
I

Object Tracking Implementation on Embedded Computing

Platform

By

MOHANED ESSAM MOHAMED ISMAIL

ID: 14696

Project Dissertation submitted in partial fulfillment of

 the requirements for the

Bachelor of Engineering (Honors)

(Electrical and Electronic Engineering)

January 2015

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

II

CERTIFICATION OF APPROVAL

Object Tracking Implementation on Embedded Computing

Platform

By

MOHANED ESSAM MOHAMED ISMAIL

ID: 14696

Project Dissertation submitted in partial fulfillment of

 the requirements for the

Bachelor of Engineering (Honors)

(Electrical and Electronic Engineering)

January 2015

Approved by,

Mr. Patrick Sebastian

Electrical and Electronics Engineering,
UNIVERSITI TEKNOLOGI PETRONAS,

TRONOH, PERAK

III

CERTIFICATION OF ORIGINALITY

Certification that I am responsible for the activities performed under this project,

that this work is my own original work, unless specified otherwise or indicated in

the references and the acknowledgements.

.

MOHANED ESSAM MOHAMED ISMAIL

IV

ABSTRACT

Embedded platforms are vital in various applications mainly Robotics and Mobile

platforms. Image processing is usually done with full PC setup, which is hard to

implement on mobile platforms and in other applications. This project aims to

implement an image processing application on an embedded platform using

structured C++ coding and OpenCV library.

The Embedded platform used in this project is Raspberry PI model B. The image

processing application implemented is Object recognition and tracking; of a red

circular object using the CHT algorithm. Before the image is processed using the

CHT, it is passed by stages of color recognition, noise filtering and edge detection.

OpenCV and other required software were installed on the Raspberry PI, before it

was able to successfully run the C++ code, and correctly detect the required object,

with results similar to the same code running on Windows run PC, but with more

processing time. Heat sinks were installed on specific parts of the Raspberry PI to

reduce the overheating problems.

Three coding techniques were used to assess their results and compare between them

in terms of application and processing time. The techniques are C++ code using

Arrays, OpenCV functions and C++ code using pointers instead of Arrays. Arrays

and Pointers implementations provide better robustness and accuracy, but higher

time. OpenCV functions trades off these criteria for much better processing time.

Finally, the USB camera was attached to a servo motor to be controlled by the

Raspberry PI. The Servo motor position is changed based on the object center in the

image in order to centralize the object within the middle one third of the image. No

significant delay is caused to the software by implementing the servo motor; except

the delay to move the servo motor.

V

Acknowledgements

In the name of Allah, the most gracious, the most merciful

I would like to extend my utmost gratitude for Mr. Patrick Sebastian, the Supervisor

for this project, for his guidance and support; before and throughout the project

period.

I would like to thank Professor Guillermo Sapiro of Duke University for his

amazing online course which provided the needed basics in Image processing.

I want to thank UNIVERSITI TEKNOLOGI PETRONAS for providing the climate

suitable for carrying out my project.

Last but not least, I would like to thank my family for their continuous support and

prayers, and also my colleagues for their helpful advice and support.

VI

TABLE OF CONTENTS:

Certification of Approval:………………………………………………………….. II

Certification of Originality:……………………………………………………….. III

Certification of Approval:………………………………………………………….. II

Abstract:……………..………………………………………...……………………IV

Acknowledgements:…………………………………………………………………V

Table of Contents:……………………………………………………………......…VI

List of Figures: ……………………………………………………………………VII

Abbreviations and Nomenclatures:…………………………………………………IX

Chapter 1: Introduction:

1.1 Background:…………………………………………………………….10

1.2 Problem Statement:……………………………………………………..10

1.3 Objectives and Scope of Study:…………………………………..…….11

Chapter 2: Literature Review:

 2.1 Hough Transform:………..………………...…………………………...12

 2.2 Edge Detection:……………………………………………...….…...12

 2.3 Circular Hough Transform: …………………………………………….14

 2.4 Color Detection: ...…………………………………………………..….14

Chapter 3: Methodology:

