
Indoor Localisation and Mapping using Laser Range Finder

by

Ahmed Hesham Lotfy

14704

Dissertation submitted in partial fulfilment of

the requirement for the

Bachelor of Engineering (Hons)

(Electrical and Electronics)

JANUARY 2015

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

32610 Tronoh

Perak Darul Ridzuan

i

CERTIFICATION OF APPROVAL

Indoor Localisation and Mapping using Laser Range Finder

by

Ahmed Hesham Lotfy

14704

A project dissertation submitted to the

Electrical and Electronics Engineering Programme

Universiti Teknologi PETRONAS

In partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL AND ELECTRONICS)

Approved by,

Dr. Abu Bakar Sayuti Hj Mohd Saman

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

JANUARY 2015

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own expect as specified in the references and acknowledges, and

that the original work contained herein have not been undertaken or done unspecified

sources or persons.

…………………………………..

Name: Ahmed Hesham Lotfy

Date: 18 April 2015

iii

Abstract

Simultaneous localization and mapping (SLAM) is one of the uprising and

evolving branches in the field of robotics. SLAM gives a robot the capability of

drawing a consistent map of the surrounding area while simultaneously localizing

itself within the map without the need of having prior data about the surrounding like

a pre-encoded map or localization aids like the Global Positioning System (GPS).

Solving the SLAM problem have been recognised as the holy grail in the eyes of the

mobile robotics community as it will provide the robots with the capability to be

independently autonomous. Several algorithms are used in utilizing the SLAM

problem and the most highlighted algorithms is the Extended Kalman filter (EKF).

This project is concerned with applying the EKF on a mobile robot and test its

efficiency in solving the SLAM problem. The methodology is comprised of two steps

which are software implementation where a python code is written to emulate the

mathematical model of the EKF and hardware implementation where a test bench

including a robot platform and arena are used to test the efficiency of the EKF python

code of the in real life SLAM applications.

iv

Acknowledgments

I would like to express my gratitude to all who supported me in this project and

special thanks to my supervisor Dr Abu Bakar Sayuti Hj Mohd Saman for giving me

the chance to work on this project and guiding me all through the process till the end.

Special thanks to Claus Brenner for his tutorials that have guided me to

accomplish this project and finally million thanks to my beloved family and friends

for their prayers and help during the whole period of this project.

v

Contents
List of Figures ... 1

CHAPTER 1 ... 2

1.1 Background .. 2

1.2 Problem Statement ... 3

1.3 Objectives.. 4

1.4 Scope of study ... 4

CHAPTER 2 ... 5

2.1 Definition of the SLAM problem .. 5

2.2 Extended Kalman Filter SLAM .. 11

2.2.1 Motion Model .. 11

2.2.2 Sensor Model ... 14

2.3 EKF SLAM Steps ... 16

2.3.1 Prediction Step .. 16

2.3.2 Correction Step ... 17

CHAPTER 3 ... 19

3.1 Overview ... 19

3.1.1 Software Implementation ... 19

3.1.2 Hardware Implementation ... 23

3.2 Hardware Integration ... 28

CHAPTER 4 ... 29

4.1 Software implementation results .. 30

4.2 Hardware Implementation Results .. 31

CHAPTER 5 ... 33

References ... 34

1

List of Figures

Figure 1 : Robot observers the environment in initial position [4] .. 5

Figure 2 : The robot estimates its position using odometry after movement [4] 6

Figure 3 : The robot measures the location of landmarks [4] ... 6

Figure 4 : The robot identify its true position based on landmark locations [4] 7

Figure 5 : Relation between real robot position, odometry estimate, and updated position [4]

 ... 7

Figure 6: SLAM problem example [3]... 8

Figure 7 : Velocity model representation .. 12

Figure 8 : Odometry Motion Model ... 13

Figure 9: Spiral Network .. 15

Figure 10 : Python Simulator GUI .. 22

Figure 11: Arena presentation ... 23

Figure 12 : Real Arena .. 24

Figure 13 : Snapshot from the overhead camera .. 24

Figure 14 : Snapshot from the overhead camera .. 24

Figure 15: URG-04LX-UG01 Laser range finder .. 26

Figure 16 : Raspberry PI Model B specifications .. 27

Figure 17 : Hercules Dual 15A 6-20V Motor Controller ... 27

Figure 18 : Hardware Integration ... 28

Figure 19: Python Logfile_viewer simulator output .. 29

Figure 20 : Software implementation Before Correction .. 30

Figure 21 : Software implementation After Correction ... 31

Figure 22 : Hardware implementation Before Correction ... 32

Figure 23 : Hardware implementation After Correction ... 32

file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559953
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559954
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559955
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559956
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559957
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559957
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559958
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559959
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559960
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559961
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559962
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559963
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559964
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559965
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559966
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559967
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559968
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559969
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559970
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559971
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559972
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559973
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559974
file:///C:/Users/Ahmed/Downloads/Ahmed%20Hesham%20Final%20Dissertation.docx%23_Toc418559975

2

CHAPTER 1

INTRODUCTION

1.1 Background

The idea of simultaneous localization and mapping was first introduced in 1986 in the

IEEE Robotics and Automation Conference which was held in San Francisco,

California by some researchers including Peter Cheeseman, Hugh Durrant-Whyte and

Jim Crowely. Various efforts have been done to solve the SLAM problem but nothing

converged until 1995 where the convergence result of the SLAM problem was first

introduced in the International Symposium on Robotics Research [3].

 For a robot to be autonomous and be able to roam an environment freely while

avoiding the obstacles it needs two important key aspects which are mapping and

localization [1].

The mapping is a problem of utilizing the sensor gathered data into useful

information about the surroundings so the robot can basically understand how the

environment look like. Using the robot odometery and the raw data gathered by the

sensor the robot can be capable of building a reasonable map as it moves through the

environment. After acquiring the map the robot needs to localize its position in this

map with the least error in the estimation process and this is considered the localization

process [1].

 Solving the simultaneous localization and mapping problem provided a great

opportunity for autonomous robots where having an integrated system inside the

mobile robot that can roam in an environment with the capability to localize its own

location and map the surrounding using on board sensors with no pre information

about its location or the map of the environment is considered a breakthrough in the

field of autonomous robotics [1].

 Hence, the aim of this project is to apply the Extended Kalman filter on a

mobile robot that should be able to simultaneously localize itself and map the

surrounding environment providing a solution to the SLAM problem.

3

1.2 Problem Statement

Indoor simultaneous localization and mapping is quite a tough problem to fix

as the robot performing the SLAM process don’t have any pre-loaded map of the

environment, basically the robot is totally ignorant about the environment which make

the SLAM a complex problem to fix. Therefore, in order to fix the SLAM problem we

need to address each of localization and mapping we need to address two issues which

are:

 To have accurate localization then an accurate map is needed.

(Localization)

 To have an accurate map then an accurate localization is needed.

(Mapping)

Various probabilistic mathematical models have been introduced as solutions

for the SLAM problem but only few hardware applications were implemented to prove

the validity of these solutions and their limits. Therefore, this project is mainly

concerned with applying the Extended Kalman filter , which is one of the SLAM

solutions, on a mobile robot and prove its efficiency in real life applications.

4

1.3 Objectives

The main objectives of this project are:

• Apply Simultaneous localization and mapping on a robot equipped with Laser

range finder and wheel encoders.

• Prove the validity of the applied algorithm based on the robot performance.

1.4 Scope of study

This study is concerned with three main points which are:

A. Computational Model

Converting the Extended Kalman filter mathematical model to a python code that can

be used in robotic applications.

B. Navigation and Data gathering

A robot platform equipped with laser range finder and wheel encoders that is navigate

manually through an arena collecting laser scanner and wheel encoders’ readings at

certain time intervals.

C. Validation and Data Representation

Using a software simulation program for results validation and comparison

5

CHAPTER 2

LITERATURE REVIEW

2.1 Definition of the SLAM problem

 SLAM question whether a robot can navigate through an environment which

it has no prior information about and build a map of its surroundings while

simultaneously localizing itself within this map. There have been various

implementations of the SLAM in different domains including indoor, outdoor,

airborne and underwater robotic systems on both theoretical and conceptual levels. [2]

[3]

The SLAM is divided into two major parts, first the robot trajectory through

the environment and second the environment landmarks which are estimated online

without prior knowledge about their locations. To have an overview of the concept of

SLAM consider a robot moving through an environment capturing observations using

a sensor on its top.

As the robot starts in the environment it starts observing the landmarks as

shown in figure 1 where the robot is represented as the triangle and the landmarks are

represented as the stars. The robot will define its initial position to be the starting

position and measure the distance to the landmarks using the laser range finder sensor.

Figure 1 : Robot observers the environment in initial position [4]

6

Afterwards, the robots starts moving then using the robot odometry it identifies

its position in the real world which turns out to be wrongly acquired due to the

odometry error as shown in figure 2.

Then, as shown in figure 4, the robot measure again the distance to the

landmarks using the laser range finder and compare the measurement to the estimated

location where this landmarks should be after moving using the odometry data.

Through this process it can be found how far is the robot thinks it’s located based on

odometry from its real location in the environment.

Figure 2 : The robot estimates its position using odometry after movement [4]

Figure 3 : The robot measures the location of landmarks [4]

7

Having acquired the odometry calculated position and the laser range finder’s

readings, the robot will believe more in the laser range finder data as its error is

minimal if compared to the odometry error and based on the landmarks reading it will

re localize its position estimate. As shown in figure 4, the dashed triangle shows where

the robot thought it was and the triangle shows the update of the robot location

depending on the landmarks readings.

Finally, figure 6 shows the difference between depending on the odometry

alone or using the landmarks to get a better estimate of the robot position compared to

where the robot actually exist in the real world. The dashed triangle shows the

odometry estimate of the robot position, the dotted triangle shows the estimate of the

robot position after taking in account the landmarks feedback and the triangle shows

the real position of the robot in the environment.

Figure 4 : The robot identify its true position based on landmark locations [4]

Figure 5 : Relation between real robot position, odometry estimate, and updated position [4]

8

The full process is as shown in Figure 6, the robot goes through the

environment equipped with wheel encoders and laser sensor capturing data from both

sensors at certain time intervals. At each time interval k, various variables are

calculated which are:

 xk: the state vector including robot’s x , y coordinates and heading.

 uk: the control vector, includes the motion commands given at time k - 1 to

drive the robot to a new state xk at time k

 mi: the landmark location coordinates of the ith landmark.

 zik: the observation reading of the robot of the ith landmark’s location at time k.

 The probabilistic nature of the SLAM problem requires that the probability

distribution

𝑃(𝑥𝑘, 𝑚 | 𝑍0:𝑘 , 𝑈0:𝑘 , 𝑥0) (1)

should be solved at all-time intervals k. This probability distribution emphasize the

dependency of obtaining the robot current pose 𝑥𝑘 and the environment map 𝑚 on the

posterior sensor readings of the environment for all time intervals 𝑍0:𝑘 , the posterior

motion commands for all time intervals 𝑈0:𝑘 and the robot previous pose [3].

Figure 6: SLAM problem example [3]

9

 In order to solve the probability distribution (1), a recursive solution is derived

which is divided into two steps which are the prediction (2) and correction (3) steps.

