm (c) 

890nm (d) 940nm 
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Figure 23: Original Multispectral (normalized) of a fair skin toned subject 

 

4.3 Modelling Stage III – CLAHE Formulated Reflectance 

Algorithm Modelling 

 

Contrast-Limited Adaptive Histogram Equalization (CLAHE) is a variant of the Adaptive 

Histogram Equalization (AHE), in which they are an evolution from the Histogram 

Equalization (HE) in the comparison that the adaptive method evaluate histograms from 

different segments (tiles) of an image. These histograms equalizes and redistribute the intensity 

values of the grayscale image, enhancing local contrasts [25]. Redistribution of pixel lightness 

intensity of the image extract discrete information on the ROI, where hidden topologies are 

more visible in a CLAHE-enhanced image. 

However, the AHE method was prone to over-amplification of noises in the segments of an 

image with similar traits or medium. Hence, the Contrast-Limited Adaptive Histogram 

Equalization (CLAHE) overcomes this shortcoming by eliminating unnecessary amplifications 

by limiting the contrast enhancement. The Histogram smoothing characteristics in CLAHE 

contributes in eliminating spikes that result in large intensity fluctuation from one pixel to the 

next. Hence, this smoothing is a mean-effect to the neighbouring pixels of a homogenous 

segment region of an image ROI by using the Backward Variance Propagation technique.  

The following is an example of a multispectral image enhanced with contrast-limited adaptive 

histogram equalization, where the information of interest (vessels) are more distinct and bold 

as compared to the original raw image, where noise is dominant. 
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Figure 24: (a) Original Multispectral Image for Dark Brown Skinned Patient Meaned in the spectrum 

of 700nm-950nm (b) CLAHE Enhancement of the original image 

 

 

Figure 25: (a) Original Multispectral Image for Light Brown Skinned Patient Meaned in the spectrum 

of 700nm-950nm (b) CLAHE Enhancement of the original image 
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Figure 26: (a) Original Multispectral Image for Dark Skinned Patient Meaned in the spectrum ranging 

from 700nm to 950nm (b) CLAHE Enhancement of the original image 

 

Figure 27: (a) Original Multispectral Image for Dark Skinned Patient Meaned in the spectrum ranging 

from 700nm to 950nm (b) CLAHE Enhancement of the original image 
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Figure 28: Trend for CLAHE Enhanced Reflectance Contrast of 8 Multispectral Images of each skin 

class; Fair, Light Brown, Dark Brown and Dark 

Figure 28 possess almost the same trait as the trend in Figure 12, except that, overshoot spikes 

are very much reduced beyond the 920nm spectrum band, and the peak contrast at 890nm to 

920nm is amplified after CLAHE enhancement. The histogram distribution across different 

homogenous segments of the image is unified by Backward Propagation of Variance (BPV) 

Histogram redistribution across the image pixels, eliminating strong noise spikes.  

 

Figure 29: Histogram Equalization of intensity across pixel tiles (a) Original ROI (b) CLAHE 

Enhanced ROI 

Figure 28 indicates the function of CLAHE in eliminating over amplification of noise by 

limiting contrast, and enhancing the image into a more distinct profiles of both vessel and skin 

tissue information. CLAHE is a suitable substitute to ridge detection algorithms and wide line 

detection algorithms, where it performs combination of both enhancement techniques.  
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To initialize the CLAHE algorithm, the adapthisteq function is used with specifications 

of ClipLimit where this parameter is normalized from [0 1] and the value selected for this 

modelling was 0.99 since higher index registered higher contrasts. 

CLAHE enhancement scheme operates ROI by ROI in a loaded image, in the form of tiles 

rather than evaluating the whole image. Each tile or ROI contrasts is enhanced, so that the 

histogram of the selected region tallies with the histogram specification set by the 

‘Distribution’ parameter. The neighbouring tiles are then combined using bilinear 

interpolation to remove artificially induced boundaries. Hence, the contrast in homogenous 

region can be limited to avoid strong spikes of noises that are scattered within the image pixels. 

 

Figure 30: Comparison vessel-skin pixel intensity contrast between an original image and the CLAHE 

enhanced image. 
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4.4 Real Time Implementation 

 

 

Figure 31: Dummy circuit construction to be tested during experimental testing of vein imaging based 

on Stage I Empirical Modelling. 

 

The proven concept through series of modelling using reflectance, will then be introduced to 

the experimental testing of multispectral vein imaging in a real time approach. 

The best selection (desired) illuminant, λ parameters will be translated into an illuminant 

circuit, which will be introduced into the experimental testing. This circuit will act as a dummy 

circuit till the LED’s are installed into the Smart Vein Locator prototype, which is available in 

the Centre of Intelligent Signal & Imaging Research Cluster of University of Technology 

PETRONAS, Malaysia. 

 

Figure 32: Experimental testing of illuminants during real-time spectral imaging. 
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Figure 33: Smart Vein Locator 

 

4.5 Hypothesis 

 

The hypothesis of this research is that, by using multiple illuminant sources, extraction of vein 

information is more efficient compared to the technique in previous literatures which used only 

one illuminant (wavelength) source. The usage of multiple illuminants or wavelengths in the 

NIR window allows spectral analysis in multiple resolutions, where vibrational light penetrates 

in many horizons of the hypodermal layer, detecting scarce properties veins in the forearm. An 

in-depth pixel extraction algorithms incorporated in all four stages of modelling has been an 

efficient method of obtaining an accurate index which helps in discriminating the vein and skin 

ROI uniquely. 

CLAHE fine-tunes vessel identification by deploying its tile refragmentation and lightness 

redistribution equalizes reflectivity index of an image, eliminating unnecessary noise spikes, 

which could give about a false contrast trend. Hence, CLAHE enhancement scheme and 

incorporation of additional sets of optimum illuminants, as deduced in Stage I and III modelling 

catalyses automatic vessel extraction using Frangi Vesselness Filter.  
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4.6 Future Works 

 

 Constrict to the study into a narrower spectroscopy, where the future approaches will 

unify illuminant source, using only single high speed IR LED. 

 Work on incorporating selected illuminants into the Smart Vein Locator prototype for 

real time experimentation. 

 Reanalyse the trend between 890nm-920nm for further effective classification of 

illuminants with respect to skin tones.  

 Implement Frangi filter for vessel information extraction on CLAHE enhanced 

images. 
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