 3.1 Object Recognition: ...…………………………………………….……15

 3.2 Implementation on Raspberry-Pi: ...…………………………………....16

 3.3 Algorithm Implementation Using OpenCV functions: ………………...20

 3.4 Object Tracking by moving the camera using Servo Motor …………...21

Chapter 4: Results and Discussion:

4.1 Program Implementation:……..………………………………………..21

4.2 Discussion: …………...……………………...…………………………28

4.3 Prototype Testing:.……………………………………………………...30

VII

4.4 Problems faced and Proposed Solutions: ……………….......………….32

4.5 Power Consumption measurements:…………………….......………….33

Chapter 5: Conclusion and Recommendation:

5.1 Conclusion: ………………………...……………………………..……34

5.2 Recommendation and Future Development: …………………………..35

References: ………………...……………………………………………………….36

Appendices:

Appendix A: C++ Code: …………………………………………………...39

Appendix B: Format of “CMakeLists.txt” file: ……………………………54

Appendix C: Format of “interfaces.txt” file: ………………………………55

VIII

List of Figures

Figure (1): Parametric Equation of straight line

Figure (2): Hough Transform Accumulator

Figure (3): Sobel Operator

Figure (4): CHT concept for a known radius

Figure (5): object recognition methodology

Figure (6): Sobel Masks

Figure (7): IP setting of the PC

Figure (8): Using Putty software to run the tight VNC server

Figure (9): Starting the Tightvnc viewer on PC

Figure (10): Tightvnc viewer window on PC showing the Raspberry PI Desktop

Figure (11): Connection Schematics

Figure (12): GPIO P1 Header

Figure (13): Code running on Raspberry PI.

Figure (14): Code running on PC

Figure (15): Program outputs

Figure (16): OpenCV outputs

Figure (17): Median filter block size sweeping effect on processing time

Figure (18): Code comparison against the median filter block size

Figure (19): effect of radius step value on processing time

Figure (20): effect of radius step on the relative processing time

Figure (21): effect of angle step value on processing time

Figure (22): effect of angle step value on relative processing time

Figure (23): Prototype

Figure (24): Servo Motor Control based on object location

Figure (25): Raspberry PI sources of heat

Figure (26): Raspberry PI after installing heat sinks

Figure (27): Power consumption measurements under normal operating conditions

IX

Abbreviations and Nomenclatures

CHT: Circular Hough Transform

CPP/C++: C plus plus

GPIO: General Purpose Input Output

OpenCV: Open Source Computer Vision

PC: Personal Computer

PWM: Pulse Width Modulation

R-PI: Raspberry PI board

VNC: Virtual Network Computing

10

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND:

Image processing is becoming an important part of many fields recently. From the

first Digital image processing software developed in the 1960s to study the moon

surface, to the vast medical applications such as the computed tomography (CAT

scan) [1], image and video processing has become an important field of research that

can solve various arising problems.

Embedded platforms –such as Arduino, RaspberryPi and Beagleboard- are

reasonably priced, mobile and easy to manufacture and distribute, computing

platforms. Embedded platforms are mainly used for prototyping and educational

purposes. However, with their ever-increasing computing capabilities, embedded

platforms are becoming reliable enough to solve real-world problems.

This project aims to implement image and video processing applications on

embedded platforms, which helps in increasing the areas where Image and Video

processing applications are used, and enhances the performance and applications of

embedded platforms.

1.2 PROBLEM STATEMENT:

Image and video processing applications are usually implemented through

sophisticated computer software, and using full computer platforms. This limits the

usage of such applications in various fields, mainly robotics and mobile platforms.

Embedded platforms are suitable to implement on mobile platforms, however, these

platforms are limited in their computational capabilities, and are not usually able to

run advanced image and video processing software –such as MATLAB-.

