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Abstract 
 

Simultaneous localization and mapping (SLAM) is one of the uprising and 

evolving branches in the field of robotics. SLAM gives a robot the capability of 

drawing a consistent map of the surrounding area while simultaneously localizing 

itself within the map without the need of having prior data about the surrounding like 

a pre-encoded map or localization aids like the Global Positioning System (GPS). 

Solving the SLAM problem have been recognised as the holy grail in the eyes of the 

mobile robotics community as it will provide the robots with the capability to be 

independently autonomous. Several algorithms are used in utilizing the SLAM 

problem and the most highlighted algorithms is the Extended Kalman filter (EKF). 

This project is concerned with applying the EKF on a mobile robot and test its 

efficiency in solving the SLAM problem. The methodology is comprised of two steps 

which are software implementation where a python code is written to emulate the 

mathematical model of the EKF and hardware implementation where a test bench 

including a robot platform and arena are used to test the efficiency of the EKF python 

code of the in real life SLAM applications.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

The idea of simultaneous localization and mapping was first introduced in 1986 in the 

IEEE Robotics and Automation Conference which was held in San Francisco, 

California by some researchers including Peter Cheeseman, Hugh Durrant-Whyte and 

Jim Crowely. Various efforts have been done to solve the SLAM problem but nothing 

converged until 1995 where the convergence result of the SLAM problem was first 

introduced in the International Symposium on Robotics Research [3]. 

 For a robot to be autonomous and be able to roam an environment freely while 

avoiding the obstacles it needs two important key aspects which are mapping and 

localization [1]. 

The mapping is a problem of utilizing the sensor gathered data into useful 

information about the surroundings so the robot can basically understand how the 

environment look like. Using the robot odometery and the raw data gathered by the 

sensor the robot can be capable of building a reasonable map as it moves through the 

environment. After acquiring the map the robot needs to localize its position in this 

map with the least error in the estimation process and this is considered the localization 

process [1]. 

 Solving the simultaneous localization and mapping problem provided a great 

opportunity for autonomous robots where having an integrated system inside the 

mobile robot that can roam in an environment with the capability to localize its own 

location and map the surrounding using on board sensors with no pre information 

about its location or the map of the environment is considered a breakthrough in the 

field of autonomous robotics [1]. 

 Hence, the aim of this project is to apply the Extended Kalman filter on a 

mobile robot that should be able to simultaneously localize itself and map the 

surrounding environment providing a solution to the SLAM problem. 
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1.2 Problem Statement 
 

Indoor simultaneous localization and mapping is quite a tough problem to fix 

as the robot performing the SLAM process don’t have any pre-loaded map of the 

environment, basically the robot is totally ignorant  about the environment which make 

the SLAM a complex problem to fix. Therefore, in order to fix the SLAM problem we 

need to address each of localization and mapping we need to address two issues which 

are: 

 To have accurate localization then an accurate map is needed.   

(Localization) 

 To have an accurate map then an accurate localization is needed.   

(Mapping) 

Various probabilistic mathematical models have been introduced as solutions 

for the SLAM problem but only few hardware applications were implemented to prove 

the validity of these solutions and their limits. Therefore, this project is mainly 

concerned with applying the Extended Kalman filter , which is one of the SLAM 

solutions, on a mobile robot and prove its efficiency in real life applications. 
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1.3 Objectives 

 

The main objectives of this project are:  

• Apply Simultaneous localization and mapping on a robot equipped with Laser 

range finder and wheel encoders. 

• Prove the validity of the applied algorithm based on the robot performance. 

 

1.4 Scope of study 

 

This study is concerned with three main points which are:  

A. Computational Model 

Converting the Extended Kalman filter mathematical model to a python code that can 

be used in robotic applications. 

B. Navigation and Data gathering 

A robot platform equipped with laser range finder and wheel encoders that is navigate 

manually through an arena collecting laser scanner and wheel encoders’ readings at 

certain time intervals. 

C. Validation and Data Representation 

Using a software simulation program for results validation and comparison 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Definition of the SLAM problem 
 

 SLAM question whether a robot can navigate through an environment which 

it has no prior information about and build a map of its surroundings while 

simultaneously localizing itself within this map. There have been various 

implementations of the SLAM in different domains including indoor, outdoor, 

airborne and underwater robotic systems on both theoretical and conceptual levels. [2] 

[3] 

The SLAM is divided into two major parts, first the robot trajectory through 

the environment and second the environment landmarks which are estimated online 

without prior knowledge about their locations. To have an overview of the concept of 

SLAM consider a robot moving through an environment capturing observations using 

a sensor on its top. 

As the robot starts in the environment it starts observing the landmarks as 

shown in figure 1 where the robot is represented as the triangle and the landmarks are 

represented as the stars. The robot will define its initial position to be the starting 

position and measure the distance to the landmarks using the laser range finder sensor. 

 

 

 

 

 

 

 

 

 
Figure 1 : Robot observers the environment in initial position [4] 



6 
 

Afterwards, the robots starts moving then using the robot odometry it identifies 

its position in the real world which turns out to be wrongly acquired due to the 

odometry error as shown in figure 2. 

 

 

 

 

 

 

 

 

 

Then, as shown in figure 4, the robot measure again the distance to the 

landmarks using the laser range finder and compare the measurement to the estimated 

location where this landmarks should be after moving using the odometry data. 

Through this process it can be found how far is the robot thinks it’s located based on 

odometry from its real location in the environment. 

 

 

 

 

 

 

 

 

 

Figure 2 : The robot estimates its position using odometry after movement [4] 

Figure 3 : The robot measures the location of landmarks [4] 
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Having acquired the odometry calculated position and the laser range finder’s 

readings, the robot will believe more in the laser range finder data as its error is 

minimal if compared to the odometry error and based on the landmarks reading it will 

re localize its position estimate. As shown in figure 4, the dashed triangle shows where 

the robot thought it was and the triangle shows the update of the robot location 

depending on the landmarks readings. 

 

 

 

 

 

 

 

 

Finally, figure 6 shows the difference between depending on the odometry 

alone or using the landmarks to get a better estimate of the robot position compared to 

where the robot actually exist in the real world. The dashed triangle shows the 

odometry estimate of the robot position, the dotted triangle shows the estimate of the 

robot position after taking in account the landmarks feedback and the triangle shows 

the real position of the robot in the environment. 

 

 

 

 

 

 

 

Figure 4 : The robot identify its true position based on landmark locations [4] 

Figure 5 : Relation between real robot position, odometry estimate, and updated position [4] 
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The full process is as shown in Figure 6, the robot goes through the 

environment equipped with wheel encoders and laser sensor capturing data from both 

sensors at certain time intervals. At each time interval k, various variables are 

calculated which are: 

 xk: the state vector including robot’s x , y coordinates and heading. 

 uk: the control vector, includes the motion commands given at time k - 1 to 

drive the robot to a new state xk at time k 

 mi: the landmark location coordinates of the ith landmark. 

 zik: the observation reading of the robot of the ith landmark’s location at time k.  

 

 

 

 

 

 

 

 

 

 

 

 The probabilistic nature of the SLAM problem requires that the probability 

distribution  

𝑃(𝑥𝑘, 𝑚 | 𝑍0:𝑘 , 𝑈0:𝑘 , 𝑥0)    (1) 

should be solved at all-time intervals k. This probability distribution emphasize the 

dependency of obtaining the robot current pose 𝑥𝑘  and the environment map 𝑚 on the 

posterior sensor readings of the environment for all time intervals  𝑍0:𝑘  , the posterior 

motion commands for all time intervals  𝑈0:𝑘 and the robot previous pose [3]. 

Figure 6: SLAM problem example [3] 
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 In order to solve the probability distribution (1), a recursive solution is derived 

which is divided into two steps which are the prediction (2) and correction (3) steps. 

 

𝑃(𝑥𝑘 ,𝑚|𝑍0:𝑘−1 , 𝑈0:𝑘  , 𝑥0) = ∫𝑃(𝑥𝑘  |𝑥𝑘−1, 𝑢𝑘) × 𝑃(𝑥𝑘−1,𝑚|𝑍0:𝑘−1 , 𝑈0:𝑘−1 , 𝑥0) 𝑑𝑥𝑘−1..(2) 

 

𝑃(𝑥𝑘 , 𝑚 | 𝑍0:𝑘  , 𝑈0:𝑘 , 𝑥0)  =  
𝑃(𝑧𝑘  |𝑥𝑘, 𝑢𝑘) 𝑃(𝑥𝑘 ,𝑚 | 𝑍0:𝑘−1 , 𝑈0:𝑘  , 𝑥0)

𝑃(𝑧𝑘| 𝑍0:𝑘−1 , 𝑈0:𝑘)
    … (3) 

 

 Equation (2) is the prediction step which predicts the current state of the robot 

in the environment 𝑃(𝑥𝑘 , 𝑚|𝑍0:𝑘−1 , 𝑈0:𝑘  , 𝑥0) based on the integrating the multiplication 

of the robot motion model  𝑃(𝑥𝑘  |𝑥𝑘−1, 𝑢𝑘) , which provides the probable location xk of 

the robot based on its previous location xk-1 and the motion commands uk given to the 

robot to reach xk state, and the previous belief of the robot location 

𝑃(𝑥𝑘−1,𝑚|𝑍0:𝑘−1 , 𝑈0:𝑘−1 , 𝑥0)  at time k-1 . 

 

 Equation (3) is the correction step which produce the corrected state of the 

robot 𝑃(𝑥𝑘 ,𝑚 | 𝑍0:𝑘  , 𝑈0:𝑘  , 𝑥0) based on the predicted state (𝑥𝑘 ,𝑚 | 𝑍0:𝑘−1 , 𝑈0:𝑘 , 𝑥0) , the 

sensor observation of the environment 𝑃(𝑧𝑘  |𝑥𝑘, 𝑢𝑘) which provides the robot 

observation of the environment zk given the robot current state xk and the motion 

commands uk given to the robot to reach xk state.  
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A simpler representation for the prediction and correction models represented 

in equations (3) and (4) are derived in equations (5) and (6) respectively as follows. 

𝑏𝑒𝑙(𝑥𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∫𝑃(𝑥𝑘 |𝑥𝑘−1, 𝑢𝑘)  × 𝑏𝑒𝑙(𝑥𝑡−1)  𝑑𝑥𝑡−1 …… (5) 

𝑏𝑒𝑙(𝑥𝑡) =  𝜂 × 𝑃(𝑧𝑘 |𝑥𝑘, 𝑢𝑘) × 𝑏𝑒𝑙(𝑥𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  …….. (6) 

where: 

 𝑏𝑒𝑙(𝑥𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝑃(𝑥𝑘, 𝑚|𝑍0:𝑘−1 , 𝑈0:𝑘 , 𝑥0) “predicted belief of the robot’s position” 

 𝑏𝑒𝑙(𝑥𝑡) =  𝑃(𝑥𝑘, 𝑚 | 𝑍0:𝑘 , 𝑈0:𝑘 , 𝑥0)   “corrected belief of the robot’s position” 

 𝜂 =  
1

𝑃(𝑧𝑘| 𝑍0:𝑘−1 ,𝑈0:𝑘)
 

 

 At this point, a defenition of the SLAM problem probability 

distribution was introduced and then a recurcisve model for the derieved in (2) 

“Predection” and (3)”Correction”. The next section will be concerned by providing a 

solution for the SLAM problem using Extended Kalman filter. 
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2.2 Extended Kalman Filter SLAM 
  

The Extended Kalman Filter is an interpretation from the Kalman Filter, but 

since the SLAM problem is nonlinear in nature therefore changed form of the normal 

Kalman Filter, which only uses linear models, had to be derived which is the Extended 

Kalman Filter [1]. 

As shown earlier, Equations (3) to (6) provide the outline for the SLAM 

problem highlighted in equation (1), therefore we will first derive a representation for 

both the motion model and the observation model then we will implement the EKF to 

solve the SLAM problem. 

 

2.2.1 Motion Model 

 

In this section, the motion model will be further discussed with the aim to 

generate the model’s structure. The motion model will be represented in two forms 

which are: 

 The Velocity Model 

 The Odometry Model 

each of the models output is the provide a solution for the motion model in shown 

below. 