𝑃(𝑥𝑘 ,𝑚|𝑍0:𝑘−1 , 𝑈0:𝑘 , 𝑥0) = ∫𝑃(𝑥𝑘 |𝑥𝑘−1, 𝑢𝑘) × 𝑃(𝑥𝑘−1,𝑚|𝑍0:𝑘−1 , 𝑈0:𝑘−1 , 𝑥0) 𝑑𝑥𝑘−1..(2)

𝑃(𝑥𝑘 , 𝑚 | 𝑍0:𝑘 , 𝑈0:𝑘 , 𝑥0) =
𝑃(𝑧𝑘 |𝑥𝑘, 𝑢𝑘) 𝑃(𝑥𝑘 ,𝑚 | 𝑍0:𝑘−1 , 𝑈0:𝑘 , 𝑥0)

𝑃(𝑧𝑘| 𝑍0:𝑘−1 , 𝑈0:𝑘)
 … (3)

 Equation (2) is the prediction step which predicts the current state of the robot

in the environment 𝑃(𝑥𝑘 , 𝑚|𝑍0:𝑘−1 , 𝑈0:𝑘 , 𝑥0) based on the integrating the multiplication

of the robot motion model 𝑃(𝑥𝑘 |𝑥𝑘−1, 𝑢𝑘) , which provides the probable location xk of

the robot based on its previous location xk-1 and the motion commands uk given to the

robot to reach xk state, and the previous belief of the robot location

𝑃(𝑥𝑘−1,𝑚|𝑍0:𝑘−1 , 𝑈0:𝑘−1 , 𝑥0) at time k-1 .

 Equation (3) is the correction step which produce the corrected state of the

robot 𝑃(𝑥𝑘 ,𝑚 | 𝑍0:𝑘 , 𝑈0:𝑘 , 𝑥0) based on the predicted state (𝑥𝑘 ,𝑚 | 𝑍0:𝑘−1 , 𝑈0:𝑘 , 𝑥0) , the

sensor observation of the environment 𝑃(𝑧𝑘 |𝑥𝑘, 𝑢𝑘) which provides the robot

observation of the environment zk given the robot current state xk and the motion

commands uk given to the robot to reach xk state.

10

A simpler representation for the prediction and correction models represented

in equations (3) and (4) are derived in equations (5) and (6) respectively as follows.

𝑏𝑒𝑙(𝑥𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∫𝑃(𝑥𝑘 |𝑥𝑘−1, 𝑢𝑘) × 𝑏𝑒𝑙(𝑥𝑡−1) 𝑑𝑥𝑡−1 …… (5)

𝑏𝑒𝑙(𝑥𝑡) = 𝜂 × 𝑃(𝑧𝑘 |𝑥𝑘, 𝑢𝑘) × 𝑏𝑒𝑙(𝑥𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ …….. (6)

where:

 𝑏𝑒𝑙(𝑥𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑃(𝑥𝑘, 𝑚|𝑍0:𝑘−1 , 𝑈0:𝑘 , 𝑥0) “predicted belief of the robot’s position”

 𝑏𝑒𝑙(𝑥𝑡) = 𝑃(𝑥𝑘, 𝑚 | 𝑍0:𝑘 , 𝑈0:𝑘 , 𝑥0) “corrected belief of the robot’s position”

 𝜂 =
1

𝑃(𝑧𝑘| 𝑍0:𝑘−1 ,𝑈0:𝑘)

 At this point, a defenition of the SLAM problem probability

distribution was introduced and then a recurcisve model for the derieved in (2)

“Predection” and (3)”Correction”. The next section will be concerned by providing a

solution for the SLAM problem using Extended Kalman filter.

11

2.2 Extended Kalman Filter SLAM

The Extended Kalman Filter is an interpretation from the Kalman Filter, but

since the SLAM problem is nonlinear in nature therefore changed form of the normal

Kalman Filter, which only uses linear models, had to be derived which is the Extended

Kalman Filter [1].

As shown earlier, Equations (3) to (6) provide the outline for the SLAM

problem highlighted in equation (1), therefore we will first derive a representation for

both the motion model and the observation model then we will implement the EKF to

solve the SLAM problem.

2.2.1 Motion Model

In this section, the motion model will be further discussed with the aim to

generate the model’s structure. The motion model will be represented in two forms

which are:

 The Velocity Model

 The Odometry Model

each of the models output is the provide a solution for the motion model in shown

below.

𝑃(𝑥𝑘 |𝑥𝑘−1, 𝑢𝑘) …… (7)

12

A. The Velocity Model

 The velocity model basis is that the motion model can be calculated given the

rotational velocity w and transitional velocity v of the motion [2]. Based on this, the

control commands are represented as follows:

𝑢𝑡 = (
𝑣𝑡
𝑤𝑡
) ….. (8)

Given the previous state of the robot 𝑥𝑘−1 and the control command 𝑢𝑡 , the

current robot’s state 𝑥𝑘 can be calculated as follows [2]:

(
𝑥′

𝑦′

𝜃′
) = (

𝑥
𝑦
𝜃
) + (

−
𝑣

𝑤
 sin 𝜃 +

𝑣

𝑤
 sin(𝜃 + 𝑤Δ𝑘)

−
𝑣

𝑤
 cos 𝜃 +

𝑣

𝑤
 cos(𝜃 + 𝑤Δ𝑘)

𝑤Δ𝑘

) …… (9)

 where:

 (
𝑥′

𝑦′

𝜃′
) is the current robot state

 (
𝑥
𝑦
𝜃
) is the previous robot state

 𝑣 is the transitional velocity

 𝑤 is the angular velocity

 Δ𝑘 = 𝑘 − 𝑘−1 the delta of the time intervals k and k-1

Figure 7 : Velocity model representation

13

B. The Odometry Model

 As discussed earlier, the velocity model depend on the robot velocity to

calculate the current state. Alternatively the odometry model obtain the robot pose by

integrating the wheel encoder information as follows [2]:

If 𝑆𝑅 = 𝑆𝐿

(
𝑥′

𝑦′

𝜃′
) = (

𝑥
𝑦
𝜃
) + (

𝑆𝐿 cos(𝜃)
𝑆𝐿 sin(𝜃)

0

) ……. (10)

If 𝑆𝑅 ≠ 𝑆𝐿

(
𝑥′

𝑦′

𝜃′
) = (

𝑥
𝑦
𝜃
) + (

(𝑑′ +
𝑑

2
) [sin(𝜃 + 𝛼) − sin 𝜃]

(𝑑′ +
𝑑

2
) [−cos(𝜃 + 𝛼) − cos 𝜃]

𝛼

) ……. (11)

where:

 (
𝑥′

𝑦′

𝜃′
) is the current robot state

 (
𝑥
𝑦
𝜃
) is the previous robot state

 𝛼 =
𝑆𝑅−𝑆𝐿

𝑑

 𝑑′ =
𝑆𝐿

𝛼

Figure 8 : Odometry Motion Model

14

2.2.2 Sensor Model

After solving the motion model problem we are left with the sensor model. The

sensor model describes how the sensor’s measurements formulated in the real world.

𝑃(𝑧𝑘 |𝑥𝑘, 𝑢𝑘) ……. (12)

As the robot moves through the environment the sensor will capture various

numerical measurements like range finders generating scans of ranges or cameras

generating arrays of colours. If we consider the range finders, given the measured

scans of ranges we can generate a model for perceiving landmarks as follows [2]:

(
𝑟𝑡
′

𝜃𝑡
′) = (

√(𝑚𝑗𝑥 − 𝑥)2 + (𝑚𝑗𝑦 − 𝑦)2

atan (
𝑚𝑗𝑦−𝑦

𝑚𝑗𝑥−𝑥
) − 𝜃

)……. (13)

where:

 (
𝑟𝑡
′

𝜃𝑡
′) are the range and bearing of the extracted landmark

 (
𝑚𝑗𝑥
𝑚𝑗𝑦

) are the x and y coordinates of the extracted landmark

 (
𝑥
𝑦
𝜃
) is the robot’s state

More insight into the sensor model in (12), In Figure 6, it’s clear that most of

the error in the landmark reading is due to the uncertainty in the robot position in the

environment which leads to having a wrong sensor reading. However, the relation

between any two landmarks can be known with high accuracy even though the exact

locations of both landmark is not accurate and this is known as joint probability where

the joint probability density between landmarks mi and mj P (mi, mj) is high even

though the individual marginal density of each landmarks P (mi) or P (mj) is low [3].

 This insight shows that the correlation between the landmarks in monotonic as

the number of observations done by the robot increase where the relative location of

15

landmarks always is in continuous improvement but not diverging independent of the

robot position in the environment.

In order to have a better understanding of this concept lets return back to Figure

6, consider the robot starts at location xk and observe the two landmarks mi and mj,

Afterwards, the robot moves to location xk+1 and it re-observe landmark mj which will

help both the robot’s location and landmark’s mj location based on the robot’s previous

location xk. In turn, the new update propagates back to update the landmark mi even

though it was not observed by the robot in the new location xk+1. This occurs because

both of the landmarks are highly correlated to each other as P (mi, mj) density is high

so any update in mj will propagate to update mi as well [3].

To visualize the process illustrated earlier, conisder a robot moving in an

enviroment with various landmarks. As the robot observes landmarks, a spring is

drawn between them and the thicknes of the spring shows how much are the landmarks

correlated. Thus, as the robot goes through the enviroment and observe the landmarks

repeadetly a spiral network is formed as shown in Figure 9 between the landmarks and

also the robot where the effect updating a node in the network will ripple to update all

the other nodes depending on the connections strength or in other words how much

are they correlated [3].

Figure 9: Spiral Network

16

Having derieved a representation for the motion model (7) and the observation

model (12) we are now able to implement the Extended Kalman Filter.

2.3 EKF SLAM Steps

 The EKF SLAM method mainly consists of two steps which are the Prediction

Step and the Correction Step. The Algorithim that the EKF use to derieve both the

Prediction and Correction steps is :

𝜇𝑘
′ = 𝑔(𝑢𝑘, 𝜇𝑘−1) …. (14)

𝜀𝑘
′ = 𝐺𝑘 𝜀𝑘−1𝐺𝑘

𝑇 + 𝑅𝑘 …. (15)

𝐾𝑘 = 𝜀𝑘
′𝐻𝑘

𝑇 (𝐻𝑘 𝜀𝑘
′ 𝐻𝑘

𝑇 + 𝑄𝑘)
−1

…. (16)

𝜇𝑘 = 𝜇𝑘
′ + 𝐾𝑘(𝑧𝒌 − ℎ(𝜇𝑘

′)) …. (17)

𝜀𝑘 = (𝐼 − 𝐾𝑘 𝐻𝑘) 𝜀𝑘
′ …. (18)

2.3.1 Prediction Step

 In the predection step, both the estimated Mean and the estimated Covariance

are calculated. The estimated Mean is calculated as in equation (14) which is a function

of the robot motion model discussed earlier either a velocity model or an odometry

model.The calculated estimated Mean result is the estimated robot state and the

estimated location of the estimated landmarks.

𝜇𝑘
′ =

(

𝑥′

𝑦′

𝜃′

𝑚𝑥𝑖
′

𝑚𝑦𝑖
′

𝜃𝑖
′

𝑚𝑥𝑗
′

…)

 …. (19)

17

On the other hand the estimated Covariance shows the relation between the

landmarks and robot state and provide a representation as the spring network discussed

earlier. The Estimated covariance in (15) is calculated by multiplting previous

covariance by the Jacobian of the motion model 𝐺𝑘 and adding non linear Gaussian

noise of the motion model 𝑅𝑘. The final shape of the estimated covariance is shown in

(20).