11

This project addresses development and performing of relatively complex image and

video processing applications, namely “Object Recognition and Tracking”, using

embedded platforms and simple cameras, both suitable for usage on various mobile

platforms.

1.3 OBJECTIVES AND SCOPE OF STUDY:

 1.3.1 Objectives:

The objectives of this project are:

1- Development of Object Recognition and Tracking algorithm, using digital image

and video processing techniques.

2- Development of programming code able to perform the Object Recognition and

Tracking algorithm, using C++ programming language.

3- Implementation of the developed code on an embedded platform, namely

Raspberry-Pi.

 1.3.2 Scope of study:

This project is focused on the development and implementation of an Object

Recognition and Tracking application on an embedded platform. However, this

project is not focused on devising new “Object Recognition and Tracking”

algorithms; instead, existing algorithms and techniques are used.

The object specified to be tracked is a red and circular object. The programming

language used is C-language, and the embedded platform used is Raspberry-Pi.

12

CHAPTER 2

LITERATURE REVIEW

OBJECT RECOGNITION ALGORITHM:

2.1 Hough Transform:

A suggested object recognition algorithm is based on Hough transform segmentation

technique. According to [2], Hough transform uses the geometry of the recognized

object, mathematical equation, to recognize the object. The Hough Transform started

as a method for detecting straight lines in an image using concurrent lines rather that

collinear points. However, Hough Transform used the slope intercept model to

represent lines, and because of the fact that the slope and the intercept are

unbounded –causing computational complications-, Hough Transform was

implemented using the parametric equation of the line [3], as shown in Figure (1).

Parametric equation of a straight line:

𝜌 = 𝑥 𝑐𝑜𝑠 𝜃 + 𝑦 𝑠𝑖𝑛 𝜃

Where: (𝜌) is the normal distance,

(𝜃) is the normal angle.

Figure (1): Parametric Equation of straight line

There are many variations of Hough Transform used to recognize various shapes,

and use different techniques. One of the famous variations is the Hough Transform

proposed by [3], which is mainlyconcerned with the line recognition. It uses an

accumulator as a 2D array of parameters 𝜌 and 𝜃 discussed before, the parameters

are practically quantized with a step size relevant to the required accuracy, lines are

then lines are detected by the most number of votes from the edge points, which

means most number of collinear points on the edge.An example of a Hough

Transform accumulator for line detection, is shown in Figure (2).

13

The accumulator shows three points of the

image edge, collinear on the straight line

specified by 𝜌 = 80 and 𝜃 = 60, with the

number of votes three, while all the other

lines only one vote each.

Figure (2): Hough Transform Accumulator [4].

This technique is also extended to curves and circles, using the equation of the

circle: 𝑟2 = (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2, which should be transformed to its parametric

equation:

𝑥 = 𝑎 + 𝑟 cos 𝜃

 𝑦 = 𝑏 + 𝑟 sin 𝜃 , 𝑤ℎ𝑒𝑟𝑒 𝜃 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑟 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑥 − 𝑎𝑥𝑖𝑠

Another variation of Hough Transform is proposed by [5] to detect rectangles. It’s

based on the relations between the parameters of the four lines forming the

rectangle; the right angles between the lines and the constant distance between them.

2.2 Edge Detection:

Before performing theHough Transform, the image must be passed to an edge

detector [2]. There are many edge detectors that can be used to extract edges from

images, and pass it to CHT. There are two categories of edge detectors; gradient and

Laplacian, which uses the local maxima and minima in first derivative, and the zero

crossing in the second derivative, respectively, to find the edges of the image[6].