𝑃(𝑥𝑘  |𝑥𝑘−1, 𝑢𝑘) …… (7) 

 

 

 

 

 

 

 



12 
 

A. The Velocity Model 

 

 The velocity model basis is that the motion model can be calculated given the 

rotational velocity w and transitional velocity v of the motion [2]. Based on this, the 

control commands are represented as follows: 

𝑢𝑡 = (
𝑣𝑡
𝑤𝑡
) ….. (8) 

 

 

 

 

 

 

 

Given the previous state of the robot 𝑥𝑘−1 and the control command  𝑢𝑡 , the 

current robot’s state 𝑥𝑘  can be calculated as follows [2]: 

 

(
𝑥′

𝑦′

𝜃′
) = (

𝑥
𝑦
𝜃
) + (

−
𝑣

𝑤
 sin 𝜃 +

𝑣

𝑤
 sin(𝜃 + 𝑤Δ𝑘)

−
𝑣

𝑤
 cos 𝜃 +

𝑣

𝑤
 cos(𝜃 + 𝑤Δ𝑘)

𝑤Δ𝑘

)  …… (9) 

 where: 

 (
𝑥′

𝑦′

𝜃′
) is the current robot state 

 (
𝑥
𝑦
𝜃
) is the previous robot state 

 𝑣  is the transitional velocity 

 𝑤 is the angular velocity 

 Δ𝑘 = 𝑘 − 𝑘−1 the delta of the time intervals k and k-1  

Figure 7 : Velocity model representation 
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B. The Odometry Model 

 

 

 

 

 

 

 

 

 As discussed earlier, the velocity model depend on the robot velocity to 

calculate the current state. Alternatively the odometry model obtain the robot pose by 

integrating the wheel encoder information as follows [2]: 

If 𝑆𝑅 = 𝑆𝐿 

(
𝑥′

𝑦′

𝜃′
) = (

𝑥
𝑦
𝜃
) + (

𝑆𝐿  cos(𝜃)
𝑆𝐿  sin(𝜃)

0

) ……. (10) 

If 𝑆𝑅 ≠ 𝑆𝐿  

(
𝑥′

𝑦′

𝜃′
) = (

𝑥
𝑦
𝜃
) + (

(𝑑′ + 
𝑑

2
) [sin(𝜃 + 𝛼) − sin 𝜃]

(𝑑′ + 
𝑑

2
) [−cos(𝜃 + 𝛼) − cos 𝜃]

𝛼

) ……. (11) 

where: 

 (
𝑥′

𝑦′

𝜃′
) is the current robot state 

 (
𝑥
𝑦
𝜃
) is the previous robot state 

 𝛼 = 
𝑆𝑅−𝑆𝐿

𝑑
 

 𝑑′ = 
𝑆𝐿

𝛼
 

Figure 8 : Odometry Motion Model 
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2.2.2 Sensor Model 

 

After solving the motion model problem we are left with the sensor model. The 

sensor model describes how the sensor’s measurements formulated in the real world.  

𝑃(𝑧𝑘  |𝑥𝑘, 𝑢𝑘) ……. (12) 

As the robot moves through the environment the sensor will capture various 

numerical measurements like range finders generating scans of ranges or cameras 

generating arrays of colours. If we consider the range finders, given the measured 

scans of ranges we can generate a model for perceiving landmarks as follows [2]: 

(
𝑟𝑡
′

𝜃𝑡
′) = (

√(𝑚𝑗𝑥 − 𝑥)2 +  (𝑚𝑗𝑦 − 𝑦)2 

atan (
𝑚𝑗𝑦−𝑦

𝑚𝑗𝑥−𝑥
) −  𝜃

)……. (13) 

where: 

 (
𝑟𝑡
′

𝜃𝑡
′) are the range and bearing of the extracted landmark 

 (
𝑚𝑗𝑥
𝑚𝑗𝑦

) are the x and y coordinates of the extracted landmark 

 (
𝑥
𝑦
𝜃
) is the robot’s state 

More insight into the sensor model in (12), In Figure 6, it’s clear that most of 

the error in the landmark reading is due to the uncertainty in the robot position in the 

environment which leads to having a wrong sensor reading. However, the relation 

between any two landmarks can be known with high accuracy even though the exact 

locations of both landmark is not accurate and this is known as joint probability where 

the joint probability density between landmarks mi and mj P (mi, mj) is high even 

though the individual marginal density of each landmarks P (mi) or P (mj) is low [3]. 

 

 This insight shows that the correlation between the landmarks in monotonic as 

the number of observations done by the robot increase where the relative location of 
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landmarks always is in continuous improvement but not diverging independent of the 

robot position in the environment.  

In order to have a better understanding of this concept lets return back to Figure 

6, consider the robot starts at location xk and observe the two landmarks mi and mj, 

Afterwards, the robot moves to location xk+1 and it re-observe landmark mj which will 

help both the robot’s location and landmark’s mj location based on the robot’s previous 

location xk. In turn, the new update propagates back to update the landmark mi even 

though it was not observed by the robot in the new location xk+1. This occurs because 

both of the landmarks are highly correlated to each other as P (mi, mj) density is high 

so any update in mj will propagate to update mi as well [3]. 

To visualize the process illustrated earlier, conisder a robot moving in an 

enviroment with various landmarks. As the robot observes landmarks, a spring is 

drawn between them and the thicknes of the spring shows how much are the landmarks 

correlated. Thus, as the robot goes through the enviroment and observe the landmarks 

repeadetly a spiral network is formed as shown in Figure 9 between the landmarks and 

also the robot where the effect updating a node in the network will ripple to update all 

the other nodes depending on the connections strength or in other words how much 

are they correlated [3]. 

 

  

 

 

 

 

 

 

 

 

Figure 9: Spiral Network 
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Having derieved a representation for the motion model (7) and the observation 

model (12) we are now able to implement the Extended Kalman Filter. 

2.3 EKF SLAM Steps 

 

 The EKF SLAM method mainly consists of two steps which are the Prediction 

Step and the Correction Step. The Algorithim that the EKF use to derieve both the 

Prediction and Correction steps is : 

 

𝜇𝑘
′ = 𝑔(𝑢𝑘, 𝜇𝑘−1) …. (14) 

𝜀𝑘
′ = 𝐺𝑘 𝜀𝑘−1𝐺𝑘

𝑇 + 𝑅𝑘 …. (15) 

𝐾𝑘 = 𝜀𝑘
′𝐻𝑘

𝑇 (𝐻𝑘 𝜀𝑘
′ 𝐻𝑘

𝑇 +  𝑄𝑘)
−1

…. (16) 

𝜇𝑘 = 𝜇𝑘
′ + 𝐾𝑘(𝑧𝒌 − ℎ(𝜇𝑘

′)) …. (17) 

𝜀𝑘 = (𝐼 − 𝐾𝑘 𝐻𝑘) 𝜀𝑘
′ …. (18) 

 

 

2.3.1  Prediction Step 

 

 In the predection step, both the estimated Mean and the estimated Covariance 

are calculated. The estimated Mean is calculated as in equation (14) which is a function 

of the robot motion model discussed earlier either a velocity model or an odometry 

model.The calculated estimated Mean result is the estimated robot state and the 

estimated location of the estimated landmarks. 

𝜇𝑘
′ =

(

 
 
 
 
 
 

𝑥′

𝑦′

𝜃′

𝑚𝑥𝑖
′

𝑚𝑦𝑖
′

𝜃𝑖
′

𝑚𝑥𝑗
′

… )

 
 
 
 
 
 

 …. (19) 
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On the other hand the estimated Covariance shows the relation between the 

landmarks and robot state and provide a representation as the spring network discussed 

earlier. The Estimated covariance in (15) is calculated by multiplting previous 

covariance by the Jacobian of the motion model 𝐺𝑘 and adding non linear Gaussian 

noise of the motion model 𝑅𝑘. The final shape of the estimated covariance is shown in 

(20). 

 

𝜀𝑘
′

= 

(

 
 
 
 
 

𝛼𝑥𝑥 𝛼𝑥𝑦 𝛼𝑥𝜃 𝛼𝑥 𝑚𝑖𝑥  𝛼𝑥 𝑚𝑖𝑦 … 𝛼𝑥 𝑚𝑛𝑥 𝛼𝑥 𝑚𝑛𝑦 
𝛼𝑦𝑥 𝛼𝑦𝑦 𝛼𝑦𝜃 𝛼𝑦 𝑚𝑖𝑥 𝛼𝑦 𝑚𝑖𝑦 … 𝛼𝑦 𝑚𝑛𝑥 𝛼𝑦 𝑚𝑛𝑦 
𝛼𝜃𝑥 𝛼𝜃𝑦 𝛼𝜃𝜃 𝛼𝜃 𝑚𝑖𝑥 𝛼𝜃 𝑚𝑖𝑦 … 𝛼𝜃 𝑚𝑛𝑥 𝛼𝜃 𝑚𝑛𝑦 
𝛼𝑚𝑖𝑥 𝑥 𝛼𝑚𝑖𝑥 𝑦 𝛼𝜃 𝛼𝑚𝑖𝑥 𝑚𝑖𝑥 𝛼𝑚𝑖𝑥 𝑚𝑖𝑦 … 𝛼𝑚𝑖𝑥 𝑚𝑛𝑥 𝛼𝑚𝑖𝑥 𝑚𝑛𝑦
𝛼𝑚𝑖𝑦 𝑥 𝛼𝑚𝑖𝑦 𝑦 𝛼𝜃 𝛼𝑚𝑖𝑦 𝑚𝑖𝑥 𝛼𝑚𝑖𝑦 𝑚𝑖𝑦 … 𝛼𝑚𝑖𝑦 𝑚𝑛𝑥 𝛼𝑚𝑖𝑦 𝑚𝑛𝑦 
..
.
.

..

.

.

..

.

.
𝛼𝑚𝑛𝑥 𝑚𝑖𝑥 𝛼𝑚𝑛𝑥 𝑚𝑖𝑦 … 𝛼𝑚𝑛𝑥 𝑚𝑛𝑥 𝛼𝑚𝑛𝑥 𝑚𝑛𝑦

    

)

 
 
 
 
 

 (20) 

 

2.3.2 Correction Step 

 

 The Correction step consist of three stages, first the calculation of the Kalman 

gain which is followed by the correction of the estimated Mean and finally the 

correction of the estimated Covariance. 

  

 In the first step as shown in equation (16)  the Kalman gain is calculated based 

on the estimated covariance and the Jacobian of the function ℎ(𝜇𝑘
′)  which is the 

sensor model used for landmark extraction discussed earlier. The Kalman gain is the 

factor of correction as it depends on the sensor observation and the covariance to 

calculate the factor need to correct each estimated element with the addition of non 

linear Gaussian noise of the sensor model. 

 

 



18 
 

 

 Afterwards, equation (17) use the Kalman gain to correct the predicted Mean 

𝜇𝑘
′ . The amount of correction is the multiplication of the Kalman gain with 

(𝑧𝒌 − ℎ(𝜇𝑘
′) where 𝑧𝒌 is the predicted observations based on the predicted robot 

location calculated in the prediction step, in other words its considered what the robot 

is expected to see as it moved from K to K+1 . 

 Finally, equation (18) calculate the corrected Covariance using the Kalman 

gain and the Jacobian of the sensor model. These two steps will be done sequentially 

at certain time intervals as the robot moves through the enviroment and the result will 

be an acceptable estimate of the robot location at all points and a near accurate map of 

the enviroment, with this the SLAM problem is solved by implementing the Extended 

Kalman Filter. 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Overview 

 

The main goal of the project is to implement simultaneous localization and 

mapping in an indoor environment. This goal is achieved through two stages which 

are:  

 Software Implementation 

 Hardware Implementation 

 

In the first stage which is software implemntation, a python code is written to 

implement the mathematical model of the Extended Klaman filter given inputs from 

wheel encoders and Laser range finder at various time intervals. Moving to the second 

stage, a manually driven robot is built and mounted with a laser range finder.The robot 

is manually driven through an indoor enviroment while capturing readings from the 

wheel encoders and the laser sensor. 

The preceding sections will discuss more details about both stages and show 

how each stage was implementated. 

 

3.1.1 Software Implementation 

 

 In this stage a python code is developed to implement the mathematical model 

of the Extended Kalman filter.The code recieves time spaced wheel encoders values 

and laser range finder readings then outputs a corrected robot path and landmarks 

locations .The results are then represented by a simulator devloped by python coding 

to show the robot corrected path and compare the result with the input path. 