𝜀𝑘
′

=

(

𝛼𝑥𝑥 𝛼𝑥𝑦 𝛼𝑥𝜃 𝛼𝑥 𝑚𝑖𝑥 𝛼𝑥 𝑚𝑖𝑦 … 𝛼𝑥 𝑚𝑛𝑥 𝛼𝑥 𝑚𝑛𝑦
𝛼𝑦𝑥 𝛼𝑦𝑦 𝛼𝑦𝜃 𝛼𝑦 𝑚𝑖𝑥 𝛼𝑦 𝑚𝑖𝑦 … 𝛼𝑦 𝑚𝑛𝑥 𝛼𝑦 𝑚𝑛𝑦
𝛼𝜃𝑥 𝛼𝜃𝑦 𝛼𝜃𝜃 𝛼𝜃 𝑚𝑖𝑥 𝛼𝜃 𝑚𝑖𝑦 … 𝛼𝜃 𝑚𝑛𝑥 𝛼𝜃 𝑚𝑛𝑦
𝛼𝑚𝑖𝑥 𝑥 𝛼𝑚𝑖𝑥 𝑦 𝛼𝜃 𝛼𝑚𝑖𝑥 𝑚𝑖𝑥 𝛼𝑚𝑖𝑥 𝑚𝑖𝑦 … 𝛼𝑚𝑖𝑥 𝑚𝑛𝑥 𝛼𝑚𝑖𝑥 𝑚𝑛𝑦
𝛼𝑚𝑖𝑦 𝑥 𝛼𝑚𝑖𝑦 𝑦 𝛼𝜃 𝛼𝑚𝑖𝑦 𝑚𝑖𝑥 𝛼𝑚𝑖𝑦 𝑚𝑖𝑦 … 𝛼𝑚𝑖𝑦 𝑚𝑛𝑥 𝛼𝑚𝑖𝑦 𝑚𝑛𝑦
..
.
.

..

.

.

..

.

.
𝛼𝑚𝑛𝑥 𝑚𝑖𝑥 𝛼𝑚𝑛𝑥 𝑚𝑖𝑦 … 𝛼𝑚𝑛𝑥 𝑚𝑛𝑥 𝛼𝑚𝑛𝑥 𝑚𝑛𝑦

)

 (20)

2.3.2 Correction Step

 The Correction step consist of three stages, first the calculation of the Kalman

gain which is followed by the correction of the estimated Mean and finally the

correction of the estimated Covariance.

 In the first step as shown in equation (16) the Kalman gain is calculated based

on the estimated covariance and the Jacobian of the function ℎ(𝜇𝑘
′) which is the

sensor model used for landmark extraction discussed earlier. The Kalman gain is the

factor of correction as it depends on the sensor observation and the covariance to

calculate the factor need to correct each estimated element with the addition of non

linear Gaussian noise of the sensor model.

18

 Afterwards, equation (17) use the Kalman gain to correct the predicted Mean

𝜇𝑘
′ . The amount of correction is the multiplication of the Kalman gain with

(𝑧𝒌 − ℎ(𝜇𝑘
′) where 𝑧𝒌 is the predicted observations based on the predicted robot

location calculated in the prediction step, in other words its considered what the robot

is expected to see as it moved from K to K+1 .

 Finally, equation (18) calculate the corrected Covariance using the Kalman

gain and the Jacobian of the sensor model. These two steps will be done sequentially

at certain time intervals as the robot moves through the enviroment and the result will

be an acceptable estimate of the robot location at all points and a near accurate map of

the enviroment, with this the SLAM problem is solved by implementing the Extended

Kalman Filter.

19

CHAPTER 3

METHODOLOGY

3.1 Overview

The main goal of the project is to implement simultaneous localization and

mapping in an indoor environment. This goal is achieved through two stages which

are:

 Software Implementation

 Hardware Implementation

In the first stage which is software implemntation, a python code is written to

implement the mathematical model of the Extended Klaman filter given inputs from

wheel encoders and Laser range finder at various time intervals. Moving to the second

stage, a manually driven robot is built and mounted with a laser range finder.The robot

is manually driven through an indoor enviroment while capturing readings from the

wheel encoders and the laser sensor.

The preceding sections will discuss more details about both stages and show

how each stage was implementated.

3.1.1 Software Implementation

 In this stage a python code is developed to implement the mathematical model

of the Extended Kalman filter.The code recieves time spaced wheel encoders values

and laser range finder readings then outputs a corrected robot path and landmarks

locations .The results are then represented by a simulator devloped by python coding

to show the robot corrected path and compare the result with the input path.

The input Laser range finder and encoder readings are provided by an online

database which have the data gathered by a robot in an indoor enviroment at different

time intervals.

20

 The main code is EKF_SLAM.py which is included in Appendix A which

contains the EKF both predection and corrction steps. This code uses a library included

in Appendix B EKF_Slam_Library.py which contains various functions used through

the code processing.

The EKF_SLAM.py consists mainly of the class ExtendedKalmanFilterSLAM

class ExtendedKalmanFilterSLAM

The class ExtendedKalmanFilterSLAM is provided with :

 Initial state of the robot.

 Initial covariance.

 Robot width

 Scanner displacement from the robot center.

 Control motion factor which represent the amount of wheel’s deviation in

straight line motion.

 Control turn factor which represent the amount of wheel’s deviation in

rotational motion.

 Measurement distance standard deviation which represent the amount of

sensor’s deviation in distance reading.

 Measurement angle standard deviation which represent the amount of sensor’s

deviation in angluar reading.

 kf = ExtendedKalmanFilterSLAM(

initial_state, initial_covariance,

 robot_width, scanner_displacement,

 control_motion_factor,

control_turn_factor,

measurement_distance_stddev,

measurement_angle_stddev

)

The ExtendedKalmanFilterSLAM class consists of multiple functions that are

implemented in sequence to provide the whole implemntation of the Extended Kalman

filter.The first function and second functions are

 def g(state, control, w):

 def h(state, landmark, scanner_displacement):

21

The function g takes the encoder collected by the robot as it moves through the

enviroment and applies the odometry motion model to generate x , y and heading for

the robot at each time interval hence generate the full path of the robot.

As for the h function it takes the robot state, the observed landmarks and the

scanner displacment from the robot center and provide the sensor model for the laser

range finder as shown in equation (13).

The third , foueth and fifth functions are

 def dg_dstate(state, control, w):

 def dg_dcontrol(state, control, w):

 def dh_dstate(state, landmark,

scanner_displacement):

The function dg_dstate takes the robot initial state and encoder values then

use it to calculate the Jacobian matrix of the state which is 𝐺𝑘 in equation (15) on the

other hand the function dg_dcontrol takes the same input and provide the Jacobian

matrix used to calculate the wheel encoders’ noise 𝑅𝑘.Finally , the function dh_dstate

is used to calculate the Jacobian matrix of the Sensor model 𝐻𝑘 in equation (16) given

the current robot state ,landmarks observed locations and the laser scanner’s

displacement from the centre of the robot.

Finally the two main functions of the ExtendedKalmanFilterSLAM class are

the prediction and correction functions.

 def predict(self, control):

 def correct(self, measurement, landmark_index):

The predict function uses the robot state and the observed landmarks

locations in order to calculate the predicted Mean 𝜇𝑘
′and the predicted Covariance 𝜀𝑘

′

by applying both equations (14) and (15).

22

Afterwards, the function correct will get the predicted Mean and predicted

Covariance and calculate the corrected Mean 𝜇𝑘 and the corrected Covariance 𝜀𝑘 by

applying equations (16), (17) and (18).

Having the correction step succesfully implemented, a file is generated

contating the corrected robot’s state and the landmarks detected by using the following

commands.

f.write("F %f %f %f\n" % \

tuple(kf.state[0:3] +

[scanner_displacement * cos(kf.state[2]),

scanner_displacement*sin(kf.state[2]),0.0]))

write_cylinders(f, "D C", [(obs[2][0], obs[2][1])

 for obs in observations])

In order to represent the output robot path and landmark locations a simulator

is devloped using python programming legofile_viewer.py included in Appendix C

which uses a library lego_robot.py included in Appendix D.

The simulator provides a GUI interface as shown in Figure 10 to represent the

data where data text files are loaded through the interface then processed by the code

and represented. Further information about the simulator will be provided in the results

section.

Figure 10 : Python Simulator GUI

23

3.1.2 Hardware Implementation

Having the python code for Extended Kalman filter finalized and tested, the

final step is to implement the Extended Kalman filter algorithm on a hardware platform

to prove it can be applied in real life applications. The goal of this section is to establish

a test bench for the python code developed in the previous section. The inputs required

for this test are the robot’s odometry, laser range finder’s scans and a reference robot’s

track at different intervals of time.

Having these requirements identified, the test bench is designed of two main

parts. The first part is the arena or environment with various landmarks where the robot

will travel through and collect its inputs. The second part is the robot platform to go

through the arena and collect the data from the laser range finder and the robot’s

odometry sensor.

A. Arena

The arena dimensions, as shown in Figure 11, is 2 x 2 meters containing 5

landmarks of dimensions 0.6 x 0.3 meters. As the robot travels through the

environment, it will observe the located landmarks and hence be able to localize itself

and map the locations of these landmarks in the environment.

The real robot arena which is used in the testing is shown in Figure 12.

Figure 11: Arena presentation

24

Added to this arena setup, a static webcam is located above the arena to track

the robot path using colour detection. The camera is connected to the laptop and using

the opencv code in Appendix E the pixel locations of the robot at different intervals of

time are logged.Having the robot pixel locations, a relation between the actual

coordinates in meters and the pixel coordinates is formulated as follows:

𝑋𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠 =
𝑊𝑖𝑑𝑡ℎ𝑜𝑓 𝑎𝑟𝑒𝑛𝑎 ∗ 𝑋𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠

𝑊𝑖𝑑𝑡ℎ𝑜𝑓 𝑖𝑚𝑎𝑔𝑒
 (21)

𝑌𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠 =
𝐿𝑒𝑛𝑔𝑡ℎ𝑜𝑓 𝑎𝑟𝑒𝑛𝑎 ∗ 𝑌𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠

𝐿𝑒𝑛𝑔𝑡ℎ𝑜𝑓 𝑖𝑚𝑎𝑔𝑒
 (22)

 Hence having the robot real path through the arena during the test run which

will be used for verification in the results section. A snapshot of the overhead camera

showing its field of view is shown in Figure 13.

Figure 12 : Real Arena

Figure 13 : Snapshot from the overhead camera

25

B. Robot Platform

The robot platform is designed for the purpose of data collection and logging

where the data to be collected are the laser range finder scans and the wheel encoders

at different intervals of time. The robot travels through the arena using manual controls

given by the user and after the test run is finalized the data are fetched from the robot

platform.

The robot platform consists of four main parts which are:

 4WD Hercules mobile robotic platform.

 URG-04LX-UG01 Laser range finder.

 Raspberry Pi model B.

 Hercules Dual 15A 6-20V Motor Controller.

In the preceding sections, each of these hardware components will be explained

briefly followed by how all of these components are integrated together.

C. 4WD Hercules mobile robotic platform

The Hercules mobile robotic platform, shown in Figure 14, is the chassis of the

robot platform used in the test bench, the Hercules platform also contains four dc

motors with magnetic wheel encoders installed.

Figure 14: 4WD Hercules mobile robotic platform

26

D. URG-04LX-UG01 Laser range finder

The Laser scanner URG-04LX-UG01, as shown in Figure 15, is a low voltage

laser scanner designed for robotics application. The sensor has a range of vision of 240

degrees and measuring are in the range of 20 to 5600mm.

Table 1: URG-04LX-UG01 Laser scanner specifications

Model No. URG-04LX-UG01

Power source 5VDC±5%(USB Bus power)

Light source Semiconductor laser diode(λ=785nm), Laser safety class 1

Measuring area 20 to 5600mm(white paper with 70mm×70mm), 240°

Accuracy
60 to 1,000mm : ±30mm,

1,000 to 4,095mm : ±3% of measurement

Angular resolution Step angle : approx. 0.36°(360°/1,024 steps)

Scanning time 100ms/scan

Noise 25dB or less

Interface USB2.0/1.1[Mini B](Full Speed)

Command System SCIP Ver.2.0

Ambient illuminance*1 Halogen/mercury lamp: 10,000Lux or less, Florescent: 6000Lux(Max)

Ambient

temperature/humidity
-10 to +50 degrees C, 85% or less(Not condensing, not icing)

Vibration resistance 10 to 55Hz, double amplitude 1.5mm each 2 hour in X, Y and Z directions

Impact resistance 196m/s2, Each 10 time in X, Y and Z directions

Weight Approx. 160g

Figure 15: URG-04LX-UG01 Laser range finder

27

E. Raspberry Pi model B

Raspberry pi model B, shown in Figure 16, is one of a series of credit card-

sized single-board computers developed by the Raspberry Pi foundation in UK. The

board is based on Broadcom System on chip which contains a 700 MHZ ARM

processor Video Core IV GPU, and RAM. It has a Level 1 cache of 16 KB and a Level

2 cache of 128 KB.