The Sobel edge detector is under the Laplacian category. For each pixel

[i, j], whose neighbor pixels are labeled as in Figure (3), the Sobel edge is calculated

as:

𝑀 = √𝑆𝑥
2 + 𝑆𝑦

2
 Where Sx and Sy are:

𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛: 𝑆𝑥 = (𝑎2 + 2𝑎3 + 𝑎4) − (𝑎0 + 2𝑎7 + 𝑎6)

 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛: 𝑆𝑦 = (𝑎0 + 2𝑎1 + 𝑎2) − (𝑎6 + 2𝑎5 + 𝑎4)

a0 a1 a2

a7 [i,j] a3

a6 a5 a4

Figure (3): Sobel Operator

14

2.3 Circular Hough Transform:

In the case of Circular Hough Transform (CHT), the edges, resulting from the edge

detector, are used as an input to the Hough Transform algorithm. Each point of the

edge is considered a center of an imaginary circle, and using the parametric equation

these imaginary circles are drawn by sweeping the radius r for all possible values,

and sweeping the angle θ from 0 to 2π radian. Then, for each point on the perimeter

of these imaginary circles, x and y coordinates are calculated using the parametric

equation, and then, a vote is added to the accumulator [2]. As any circle is definedby

a center and radius, the accumulator in the case of CHT is three dimensional [x, y,

r]. Finally, the accumulator is sorted with respect to the number of votes, indicating

the arrangement of the triplets [x, y, r] that represent the best possible circles in the

image[7]. If the case is that the radius of the required circle is known, the

accumulator will be a 2D matrix of x and y coordinates. Figure (4) shows the

concept of voting, and how it can yield the center of the required circle, and in this

case it is the point with the highest vote count,which is three.

Figure (4): CHT concept for a known radius [7]

2.4 Color Detection:

CHT processing time is proportional to the number of the edge points in the image,

as it sweeps all the parameters for each single point on the edges of the image. In

order to reduce the processing time, the tested objects are reduced by fixing the color

of the required object.One approach for color detection in the RGB color space is by

using normalized color components, and use threshold values for the required

color[8], with the formula for the normalized RED component is: r = R / (R+G+B).

15

Figure (5): object recognition methodology

[5].

CHAPTER 3

METHODOLOGY

3.1 OBJECT RECOGNITION:

The proposed methodology

for the object recognition

algorithm consists of a set

of operations aimed to

decrease the processing

time for the CHT. The

progression of these

operations is as shown in

Figure (5) [7], the first

image is the output of the

camera. First, the image is transformed into a binary image with a color detection

technique, as shown in the second image in the figure. After that, the binary image is

passed to an edge detector which extracts the edges, as shown in the third image.

The edges are then passed the CHT, which arranges the best circles, as shown in the

fourth image.

 3.1.1 Color Detection:

The algorithm used for color detection is by checking the normalized color

components, and compare them to a range of acceptable calibrated values for the red

color values. The formula used for the normalized RED component is:

r = R / (R+G+B)

 3.1.2 Noise Filtering:

The noise filtering is done with a median filter whose window size is five pixels.

The median filter places the middle pixel with the median of its neighbor pixels in

16

the window of 5x5. The median is the value is obtained by arranging the neighbor

values in descending order and obtain the value in the middle.

 3.1.3 Edge Detection:

The edge detection is implemented using a Sobel

operator. The Sobel operator is implemented by using

convolution masks, or passing a window on the

pixels of the binary image obtained from the color

detector [6]. The used window used is shown in

Figure (6). The edge value is obtained from the

formula:

𝑀 = √𝑆𝑥
2 + 𝑆𝑦

2
 Figure (6): Sobel Masks [6].

 3.1.4 Circular Hough Transform (CHT):

As long as the radius of the tracked object is not fixed –size and distance to the

object are not fixed -. A 3D accumulator is stored in the memory as a 3D array, and

for each point on the edge, the radius is swept from 20 pixels (smallest circle to be

detected) to 90 pixel (maximum radius when the object is nearest to the camera) in

steps of 5 pixels, while the angle θ is swept from 0 to 2π radian in steps of 0.1

radian.

In CHT, there is a tradeoff between processing time, memory and accuracy, and this

can be controlled by changing the step size of sweeping the circles parameters radius

and the angle θ. The less the step size, the higher the accuracy, but the more the

processing time.