The input Laser range finder and encoder readings are provided by an online 

database which have the data gathered by a robot in an indoor enviroment at different 

time intervals. 
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 The main code is EKF_SLAM.py which is included in Appendix A which 

contains the EKF both predection and corrction steps. This code uses a library included 

in Appendix B EKF_Slam_Library.py which contains various functions used through 

the code processing. 

The EKF_SLAM.py consists mainly of the class ExtendedKalmanFilterSLAM 

class ExtendedKalmanFilterSLAM 

The class ExtendedKalmanFilterSLAM is provided with : 

 Initial state of the robot. 

 Initial covariance. 

 Robot width 

 Scanner displacement from the robot center. 

 Control motion factor which represent the amount of wheel’s deviation in 

straight line motion. 

 Control turn factor which represent the amount of wheel’s deviation in 

rotational motion. 

 Measurement distance standard deviation which represent the amount of 

sensor’s deviation in distance reading. 

 Measurement angle standard deviation which represent the amount of sensor’s 

deviation in angluar reading. 

    kf = ExtendedKalmanFilterSLAM( 

initial_state, initial_covariance, 

                              robot_width, scanner_displacement, 

                           control_motion_factor, 

control_turn_factor, 

measurement_distance_stddev, 

measurement_angle_stddev 

) 

 

The ExtendedKalmanFilterSLAM class consists of multiple functions that are 

implemented in sequence to provide the whole implemntation of the Extended Kalman 

filter.The first function and second functions are  

 def g(state, control, w): 

 def h(state, landmark, scanner_displacement): 
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The function g takes the encoder collected by the robot as it moves through the 

enviroment and applies the odometry motion model to generate x , y  and heading for 

the robot at each time interval hence generate the full path of the robot.  

 

As for the h function it takes the robot state, the observed landmarks and the 

scanner displacment from the robot center and provide the sensor model for the laser 

range finder as shown in equation (13). 

 

The third , foueth and fifth functions are  

 def dg_dstate(state, control, w): 

 
 def dg_dcontrol(state, control, w): 

 

 def dh_dstate(state, landmark, 

scanner_displacement): 
 

 

The function dg_dstate takes the robot initial state and encoder values then 

use it to calculate the Jacobian matrix of the state which is 𝐺𝑘 in equation (15) on the 

other hand the function  dg_dcontrol takes the same input and provide the Jacobian 

matrix used to calculate the wheel encoders’ noise 𝑅𝑘.Finally , the function dh_dstate 

is used to calculate the Jacobian matrix of the Sensor model 𝐻𝑘 in equation (16) given 

the current robot state ,landmarks observed locations and the laser scanner’s 

displacement from the centre of the robot. 

 

Finally the two main functions of the ExtendedKalmanFilterSLAM class are 

the prediction and correction functions. 

 

 def predict(self, control): 

 def correct(self, measurement, landmark_index): 

 

The predict function uses the robot state and the observed landmarks 

locations in order to calculate the predicted Mean 𝜇𝑘
′and the predicted Covariance 𝜀𝑘

′ 

by applying both equations (14) and (15). 
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Afterwards, the function correct will get the predicted Mean and predicted 

Covariance and calculate the corrected Mean 𝜇𝑘 and the corrected Covariance 𝜀𝑘 by 

applying equations (16), (17) and (18). 

 

 

Having the correction step succesfully implemented, a file is generated 

contating the corrected robot’s state and the landmarks detected by using the following 

commands. 

f.write("F %f %f %f\n" % \ 

tuple(kf.state[0:3] +  

[scanner_displacement * cos(kf.state[2]),                               

scanner_displacement*sin(kf.state[2]),0.0])) 

 

 

write_cylinders(f, "D C", [(obs[2][0], obs[2][1]) 

                                   for obs in observations]) 
 

 

In order to represent the output robot path and landmark locations a simulator 

is devloped using python programming legofile_viewer.py included in Appendix C 

which uses a library lego_robot.py included in Appendix D. 

The simulator provides a GUI interface as shown in Figure 10 to represent the 

data where data text files are loaded through the interface then processed by the code 

and represented. Further information about the simulator will be provided in the results 

section. 

 

 

 

 

 

 

 

 

Figure 10 : Python Simulator GUI 
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3.1.2 Hardware Implementation 

 

Having the python code for Extended Kalman filter finalized and tested, the 

final step is to implement the Extended Kalman filter algorithm on a hardware platform 

to prove it can be applied in real life applications. The goal of this section is to establish 

a test bench for the python code developed in the previous section. The inputs required 

for this test are the robot’s odometry, laser range finder’s scans and a reference robot’s 

track at different intervals of time. 

Having these requirements identified, the test bench is designed of two main 

parts. The first part is the arena or environment with various landmarks where the robot 

will travel through and collect its inputs. The second part is the robot platform to go 

through the arena and collect the data from the laser range finder and the robot’s 

odometry sensor. 

A. Arena 

  

The arena dimensions, as shown in Figure 11, is 2 x 2 meters containing 5 

landmarks of dimensions 0.6 x 0.3 meters. As the robot travels through the 

environment, it will observe the located landmarks and hence be able to localize itself 

and map the locations of these landmarks in the environment.  

The real robot arena which is used in the testing is shown in Figure 12. 

 

 

Figure 11: Arena presentation 
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Added to this arena setup, a static webcam is located above the arena to track 

the robot path using colour detection. The camera is connected to the laptop and using 

the opencv code in Appendix E the pixel locations of the robot at different intervals of 

time are logged.Having the robot pixel locations, a relation between the actual 

coordinates in meters and the pixel coordinates is formulated as follows:  

𝑋𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠 = 
𝑊𝑖𝑑𝑡ℎ𝑜𝑓 𝑎𝑟𝑒𝑛𝑎 ∗  𝑋𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠

𝑊𝑖𝑑𝑡ℎ𝑜𝑓 𝑖𝑚𝑎𝑔𝑒
     (21) 

𝑌𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠 = 
𝐿𝑒𝑛𝑔𝑡ℎ𝑜𝑓 𝑎𝑟𝑒𝑛𝑎 ∗  𝑌𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠

𝐿𝑒𝑛𝑔𝑡ℎ𝑜𝑓 𝑖𝑚𝑎𝑔𝑒
     (22) 

  Hence having the robot real path through the arena during the test run which 

will be used for verification in the results section. A snapshot of the overhead camera 

showing its field of view is shown in Figure 13. 

 

 

 

 

 

 

 

 

Figure 12 : Real Arena 

Figure 13 : Snapshot from the overhead camera 
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B. Robot Platform 

 

The robot platform is designed for the purpose of data collection and logging 

where the data to be collected are the laser range finder scans and the wheel encoders 

at different intervals of time. The robot travels through the arena using manual controls 

given by the user and after the test run is finalized the data are fetched from the robot 

platform. 

The robot platform consists of four main parts which are:  

 4WD Hercules mobile robotic platform. 

 URG-04LX-UG01 Laser range finder. 

 Raspberry Pi model B. 

 Hercules Dual 15A 6-20V Motor Controller. 

In the preceding sections, each of these hardware components will be explained 

briefly followed by how all of these components are integrated together. 

C. 4WD Hercules mobile robotic platform 

 

The Hercules mobile robotic platform, shown in Figure 14, is the chassis of the 

robot platform used in the test bench, the Hercules platform also contains four dc 

motors with magnetic wheel encoders installed. 

 

 

 

 

 

 

 

 

 

Figure 14: 4WD Hercules mobile robotic platform 
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D. URG-04LX-UG01 Laser range finder 

 

The Laser scanner URG-04LX-UG01, as shown in Figure 15, is a low voltage 

laser scanner designed for robotics application. The sensor has a range of vision of 240 

degrees and measuring are in the range of 20 to 5600mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: URG-04LX-UG01 Laser scanner specifications  

Model No. URG-04LX-UG01 

Power source 5VDC±5%(USB Bus power) 

Light source Semiconductor laser diode(λ=785nm), Laser safety class 1 

Measuring area 20 to 5600mm(white paper with 70mm×70mm), 240° 

Accuracy 
60 to 1,000mm : ±30mm, 

1,000 to 4,095mm : ±3% of measurement 

Angular resolution Step angle : approx. 0.36°(360°/1,024 steps) 

Scanning time 100ms/scan 

Noise 25dB or less 

Interface USB2.0/1.1[Mini B](Full Speed) 

Command System SCIP Ver.2.0 

Ambient illuminance*1 Halogen/mercury lamp: 10,000Lux or less, Florescent: 6000Lux(Max) 

Ambient 

temperature/humidity 
-10 to +50 degrees C, 85% or less(Not condensing, not icing) 

Vibration resistance 10 to 55Hz, double amplitude 1.5mm each 2 hour in X, Y and Z directions 

Impact resistance 196m/s2, Each 10 time in X, Y and Z directions 

Weight Approx. 160g 

Figure 15: URG-04LX-UG01 Laser range finder 
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E. Raspberry Pi model B 

Raspberry pi model B, shown in Figure 16, is one of a series of credit card-

sized single-board computers developed by the Raspberry Pi foundation in UK. The 

board is based on Broadcom System on chip which contains a 700 MHZ ARM 

processor Video Core IV GPU, and RAM. It has a Level 1 cache of 16 KB and a Level 

2 cache of 128 KB. 

 

 

 

 
 

 

 

 

 

F. Hercules Dual 15A 6-20V Motor Controller 

 

The Hercules Dual 15A 6-20V Motor Controller, shown in Figure 17, is a high 

current motor driver with Arduino based micro controller and half bridge as motor 

drive circuit. The controller also support encoder and servo modules and can be 

programmed using Arduino IDE. 

 

 

 

 

 

 

 

 

Figure 16 : Raspberry PI Model B specifications 

Figure 17 : Hercules Dual 15A 6-20V Motor Controller 
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3.2 Hardware Integration 

 

All the hardware components explained in the previous sections are combined 

together to build the robot platform as shown in Figure 18. The main goal of building 

the robot platform is to have a manual control robot able to travel through the 

environment and log readings from laser scanner and wheel encoders at different time 

intervals. 

In this robot platform, the raspberry pi is used as the main link between all the 

components where it is connected to the laptop using secure shell network protocol to 

manually control the robot’s motion through the environment. The raspberry pi use 

serial communication to send the motion commands to the Hercules Dual 15A 6-20V 

Motor Controller and receive the encoder values of the wheels. 

 The Hercules Dual 15A 6-20V Motor Controller is programmed using 

Arduino programming language code, shown in Appendix F, which interpret keyboard 

inputs as motion commands and serially send the wheel encoder values at certain time 

intervals of time. 

Finally, the raspberry pi serially communicate with the URG-04LX-UG01 

Laser range finder using c coding , shown in Appendix G, to get the readings of the 

sensor in 240 degree range then log it on its memory. All of these parts are governed 

using shell scripts written to run those different codes at certain time intervals to collect 

the robot’s readings in the environment. 

 

 

 

 

 

 

Having the laser scans and the wheel encoder readings collected, the hardware 

implementation is finalized and these readings are provided as inputs to the python 

code then the results are compared with the robot real path, which is logged using the 

overhead camera, to see the effectiveness of the Extended Kalman filter 

implementation in real life applications. 

Figure 18 : Hardware Integration 



29 
 

CHAPTER 4 

RESULTS & DISCUSSIONS 

The Extended Kalman filter is developed as a solution for the SLAM problem 

as shown before and a python code is developed for the mathematical model whose 

inputs are the laser scans from the environment and the wheels odometry at different 

intervals of time. Using these inputs, the output corrected track and the corrected 

locations of the landmarks is generated by the code in a text file format. 

In order to have a better representation of the results, a python simulation code 

legofile_viewer.py is used for better data analysis. The output of the simulator is shown 

in Figure 19 where: 

• The Red track represent the actual track of the robot. 

• The Blue track represent the estimated track from the encoder values. 

• The Arrow represent the robot’s orientation and the Blue circle represent the 

robot’s uncertainty of its position/ 

• The Grey cylinders represents the arena landmarks’ locations while the Red 

cylinders the expected landmarks’ locations. 

• The Blue X-Y coordinates represents the sensor’s reading at each point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19: Python Logfile_viewer simulator output 
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In the preceding sections the results for both the software implementation and 

the hardware implementation will be discussed in details. The accuracy of the results 

will be decided based on two aspects which are:  

 The degree of correction of the corrected path compared to the robot’s 

odometry path. 