F. Hercules Dual 15A 6-20V Motor Controller

The Hercules Dual 15A 6-20V Motor Controller, shown in Figure 17, is a high

current motor driver with Arduino based micro controller and half bridge as motor

drive circuit. The controller also support encoder and servo modules and can be

programmed using Arduino IDE.

Figure 16 : Raspberry PI Model B specifications

Figure 17 : Hercules Dual 15A 6-20V Motor Controller

28

3.2 Hardware Integration

All the hardware components explained in the previous sections are combined

together to build the robot platform as shown in Figure 18. The main goal of building

the robot platform is to have a manual control robot able to travel through the

environment and log readings from laser scanner and wheel encoders at different time

intervals.

In this robot platform, the raspberry pi is used as the main link between all the

components where it is connected to the laptop using secure shell network protocol to

manually control the robot’s motion through the environment. The raspberry pi use

serial communication to send the motion commands to the Hercules Dual 15A 6-20V

Motor Controller and receive the encoder values of the wheels.

 The Hercules Dual 15A 6-20V Motor Controller is programmed using

Arduino programming language code, shown in Appendix F, which interpret keyboard

inputs as motion commands and serially send the wheel encoder values at certain time

intervals of time.

Finally, the raspberry pi serially communicate with the URG-04LX-UG01

Laser range finder using c coding , shown in Appendix G, to get the readings of the

sensor in 240 degree range then log it on its memory. All of these parts are governed

using shell scripts written to run those different codes at certain time intervals to collect

the robot’s readings in the environment.

Having the laser scans and the wheel encoder readings collected, the hardware

implementation is finalized and these readings are provided as inputs to the python

code then the results are compared with the robot real path, which is logged using the

overhead camera, to see the effectiveness of the Extended Kalman filter

implementation in real life applications.

Figure 18 : Hardware Integration

29

CHAPTER 4

RESULTS & DISCUSSIONS

The Extended Kalman filter is developed as a solution for the SLAM problem

as shown before and a python code is developed for the mathematical model whose

inputs are the laser scans from the environment and the wheels odometry at different

intervals of time. Using these inputs, the output corrected track and the corrected

locations of the landmarks is generated by the code in a text file format.

In order to have a better representation of the results, a python simulation code

legofile_viewer.py is used for better data analysis. The output of the simulator is shown

in Figure 19 where:

• The Red track represent the actual track of the robot.

• The Blue track represent the estimated track from the encoder values.

• The Arrow represent the robot’s orientation and the Blue circle represent the

robot’s uncertainty of its position/

• The Grey cylinders represents the arena landmarks’ locations while the Red

cylinders the expected landmarks’ locations.

• The Blue X-Y coordinates represents the sensor’s reading at each point.

Figure 19: Python Logfile_viewer simulator output

30

In the preceding sections the results for both the software implementation and

the hardware implementation will be discussed in details. The accuracy of the results

will be decided based on two aspects which are:

 The degree of correction of the corrected path compared to the robot’s

odometry path.

 The degree of deviation of the corrected path from the robot’s real path.

4.1 Software implementation results

In this section the input used is an online database. Based on the robot’s

odometry, Figure 20 shows the difference between the robot odometry path (blue path)

and the robot’s real path (red path).It’s clear that the odometry path have a high degree

of deviation in both shape and orientation than the real path.

Figure 20 : Software implementation Before Correction

31

While after applying the correction, Figure 21 shows the corrected path (blue

path) compared to the real path (red path). Compared to Figure 20 its clear the degree

of correction in both shape and orientation between the odometry path and the

corrected path. Finally, the result of the correction shows minimal deviation from the

real robot path which is considered an acceptable result.

4.2 Hardware Implementation Results

In this section, the inputs used are the data captured by the laser scanner, wheel

encoders and overhead camera in the test bench designed for testing the Extended

Kalman filter operation. By examining Figure 22, its clear the high amount of

deviation of the odometry path (blue path) compared to the real robot’s path (red path)

as the result shows incomplete track due to data loss.

By comparing the odometry path shown in Figure 20 to that shown in Figure

22, its clear that the Hardware implementation odometry track has much more noise

than that of the Software implementation which is due to the difference in encoder

quality between both situations.

Figure 21 : Software implementation After Correction

32

Finally, the result of the correction is shown in Figure 23 where the degree of

correction is clear when compared to Figure 22. On the other hand, the corrected path

(blue path) show a high degree of deviation if compared to the robot’s real path (red

path) but this deviation is acceptable given the fact that the odometry input was highly

noisy and needed a high degree of correction.

Figure 22 : Hardware implementation Before Correction

Figure 23 : Hardware implementation After Correction

33

CHAPTER 5

CONCLUSION & RECOMMENDATION

The aim of this project was to apply the Extended Kalman filter mathematical

model on a mobile robot and test its efficiency in real life applications. This goal have

been approached in two stages which are software implementation where a python

code was written to emulate the EKF mathematical model and hardware

implementation where a test bench was created to test the application of the model.

The results showed that the EKF is a viable solution for the SLAM problem

and can be used in robotics applications taking in consideration that the results are

highly affected by the amount of noise in the inputs either the wheel odometry or the

laser scanner readings. Also the results is affected by the time interval between

readings, as the time increase the accuracy of the model decrease as less samples are

gathered providing less information for correction.

Therefore, it’s recommended in future applications to use high quality laser

scanner and wheel encoders to avoid noise in the inputs and to decrease the time

interval between the sensors readings in order to have the best results.

34

References

[1] O. Matsebe, M. Namoshe, and N. Tlale, Basic extended Kalman filter: simultaneous
localisation and mapping: INTECH, 2010.

[2] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics: MIT Press, 2005.
[3] H. Durrant-Whyte and T. Bailey, "Simultaneous localization and mapping: part I,"

Robotics & Automation Magazine, IEEE, vol. 13, pp. 99-110, 2006.
[4] S. Riisgaard and M. R. Blas, "SLAM for Dummies," A Tutorial Approach to

Simultaneous Localization and Mapping, vol. 22, p. 126, 2003.

35

Appendix A

EKF_SLAM.py

from math import sin, cos, pi, atan2, sqrt

from numpy import *

from EKF_Slam_Library import encoder,write_error_ellipses,

write_cylinders, laser_scanner, get_observations

class ExtendedKalmanFilterSLAM:

 def __init__(self, state, covariance,

 robot_width, scanner_displacement,

 control_motion_factor, control_turn_factor,

 measurement_distance_stddev,

measurement_angle_stddev):

 # The state. This is the core data of the Kalman filter.

 self.state = state

 self.covariance = covariance

 # Some constants.

 self.robot_width = robot_width

 self.scanner_displacement = scanner_displacement

 self.control_motion_factor = control_motion_factor

 self.control_turn_factor = control_turn_factor

 self.measurement_distance_stddev =

measurement_distance_stddev

 self.measurement_angle_stddev = measurement_angle_stddev

 # Currently, the number of landmarks is zero.

 self.number_of_landmarks = 0

 @staticmethod

 def g(state, control, w):

 x, y, theta = state

 l, r = control

 if r != l:

 alpha = (r - l) / w

 rad = l/alpha

 g1 = x + (rad + w/2.)*(sin(theta+alpha) - sin(theta))

 g2 = y + (rad + w/2.)*(-cos(theta+alpha) + cos(theta))

 g3 = (theta + alpha + pi) % (2*pi) - pi

 else:

 g1 = x + l * cos(theta)

 g2 = y + l * sin(theta)

 g3 = theta

 return array([g1, g2, g3])

 @staticmethod

 def dg_dstate(state, control, w):

 theta = state[2]

 l, r = control

 if r != l:

 alpha = (r-l)/w

 theta_ = theta + alpha

 rpw2 = l/alpha + w/2.0

 m = array([[1.0, 0.0, rpw2*(cos(theta_) - cos(theta))],

 [0.0, 1.0, rpw2*(sin(theta_) - sin(theta))],

 [0.0, 0.0, 1.0]])

36

 else:

 m = array([[1.0, 0.0, -l*sin(theta)],

 [0.0, 1.0, l*cos(theta)],

 [0.0, 0.0, 1.0]])

 return m

 @staticmethod

 def dg_dcontrol(state, control, w):

 theta = state[2]

 l, r = tuple(control)

 if r != l:

 rml = r - l

 rml2 = rml * rml

 theta_ = theta + rml/w

 dg1dl = w*r/rml2*(sin(theta_)-sin(theta)) -

(r+l)/(2*rml)*cos(theta_)

 dg2dl = w*r/rml2*(-cos(theta_)+cos(theta)) -

(r+l)/(2*rml)*sin(theta_)

 dg1dr = (-w*l)/rml2*(sin(theta_)-sin(theta)) +

(r+l)/(2*rml)*cos(theta_)

 dg2dr = (-w*l)/rml2*(-cos(theta_)+cos(theta)) +

(r+l)/(2*rml)*sin(theta_)

 else:

 dg1dl = 0.5*(cos(theta) + l/w*sin(theta))

 dg2dl = 0.5*(sin(theta) - l/w*cos(theta))

 dg1dr = 0.5*(-l/w*sin(theta) + cos(theta))

 dg2dr = 0.5*(l/w*cos(theta) + sin(theta))

 dg3dl = -1.0/w

 dg3dr = 1.0/w

 m = array([[dg1dl, dg1dr], [dg2dl, dg2dr], [dg3dl, dg3dr]])

 return m

 def predict(self, control):

 """The prediction step of the Kalman filter."""

 # covariance' = G * covariance * GT + R

 # where R = V * (covariance in control space) * VT.

 # Covariance in control space depends on move distance.

 G3 = self.dg_dstate(self.state, control, self.robot_width)

 left, right = control

 left_var = (self.control_motion_factor * left)**2 +\

 (self.control_turn_factor * (left-right))**2

 right_var = (self.control_motion_factor * right)**2 +\

 (self.control_turn_factor * (left-right))**2

 control_covariance = diag([left_var, right_var])

 V = self.dg_dcontrol(self.state, control, self.robot_width)

 R3 = dot(V, dot(control_covariance, V.T))

 G = eye(3+2*self.number_of_landmarks)

 G[0:3, 0:3] = G3

 R = zeros((3+2*self.number_of_landmarks,

3+2*self.number_of_landmarks))

 R[0:3, 0:3] = R3

 # new covariance matrix self.covariance.

 self.covariance = dot(G, dot(self.covariance, G.T)) + R #

37

 # state' = g(state, control)

 self.state[0:3] = self.g(self.state[0:3], control,

self.robot_width)

 def add_landmark_to_state(self, initial_coords):

 self.number_of_landmarks += 1

 state_dash = zeros(3+2*self.number_of_landmarks)

 state_dash[0:3+2*(self.number_of_landmarks-1)] = self.state

 state_dash[3+2*self.number_of_landmarks-

2:3+2*self.number_of_landmarks] = initial_coords

 self.state = state_dash

 covariance_dash =

zeros((3+2*self.number_of_landmarks,3+2*self.number_of_landmarks))

 fill_diagonal(covariance_dash, 10**10)

 covariance_dash[0:3+2*(self.number_of_landmarks-1),

0:3+2*(self.number_of_landmarks-1)] = self.covariance

 self.covariance = covariance_dash

 return self.number_of_landmarks-1

 @staticmethod

 def h(state, landmark, scanner_displacement):

 """Takes a (x, y, theta) state and a (x, y) landmark, and

returns the

 measurement (range, bearing)."""