3.2 IMPLEMENTATION ON RASPBERRY PI:

3.2.1 Raspberry PI setup:

The setup of Raspberry PI done in this project consists of: Raspberry PI power

supply, HDMI to VGA box converter, VGA screen, LAN cable, USB keyboard and

mouse, and a SD Card.

17

The SD card is flashed using windows operated PC, with a Raspberry PI compatible

OS namely “Debian”, other operating systems are available on [9]. The flashing was

done using a windows application called “Win32DiskImager” available on [10],

with the instructions from [11].

After that, the SD card is connected to the Raspberry PI and it is powered on.

Further configurations can be done depending on the required configuration needed,

as explained in [12]. Some configurations can be done through the BIOS like text

file of Raspberry PI called “Config.txt”, this file can be accessed either from inside

the Raspberry PI itself or directly from the SD card using any other platform.

Instructions to modify this file can be found on [13].

3.2.2 OpenCV Installation:

Open-CV (Open Source Computer Vision) is an open source programming library, it

is used only to obtain the RGB color images from the Webcam used, although all the

other parts of the code are done using normal C-language syntax.

There are many sources that describe various ways to install OpenCV library on

Raspberry PI. In order to avoid confusion, only the implemented method, proven to

work with this project, is introduced. The steps to install OpenCV are fully

explained in [14]. However, the Cmake configuration is done as explained in [15].

3.2.3 Compiling the code:

In order to compile a C++ code (the code is written in C code but compiled as C++

to make use of new OpenCV USB camera read functions written in C++) with

OpenCV, there are few steps should be taken:

1- The CPP code is written as shown in Appendix A, and saved in the project

file, here called “fyp.cpp”.

2- A text file named “CMakeLists.txt” is written as shown in Appendix B, and

saved in the same project file.

3- Using the Raspberry PI terminal:

a. Go to the project folder

b. Type the command: “cmake .”

c. Type the command: “make”

18

Figure 7: IP setting of the PC

d. The executable file is run, here as: “./fyp”

3.2.4 Raspberry PI Remote control on LAN network:

The aim of this section is to provide a method to control the Raspberry PI without

using external peripherals except the LAN cable. There are three main steps to

initiate the communication path between the PC and the Raspberry PI; Setting static

IP address for the Raspberry PI, the Putty software and the VNC remote control

software. These steps are explained more:

1- Assigning static IP addresses for the Raspberry PI and the PC:

To assign static IP for the Raspberry PI, the “interfaces.txt” file in the directory

“\etc\network” in the Raspberry PI. The file is modified as shown in Appendix C.

The corresponding IP on the PC is set as shown in Figure (7).

2- PUTTY SSH communication:

Putty software is used with SSH protocol to

setup the VNC server on the Raspberry PI

after the power-up. Screenshot of the

opening screen of the putty software, and the

command used to run the VNC server on the

Raspberry PI, is shown in Figure (8).

19

Figure 9: Starting the Tightvnc viewer on PC

Figure 10: Tightvnc viewer window on PC showing the Raspberry PI Desktop

3- Installing tight VNC software on Raspberry PI and the PC:

Tightvnc software is used to remotely control the Raspberry pi in a desktop

form. Keyboard, screen and mouse of the host PC can be used. The software

must be installed both on Raspberry PI and the PC. The installation procedure is

explained in [16]. In order to avoid connecting any peripherals to the Raspberry

PI, right after power up, putty software is used to run the tightvnc server on the

Raspberry PI, as shown in Figure (8). Figure (9) shows the connection window

of the tightvnc software, and Figure (10) shows the usage of the software to

control the Raspberry PI.

Figure 8: Using Putty software to run the tight VNC server

20

3.3- ALGORITHM IMPLEMENTATION USING OPENCV FUNCTIONS:

As shown in the C++ code in Appendix A under the OpenCV section of the code,

three out of four of the Algorithm stages can be modified to be done using the

OpenCV functions [17], while maintaining almost the same parameters. The

functions used to implement each stage of the algorithm are as follows:

1- Color Detection:

The color detection stage is obtained from the normal code; as the color

detected image is assumed as an input to the whole algorithm.