 The degree of deviation of the corrected path from the robot’s real path. 

4.1 Software implementation results 

 

In this section the input used is an online database. Based on the robot’s 

odometry, Figure 20 shows the difference between the robot odometry path (blue path) 

and the robot’s real path (red path).It’s clear that the odometry path have a high degree 

of deviation in both shape and orientation than the real path. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 : Software implementation Before Correction 
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While after applying the correction, Figure 21 shows the corrected path (blue 

path) compared to the real path (red path). Compared to Figure 20 its clear the degree 

of correction in both shape and orientation between the odometry path and the 

corrected path. Finally, the result of the correction shows minimal deviation from the 

real robot path which is considered an acceptable result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Hardware Implementation Results 

 

In this section, the inputs used are the data captured by the laser scanner, wheel 

encoders and overhead camera in the test bench designed for testing the Extended 

Kalman filter operation. By examining Figure 22, its clear the high amount of 

deviation of the odometry path (blue path) compared to the real robot’s path (red path) 

as the result shows incomplete track due to data loss. 

By comparing the odometry path shown in Figure 20 to that shown in Figure 

22, its clear that the Hardware implementation odometry track has much more noise 

than that of the Software implementation which is due to the difference in encoder 

quality between both situations. 

Figure 21 : Software implementation After Correction 
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Finally, the result of the correction is shown in Figure 23 where the degree of 

correction is clear when compared to Figure 22. On the other hand, the corrected path 

(blue path) show a high degree of deviation if compared to the robot’s real path (red 

path) but this deviation is acceptable given the fact that the odometry input was highly 

noisy and needed a high degree of correction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 : Hardware implementation Before Correction 

Figure 23 : Hardware implementation After Correction 



33 
 

 

CHAPTER 5 

CONCLUSION & RECOMMENDATION 

 

The aim of this project was to apply the Extended Kalman filter mathematical 

model on a mobile robot and test its efficiency in real life applications. This goal have 

been approached in two stages which are software implementation where a python 

code was written to emulate the EKF mathematical model and hardware 

implementation where a test bench was created to test the application of the model. 

The results showed that the EKF is a viable solution for the SLAM problem 

and can be used in robotics applications taking in consideration that the results are 

highly affected by the amount of noise in the inputs either the wheel odometry or the 

laser scanner readings. Also the results is affected by the time interval between 

readings, as the time increase the accuracy of the model decrease as less samples are 

gathered providing less information for correction. 

Therefore, it’s recommended in future applications to use high quality laser 

scanner and wheel encoders to avoid noise in the inputs and to decrease the time 

interval between the sensors readings in order to have the best results.  
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Appendix A 

EKF_SLAM.py 

 

from math import sin, cos, pi, atan2, sqrt 

from numpy import * 

from EKF_Slam_Library import encoder,write_error_ellipses, 

write_cylinders, laser_scanner, get_observations 

 

class ExtendedKalmanFilterSLAM: 

    def __init__(self, state, covariance, 

                 robot_width, scanner_displacement, 

                 control_motion_factor, control_turn_factor, 

                measurement_distance_stddev, 

measurement_angle_stddev): 

 

        # The state. This is the core data of the Kalman filter. 

        self.state = state 

        self.covariance = covariance 

 

        # Some constants. 

        self.robot_width = robot_width 

        self.scanner_displacement = scanner_displacement 

        self.control_motion_factor = control_motion_factor 

        self.control_turn_factor = control_turn_factor 

        self.measurement_distance_stddev = 

measurement_distance_stddev 

        self.measurement_angle_stddev = measurement_angle_stddev 

 

        # Currently, the number of landmarks is zero. 

        self.number_of_landmarks = 0 

 

    @staticmethod 

    def g(state, control, w): 

        x, y, theta = state 

        l, r = control 

        if r != l: 

            alpha = (r - l) / w 

            rad = l/alpha 

            g1 = x + (rad + w/2.)*(sin(theta+alpha) - sin(theta)) 

            g2 = y + (rad + w/2.)*(-cos(theta+alpha) + cos(theta)) 

            g3 = (theta + alpha + pi) % (2*pi) - pi 

        else: 

            g1 = x + l * cos(theta) 

            g2 = y + l * sin(theta) 

            g3 = theta 

 

        return array([g1, g2, g3]) 

 

    @staticmethod 

    def dg_dstate(state, control, w): 

        theta = state[2] 

        l, r = control 

        if r != l: 

            alpha = (r-l)/w 

            theta_ = theta + alpha 

            rpw2 = l/alpha + w/2.0 

            m = array([[1.0, 0.0, rpw2*(cos(theta_) - cos(theta))], 

                       [0.0, 1.0, rpw2*(sin(theta_) - sin(theta))], 

                       [0.0, 0.0, 1.0]]) 
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        else: 

            m = array([[1.0, 0.0, -l*sin(theta)], 

                       [0.0, 1.0,  l*cos(theta)], 

                       [0.0, 0.0,  1.0]]) 

        return m 

 

    @staticmethod 

    def dg_dcontrol(state, control, w): 

        theta = state[2] 

        l, r = tuple(control) 

        if r != l: 

            rml = r - l 

            rml2 = rml * rml 

            theta_ = theta + rml/w 

            dg1dl = w*r/rml2*(sin(theta_)-sin(theta))  - 

(r+l)/(2*rml)*cos(theta_) 

            dg2dl = w*r/rml2*(-cos(theta_)+cos(theta)) - 

(r+l)/(2*rml)*sin(theta_) 

            dg1dr = (-w*l)/rml2*(sin(theta_)-sin(theta)) + 

(r+l)/(2*rml)*cos(theta_) 

            dg2dr = (-w*l)/rml2*(-cos(theta_)+cos(theta)) + 

(r+l)/(2*rml)*sin(theta_) 

 

        else: 

            dg1dl = 0.5*(cos(theta) + l/w*sin(theta)) 

            dg2dl = 0.5*(sin(theta) - l/w*cos(theta)) 

            dg1dr = 0.5*(-l/w*sin(theta) + cos(theta)) 

            dg2dr = 0.5*(l/w*cos(theta) + sin(theta)) 

 

        dg3dl = -1.0/w 

        dg3dr = 1.0/w 

        m = array([[dg1dl, dg1dr], [dg2dl, dg2dr], [dg3dl, dg3dr]]) 

 

        return m 

 

    def predict(self, control): 

        """The prediction step of the Kalman filter.""" 

        # covariance' = G * covariance * GT + R 

        # where R = V * (covariance in control space) * VT. 

        # Covariance in control space depends on move distance. 

        G3 = self.dg_dstate(self.state, control, self.robot_width) 

        left, right = control 

        left_var = (self.control_motion_factor * left)**2 +\ 

                   (self.control_turn_factor * (left-right))**2 

        right_var = (self.control_motion_factor * right)**2 +\ 

                    (self.control_turn_factor * (left-right))**2 

        control_covariance = diag([left_var, right_var]) 

        V = self.dg_dcontrol(self.state, control, self.robot_width) 

        R3 = dot(V, dot(control_covariance, V.T)) 

 

         

        G = eye(3+2*self.number_of_landmarks) 

        G[0:3, 0:3] = G3 

 

        R = zeros((3+2*self.number_of_landmarks, 

3+2*self.number_of_landmarks)) 

        R[0:3, 0:3] = R3 

 

        # new covariance matrix self.covariance. 

        self.covariance = dot(G, dot(self.covariance, G.T)) + R  #  

 



37 
 

        # state' = g(state, control) 

        self.state[0:3] = self.g(self.state[0:3], control, 

self.robot_width)   

 

    def add_landmark_to_state(self, initial_coords): 

 

        self.number_of_landmarks += 1 

        state_dash = zeros(3+2*self.number_of_landmarks) 

        state_dash[0:3+2*(self.number_of_landmarks-1)] = self.state 

        state_dash[3+2*self.number_of_landmarks-

2:3+2*self.number_of_landmarks] = initial_coords 

        self.state = state_dash 

 

        covariance_dash = 

zeros((3+2*self.number_of_landmarks,3+2*self.number_of_landmarks)) 

        fill_diagonal(covariance_dash, 10**10) 

        covariance_dash[0:3+2*(self.number_of_landmarks-1), 

0:3+2*(self.number_of_landmarks-1)] = self.covariance 

        self.covariance = covariance_dash 

 

        return self.number_of_landmarks-1   

 

    @staticmethod 

    def h(state, landmark, scanner_displacement): 

        """Takes a (x, y, theta) state and a (x, y) landmark, and 

returns the 

           measurement (range, bearing).""" 

        dx = landmark[0] - (state[0] + scanner_displacement * 

cos(state[2])) 

        dy = landmark[1] - (state[1] + scanner_displacement * 

sin(state[2])) 

        r = sqrt(dx * dx + dy * dy) 

        alpha = (atan2(dy, dx) - state[2] + pi) % (2*pi) - pi 

 

        return array([r, alpha]) 

 

    @staticmethod 

    def dh_dstate(state, landmark, scanner_displacement): 

        theta = state[2] 

        cost, sint = cos(theta), sin(theta) 

        dx = landmark[0] - (state[0] + scanner_displacement * cost) 

        dy = landmark[1] - (state[1] + scanner_displacement * sint) 

        q = dx * dx + dy * dy 

        sqrtq = sqrt(q) 

        drdx = -dx / sqrtq 

        drdy = -dy / sqrtq 

        drdtheta = (dx * sint - dy * cost) * scanner_displacement / 

sqrtq 

        dalphadx =  dy / q 

        dalphady = -dx / q 

        dalphadtheta = -1 - scanner_displacement / q * (dx * cost + 

dy * sint) 

 

        return array([[drdx, drdy, drdtheta], 

                      [dalphadx, dalphady, dalphadtheta]]) 

    @staticmethod 

    def get_error_ellipse(covariance): 

        """Return the position covariance (which is the upper 2x2 

submatrix) 

           as a triple: (main_axis_angle, stddev_1, stddev_2), where 
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           main_axis_angle is the angle (pointing direction) of the 

main axis, 

           along which the standard deviation is stddev_1, and 

stddev_2 is the 

           standard deviation along the other (orthogonal) axis.""" 

        eigenvals, eigenvects = linalg.eig(covariance[0:2,0:2]) 

        angle = atan2(eigenvects[1,0], eigenvects[0,0]) 

        return (angle, sqrt(eigenvals[0]), sqrt(eigenvals[1])) 

 

    def correct(self, measurement, landmark_index): 

        """The correction step of the Kalman filter.""" 

 

        landmark = self.state[3+2*landmark_index : 

3+2*landmark_index+2] 

        H3 = self.dh_dstate(self.state, landmark, 

self.scanner_displacement) 

 

 

        H = zeros((2,3+2*self.number_of_landmarks)) 

        H[0:2, 0:3] = H3 

        H[0:2, 3+2*landmark_index:3+2*landmark_index+2] = -H3[0:2, 

0:2] 

 

 

 

        Q = diag([self.measurement_distance_stddev**2, 

                  self.measurement_angle_stddev**2]) 

        K = dot(self.covariance, 

                dot(H.T, linalg.inv(dot(H, dot(self.covariance, 

H.T)) + Q))) 

        innovation = array(measurement) -\ 

                     self.h(self.state, landmark, 

self.scanner_displacement) 

        innovation[1] = (innovation[1] + pi) % (2*pi) - pi 

        self.state = self.state + dot(K, innovation) 

        self.covariance = dot(eye(size(self.state)) - dot(K, H), 

                              self.covariance) 

 

    def get_landmarks(self): 

        """Returns a list of (x, y) tuples of all landmark 

positions.""" 

        return ([(self.state[3+2*j], self.state[3+2*j+1]) 

                 for j in range(self.number_of_landmarks)]) 

 

    def get_landmark_error_ellipses(self): 

        """Returns a list of all error ellipses, one for each 

landmark.""" 

        ellipses = [] 

        for i in range(self.number_of_landmarks): 

            j = 3 + 2 * i 

            ellipses.append(self.get_error_ellipse( 

                self.covariance[j:j+2, j:j+2])) 

        return ellipses 
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if __name__ == '__main__': 

    # Robot constants. 

    scanner_displacement = 0.0 

    ticks_to_mm = 3.59 

    robot_width = 250.0 

 

    # Cylinder extraction and matching constants. 

    minimum_valid_distance = 20.0 

    depth_jump = 100.0 

    cylinder_offset = 90.0 

    max_cylinder_distance = 900.0 

 

    # Filter constants. 

    control_motion_factor = 0.3  # Error in motor control. 

    control_turn_factor = 1.2 # Additional error due to slip when 

turning. 

    measurement_distance_stddev = 250.0  # Distance measurement 

error of cylinders. 

    measurement_angle_stddev = 10. / 180.0 * pi  # Angle measurement 

error. 