 dx = landmark[0] - (state[0] + scanner_displacement *

cos(state[2]))

 dy = landmark[1] - (state[1] + scanner_displacement *

sin(state[2]))

 r = sqrt(dx * dx + dy * dy)

 alpha = (atan2(dy, dx) - state[2] + pi) % (2*pi) - pi

 return array([r, alpha])

 @staticmethod

 def dh_dstate(state, landmark, scanner_displacement):

 theta = state[2]

 cost, sint = cos(theta), sin(theta)

 dx = landmark[0] - (state[0] + scanner_displacement * cost)

 dy = landmark[1] - (state[1] + scanner_displacement * sint)

 q = dx * dx + dy * dy

 sqrtq = sqrt(q)

 drdx = -dx / sqrtq

 drdy = -dy / sqrtq

 drdtheta = (dx * sint - dy * cost) * scanner_displacement /

sqrtq

 dalphadx = dy / q

 dalphady = -dx / q

 dalphadtheta = -1 - scanner_displacement / q * (dx * cost +

dy * sint)

 return array([[drdx, drdy, drdtheta],

 [dalphadx, dalphady, dalphadtheta]])

 @staticmethod

 def get_error_ellipse(covariance):

 """Return the position covariance (which is the upper 2x2

submatrix)

 as a triple: (main_axis_angle, stddev_1, stddev_2), where

38

 main_axis_angle is the angle (pointing direction) of the

main axis,

 along which the standard deviation is stddev_1, and

stddev_2 is the

 standard deviation along the other (orthogonal) axis."""

 eigenvals, eigenvects = linalg.eig(covariance[0:2,0:2])

 angle = atan2(eigenvects[1,0], eigenvects[0,0])

 return (angle, sqrt(eigenvals[0]), sqrt(eigenvals[1]))

 def correct(self, measurement, landmark_index):

 """The correction step of the Kalman filter."""

 landmark = self.state[3+2*landmark_index :

3+2*landmark_index+2]

 H3 = self.dh_dstate(self.state, landmark,

self.scanner_displacement)

 H = zeros((2,3+2*self.number_of_landmarks))

 H[0:2, 0:3] = H3

 H[0:2, 3+2*landmark_index:3+2*landmark_index+2] = -H3[0:2,

0:2]

 Q = diag([self.measurement_distance_stddev**2,

 self.measurement_angle_stddev**2])

 K = dot(self.covariance,

 dot(H.T, linalg.inv(dot(H, dot(self.covariance,

H.T)) + Q)))

 innovation = array(measurement) -\

 self.h(self.state, landmark,

self.scanner_displacement)

 innovation[1] = (innovation[1] + pi) % (2*pi) - pi

 self.state = self.state + dot(K, innovation)

 self.covariance = dot(eye(size(self.state)) - dot(K, H),

 self.covariance)

 def get_landmarks(self):

 """Returns a list of (x, y) tuples of all landmark

positions."""

 return ([(self.state[3+2*j], self.state[3+2*j+1])

 for j in range(self.number_of_landmarks)])

 def get_landmark_error_ellipses(self):

 """Returns a list of all error ellipses, one for each

landmark."""

 ellipses = []

 for i in range(self.number_of_landmarks):

 j = 3 + 2 * i

 ellipses.append(self.get_error_ellipse(

 self.covariance[j:j+2, j:j+2]))

 return ellipses

39

if __name__ == '__main__':

 # Robot constants.

 scanner_displacement = 0.0

 ticks_to_mm = 3.59

 robot_width = 250.0

 # Cylinder extraction and matching constants.

 minimum_valid_distance = 20.0

 depth_jump = 100.0

 cylinder_offset = 90.0

 max_cylinder_distance = 900.0

 # Filter constants.

 control_motion_factor = 0.3 # Error in motor control.

 control_turn_factor = 1.2 # Additional error due to slip when

turning.

 measurement_distance_stddev = 250.0 # Distance measurement

error of cylinders.

 measurement_angle_stddev = 10. / 180.0 * pi # Angle measurement

error.

 # Arbitrary start position.

 initial_state = array([1720.0, 1929.0, 180.0 / 180.0 * pi])

 # Covariance at start position.

 initial_covariance = zeros((3,3))

 # Setup filter.

 kf = ExtendedKalmanFilterSLAM(initial_state, initial_covariance,

 robot_width, scanner_displacement,

 control_motion_factor,

control_turn_factor,

 measurement_distance_stddev,

measurement_angle_stddev)

 # Read data.

 ticks = encoder()

 f = open("//home//ahmed//work//SLAM//robot4_motors.txt")

 lines = len(f.readlines())

 f.seek(0.0)

 f.close()

 # This is the EKF SLAM loop.

 f = open("ekf_slam_correction.txt", "w")

 for t in range(lines-1):

 #Predection

 control = []

 control.append(ticks[(t, 0)]*ticks_to_mm)

 control.append(ticks[(t, 1)]*ticks_to_mm)

 kf.predict(control)

 # Correction.

 observations = get_observations(

 laser_scanner(t),

 depth_jump, minimum_valid_distance, cylinder_offset,

 kf, max_cylinder_distance)

40

 for obs in observations:

 measurement, cylinder_world, cylinder_scanner,

cylinder_index = obs

 if cylinder_index == -1:

 cylinder_index =

kf.add_landmark_to_state(cylinder_world)

 kf.correct(measurement, cylinder_index)

 # End of EKF SLAM - from here on, data is written.

 # Output the center of the scanner, not the center of the

robot.

 f.write("F %f %f %f\n" % \

 tuple(kf.state[0:3] + [scanner_displacement *

cos(kf.state[2]),

 scanner_displacement *

sin(kf.state[2]),

 0.0]))

 # Write covariance matrix in angle stddev1 stddev2 stddev-

heading form

 e =

ExtendedKalmanFilterSLAM.get_error_ellipse(kf.covariance)

 f.write("E %f %f %f %f\n" % (e +

(sqrt(kf.covariance[2,2]),)))

 # Write estimates of landmarks.

 write_cylinders(f, "W C", kf.get_landmarks())

 # Write error ellipses of landmarks.

 f.write("W E\t")

 for e in kf.get_landmark_error_ellipses():

 f.write("%.3f %.1f %.1f\t" % e)

 f.write("\n")

 # Write cylinders detected by the scanner.

 write_cylinders(f, "D C", [(obs[2][0], obs[2][1])

 for obs in observations])

 f.close()

41

Appendix B

EKF_Slam_Library.py

from math import sin, cos, pi

from pylab import *

from numpy import *

from lego_robot import LegoLogfile

def encoder():

 f = open("//home//ahmed//work//SLAM//robot4_motors.txt")

 lines = len(f.readlines())

 f.seek(0.0)

 left_list = []

 right_list = []

 encoder_ticks = zeros(shape=(lines, 2))

 for l in f:

 sp = l.split()

 left_list.append(int(sp[2]))

 right_list.append(int(sp[1]))

 for u in range(lines):

 if u == 0:

 encoder_ticks[(u, 0)] = (left_list[u]-left_list[0])

 encoder_ticks[(u, 1)] = (right_list[u]-right_list[0])

 else:

 encoder_ticks[(u, 0)] = (left_list[u]-left_list[u-1])

 encoder_ticks[(u, 1)] = (right_list[u]-right_list[u-1])

 f.close()

 return encoder_ticks

def filter_step(old_pose, motor_ticks, ticks_to_mm, robot_width,

scanner_displacement):

 if motor_ticks[0] == motor_ticks[1]:

 x =

old_pose[0]+(motor_ticks[0]*ticks_to_mm*cos(old_pose[2]))

 y =

old_pose[1]+(motor_ticks[0]*ticks_to_mm*sin(old_pose[2]))

 theta = old_pose[2]

 return(x, y, theta)

 else:

 old_theta = old_pose[2]

 old_x = old_pose[0]

 old_y = old_pose[1]

 old_x -= cos(old_theta) * scanner_displacement

 old_y -= sin(old_theta) * scanner_displacement

 l = motor_ticks[0] * ticks_to_mm

 r = motor_ticks[1] * ticks_to_mm

 alpha = (r - l) / robot_width

 R = l / alpha

 new_theta = (old_theta + alpha) % (2*pi)

 new_x = old_x + (R + robot_width/2.0) * (sin(new_theta)

- sin(old_theta))

 new_y = old_y + (R + robot_width/2.0) * (-cos(new_theta)

+ cos(old_theta))

42

 new_x += cos(new_theta) * scanner_displacement

 new_y += sin(new_theta) * scanner_displacement

 return (new_x, new_y, new_theta)

def laser_scanner(get):

 f = open("//home//ahmed//work//SLAM//robot4_scan.txt")

 line_no = len(f.readlines())

 f.seek(0)

 values = []

 for yu in range(line_no):

 readings = f.readline()

 if yu == get:

 values = readings.split()

 f.close()

 return values[1:682]

def compute_derivative(scan, min_dist):

 jumps = [0]

 for i in range(1, len(scan) - 1):

 l = float(scan[i-1])

 r = float(scan[i+1])

 if l > min_dist and r > min_dist:

 derivative = (r - l) / 2.0

 jumps.append(derivative)

 else:

 jumps.append(0)

 jumps.append(0)

 return jumps

def find_cylinders(scan, scan_derivative, jump, min_dist):

 cylinder_list = []

 on_cylinder = False

 sum_ray, sum_depth, rays = 0.0, 0.0, 0

 for i in range(len(scan_derivative)):

 if scan_derivative[i] < -jump:

 # Start a new cylinder, independent of on_cylinder.

 on_cylinder = True

 sum_ray, sum_depth, rays = 0.0, 0.0, 0

 elif scan_derivative[i] > jump:

 # Save cylinder if there was one.

 if on_cylinder and rays:

 cylinder_list.append((sum_ray/rays, sum_depth/rays))

 on_cylinder = False

 # Always add point, if it is a valid measurement.

 elif float(scan[i]) > min_dist:

 sum_ray += i

 sum_depth += float(scan[i])

 rays += 1

 return cylinder_list

def compute_cartesian_coordinates(cylinders, cylinder_offset,

mounting_angle):

 result = []

 for c in cylinders:

 bearing = (c[0] - 341.0) * 0.006275923151543 +

mounting_angle

 ranges = c[1] + cylinder_offset

43

 x_coordinate = ranges * cos(bearing)

 y_coordinate = ranges * sin(bearing)

 result.append((x_coordinate, y_coordinate))

 return result

def compute_scanner_cylinders(scan, depth_jump,

minimum_valid_distance, cylinder_offset, mounting_angle):

 der = compute_derivative(scan, minimum_valid_distance)

 cylinders = find_cylinders(scan, der, depth_jump,

minimum_valid_distance)

 scanner_cylinders = compute_cartesian_coordinates(cylinders,

cylinder_offset, mounting_angle)

 return scanner_cylinders

def write_cylinders(file_desc, line_header, cylinder_list):

 file_desc.write(line_header)

 file_desc.write("\t")

 for c in cylinder_list:

 file_desc.write("%.1f %.1f\t" % c)

 file_desc.write("\n")

def get_observations(scan, jump, min_dist, cylinder_offset,

 robot,

 max_cylinder_distance):

 der = compute_derivative(scan, min_dist)

 cylinders = find_cylinders(scan, der, jump, min_dist)

 # Compute scanner pose from robot pose.

 scanner_pose = (

 robot.state[0] + cos(robot.state[2]) *

robot.scanner_displacement,

 robot.state[1] + sin(robot.state[2]) *

robot.scanner_displacement,

 robot.state[2])

 # For every detected cylinder which has a closest matching pole

in the

 # cylinders that are part of the current state, put the

measurement

 # (distance, angle) and the corresponding cylinder index into

the result list.

 result = []

 for c in cylinders:

 # Compute the angle and distance measurements.

 angle = LegoLogfile.beam_index_to_angle(c[0])

 distance = c[1] + cylinder_offset

 # Compute x, y of cylinder in world coordinates.

 xs, ys = distance*cos(angle), distance*sin(angle)

 x, y = LegoLogfile.scanner_to_world(scanner_pose, (xs, ys))

 # Find closest cylinder in the state.

 best_dist_2 = max_cylinder_distance * max_cylinder_distance

 best_index = -1

 for index in range(robot.number_of_landmarks):

 pole_x, pole_y = robot.state[3+2*index : 3+2*index+2]

 dx, dy = pole_x - x, pole_y - y

 dist_2 = dx * dx + dy * dy

 if dist_2 < best_dist_2:

 best_dist_2 = dist_2

 best_index = index

 # Always add result to list. Note best_index may be -1.

 result.append(((distance, angle), (x, y), (xs, ys),

best_index))

44

 return result

def write_error_ellipses(file_desc, line_header,

error_ellipse_list):

 file_desc.write(line_header)

 file_desc.write("\t")

 for e in error_ellipse_list:

 file_desc.write("%.3f %.1f %.1f\n" % e)

45

Appendix C

legofile_viewer.py

Python routines to inspect a ikg LEGO robot logfile.