2- Median Filtering:

The Median filtering stage of the algorithm is implemented using the

OpenCV function “medianblur” with the syntax as:

medianBlur(img_gray, image_filtered, block_size);

3- Edge Detection:

The edge detection stage of the algorithm is done with the “Canny” function,

as follows:

Canny(img_filtered, img_edge, edge_min_threshold, edge_max_threshold, 3);

4- Hough Transform:

Hough transform is done in OpenCV using the “HoughCircles” function,

with the following syntax:

vector<Vec3f> circles;
HoughCircles(img_show_edge_opencv, circles, CV_HOUGH_GRADIENT, 1, 1,200,2*3*r_min/8,
r_min, r_thresh);

 And the following syntax for highlighting the recognized circle:

Vec3i c = circles[0];
circle(img_show_opencv, Point(c[0], c[1]), c[2], Scalar(0,0,255), 3, CV_AA);
circle(img_show_opencv, Point(c[0], c[1]), 2, Scalar(0,255,0), 3, CV_AA);

21

3.4- OBJECT TRACKING CAMERA CONTROL USING SERVO MOTOR:

3.4.1 Schematics:

The Servo Motor is connected to the Raspberry PI through the GPIO P1 header pin

18, which can be used for PWM output; the schematic of the connection is shown in

Figure 11, and the GPIO P1 header pin configuration is shown in Figure 12.

3.4.2 Servo Motor Control on Raspberry PI using C language:

The C code used for controlling the Servo motor is fully obtained from [19], which

uses [18] for GPIO configuration. This code is merged with the detection software to

move the camera based on the Object centre location. The Image is divided into

three sections; if the Object centre is in the middle, the servo keeps its position.

However, if the Object center falls under the left or the right sections, the Servo

motor position is decreased or increased by 18 degrees, as shown in the code in

Appendix A (the code shows right and left turns by 10 which is 10 % where

10%*180= 18 degrees).

Figure 11: Connection

Schematics, Done using:

https://www.draw.io/

Figure 12: GPIO P1

Header, from [18]

https://www.draw.io/

22

CHAPTER 4

RESULTS AND DISCUSSION

4.1 PROGRAM IMPLEMENTATION:

The C++ code was written using Microsoft Visual Studio 2010 compiler, with

OpenCV library installed for testing and debugging purposes. After that the code

was transferred and compiled on Raspberry PI. The complete C++ code used is

shown in Appendix A.

A screen shot of the code running on Raspberry PI is shown in Figure (13). A screen

shot of the same code running on PC for the same camera input is shown in Figure

(14). The output images of the code are shown in Figure (15), the images are shown

in a sequence similar to the code sequence; Image taking, Color detection, Median

Filtering, Edge detection and Hough Transform.

Figure (13): Code running on Raspberry PI.

23

Figure (15): Program

outputs:

1- Image taking.

2- Color Detection.

3- Median Filtering.

4- Edge Detection.

5- Hough

transform.

Figure (14): Code running on PC

24

Figure (16): OpenCV

outputs:

1- Median Filtering.

2- Edge Detection.

3- Hough

transform.

4.1.1 Output using OpenCV functions:

The output shown in Figure (15) is done using the first section of the code shown in

Appendix A, which uses the devised methodology, done using arrays. However, the

second section of the code is done using the OpenCV functions for median filtering,

edge detection, and Hough transform. The output of this section of the code is

shown in Figure (16).

4.1.2 Output using Pointers:

The third section of the code shown in Appendix A, implements the same

methodology but using pointers instead of arrays. As expected, the outcomes of all

the stages are exactly the same as the arrays section; however, the execution time is

different.