 

    # Arbitrary start position. 

    initial_state = array([1720.0, 1929.0, 180.0 / 180.0 * pi]) 

 

    # Covariance at start position. 

    initial_covariance = zeros((3,3)) 

 

    # Setup filter. 

    kf = ExtendedKalmanFilterSLAM(initial_state, initial_covariance, 

                                  robot_width, scanner_displacement, 

                                  control_motion_factor, 

control_turn_factor, 

                                  measurement_distance_stddev, 

measurement_angle_stddev) 

 

    # Read data. 

    ticks = encoder() 

 

    f = open("//home//ahmed//work//SLAM//robot4_motors.txt") 

    lines = len(f.readlines()) 

    f.seek(0.0) 

    f.close() 

 

 

 

    # This is the EKF SLAM loop. 

    f = open("ekf_slam_correction.txt", "w") 

    for t in range(lines-1): 

        #Predection 

        control = [] 

        control.append(ticks[(t, 0)]*ticks_to_mm) 

        control.append(ticks[(t, 1)]*ticks_to_mm) 

        kf.predict(control) 

 

        # Correction. 

        observations = get_observations( 

            laser_scanner(t), 

            depth_jump, minimum_valid_distance, cylinder_offset, 

            kf, max_cylinder_distance) 
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        for obs in observations: 

            measurement, cylinder_world, cylinder_scanner, 

cylinder_index = obs 

            if cylinder_index == -1: 

                cylinder_index = 

kf.add_landmark_to_state(cylinder_world) 

            kf.correct(measurement, cylinder_index) 

 

        # End of EKF SLAM - from here on, data is written. 

 

        # Output the center of the scanner, not the center of the 

robot. 

        f.write("F %f %f %f\n" % \ 

            tuple(kf.state[0:3] + [scanner_displacement * 

cos(kf.state[2]), 

                                   scanner_displacement * 

sin(kf.state[2]), 

                                   0.0])) 

        # Write covariance matrix in angle stddev1 stddev2 stddev-

heading form 

        e = 

ExtendedKalmanFilterSLAM.get_error_ellipse(kf.covariance) 

        f.write("E %f %f %f %f\n" % (e + 

(sqrt(kf.covariance[2,2]),))) 

        # Write estimates of landmarks. 

        write_cylinders(f, "W C", kf.get_landmarks()) 

        # Write error ellipses of landmarks. 

        f.write("W E\t") 

        for e in kf.get_landmark_error_ellipses(): 

            f.write("%.3f %.1f %.1f\t" % e) 

        f.write("\n") 

        # Write cylinders detected by the scanner. 

        write_cylinders(f, "D C", [(obs[2][0], obs[2][1]) 

                                   for obs in observations]) 

 

    f.close() 
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Appendix B 

EKF_Slam_Library.py 

 

from math import sin, cos, pi 

from pylab import * 

from numpy import * 

from lego_robot import LegoLogfile 

 

def encoder(): 

    f = open("//home//ahmed//work//SLAM//robot4_motors.txt") 

    lines = len(f.readlines()) 

    f.seek(0.0) 

    left_list = [] 

    right_list = [] 

    encoder_ticks = zeros(shape=(lines, 2)) 

    for l in f: 

        sp = l.split() 

        left_list.append(int(sp[2])) 

        right_list.append(int(sp[1])) 

 

    for u in range(lines): 

        if u == 0: 

            encoder_ticks[(u, 0)] = (left_list[u]-left_list[0]) 

            encoder_ticks[(u, 1)] = (right_list[u]-right_list[0]) 

        else: 

            encoder_ticks[(u, 0)] = (left_list[u]-left_list[u-1]) 

            encoder_ticks[(u, 1)] = (right_list[u]-right_list[u-1]) 

    f.close() 

    return encoder_ticks 

 

 

def filter_step(old_pose, motor_ticks, ticks_to_mm, robot_width, 

scanner_displacement): 

 

        if motor_ticks[0] == motor_ticks[1]: 

            x = 

old_pose[0]+(motor_ticks[0]*ticks_to_mm*cos(old_pose[2])) 

            y = 

old_pose[1]+(motor_ticks[0]*ticks_to_mm*sin(old_pose[2])) 

            theta = old_pose[2] 

            return(x, y, theta) 

 

        else: 

            old_theta = old_pose[2] 

            old_x = old_pose[0] 

            old_y = old_pose[1] 

 

            old_x -= cos(old_theta) * scanner_displacement 

            old_y -= sin(old_theta) * scanner_displacement 

 

            l = motor_ticks[0] * ticks_to_mm 

            r = motor_ticks[1] * ticks_to_mm 

            alpha = (r - l) / robot_width 

            R = l / alpha 

            new_theta = (old_theta + alpha) % (2*pi) 

            new_x = old_x + (R + robot_width/2.0) * (sin(new_theta) 

- sin(old_theta)) 

            new_y = old_y + (R + robot_width/2.0) * (-cos(new_theta) 

+ cos(old_theta)) 
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            new_x += cos(new_theta) * scanner_displacement 

            new_y += sin(new_theta) * scanner_displacement 

 

            return (new_x, new_y, new_theta) 

 

def laser_scanner(get): 

    f = open("//home//ahmed//work//SLAM//robot4_scan.txt") 

    line_no = len(f.readlines()) 

    f.seek(0) 

    values = [] 

 

    for yu in range(line_no): 

        readings = f.readline() 

        if yu == get: 

            values = readings.split() 

    f.close() 

    return values[1:682] 

 

def compute_derivative(scan, min_dist): 

    jumps = [0] 

    for i in range(1, len(scan) - 1): 

        l = float(scan[i-1]) 

        r = float(scan[i+1]) 

        if l > min_dist and r > min_dist: 

            derivative = (r - l) / 2.0 

            jumps.append(derivative) 

        else: 

            jumps.append(0) 

    jumps.append(0) 

    return jumps 

 

def find_cylinders(scan, scan_derivative, jump, min_dist): 

    cylinder_list = [] 

    on_cylinder = False 

    sum_ray, sum_depth, rays = 0.0, 0.0, 0 

 

    for i in range(len(scan_derivative)): 

        if scan_derivative[i] < -jump: 

            # Start a new cylinder, independent of on_cylinder. 

            on_cylinder = True 

            sum_ray, sum_depth, rays = 0.0, 0.0, 0 

        elif scan_derivative[i] > jump: 

            # Save cylinder if there was one. 

            if on_cylinder and rays: 

                cylinder_list.append((sum_ray/rays, sum_depth/rays)) 

            on_cylinder = False 

        # Always add point, if it is a valid measurement. 

        elif float(scan[i]) > min_dist: 

            sum_ray += i 

            sum_depth += float(scan[i]) 

            rays += 1 

    return cylinder_list 

 

def compute_cartesian_coordinates(cylinders, cylinder_offset, 

mounting_angle): 

    result = [] 

    for c in cylinders: 

        bearing = (c[0] - 341.0) * 0.006275923151543 + 

mounting_angle 

        ranges = c[1] + cylinder_offset 
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        x_coordinate = ranges * cos(bearing) 

        y_coordinate = ranges * sin(bearing) 

        result.append((x_coordinate, y_coordinate)) 

    return result 

 

def compute_scanner_cylinders(scan, depth_jump, 

minimum_valid_distance, cylinder_offset, mounting_angle): 

    der = compute_derivative(scan, minimum_valid_distance) 

    cylinders = find_cylinders(scan, der, depth_jump, 

minimum_valid_distance) 

    scanner_cylinders = compute_cartesian_coordinates(cylinders, 

cylinder_offset, mounting_angle) 

    return scanner_cylinders 

 

def write_cylinders(file_desc, line_header, cylinder_list): 

    file_desc.write(line_header) 

    file_desc.write("\t") 

    for c in cylinder_list: 

        file_desc.write("%.1f %.1f\t" % c) 

    file_desc.write("\n") 

 

def get_observations(scan, jump, min_dist, cylinder_offset, 

                     robot, 

                     max_cylinder_distance): 

    der = compute_derivative(scan, min_dist) 

    cylinders = find_cylinders(scan, der, jump, min_dist) 

    # Compute scanner pose from robot pose. 

    scanner_pose = ( 

        robot.state[0] + cos(robot.state[2]) * 

robot.scanner_displacement, 

        robot.state[1] + sin(robot.state[2]) * 

robot.scanner_displacement, 

        robot.state[2]) 

 

    # For every detected cylinder which has a closest matching pole 

in the 

    # cylinders that are part of the current state, put the 

measurement 

    # (distance, angle) and the corresponding cylinder index into 

the result list. 

    result = [] 

    for c in cylinders: 

        # Compute the angle and distance measurements. 

        angle = LegoLogfile.beam_index_to_angle(c[0]) 

        distance = c[1] + cylinder_offset 

        # Compute x, y of cylinder in world coordinates. 

        xs, ys = distance*cos(angle), distance*sin(angle) 

        x, y = LegoLogfile.scanner_to_world(scanner_pose, (xs, ys)) 

        # Find closest cylinder in the state. 

        best_dist_2 = max_cylinder_distance * max_cylinder_distance 

        best_index = -1 

        for index in range(robot.number_of_landmarks): 

            pole_x, pole_y = robot.state[3+2*index : 3+2*index+2] 

            dx, dy = pole_x - x, pole_y - y 

            dist_2 = dx * dx + dy * dy 

            if dist_2 < best_dist_2: 

                best_dist_2 = dist_2 

                best_index = index 

        # Always add result to list. Note best_index may be -1. 

        result.append(((distance, angle), (x, y), (xs, ys), 

best_index)) 
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    return result 

 

def write_error_ellipses(file_desc, line_header, 

error_ellipse_list): 

    file_desc.write(line_header) 

    file_desc.write("\t") 

    for e in error_ellipse_list: 

        file_desc.write("%.3f %.1f %.1f\n" % e) 
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Appendix C 

legofile_viewer.py 

 

# Python routines to inspect a ikg LEGO robot logfile. 

# Author: Claus Brenner, 28 OCT 2012 

from Tkinter import * 

import tkFileDialog 

from lego_robot import * 

from math import sin, cos, pi, ceil 

 

# The canvas and world extents of the scene. 

# Canvas extents in pixels, world extents in millimeters. 

canvas_extents = (600, 600) 

world_extents = (1800.0, 2000.0) 

 

# The extents of the sensor canvas. 

sensor_canvas_extents = canvas_extents 

 

# The maximum scanner range used to scale scan measurement drawings, 

# in millimeters. 

max_scanner_range = 4000.0 

 

class DrawableObject(object): 

    def draw(self, at_step): 

        print "To be overwritten - will draw a certain point in 

time:", at_step 

 

    def background_draw(self): 

        print "Background draw." 

 

    @staticmethod 

    def get_ellipse_points(center, main_axis_angle, radius1, 

radius2, 

                           start_angle = 0.0, end_angle = 2 * pi): 

        """Generate points of an ellipse, for drawing (y axis 

down).""" 

        points = [] 

        ax = radius1 * cos(main_axis_angle) 

        ay = radius1 * sin(main_axis_angle) 

        bx = - radius2 * sin(main_axis_angle) 

        by = radius2 * cos(main_axis_angle) 

        N_full = 40  # Number of points on full ellipse. 