Author: Claus Brenner, 28 OCT 2012

from Tkinter import *

import tkFileDialog

from lego_robot import *

from math import sin, cos, pi, ceil

The canvas and world extents of the scene.

Canvas extents in pixels, world extents in millimeters.

canvas_extents = (600, 600)

world_extents = (1800.0, 2000.0)

The extents of the sensor canvas.

sensor_canvas_extents = canvas_extents

The maximum scanner range used to scale scan measurement drawings,

in millimeters.

max_scanner_range = 4000.0

class DrawableObject(object):

 def draw(self, at_step):

 print "To be overwritten - will draw a certain point in

time:", at_step

 def background_draw(self):

 print "Background draw."

 @staticmethod

 def get_ellipse_points(center, main_axis_angle, radius1,

radius2,

 start_angle = 0.0, end_angle = 2 * pi):

 """Generate points of an ellipse, for drawing (y axis

down)."""

 points = []

 ax = radius1 * cos(main_axis_angle)

 ay = radius1 * sin(main_axis_angle)

 bx = - radius2 * sin(main_axis_angle)

 by = radius2 * cos(main_axis_angle)

 N_full = 40 # Number of points on full ellipse.

 N = int(ceil((end_angle - start_angle) / (2 * pi) * N_full))

 N = max(N, 1)

 increment = (end_angle - start_angle) / N

 for i in xrange(N + 1):

 a = start_angle + i * increment

 c = cos(a)

 s = sin(a)

 x = c*ax + s*bx + center[0]

 y = - c*ay - s*by + center[1]

 points.append((x,y))

 return points

class Trajectory(DrawableObject):

 def __init__(self, points, canvas,

 world_extents, canvas_extents,

 standard_deviations = [],

46

 point_size2 = 2,

 background_color = "gray", cursor_color = "red",

 position_stddev_color = "green", theta_stddev_color

= "#ffc0c0"):

 self.points = points

 self.standard_deviations = standard_deviations

 self.canvas = canvas

 self.world_extents = world_extents

 self.canvas_extents = canvas_extents

 self.point_size2 = point_size2

 self.background_color = background_color

 self.cursor_color = cursor_color

 self.position_stddev_color = position_stddev_color

 self.theta_stddev_color = theta_stddev_color

 self.cursor_object = None

 self.cursor_object2 = None

 self.cursor_object3 = None

 self.cursor_object4 = None

 def background_draw(self):

 if self.points:

 p_xy_only = []

 for p in self.points:

 self.canvas.create_oval(\

 p[0]-self.point_size2, p[1]-self.point_size2,

 p[0]+self.point_size2, p[1]+self.point_size2,

 fill=self.background_color, outline="")

 p_xy_only.append(p[0:2])

 self.canvas.create_line(*p_xy_only,

fill=self.background_color)

 def draw(self, at_step):

 if self.cursor_object:

 self.canvas.delete(self.cursor_object)

 self.cursor_object = None

 self.canvas.delete(self.cursor_object2)

 self.cursor_object2 = None

 if at_step < len(self.points):

 p = self.points[at_step]

 # Draw position (point).

 self.cursor_object = self.canvas.create_oval(\

 p[0]-self.point_size2-1, p[1]-self.point_size2-1,

 p[0]+self.point_size2+1, p[1]+self.point_size2+1,

 fill=self.cursor_color, outline="")

 # Draw error ellipse.

 if at_step < len(self.standard_deviations):

 stddev = self.standard_deviations[at_step]

 # Note this assumes correct aspect ratio.

 factor = canvas_extents[0] / world_extents[0]

 points = self.get_ellipse_points(p, stddev[0],

 stddev[1] * factor, stddev[2] * factor)

 if self.cursor_object4:

 self.canvas.delete(self.cursor_object4)

 self.cursor_object4 = self.canvas.create_line(

 *points, fill=self.position_stddev_color)

 if len(p) > 2:

 # Draw heading standard deviation.

 if at_step < len(self.standard_deviations) and\

 len(self.standard_deviations[0]) > 3:

 angle =

min(self.standard_deviations[at_step][3], pi)

47

 points = self.get_ellipse_points(p, p[2], 30.0,

30.0,

 -angle, angle)

 points = [p[0:2]] + points + [p[0:2]]

 if self.cursor_object3:

 self.canvas.delete(self.cursor_object3)

 self.cursor_object3 =

self.canvas.create_polygon(

 *points, fill=self.theta_stddev_color)

 # Draw heading.

 self.cursor_object2 = self.canvas.create_line(p[0],

p[1],

 p[0] + cos(p[2]) * 50,

 p[1] - sin(p[2]) * 50,

 fill = self.cursor_color)

class ScannerData(DrawableObject):

 def __init__(self, list_of_scans, canvas, canvas_extents,

scanner_range):

 self.canvas = canvas

 self.canvas_extents = canvas_extents

 self.cursor_object = None

 # Convert polar scanner measurements into xy form, in canvas

coords.

 # Store the result in self.scan_polygons.

 self.scan_polygons = []

 for s in list_of_scans:

 poly = [to_sensor_canvas((0,0), canvas_extents,

scanner_range)]

 i = 0

 for m in s:

 angle = LegoLogfile.beam_index_to_angle(i)

 x = m * cos(angle)

 y = m * sin(angle)

 poly.append(to_sensor_canvas((x,y), canvas_extents,

scanner_range))

 i += 1

 poly.append(to_sensor_canvas((0,0), canvas_extents,

scanner_range))

 self.scan_polygons.append(poly)

 def background_draw(self):

 # Draw x axis.

 self.canvas.create_line(

 self.canvas_extents[0]/2, self.canvas_extents[1]/2,

 self.canvas_extents[0]/2, 20,

 fill="black")

 self.canvas.create_text(

 self.canvas_extents[0]/2 + 10, 20, text="x")

 # Draw y axis.

 self.canvas.create_line(

 self.canvas_extents[0]/2, self.canvas_extents[1]/2,

 20, self.canvas_extents[1]/2,

 fill="black")

 self.canvas.create_text(

 20, self.canvas_extents[1]/2 - 10, text="y")

 # Draw big disk in the scan center.

 self.canvas.create_oval(

 self.canvas_extents[0]/2-20, self.canvas_extents[1]/2-

20,

48

 self.canvas_extents[0]/2+20,

self.canvas_extents[1]/2+20,

 fill="gray", outline="")

 def draw(self, at_step):

 if self.cursor_object:

 self.canvas.delete(self.cursor_object)

 self.cursor_object = None

 if at_step < len(self.scan_polygons):

 self.cursor_object =

self.canvas.create_polygon(self.scan_polygons[at_step], fill="blue")

class Landmarks(DrawableObject):

 # In contrast other classes, Landmarks stores the original world

coords and

 # transforms them when drawing.

 def __init__(self, landmarks, canvas, canvas_extents,

world_extents, color = "gray"):

 self.landmarks = landmarks

 self.canvas = canvas

 self.canvas_extents = canvas_extents

 self.world_extents = world_extents

 self.color = color

 def background_draw(self):

 for l in self.landmarks:

 if l[0] =='C':

 x, y = l[1:3]

 ll = to_world_canvas3((x - l[3], y - l[3]),

self.canvas_extents, self.world_extents)

 ur = to_world_canvas3((x + l[3], y + l[3]),

self.canvas_extents, self.world_extents)

 self.canvas.create_oval(ll[0], ll[1], ur[0], ur[1],

fill=self.color)

 def draw(self, at_step):

 # Landmarks are background only.

 pass

class Points(DrawableObject):

 # Points, optionally with error ellipses.

 def __init__(self, points, canvas, color = "red", radius = 5,

ellipses = [], ellipse_factor = 1.0):

 self.points = points

 self.canvas = canvas

 self.color = color

 self.radius = radius

 self.ellipses = ellipses

 self.ellipse_factor = ellipse_factor

 self.cursor_objects = []

 def background_draw(self):

 pass

 def draw(self, at_step):

 if self.cursor_objects:

 map(self.canvas.delete, self.cursor_objects)

 self.cursor_objects = []

 if at_step < len(self.points):

 for i in xrange(len(self.points[at_step])):

 # Draw point.

49

 c = self.points[at_step][i]

 self.cursor_objects.append(self.canvas.create_oval(

 c[0]-self.radius, c[1]-self.radius,

 c[0]+self.radius, c[1]+self.radius,

 fill=self.color))

 # Draw error ellipse if present.

 if at_step < len(self.ellipses) and i <

len(self.ellipses[at_step]):

 e = self.ellipses[at_step][i]

 points = self.get_ellipse_points(c, e[0], e[1] *

self.ellipse_factor,

 e[2] *

self.ellipse_factor)

self.cursor_objects.append(self.canvas.create_line(

 *points, fill=self.color))

Particles are like points but add a direction vector.

class Particles(DrawableObject):

 def __init__(self, particles, canvas, color = "red", radius =

1.0,

 vector = 8.0):

 self.particles = particles

 self.canvas = canvas

 self.color = color

 self.radius = radius

 self.vector = vector

 self.cursor_objects = []

 def background_draw(self):

 pass

 def draw(self, at_step):

 if self.cursor_objects:

 map(self.canvas.delete, self.cursor_objects)

 self.cursor_objects = []

 if at_step < len(self.particles):

 for c in self.particles[at_step]:

 self.cursor_objects.append(self.canvas.create_oval(

 c[0]-self.radius, c[1]-self.radius,

 c[0]+self.radius, c[1]+self.radius,

 fill=self.color, outline=self.color))

 self.cursor_objects.append(self.canvas.create_line(

 c[0], c[1],

 c[0] + cos(c[2]) * self.vector,

 c[1] - sin(c[2]) * self.vector,

 fill = self.color))

World canvas is x right, y up, and scaling according to

canvas/world extents.

def to_world_canvas2(world_point, canvas_extents, world_extents):

 """Transforms a point from world coord system to world canvas

coord system."""

 x = int(world_point[0]*1.25)

 y = int(world_point[1]*1.24)

 return (x, y)

def to_world_canvas3(world_point, canvas_extents, world_extents):

 """Transforms a point from world coord system to world canvas

coord system."""

 x = int(world_point[0] / world_extents[0] * canvas_extents[0])

50

 y = int(world_point[1] / world_extents[1] * canvas_extents[1])

 return (x, y)

def to_world_canvas(world_point, canvas_extents, world_extents):

 """Transforms a point from world coord system to world canvas

coord system."""

 x = int(world_point[0] / world_extents[0] * canvas_extents[0])

 y = int(canvas_extents[1] - 1 - world_point[1] /

world_extents[1] * canvas_extents[1])

 return (x, y)

Sensor canvas is "in driving direction", with x up, y left, (0,0)

in the center

and scaling according to canvas_extents and max_scanner_range.

def to_sensor_canvas(sensor_point, canvas_extents, scanner_range):

 """Transforms a point from sensor coordinates to sensor canvas

coord system."""