25

Figure (17): Median filter block size sweeping effect on processing time

4.1.3 Parameters Sweep in Raspberry PI:

Various parameters of the code sections were swept and the effect on the processing

time of the arrays, OpenCV and pointers are recorded. Also, the reference program

is considered having the parameters; median filter block size 3x3, Hough transform

radius step of 5 pixels and angle 0.1 Rad. The processing time in the following

section are normalized to the processing time of this special reference parameters,

except for the technique comparison where the pointers processing time is

normalized to the arrays processing time at each point, and the OpneCV processing

time is normalized to the pointers processing times. The results are as follows:

 4.1.3.1 Median Filter window block size:

By sweeping the median filter window block size over the values from 1x1 pixels to

9x9 pixels, we get the processing time values as shown in Figure (17). The window

block size is shown on the horizontal axis while the percentage of the normalized

processing time is shown on the vertical axis. (Note the zero crossing at the

reference median filter block size of 3)

Figure (18) shows comparison of the processing times of the three techniques with

their percentage normalized processing times on the vertical access, and the median

filter window size on the horizontal axis.

26

Figure (18): Code

comparison against the

median filter block size

Figure (19): effect of

radius step value on

processing time

Figure (20): effect of

radius step on the

relative processing time

4.1.3.2 Hough Transform Radius step change:

The Hough Transform radius step is swept over 1,3,5,7,9 and 11 pixels, and results

are shown in Figure (19).

The radius step value is shown on the horizontal axis while the time processing

percentage normalized to the reference parameters processing time (note the zero

crossing at the reference code radius step).

Figure (20) shows the percentage relative processing time for the three code

implementations verses radius step value.

27

Figure (21): effect of

angle step value on

processing time

Figure (22): effect

of angle step value

on relative

processing time

 4.1.3.3 Hough Transform Angle step change:

The Hough transform angle step change sweeping results are shown in Figure (21).

The angle is swept from 0.05 to 0.3 Radian with 0.1 radian steps. The angle step

change value is show on the horizontal axis, and corresponding processing time is

shown on the vertical axis. The curves cross the horizontal axis at the reference

image to which the processing time is normalized).

Figure (22) shows the relative processing time of the three techniques verses the

angle step change value.

28

4.2 DISCUSSION:

 4.2.1 General aspects:

The same image was used to run the code on both Raspberry PI and the PC, for all

three coding techniques. As shown in Figures (13) and (14), the output of the code

running on the Raspberry PI is consistent with the results obtained from the PC. As

the center point of the detected circle in the Raspberry PI, in the case of the arrays

and pointers section, is (139, 453) with radius of 60 pixels, and 30 votes. In the case

of PC, the circle center is exactly the same (291, 360) with radius of 60, and 30

votes.

As shown in Figures (13) and (14) also, the Processing time of the Raspberry PI is

generally slower than the processing time of the PC. The processing time of the

Raspberry PI is 21.21 seconds for the arrays section, 1.62 seconds for the OpenCV

section and 16.86 seconds for the pointers section. For the PC, the processing time

values are 1.73, 0.31 and 1.2 respectively.

It can also be noted that for this case the OpenCV functions does not return the

number of votes, instead it reads the min required number of votes for the circle to

be detected (it detects all the circles above the limit).

The best processing time for both Raspberry PI and PC is the OpenCV functions,

followed by the pointers implementation and finally the arrays implementation. The

OpenCV functions are faster by 74.17% than the pointers in the PC, and by 92.5% in

the Raspberry PI. The pointers implementation is faster than the arrays

implementation by 30.64 % in the PC and by 20.51 % in the Raspberry PI.