        N = int(ceil((end_angle - start_angle) / (2 * pi) * N_full)) 

        N = max(N, 1) 

        increment = (end_angle - start_angle) / N 

        for i in xrange(N + 1): 

            a = start_angle + i * increment 

            c = cos(a) 

            s = sin(a) 

            x = c*ax + s*bx + center[0] 

            y = - c*ay - s*by + center[1] 

            points.append((x,y)) 

        return points 

 

 

class Trajectory(DrawableObject): 

    def __init__(self, points, canvas, 

                 world_extents, canvas_extents, 

                 standard_deviations = [], 
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                 point_size2 = 2, 

                 background_color = "gray", cursor_color = "red", 

                 position_stddev_color = "green", theta_stddev_color 

= "#ffc0c0"): 

        self.points = points 

        self.standard_deviations = standard_deviations 

        self.canvas = canvas 

        self.world_extents = world_extents 

        self.canvas_extents = canvas_extents 

        self.point_size2 = point_size2 

        self.background_color = background_color 

        self.cursor_color = cursor_color 

        self.position_stddev_color = position_stddev_color 

        self.theta_stddev_color = theta_stddev_color 

        self.cursor_object = None 

        self.cursor_object2 = None 

        self.cursor_object3 = None 

        self.cursor_object4 = None 

 

    def background_draw(self): 

        if self.points: 

            p_xy_only = [] 

            for p in self.points: 

                self.canvas.create_oval(\ 

                    p[0]-self.point_size2, p[1]-self.point_size2, 

                    p[0]+self.point_size2, p[1]+self.point_size2, 

                    fill=self.background_color, outline="") 

                p_xy_only.append(p[0:2]) 

            self.canvas.create_line(*p_xy_only, 

fill=self.background_color) 

 

    def draw(self, at_step): 

        if self.cursor_object: 

            self.canvas.delete(self.cursor_object) 

            self.cursor_object = None 

            self.canvas.delete(self.cursor_object2) 

            self.cursor_object2 = None 

        if at_step < len(self.points): 

            p = self.points[at_step] 

            # Draw position (point). 

            self.cursor_object = self.canvas.create_oval(\ 

                p[0]-self.point_size2-1, p[1]-self.point_size2-1, 

                p[0]+self.point_size2+1, p[1]+self.point_size2+1, 

                fill=self.cursor_color, outline="") 

            # Draw error ellipse. 

            if at_step < len(self.standard_deviations): 

                stddev = self.standard_deviations[at_step] 

                # Note this assumes correct aspect ratio. 

                factor = canvas_extents[0] / world_extents[0] 

                points = self.get_ellipse_points(p, stddev[0], 

                    stddev[1] * factor, stddev[2] * factor) 

                if self.cursor_object4: 

                    self.canvas.delete(self.cursor_object4) 

                self.cursor_object4 = self.canvas.create_line( 

                    *points, fill=self.position_stddev_color) 

            if len(p) > 2: 

                # Draw heading standard deviation. 

                if at_step < len(self.standard_deviations) and\ 

                   len(self.standard_deviations[0]) > 3: 

                    angle = 

min(self.standard_deviations[at_step][3], pi) 
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                    points = self.get_ellipse_points(p, p[2], 30.0, 

30.0, 

                                                     -angle, angle) 

                    points = [p[0:2]] + points + [p[0:2]] 

                    if self.cursor_object3: 

                        self.canvas.delete(self.cursor_object3) 

                    self.cursor_object3 = 

self.canvas.create_polygon( 

                        *points, fill=self.theta_stddev_color) 

                # Draw heading. 

                self.cursor_object2 = self.canvas.create_line(p[0], 

p[1], 

                    p[0] + cos(p[2]) * 50, 

                    p[1] - sin(p[2]) * 50, 

                    fill = self.cursor_color) 

 

class ScannerData(DrawableObject): 

    def __init__(self, list_of_scans, canvas, canvas_extents, 

scanner_range): 

        self.canvas = canvas 

        self.canvas_extents = canvas_extents 

        self.cursor_object = None 

 

        # Convert polar scanner measurements into xy form, in canvas 

coords. 

        # Store the result in self.scan_polygons. 

        self.scan_polygons = [] 

        for s in list_of_scans: 

            poly = [ to_sensor_canvas((0,0), canvas_extents, 

scanner_range) ] 

            i = 0 

            for m in s: 

                angle = LegoLogfile.beam_index_to_angle(i) 

                x = m * cos(angle) 

                y = m * sin(angle) 

                poly.append(to_sensor_canvas((x,y), canvas_extents, 

scanner_range)) 

                i += 1 

            poly.append(to_sensor_canvas((0,0), canvas_extents, 

scanner_range)) 

            self.scan_polygons.append(poly) 

 

    def background_draw(self): 

        # Draw x axis. 

        self.canvas.create_line( 

            self.canvas_extents[0]/2, self.canvas_extents[1]/2, 

            self.canvas_extents[0]/2, 20, 

            fill="black") 

        self.canvas.create_text( 

            self.canvas_extents[0]/2 + 10, 20, text="x" ) 

        # Draw y axis. 

        self.canvas.create_line( 

            self.canvas_extents[0]/2, self.canvas_extents[1]/2, 

            20, self.canvas_extents[1]/2, 

            fill="black") 

        self.canvas.create_text( 

            20, self.canvas_extents[1]/2 - 10, text="y" ) 

        # Draw big disk in the scan center. 

        self.canvas.create_oval( 

            self.canvas_extents[0]/2-20, self.canvas_extents[1]/2-

20, 
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            self.canvas_extents[0]/2+20, 

self.canvas_extents[1]/2+20, 

            fill="gray", outline="") 

 

    def draw(self, at_step): 

        if self.cursor_object: 

            self.canvas.delete(self.cursor_object) 

            self.cursor_object = None 

        if at_step < len(self.scan_polygons): 

            self.cursor_object = 

self.canvas.create_polygon(self.scan_polygons[at_step], fill="blue") 

 

class Landmarks(DrawableObject): 

    # In contrast other classes, Landmarks stores the original world 

coords and 

    # transforms them when drawing. 

    def __init__(self, landmarks, canvas, canvas_extents, 

world_extents, color = "gray"): 

        self.landmarks = landmarks 

        self.canvas = canvas 

        self.canvas_extents = canvas_extents 

        self.world_extents = world_extents 

        self.color = color 

 

    def background_draw(self): 

        for l in self.landmarks: 

            if l[0] =='C': 

                x, y = l[1:3] 

                ll = to_world_canvas3((x - l[3], y - l[3]), 

self.canvas_extents, self.world_extents) 

                ur = to_world_canvas3((x + l[3], y + l[3]), 

self.canvas_extents, self.world_extents) 

                self.canvas.create_oval(ll[0], ll[1], ur[0], ur[1], 

fill=self.color) 

 

    def draw(self, at_step): 

        # Landmarks are background only. 

        pass 

     

class Points(DrawableObject): 

    # Points, optionally with error ellipses. 

    def __init__(self, points, canvas, color = "red", radius = 5, 

ellipses = [], ellipse_factor = 1.0): 

        self.points = points 

        self.canvas = canvas 

        self.color = color 

        self.radius = radius 

        self.ellipses = ellipses 

        self.ellipse_factor = ellipse_factor 

        self.cursor_objects = [] 

 

    def background_draw(self): 

        pass 

 

    def draw(self, at_step): 

        if self.cursor_objects: 

            map(self.canvas.delete, self.cursor_objects) 

            self.cursor_objects = [] 

        if at_step < len(self.points): 

            for i in xrange(len(self.points[at_step])): 

                # Draw point. 
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                c = self.points[at_step][i] 

                self.cursor_objects.append(self.canvas.create_oval( 

                    c[0]-self.radius, c[1]-self.radius, 

                    c[0]+self.radius, c[1]+self.radius, 

                    fill=self.color)) 

                # Draw error ellipse if present. 

                if at_step < len(self.ellipses) and i < 

len(self.ellipses[at_step]): 

                    e = self.ellipses[at_step][i] 

                    points = self.get_ellipse_points(c, e[0], e[1] * 

self.ellipse_factor, 

                                                     e[2] * 

self.ellipse_factor) 

                    

self.cursor_objects.append(self.canvas.create_line( 

                        *points, fill=self.color)) 

 

# Particles are like points but add a direction vector. 

class Particles(DrawableObject): 

    def __init__(self, particles, canvas, color = "red", radius = 

1.0, 

                 vector = 8.0): 

        self.particles = particles 

        self.canvas = canvas 

        self.color = color 

        self.radius = radius 

        self.vector = vector 

        self.cursor_objects = [] 

 

    def background_draw(self): 

        pass 

 

    def draw(self, at_step): 

        if self.cursor_objects: 

            map(self.canvas.delete, self.cursor_objects) 

            self.cursor_objects = [] 

        if at_step < len(self.particles): 

            for c in self.particles[at_step]: 

                self.cursor_objects.append(self.canvas.create_oval( 

                    c[0]-self.radius, c[1]-self.radius, 

                    c[0]+self.radius, c[1]+self.radius, 

                    fill=self.color, outline=self.color)) 

                self.cursor_objects.append(self.canvas.create_line( 

                    c[0], c[1], 

                    c[0] + cos(c[2]) * self.vector, 

                    c[1] - sin(c[2]) * self.vector, 

                    fill = self.color)) 

 

# World canvas is x right, y up, and scaling according to 

canvas/world extents. 

def to_world_canvas2(world_point, canvas_extents, world_extents): 

    """Transforms a point from world coord system to world canvas 

coord system.""" 

    x = int(world_point[0]*1.25) 

    y = int(world_point[1]*1.24) 

    return (x, y) 

 

def to_world_canvas3(world_point, canvas_extents, world_extents): 

    """Transforms a point from world coord system to world canvas 

coord system.""" 

    x = int(world_point[0] / world_extents[0] * canvas_extents[0]) 
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    y = int(world_point[1] / world_extents[1] * canvas_extents[1]) 

    return (x, y) 

 

def to_world_canvas(world_point, canvas_extents, world_extents): 

    """Transforms a point from world coord system to world canvas 

coord system.""" 

    x = int(world_point[0] / world_extents[0] * canvas_extents[0]) 

    y = int(canvas_extents[1] - 1 - world_point[1] / 

world_extents[1] * canvas_extents[1]) 

    return (x, y) 

 

# Sensor canvas is "in driving direction", with x up, y left, (0,0) 

in the center 

# and scaling according to canvas_extents and max_scanner_range. 

def to_sensor_canvas(sensor_point, canvas_extents, scanner_range): 

    """Transforms a point from sensor coordinates to sensor canvas 

coord system.""" 

    scale = canvas_extents[0] / 2.0 / scanner_range 

    x = int(canvas_extents[0] / 2.0 - sensor_point[1] * scale) 

    y = int(canvas_extents[1] / 2.0 - 1 - sensor_point[0] * scale) 

    return (x, y) 

 

def slider_moved(index): 

    """Callback for moving the scale slider.""" 

    i = int(index) 

    # Call all draw objects. 

    for d in draw_objects: 

        d.draw(i) 

 

    # Print info about current point. 

    info.config(text=logfile.info(i)) 

 

def add_file(): 

    filename = tkFileDialog.askopenfilename(filetypes = [("all 

files", ".*"), ("txt files", ".txt")]) 

    if filename: 

        # If the file is in the list already, remove it (so it will 

be appended 

        # at the end). 

        if filename in all_file_names: 

            all_file_names.remove(filename) 

        all_file_names.append(filename) 

        load_data() 

 

def load_data(): 

    global canvas_extents, sensor_canvas_extents, world_extents, 

max_scanner_range 

    for filename in all_file_names: 

        logfile.read(filename) 

 

    global draw_objects 

    draw_objects = [] 

    scale.configure(to=logfile.size()-1) 

 

    # Insert: landmarks. 

    draw_objects.append(Landmarks(logfile.landmarks, world_canvas, 

canvas_extents, world_extents)) 

 

    # Insert: reference trajectory. 

    positions = [to_world_canvas2(pos, canvas_extents, 

world_extents) for pos in logfile.reference_positions] 
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    draw_objects.append(Trajectory(positions, world_canvas, 

world_extents, canvas_extents, 

        cursor_color="red", background_color="#FFB4B4")) 

 

    # Insert: scanner data. 

    draw_objects.append(ScannerData(logfile.scan_data, 

sensor_canvas, 

        sensor_canvas_extents, max_scanner_range)) 

 

    # Insert: detected cylinders, in scanner coord system. 

    if logfile.detected_cylinders: 

        positions = [[to_sensor_canvas(pos, sensor_canvas_extents, 

max_scanner_range) 

                     for pos in cylinders_one_scan ] 

                     for cylinders_one_scan in 

logfile.detected_cylinders ] 

        draw_objects.append(Points(positions, sensor_canvas, 

"#88FF88")) 

 