 scale = canvas_extents[0] / 2.0 / scanner_range

 x = int(canvas_extents[0] / 2.0 - sensor_point[1] * scale)

 y = int(canvas_extents[1] / 2.0 - 1 - sensor_point[0] * scale)

 return (x, y)

def slider_moved(index):

 """Callback for moving the scale slider."""

 i = int(index)

 # Call all draw objects.

 for d in draw_objects:

 d.draw(i)

 # Print info about current point.

 info.config(text=logfile.info(i))

def add_file():

 filename = tkFileDialog.askopenfilename(filetypes = [("all

files", ".*"), ("txt files", ".txt")])

 if filename:

 # If the file is in the list already, remove it (so it will

be appended

 # at the end).

 if filename in all_file_names:

 all_file_names.remove(filename)

 all_file_names.append(filename)

 load_data()

def load_data():

 global canvas_extents, sensor_canvas_extents, world_extents,

max_scanner_range

 for filename in all_file_names:

 logfile.read(filename)

 global draw_objects

 draw_objects = []

 scale.configure(to=logfile.size()-1)

 # Insert: landmarks.

 draw_objects.append(Landmarks(logfile.landmarks, world_canvas,

canvas_extents, world_extents))

 # Insert: reference trajectory.

 positions = [to_world_canvas2(pos, canvas_extents,

world_extents) for pos in logfile.reference_positions]

51

 draw_objects.append(Trajectory(positions, world_canvas,

world_extents, canvas_extents,

 cursor_color="red", background_color="#FFB4B4"))

 # Insert: scanner data.

 draw_objects.append(ScannerData(logfile.scan_data,

sensor_canvas,

 sensor_canvas_extents, max_scanner_range))

 # Insert: detected cylinders, in scanner coord system.

 if logfile.detected_cylinders:

 positions = [[to_sensor_canvas(pos, sensor_canvas_extents,

max_scanner_range)

 for pos in cylinders_one_scan]

 for cylinders_one_scan in

logfile.detected_cylinders]

 draw_objects.append(Points(positions, sensor_canvas,

"#88FF88"))

 # Insert: world objects, cylinders and corresponding world

objects, ellipses.

 if logfile.world_cylinders:

 positions = [[to_world_canvas(pos, canvas_extents,

world_extents)

 for pos in cylinders_one_scan]

 for cylinders_one_scan in

logfile.world_cylinders]

 # Also setup cylinders if present.

 # Note this assumes correct aspect ratio.

 factor = canvas_extents[0] / world_extents[0]

 draw_objects.append(Points(positions, world_canvas,

"#DC23C5",

 ellipses =

logfile.world_ellipses,

 ellipse_factor = factor))

 # Insert: detected cylinders, transformed into world coord

system.

 if logfile.detected_cylinders and logfile.filtered_positions and

\

 len(logfile.filtered_positions[0]) > 2:

 positions = []

 for i in xrange(min(len(logfile.detected_cylinders),

len(logfile.filtered_positions))):

 this_pose_positions = []

 pos = logfile.filtered_positions[i]

 dx = cos(pos[2])

 dy = sin(pos[2])

 for pole in logfile.detected_cylinders[i]:

 x = pole[0] * dx - pole[1] * dy + pos[0]

 y = pole[0] * dy + pole[1] * dx + pos[1]

 p = to_world_canvas((x,y), canvas_extents,

world_extents)

 this_pose_positions.append(p)

 positions.append(this_pose_positions)

 draw_objects.append(Points(positions, world_canvas,

"#88FF88"))

 # Insert: particles.

 if logfile.particles:

 positions = [

52

 [(to_world_canvas(pos, canvas_extents, world_extents) +

(pos[2],))

 for pos in particles_one_scan]

 for particles_one_scan in logfile.particles]

 draw_objects.append(Particles(positions, world_canvas,

"#80E080"))

 # Insert: filtered trajectory.

 if logfile.filtered_positions:

 if len(logfile.filtered_positions[0]) > 2:

 positions = [tuple(list(to_world_canvas(pos,

canvas_extents, world_extents)) + [pos[2]]) for pos in

logfile.filtered_positions]

 else:

 positions = [to_world_canvas(pos, canvas_extents,

world_extents) for pos in logfile.filtered_positions]

 # If there is error ellipses, insert them as well.

 draw_objects.append(Trajectory(positions, world_canvas,

world_extents, canvas_extents,

 standard_deviations = logfile.filtered_stddev,

 cursor_color="blue", background_color="lightblue",

 position_stddev_color = "#8080ff",

theta_stddev_color="#c0c0ff"))

 # Start new canvas and do all background drawing.

 world_canvas.delete(ALL)

 sensor_canvas.delete(ALL)

 for d in draw_objects:

 d.background_draw()

Main program.

if __name__ == '__main__':

 # Construct logfile (will be read in load_data()).

 logfile = LegoLogfile()

 # Setup GUI stuff.

 root = Tk()

 frame1 = Frame(root)

 frame1.pack()

 world_canvas = Canvas(frame1,width=800,height=600,bg="white")

 world_canvas.pack(side=LEFT)

 sensor_canvas = Canvas(frame1,width=400,height=600,bg="white")

 sensor_canvas.pack(side=RIGHT)

 scale = Scale(root, orient=HORIZONTAL, command = slider_moved)

 scale.pack(fill=X)

 info = Label(root)

 info.pack()

 frame2 = Frame(root)

 frame2.pack()

 load = Button(frame2,text="Load (additional)

logfile",command=add_file)

 load.pack(side=LEFT)

 reload_all = Button(frame2,text="Reload all",command=load_data)

 reload_all.pack(side=RIGHT)

 # The list of objects to draw.

 draw_objects = []

 # Ask for file.

53

 all_file_names = []

 add_file()

 root.mainloop()

 root.destroy()

54

Appendix D

lego_robot.py

Python routines useful for handling ikg's LEGO robot data.

Author: Claus Brenner, 28.10.2012

from math import sin, cos, pi

In previous versions, the S record included the number of scan

points.

If so, set this to true.

s_record_has_count = True

Class holding log data of our Lego robot.

The logfile understands the following records:

P reference position (of the robot)

S scan data

I indices of poles in the scan data (determined by an external

algorithm)

M motor (ticks from the odometer) data

F filtered data (robot position, or position and heading angle)

E (error) standard deviation in position, or position and heading

angle

L landmark (reference landmark, fixed)

D detected landmark, in the scanner's coordinate system. C is

cylinders

W something to draw in the world coordinate system.

C is cylinders, E is 2D error ellipses

PA list of particles (x, y, heading).

class LegoLogfile(object):

 def __init__(self):

 self.reference_positions = []

 self.scan_data = []

 self.pole_indices = []

 self.motor_ticks = []

 self.filtered_positions = []

 self.filtered_stddev = []

 self.landmarks = []

 self.detected_cylinders = []

 self.world_cylinders = []

 self.world_ellipses = []

 self.particles = []

 self.last_ticks = None

 def read(self, filename):

 """Reads log data from file. Calling this multiple times

with different

 files will result in a merge of the data, i.e. if one

file contains

 M and S data, and the other contains M and P data, then

LegoLogfile

 will contain S from the first file and M and P from the

second file."""

 # If information is read in repeatedly, replace the lists

instead of appending,

 # but only replace those lists that are present in the data.

 first_reference_positions = True

 first_scan_data = True

 first_pole_indices = True

55

 first_motor_ticks = True

 first_filtered_positions = True

 first_filtered_stddev = True

 first_landmarks = True

 first_detected_cylinders = True

 first_world_cylinders = True

 first_world_ellipses = True

 first_particles = True

 f = open(filename)

 for l in f:

 sp = l.split()

 # P is the reference position.

 # File format: P timestamp[in ms] x[in mm] y[in mm]

 # Stored: A list of tuples [(x, y), ...] in

reference_positions.

 if sp[0] == 'P':

 if first_reference_positions:

 self.reference_positions = []

 first_reference_positions = False

 self.reference_positions.append((int(sp[1]),

int(sp[2])))

 # S is the scan data.

 # File format:

 # S timestamp[in ms] distances[in mm] ...

 # Or, in previous versions (set s_record_has_count to

True):

 # S timestamp[in ms] count distances[in mm] ...

 # Stored: A list of tuples [[(scan1_distance,...),

(scan2_distance,...)]

 # containing all scans, in scan_data.

 elif sp[0] == 'S':

 if first_scan_data:

 self.scan_data = []

 first_scan_data = False

 if s_record_has_count:

 self.scan_data.append(tuple(map(int, sp[1:])))

 else:

 self.scan_data.append(tuple(map(int, sp[1:])))

 # I is indices of poles in the scan.

 # The indices are given in scan order

(counterclockwise).

 # -1 means that the pole could not be clearly detected.

 # File format: I timestamp[in ms] index ...

 # Stored: A list of tuples of indices (including empty

tuples):

 # [(scan1_pole1, scan1_pole2,...),

(scan2_pole1,...)...]

 elif sp[0] == 'I':

 if first_pole_indices:

 self.pole_indices = []

 first_pole_indices = False

 self.pole_indices.append(tuple(map(int, sp[2:])))

 # M is the motor data.

 # File format: M timestamp[in ms] pos[in ticks]

tachoCount[in ticks] acceleration[deg/s^2] rotationSpeed[deg/s] ...

 # (4 values each for: left motor, right motor, and

third motor (not used)).

56

 # Stored: A list of tuples [(inc-left, inc-right), ...

] with tick increments, in motor_ticks.

 # Note that the file contains absolute ticks, but

motor_ticks contains the increments (differences).

 elif sp[0] == 'M':

 ticks = (int(sp[2]), int(sp[1]))

 if first_motor_ticks:

 self.motor_ticks = []

 first_motor_ticks = False

 self.last_ticks = ticks

 self.motor_ticks.append(

 tuple([ticks[i]-self.last_ticks[i] for i in

range(2)]))

 self.last_ticks = ticks

 # F is filtered trajectory. No time stamp is used.

 # File format: F x[in mm] y[in mm]

 # OR: F x[in mm] y[in mm] heading[in radians]

 # Stored: A list of tuples, each tuple is (x y) or (x y

heading)

 elif sp[0] == 'F':

 if first_filtered_positions:

 self.filtered_positions = []

 first_filtered_positions = False

 self.filtered_positions.append(tuple(map(float,

sp[1:])))

 # E is error of filtered trajectory. No time stamp is

used.

 # File format: E (angle of main axis)[in radians] std-

dev1 std-dev2

 # OR: The same format but with std-dev-heading

appended.

 # Note: std-dev1 is along the main axis, std-dev2 is

along the

 # second axis, which is orthogonal to the main axis.

 # Stored: A list of tuples, each tuple is

 # (angle, std-dev1, std-dev2) or

 # (angle, std-dev1, std-dev2, std-dev-heading).

 elif sp[0] == 'E':

 if first_filtered_stddev:

 self.filtered_stddev = []

 first_filtered_stddev = False

 self.filtered_stddev.append(tuple(map(float,

sp[1:])))

 # L is landmark. This is actually background

information, independent

 # of time.

 # File format: L <type> info...

 # Supported types:

 # Cylinder: L C x y diameter.

 # Stored: List of (<type> info) tuples.

 elif sp[0] == 'L':

 if first_landmarks:

 self.landmarks = []

 first_landmarks = False

 if sp[1] == 'C':

 self.landmarks.append(tuple(['C'] + map(float,

sp[2:])))

57

 # D is detected landmarks (in each scan).

 # File format: D <type> info...

 # Supported types:

 # Cylinder: D C x y x y ...

 # Stored: List of lists of (x, y) tuples of the

cylinder positions,

 # one list per scan.

 elif sp[0] == 'D':

 if sp[1] == 'C':

 if first_detected_cylinders:

 self.detected_cylinders = []

 first_detected_cylinders = False

 cyl = map(float, sp[2:])

 self.detected_cylinders.append([(cyl[2*i],

cyl[2*i+1]) for i in range(len(cyl)/2)])

 # W is information to be plotted in the world (in each

scan).

 # File format: W <type> info...

 # Supported types:

 # Cylinder: W C x y x y ...

 # Stored: List of lists of (x, y) tuples of the

cylinder positions,

 # one list per scan.

 # Error ellipses: W E angle axis1 axis, angle axis1

axis2 ...

 # where angle is the ellipse's orientations and axis1

and axis2 are the lenghts

 # of the two half axes.

 # Stored: List of lists of (angle, axis1, axis2)

tuples.

 # Note the ellipses can be used only in combination

with "W C", which will

 # define the center point of the ellipse.

 elif sp[0] == 'W':

 if sp[1] == 'C':

 if first_world_cylinders:

 self.world_cylinders = []

 first_world_cylinders = False

 cyl = map(float, sp[2:])

 self.world_cylinders.append([(cyl[2*i],

cyl[2*i+1]) for i in range(len(cyl)/2)])

 elif sp[1] == 'E':

 if first_world_ellipses:

 self.world_ellipses = []

 first_world_ellipses = False

 ell = map(float, sp[2:])

 self.world_ellipses.append([(ell[3*i],

ell[3*i+1], ell[3*i+2]) for i in xrange(len(ell)/3)])

 # PA is particles.

 # File format:

 # PA x0, y0, heading0, x1, y1, heading1, ...

 # Stored: A list of lists of tuples:

 # [[(x0, y0, heading0), (x1, y1, heading1),...],

 # [(x0, y0, heading0), (x1, y1, heading1),...], ...]

 # where each list contains all particles of one time

step.

 elif sp[0] == 'PA':

 if first_particles:

 self.particles = []

58

 first_particles = False

 i = 1

 particle_list = []

 while i < len(sp):

 particle_list.append(tuple(map(float,

sp[i:i+3])))

 i += 3

 self.particles.append(particle_list)

 f.close()

 def size(self):

 """Return the number of entries. Take the max, since some

lists may be empty."""

 return max(len(self.reference_positions),

len(self.scan_data),

 len(self.pole_indices), len(self.motor_ticks),

 len(self.filtered_positions),

len(self.filtered_stddev),

 len(self.detected_cylinders),

len(self.world_cylinders),

 len(self.particles))

 @staticmethod

 def beam_index_to_angle(i, mounting_angle = -

0.06981317007977318):

 """Convert a beam index to an angle, in radians."""

 return (i - 341.0) * 0.006765923151543 + mounting_angle

 @staticmethod

 def scanner_to_world(pose, point):

 """Given a robot pose (rx, ry, heading) and a point (x, y)

in the

 scanner's coordinate system, return the point's

coordinates in the

 world coordinate system."""

 dx = cos(pose[2])

 dy = sin(pose[2])

 x, y = point

 return (x * dx - y * dy + pose[0], x * dy + y * dx +

pose[1])

 def info(self, i):

 """Prints reference pos, number of scan points, and motor

ticks."""

 s = ""

 if i < len(self.reference_positions):

 s += " | ref-pos: %4d %4d" % self.reference_positions[i]

 if i < len(self.scan_data):

 s += " | scan-points: %d" % len(self.scan_data[i])

 if i < len(self.pole_indices):

 indices = self.pole_indices[i]

 if indices:

 s += " | pole-indices:"

 for idx in indices:

 s += " %d" % idx

 else:

 s += " | (no pole indices)"

59

 if i < len(self.motor_ticks):

 s += " | motor: %d %d" % self.motor_ticks[i]

 if i < len(self.filtered_positions):

 f = self.filtered_positions[i]

 s += " | filtered-pos:"

 for j in (0,1):

 s += " %.1f" % f[j]

 if len(f) > 2:

 s += " %.1f" % (f[2] / pi * 180.)

 if i < len(self.filtered_stddev):

 stddev = self.filtered_stddev[i]

 s += " | stddev:"

 # Print stddev in both axes, and theta, if present.

 # Don't print the orientation angle stddev[0].

 for j in (1,2):

 s += " %.1f" % stddev[j]

 if len(stddev) > 3:

 s += " %.1f" % (stddev[3] / pi * 180.)

 return s

60

Appendix E

track.cpp

//g++ track.cpp -o track -lopencv_core -lopencv_imgproc -

lopencv_objdetect -lopencv_highgui

#include <iostream>

#include <stdio.h>

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/imgproc/imgproc.hpp"

using namespace cv;

using namespace std;

 int main(int argc, char** argv)

 {

FILE *f = fopen("reference.txt","w");

if (f == NULL)

{

printf("Error opening file\n");

exit(1);

}

VideoCapture cap(0); //capture the video from webcam

//cap.open(0);

 if (!cap.isOpened()) // if not success, exit program

 {

 cout << "Cannot open the web cam" << endl;

 return -1;

 }

 namedWindow("Control", CV_WINDOW_AUTOSIZE); //create a window

called "Control"

int iLowH = 0;

int iHighH = 179;

int iLowS = 150;

int iHighS = 255;

int iLowV = 0;

int iHighV = 255;

//Create trackbars in "Control" window

createTrackbar("LowH", "Control", &iLowH, 179); //Hue (0 - 179)

createTrackbar("HighH", "Control", &iHighH, 179);

createTrackbar("LowS", "Control", &iLowS, 255); //Saturation (0 -

255)

createTrackbar("HighS", "Control", &iHighS, 255);

createTrackbar("LowV", "Control", &iLowV, 255);//Value (0 - 255)

createTrackbar("HighV", "Control", &iHighV, 255);

int iLastX = -1;

int iLastY = -1;

61

//Capture a temporary image from the camera

Mat imgTmp;

cap.read(imgTmp);

imgTmp = imgTmp(Rect(157,1,482,479));

//cap>>imgTmp;

//Create a black image with the size as the camera output

Mat imgLines = Mat::zeros(imgTmp.size(), CV_8UC3);;

 while (true)

 {

 Mat imgOriginal;

 bool bSuccess = cap.read(imgOriginal); // read a new frame

from video

 imgOriginal = imgOriginal(Rect(157,1,482,479));

 if (!bSuccess) //if not success, break loop

 {

 cout << "Cannot read a frame from video stream" <<

endl;

 break;

 }

Mat imgHSV;

cvtColor(imgOriginal, imgHSV, COLOR_BGR2HSV); //Convert the captured

frame from BGR to HSV

Mat imgThresholded;

inRange(imgHSV, Scalar(iLowH, iLowS, iLowV), Scalar(iHighH, iHighS,

iHighV), imgThresholded); //Threshold the image

//morphological opening (removes small objects from the foreground)

erode(imgThresholded, imgThresholded,

getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));

dilate(imgThresholded, imgThresholded,

getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));

//morphological closing (removes small holes from the foreground)

dilate(imgThresholded, imgThresholded,

getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));

erode(imgThresholded, imgThresholded,

getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));

//Calculate the moments of the thresholded image

Moments oMoments = moments(imgThresholded);

double dM01 = oMoments.m01;

double dM10 = oMoments.m10;

double dArea = oMoments.m00;

// if the area <= 10000, I consider that the there are no object in

the image and it's because of the noise, the area is not zero

if (dArea > 10000)

{

//calculate the position of the ball

int posX = dM10 / dArea;

int posY = dM01 / dArea;

62

fflush(f);

fprintf(f,"P\t%d\t%d\n",posX,posY);

printf("P\t%d\t%d\n",posX,posY);

if (iLastX >= 0 && iLastY >= 0 && posX >= 0 && posY >= 0)

{

//Draw a red line from the previous point to the current point

line(imgLines, Point(posX, posY), Point(iLastX, iLastY),

Scalar(0,0,255), 2);

}

iLastX = posX;

iLastY = posY;

}

imshow("Thresholded Image", imgThresholded); //show the thresholded

image

imgOriginal = imgOriginal + imgLines;

imshow("Original", imgOriginal); //show the original image

 if (waitKey(30) == 27) //wait for 'esc' key press for 30ms.

If 'esc' key is pressed, break loop

 {

 cout << "esc key is pressed by user" << endl;

 break;

 }

 }

fclose(f);

 return 0;

}

63

Appendix F

motor_Control.ino

#include <Hercules.h>

#include "Timer.h"

int count_new;

int count_old = 1;

int counter = 0;

int distance1=0;

Timer t;

Timer t2;

int count_new2;

int count_old2 = 1;

int counter2 = 0;

int distance2=0;

int distance=0;

int incomingByte=0;

void forward()

{

 //Serial.println("Forward");

 MOTOR.setSpeedDir1(20, DIRR);

 MOTOR.setSpeedDir2(20, DIRF);

}

void right()

{

 //Serial.println("Right");

 MOTOR.setSpeedDir1(20, DIRR);

 MOTOR.setSpeedDir2(0, DIRF);

}

void left()

{

 // Serial.println("Left");

 MOTOR.setSpeedDir1(0, DIRR);

 MOTOR.setSpeedDir2(20, DIRF);

}

void sstop()

{

 //Serial.println("Stop");

 MOTOR.setSpeedDir1(0, DIRR);

 MOTOR.setSpeedDir2(0, DIRF);

}

void setup()

{

 MOTOR.begin();

 Serial.begin(9600);

 t.every(10,encoder);

 // t2.every(100,dist);

}

void loop()

{

 t.update();

 t2.update();

 if (Serial.available() > 0) {

 incomingByte = Serial.read();

64

 if (incomingByte == 119)

 {

 forward();

 }

 if (incomingByte == 100)

 {

 left();

 }

 if (incomingByte == 97)

 {

 right();

 }

 if (incomingByte == 32)

 {

 sstop();

 }

 if (incomingByte == 113)

 {

 counter=0;

 counter2=0;

 count_old=1;

 count_old2=1;

 }

}

}

void encoder()

{

 count_new = digitalRead(2);

 count_new2 = digitalRead(3);

 if(count_new-count_old != 0)

 {

 counter=counter+1;

 }

 if(count_new2-count_old2 != 0)

 {

 counter2=counter2+1;

 }

 count_old2=count_new2;

 count_old=count_new;

 Serial.print("a");

 Serial.println(counter);

 Serial.print("b");

 Serial.println(counter2);

}

void dist()

{

 distance1 = counter;

 distance2 = counter2;

 //distance = (distance1+distance2)/2;

 // Serial.print("h");

 // Serial.print(distance1);

 // Serial.print(distance2);

 // Serial.println("t");

}

65

Appendix G

calculate_xy.c

#include "urg_sensor.h"

#include "urg_utils.h"

#include "open_urg_sensor.h"

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

 urg_t urg;

 long *data;

 long max_distance;

 long min_distance;

 long time_stamp;

 int i;

 int n;

 if (open_urg_sensor(&urg, argc, argv) < 0) {

 return 1;

 }

 data = (long *)malloc(urg_max_data_size(&urg) *

sizeof(data[0]));

 if (!data) {

 perror("urg_max_index()");

 return 1;

 }

 urg_start_measurement(&urg, URG_DISTANCE, 1, 0);

 n = urg_get_distance(&urg, data, &time_stamp);

 if (n < 0) {

 printf("urg_get_distance: %s\n", urg_error(&urg));

 urg_close(&urg);

 return 1;

 }

 urg_distance_min_max(&urg, &min_distance, &max_distance);

 for (i = 0; i < n; ++i) {

 long distance = data[i];

 double radian;

 long x;

 long y;

 if ((distance < min_distance) || (distance > max_distance))

{

 continue;

 }

 radian = urg_index2rad(&urg, i);

 x = (long)(distance * cos(radian));

 y = (long)(distance * sin(radian));

 printf("%ld, %ld\n", x, y);

66

 }

 printf("\n");

 free(data);

 urg_close(&urg);

#if defined(URG_MSC)

 getchar();

#endif

 return 0;

}