    # Insert: world objects, cylinders and corresponding world 

objects, ellipses. 

    if logfile.world_cylinders: 

        positions = [[to_world_canvas(pos, canvas_extents, 

world_extents) 

                      for pos in cylinders_one_scan] 

                      for cylinders_one_scan in 

logfile.world_cylinders] 

        # Also setup cylinders if present. 

        # Note this assumes correct aspect ratio. 

        factor = canvas_extents[0] / world_extents[0] 

        draw_objects.append(Points(positions, world_canvas, 

"#DC23C5", 

                                   ellipses = 

logfile.world_ellipses, 

                                   ellipse_factor = factor)) 

 

    # Insert: detected cylinders, transformed into world coord 

system. 

    if logfile.detected_cylinders and logfile.filtered_positions and 

\ 

        len(logfile.filtered_positions[0]) > 2: 

        positions = [] 

        for i in xrange(min(len(logfile.detected_cylinders), 

len(logfile.filtered_positions))): 

            this_pose_positions = [] 

            pos = logfile.filtered_positions[i] 

            dx = cos(pos[2]) 

            dy = sin(pos[2]) 

            for pole in logfile.detected_cylinders[i]: 

                x = pole[0] * dx - pole[1] * dy + pos[0] 

                y = pole[0] * dy + pole[1] * dx + pos[1] 

                p = to_world_canvas((x,y), canvas_extents, 

world_extents) 

                this_pose_positions.append(p) 

            positions.append(this_pose_positions) 

        draw_objects.append(Points(positions, world_canvas, 

"#88FF88")) 

 

    # Insert: particles. 

    if logfile.particles: 

        positions = [ 
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            [(to_world_canvas(pos, canvas_extents, world_extents) + 

(pos[2],)) 

             for pos in particles_one_scan] 

             for particles_one_scan in logfile.particles] 

        draw_objects.append(Particles(positions, world_canvas, 

"#80E080")) 

 

    # Insert: filtered trajectory. 

    if logfile.filtered_positions: 

        if len(logfile.filtered_positions[0]) > 2: 

            positions = [tuple(list(to_world_canvas(pos, 

canvas_extents, world_extents)) + [pos[2]]) for pos in 

logfile.filtered_positions] 

        else: 

            positions = [to_world_canvas(pos, canvas_extents, 

world_extents) for pos in logfile.filtered_positions] 

        # If there is error ellipses, insert them as well. 

        draw_objects.append(Trajectory(positions, world_canvas, 

world_extents, canvas_extents, 

            standard_deviations = logfile.filtered_stddev, 

            cursor_color="blue", background_color="lightblue", 

            position_stddev_color = "#8080ff", 

theta_stddev_color="#c0c0ff")) 

 

    # Start new canvas and do all background drawing. 

    world_canvas.delete(ALL) 

    sensor_canvas.delete(ALL) 

    for d in draw_objects: 

        d.background_draw() 

 

 

# Main program. 

if __name__ == '__main__': 

 

    # Construct logfile (will be read in load_data()). 

    logfile = LegoLogfile() 

 

    # Setup GUI stuff. 

    root = Tk() 

    frame1 = Frame(root) 

    frame1.pack() 

    world_canvas = Canvas(frame1,width=800,height=600,bg="white") 

    world_canvas.pack(side=LEFT) 

    sensor_canvas = Canvas(frame1,width=400,height=600,bg="white") 

    sensor_canvas.pack(side=RIGHT) 

    scale = Scale(root, orient=HORIZONTAL, command = slider_moved) 

    scale.pack(fill=X) 

    info = Label(root) 

    info.pack() 

    frame2 = Frame(root) 

    frame2.pack() 

    load = Button(frame2,text="Load (additional) 

logfile",command=add_file) 

    load.pack(side=LEFT) 

    reload_all = Button(frame2,text="Reload all",command=load_data) 

    reload_all.pack(side=RIGHT) 

 

    # The list of objects to draw. 

    draw_objects = [] 

 

    # Ask for file. 
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    all_file_names = [] 

    add_file() 

    root.mainloop() 

    root.destroy() 
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Appendix D 

lego_robot.py 

 

# Python routines useful for handling ikg's LEGO robot data. 

# Author: Claus Brenner, 28.10.2012 

from math import sin, cos, pi 

 

# In previous versions, the S record included the number of scan 

points. 

# If so, set this to true. 

s_record_has_count = True 

 

# Class holding log data of our Lego robot. 

# The logfile understands the following records: 

# P reference position (of the robot) 

# S scan data 

# I indices of poles in the scan data (determined by an external 

algorithm) 

# M motor (ticks from the odometer) data 

# F filtered data (robot position, or position and heading angle) 

# E (error) standard deviation in position, or position and heading 

angle 

# L landmark (reference landmark, fixed) 

# D detected landmark, in the scanner's coordinate system. C is 

cylinders 

# W something to draw in the world coordinate system. 

#   C is cylinders, E is 2D error ellipses 

# PA list of particles (x, y, heading). 

# 

class LegoLogfile(object): 

    def __init__(self): 

        self.reference_positions = [] 

        self.scan_data = [] 

        self.pole_indices = [] 

        self.motor_ticks = [] 

        self.filtered_positions = [] 

        self.filtered_stddev = [] 

        self.landmarks = [] 

        self.detected_cylinders = [] 

        self.world_cylinders = [] 

        self.world_ellipses = [] 

        self.particles = [] 

        self.last_ticks = None 

 

    def read(self, filename): 

        """Reads log data from file. Calling this multiple times 

with different 

           files will result in a merge of the data, i.e. if one 

file contains 

           M and S data, and the other contains M and P data, then 

LegoLogfile 

           will contain S from the first file and M and P from the 

second file.""" 

        # If information is read in repeatedly, replace the lists 

instead of appending, 

        # but only replace those lists that are present in the data. 

        first_reference_positions = True 

        first_scan_data = True 

        first_pole_indices = True 
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        first_motor_ticks = True 

        first_filtered_positions = True 

        first_filtered_stddev = True 

        first_landmarks = True 

        first_detected_cylinders = True 

        first_world_cylinders = True 

        first_world_ellipses = True 

        first_particles = True 

        f = open(filename) 

        for l in f: 

            sp = l.split() 

            # P is the reference position. 

            # File format: P timestamp[in ms] x[in mm] y[in mm] 

            # Stored: A list of tuples [(x, y), ...] in 

reference_positions. 

            if sp[0] == 'P': 

                if first_reference_positions: 

                    self.reference_positions = [] 

                    first_reference_positions = False  

                self.reference_positions.append( (int(sp[1]), 

int(sp[2])) ) 

 

            # S is the scan data. 

            # File format: 

            #  S timestamp[in ms] distances[in mm] ... 

            # Or, in previous versions (set s_record_has_count to 

True): 

            #  S timestamp[in ms] count distances[in mm] ... 

            # Stored: A list of tuples [ [(scan1_distance,... ), 

(scan2_distance,...) ] 

            #   containing all scans, in scan_data. 

            elif sp[0] == 'S': 

                if first_scan_data: 

                    self.scan_data = [] 

                    first_scan_data = False 

                if s_record_has_count: 

                    self.scan_data.append(tuple(map(int, sp[1:]))) 

                else: 

                    self.scan_data.append(tuple(map(int, sp[1:]))) 

 

            # I is indices of poles in the scan. 

            # The indices are given in scan order 

(counterclockwise). 

            # -1 means that the pole could not be clearly detected. 

            # File format: I timestamp[in ms] index ... 

            # Stored: A list of tuples of indices (including empty 

tuples): 

            #  [(scan1_pole1, scan1_pole2,...), 

(scan2_pole1,...)...] 

            elif sp[0] == 'I': 

                if first_pole_indices: 

                    self.pole_indices = [] 

                    first_pole_indices = False 

                self.pole_indices.append(tuple(map(int, sp[2:]))) 

 

            # M is the motor data. 

            # File format: M timestamp[in ms] pos[in ticks] 

tachoCount[in ticks] acceleration[deg/s^2] rotationSpeed[deg/s] ... 

            #   (4 values each for: left motor, right motor, and 

third motor (not used)). 
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            # Stored: A list of tuples [ (inc-left, inc-right), ... 

] with tick increments, in motor_ticks. 

            # Note that the file contains absolute ticks, but 

motor_ticks contains the increments (differences). 

            elif sp[0] == 'M': 

                ticks = (int(sp[2]), int(sp[1])) 

                if first_motor_ticks: 

                    self.motor_ticks = [] 

                    first_motor_ticks = False 

                    self.last_ticks = ticks 

                self.motor_ticks.append( 

                    tuple([ticks[i]-self.last_ticks[i] for i in 

range(2)])) 

                self.last_ticks = ticks 

 

            # F is filtered trajectory. No time stamp is used. 

            # File format: F x[in mm] y[in mm] 

            # OR:          F x[in mm] y[in mm] heading[in radians] 

            # Stored: A list of tuples, each tuple is (x y) or (x y 

heading) 

            elif sp[0] == 'F': 

                if first_filtered_positions: 

                    self.filtered_positions = [] 

                    first_filtered_positions = False 

                self.filtered_positions.append( tuple( map(float, 

sp[1:])) ) 

 

            # E is error of filtered trajectory. No time stamp is 

used. 

            # File format: E (angle of main axis)[in radians] std-

dev1 std-dev2 

            # OR:          The same format but with std-dev-heading 

appended. 

            # Note: std-dev1 is along the main axis, std-dev2 is 

along the 

            # second axis, which is orthogonal to the main axis. 

            # Stored: A list of tuples, each tuple is 

            # (angle, std-dev1, std-dev2) or 

            # (angle, std-dev1, std-dev2, std-dev-heading). 

            elif sp[0] == 'E': 

                if first_filtered_stddev: 

                    self.filtered_stddev = [] 

                    first_filtered_stddev = False 

                self.filtered_stddev.append( tuple( map(float, 

sp[1:])) ) 

                 

            # L is landmark. This is actually background 

information, independent 

            # of time. 

            # File format: L <type> info... 

            # Supported types: 

            # Cylinder: L C x y diameter. 

            # Stored: List of (<type> info) tuples. 

            elif sp[0] == 'L': 

                if first_landmarks: 

                    self.landmarks = [] 

                    first_landmarks = False 

                if sp[1] == 'C': 

                    self.landmarks.append( tuple(['C'] + map(float, 

sp[2:])) ) 
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            # D is detected landmarks (in each scan). 

            # File format: D <type> info... 

            # Supported types: 

            # Cylinder: D C x y x y ... 

            #   Stored: List of lists of (x, y) tuples of the 

cylinder positions, 

            #   one list per scan. 

            elif sp[0] == 'D': 

                if sp[1] == 'C': 

                    if first_detected_cylinders: 

                        self.detected_cylinders = [] 

                        first_detected_cylinders = False 

                    cyl = map(float, sp[2:]) 

                    self.detected_cylinders.append([(cyl[2*i], 

cyl[2*i+1]) for i in range(len(cyl)/2)]) 

 

            # W is information to be plotted in the world (in each 

scan). 

            # File format: W <type> info... 

            # Supported types: 

            # Cylinder: W C x y x y ... 

            #   Stored: List of lists of (x, y) tuples of the 

cylinder positions, 

            #   one list per scan. 

            # Error ellipses: W E angle axis1 axis, angle axis1 

axis2 ... 

            #   where angle is the ellipse's orientations and axis1 

and axis2 are the lenghts 

            #   of the two half axes. 

            #   Stored: List of lists of (angle, axis1, axis2) 

tuples. 

            #   Note the ellipses can be used only in combination 

with "W C", which will 

            #   define the center point of the ellipse. 

            elif sp[0] == 'W': 

                if sp[1] == 'C': 

                    if first_world_cylinders: 

                        self.world_cylinders = [] 

                        first_world_cylinders = False 

                    cyl = map(float, sp[2:]) 

                    self.world_cylinders.append([(cyl[2*i], 

cyl[2*i+1]) for i in range(len(cyl)/2)]) 

                elif sp[1] == 'E': 

                    if first_world_ellipses: 

                        self.world_ellipses = [] 

                        first_world_ellipses = False 

                    ell = map(float, sp[2:]) 

                    self.world_ellipses.append([(ell[3*i], 

ell[3*i+1], ell[3*i+2]) for i in xrange(len(ell)/3)]) 

 

            # PA is particles. 

            # File format: 

            #  PA x0, y0, heading0, x1, y1, heading1, ... 

            # Stored: A list of lists of tuples: 

            #  [[(x0, y0, heading0), (x1, y1, heading1),...], 

            #   [(x0, y0, heading0), (x1, y1, heading1),...], ...]  

            # where each list contains all particles of one time 

step. 

            elif sp[0] == 'PA': 

                if first_particles: 

                    self.particles = [] 
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                    first_particles = False 

                i = 1 

                particle_list = [] 

                while i < len(sp): 

                    particle_list.append(tuple(map(float, 

sp[i:i+3]))) 

                    i += 3 

                self.particles.append(particle_list) 

 

        f.close() 

 

    def size(self): 

        """Return the number of entries. Take the max, since some 

lists may be empty.""" 

        return max(len(self.reference_positions), 

len(self.scan_data), 

                   len(self.pole_indices), len(self.motor_ticks), 

                   len(self.filtered_positions), 

len(self.filtered_stddev), 

                   len(self.detected_cylinders), 

len(self.world_cylinders), 

                   len(self.particles)) 

 

    @staticmethod 

    def beam_index_to_angle(i, mounting_angle = -

0.06981317007977318): 

        """Convert a beam index to an angle, in radians.""" 

        return (i - 341.0) * 0.006765923151543 + mounting_angle 

 

    @staticmethod 

    def scanner_to_world(pose, point): 

        """Given a robot pose (rx, ry, heading) and a point (x, y) 

in the 

           scanner's coordinate system, return the point's 

coordinates in the 

           world coordinate system.""" 

        dx = cos(pose[2]) 

        dy = sin(pose[2]) 

        x, y = point 

        return (x * dx - y * dy + pose[0], x * dy + y * dx + 

pose[1])         

 

    def info(self, i): 

        """Prints reference pos, number of scan points, and motor 

ticks.""" 

        s = "" 

        if i < len(self.reference_positions): 

            s += " | ref-pos: %4d %4d" % self.reference_positions[i] 

 

        if i < len(self.scan_data): 

            s += " | scan-points: %d" % len(self.scan_data[i]) 

 

        if i < len(self.pole_indices): 

            indices = self.pole_indices[i] 

            if indices: 

                s += " | pole-indices:" 

                for idx in indices: 

                    s += " %d" % idx 

            else: 

                s += " | (no pole indices)" 
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        if i < len(self.motor_ticks): 

            s += " | motor: %d %d" % self.motor_ticks[i] 

 

        if i < len(self.filtered_positions): 

            f = self.filtered_positions[i] 

            s += " | filtered-pos:" 

            for j in (0,1): 

                s += " %.1f" % f[j] 

            if len(f) > 2: 

                s += " %.1f" % (f[2] / pi * 180.) 

 

        if i < len(self.filtered_stddev): 

            stddev = self.filtered_stddev[i] 

            s += " | stddev:" 

            # Print stddev in both axes, and theta, if present. 

            # Don't print the orientation angle stddev[0]. 

            for j in (1,2): 

                s += " %.1f" % stddev[j] 

            if len(stddev) > 3: 

                s += " %.1f" % (stddev[3] / pi * 180.) 

 

        return s 
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Appendix E 

track.cpp 

 

//g++ track.cpp -o track -lopencv_core -lopencv_imgproc -

lopencv_objdetect -lopencv_highgui 

 

 

#include <iostream> 

#include <stdio.h> 

#include "opencv2/highgui/highgui.hpp" 

#include "opencv2/imgproc/imgproc.hpp" 

 

using namespace cv; 

using namespace std; 

 

 int main( int argc, char** argv ) 

 { 

 

FILE *f = fopen("reference.txt","w"); 

if (f == NULL) 

{ 

printf("Error opening file\n"); 

exit(1); 

}    

 

VideoCapture cap(0); //capture the video from webcam 

//cap.open(0); 

    if ( !cap.isOpened() )  // if not success, exit program 

    { 

         cout << "Cannot open the web cam" << endl; 

         return -1; 

    } 

 

    namedWindow("Control", CV_WINDOW_AUTOSIZE); //create a window 

called "Control" 

 

int iLowH = 0; 

int iHighH = 179; 

 

int iLowS = 150;  

int iHighS = 255; 

 

int iLowV = 0; 

int iHighV = 255; 

 

//Create trackbars in "Control" window 

createTrackbar("LowH", "Control", &iLowH, 179); //Hue (0 - 179) 

createTrackbar("HighH", "Control", &iHighH, 179); 

 

createTrackbar("LowS", "Control", &iLowS, 255); //Saturation (0 - 

255) 

createTrackbar("HighS", "Control", &iHighS, 255); 

 

createTrackbar("LowV", "Control", &iLowV, 255);//Value (0 - 255) 

createTrackbar("HighV", "Control", &iHighV, 255); 

 

int iLastX = -1;  

int iLastY = -1; 

 



61 
 

//Capture a temporary image from the camera 

Mat imgTmp; 

cap.read(imgTmp); 

imgTmp = imgTmp(Rect(157,1,482,479)); 

//cap>>imgTmp;  

 

//Create a black image with the size as the camera output 

Mat imgLines = Mat::zeros( imgTmp.size(), CV_8UC3 );; 

 

    while (true) 

    { 

        Mat imgOriginal; 

 

        bool bSuccess = cap.read(imgOriginal); // read a new frame 

from video 

    imgOriginal = imgOriginal(Rect(157,1,482,479)); 

 

 

         if (!bSuccess) //if not success, break loop 

        { 

             cout << "Cannot read a frame from video stream" << 

endl; 

             break; 

        } 

 

Mat imgHSV; 

 

cvtColor(imgOriginal, imgHSV, COLOR_BGR2HSV); //Convert the captured 

frame from BGR to HSV 

 

Mat imgThresholded; 

 

inRange(imgHSV, Scalar(iLowH, iLowS, iLowV), Scalar(iHighH, iHighS, 

iHighV), imgThresholded); //Threshold the image 

       

//morphological opening (removes small objects from the foreground) 

erode(imgThresholded, imgThresholded, 

getStructuringElement(MORPH_ELLIPSE, Size(5, 5)) ); 

dilate( imgThresholded, imgThresholded, 

getStructuringElement(MORPH_ELLIPSE, Size(5, 5)) );  

 

//morphological closing (removes small holes from the foreground) 

dilate( imgThresholded, imgThresholded, 

getStructuringElement(MORPH_ELLIPSE, Size(5, 5)) );  

erode(imgThresholded, imgThresholded, 

getStructuringElement(MORPH_ELLIPSE, Size(5, 5)) ); 

 

//Calculate the moments of the thresholded image 

Moments oMoments = moments(imgThresholded); 

 

double dM01 = oMoments.m01; 

double dM10 = oMoments.m10; 

double dArea = oMoments.m00; 

 

// if the area <= 10000, I consider that the there are no object in 

the image and it's because of the noise, the area is not zero  

if (dArea > 10000) 

{ 

//calculate the position of the ball 

int posX = dM10 / dArea; 

int posY = dM01 / dArea;       
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fflush(f); 

fprintf(f,"P\t%d\t%d\n",posX,posY); 

printf("P\t%d\t%d\n",posX,posY); 

if (iLastX >= 0 && iLastY >= 0 && posX >= 0 && posY >= 0) 

{ 

//Draw a red line from the previous point to the current point 

line(imgLines, Point(posX, posY), Point(iLastX, iLastY), 

Scalar(0,0,255), 2); 

} 

 

iLastX = posX; 

iLastY = posY; 

} 

imshow("Thresholded Image", imgThresholded); //show the thresholded 

image 

 

imgOriginal = imgOriginal + imgLines; 

imshow("Original", imgOriginal); //show the original image 

 

        if (waitKey(30) == 27) //wait for 'esc' key press for 30ms. 

If 'esc' key is pressed, break loop 

       { 

            cout << "esc key is pressed by user" << endl; 

            break;  

       } 

 

    } 

fclose(f); 

   return 0; 

} 
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Appendix F 

motor_Control.ino 

 

#include <Hercules.h> 

#include "Timer.h" 

int count_new; 

int count_old = 1; 

int counter = 0; 

int distance1=0; 

Timer t; 

Timer t2; 

int count_new2; 

int count_old2 = 1; 

int counter2 = 0; 

int distance2=0; 

 

int distance=0; 

int incomingByte=0; 

 

void forward() 

{ 

  //Serial.println("Forward"); 

  MOTOR.setSpeedDir1(20, DIRR); 

  MOTOR.setSpeedDir2(20, DIRF); 

} 

 

void right() 

{ 

  //Serial.println("Right"); 

  MOTOR.setSpeedDir1(20, DIRR); 

  MOTOR.setSpeedDir2(0, DIRF); 

} 

 

void left() 

{ 

 // Serial.println("Left"); 

  MOTOR.setSpeedDir1(0, DIRR); 

  MOTOR.setSpeedDir2(20, DIRF); 

} 

 

void sstop() 

{ 

  //Serial.println("Stop"); 

  MOTOR.setSpeedDir1(0, DIRR); 

  MOTOR.setSpeedDir2(0, DIRF); 

} 

void setup() 

{ 

    MOTOR.begin();                      

    Serial.begin(9600); 

    t.every(10,encoder); 

   // t2.every(100,dist); 

} 

 

void loop() 

{ 

    t.update(); 

    t2.update(); 

    if (Serial.available() > 0) { 

    incomingByte = Serial.read(); 
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    if (incomingByte == 119) 

    { 

      forward(); 

    } 

    if (incomingByte == 100) 

    { 

      left(); 

    } 

    if (incomingByte == 97) 

    { 

      right(); 

    } 

    if (incomingByte == 32) 

    { 

      sstop(); 

    } 

    if (incomingByte == 113) 

    { 

      counter=0; 

      counter2=0; 

      count_old=1; 

      count_old2=1; 

    } 

} 

} 

 

 

void encoder() 

{ 

 count_new =  digitalRead(2); 

 count_new2 =  digitalRead(3); 

 if(count_new-count_old != 0) 

 { 

   counter=counter+1; 

 } 

  

 if(count_new2-count_old2 != 0) 

 { 

   counter2=counter2+1; 

 } 

 count_old2=count_new2; 

 count_old=count_new; 

      Serial.print("a"); 

     Serial.println(counter); 

     Serial.print("b"); 

    Serial.println(counter2); 

 

} 

void dist() 

{ 

     distance1 = counter; 

    distance2 = counter2; 

    //distance = (distance1+distance2)/2; 

   // Serial.print("h"); 

 //   Serial.print(distance1); 

 //   Serial.print(distance2); 

 //   Serial.println("t");   

} 
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Appendix G 

calculate_xy.c 

 

 

#include "urg_sensor.h" 

#include "urg_utils.h" 

#include "open_urg_sensor.h" 

#include <math.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

 

int main(int argc, char *argv[]) 

{ 

    urg_t urg; 

    long *data; 

    long max_distance; 

    long min_distance; 

    long time_stamp; 

    int i; 

    int n; 

 

    if (open_urg_sensor(&urg, argc, argv) < 0) { 

        return 1; 

    } 

 

    data = (long *)malloc(urg_max_data_size(&urg) * 

sizeof(data[0])); 

    if (!data) { 

        perror("urg_max_index()"); 

        return 1; 

    } 

 

    urg_start_measurement(&urg, URG_DISTANCE, 1, 0); 

    n = urg_get_distance(&urg, data, &time_stamp); 

    if (n < 0) { 

        printf("urg_get_distance: %s\n", urg_error(&urg)); 

        urg_close(&urg); 

        return 1; 

    } 

 

 

    urg_distance_min_max(&urg, &min_distance, &max_distance); 

    for (i = 0; i < n; ++i) { 

        long distance = data[i]; 

        double radian; 

        long x; 

        long y; 

 

        if ((distance < min_distance) || (distance > max_distance)) 

{ 

            continue; 

        } 

 

        radian = urg_index2rad(&urg, i); 

        x = (long)(distance * cos(radian)); 

        y = (long)(distance * sin(radian)); 

 

        printf("%ld, %ld\n", x, y); 
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    } 

    printf("\n"); 

 

 

    free(data); 

    urg_close(&urg); 

 

#if defined(URG_MSC) 

    getchar(); 

#endif 

    return 0; 

} 

 