 4.2.2 Effect of parameter change on the processing time:

The processing time depends on the parameter changes, however, not all parameter

changes has the same effect on processing time. First, it can be concluded from

Figure (17) that increasing the median filter block size increases the processing time

exponentially, this can be related to the sorting algorithm used in the sort array

function shown in Appendix A, as the sorting algorithm implemented is just a

simple array sorting algorithm that successively swap the array elements based on

their values. However, this is not the case for the OpenCV functions implementation

29

as it is expected that it implemented a more time efficient algorithm for obtaining

the median value calculation. Also, it can be seen from Figure (17) that increasing

the median filter block size, increases the advantage of the pointers implementation

compared to the arrays implementation to around 25%, and also the OpenCV

implementation compared to the pointers implementation until it almost reaches

100%.

Second, the effect of increasing the radius step change in the Hough Transform is

shown in Figure (18). As shown, the processing time of both pointers and arrays

decreases rapidly with increasing the radius step until they reach about 50 % percent

lees time at 11 pixels. This is because more radius step size means less processing

and less iterations in the program. However, the OpenCV implementation decreases

a bit until it reaches the reference image (image with parameters; median block

size=3, radius step=5 and angle step= 0.1) processing time and it becomes constant

after that. One important observation in Figure (19) is that by increasing the radius

step change, the pointers implementation is proving to become much better than the

arrays implementation from 0% at 1 pixel radius step to about 30% at 11 pixels

radius step. It can also be seen that the OpenCV implementation advantage over

pointers implementation is decreasing to about 80%. This is due to the fact that the

OpenCV processing time is constant while the pointers processing time is

improving.

Finally, the effect of the angle step size of the Hough Transform on the processing

time is shown in Figures (20) and (21). It should be emphasized that in the OpenCV

implementation the angle step size cannot be changed by the user. Changing the

angle step size shows similar results as changing the radius step size however the

results are exaggerated in the angle case.

30

4.3 Prototype Testing:

The Prototype implemented for this project is, as mentioned in the methodology, to

attach the USB camera on a Servo motor controlled by the PWM pin of the

Raspberry PI board. Figure 23, shows the prototype while running.

Figure 23: Prototype

The prototype was tested the camera is able to turn in 18 degrees steps tracking the

object. Based on the object position in the image the Raspberry PI determines to

whether turn the servo to the right by 18 degrees, left 18 degrees or to keep its

current position; if the object is located in the left one third of the image (based on

the pixel location), the right one third of the image or the middle one third. This is

further illustrated in Figure 24, which shows an image taken by the Raspberry PI,

where the ball is recognized and the position of the Servo is changed based on the

Circle center location in the image, so in this case shown in Figure 24 the servo will

turn to the left by 18 degrees.

31

Figure 24: Servo Motor Control based on object location (Recognized Circle is

shown in Blue with green Center)

The prototype was run under several conditions, and was also presented during

ELECTREX exhibition in UTP. The output of the code shows no overhead delay

after connecting the servo, except for the time to move the servo which takes around

one second (manually measured).

More testes are being carried out to measure the power consumption during various

conditions of the software runs.

32

4.4 PROBLEMS FACED AND PROPOSED SOLUTIONS:

The main problems faced with Raspberry PI were:

1- Low USB power output:

- Solution was to use a Powered USB-Hub.

2- Blanking of HDMI screen (Screen blanks with any processing):

- HDMI current in boot options (config.txt) is set to the lowest value

- Resolution is changed to a less blanking option

3- Overheating:

- Heat sinks installed to avoid IC over current. According to [20], main

sources of heat in the Raspberry PI are; the SOC (System On Chip)

(center), the USB/Ethernet controller (right), and the voltage regulator

(left), as shown in Figure (23). The board after installing the Heat sinks is

shown in Figure (24).

Figure (25): Raspberry PI sources of heat

Figure (26): Raspberry PI after installing heat sinks

33

4.5 POWER CONSUMPTION MEASUREMENTS:

For Power consumption measurements the Raspberry PI is powered up from GPIO

pins: 5 Volt and GND.

1- under normal Operating condition (Peripherals connected: monitor, USB

keyboard and mouse, USB Camera), as shown in Figure (27):

- The Raspberry PI draws 0.95 A

- Average Power = 4.75 W

Figure (27): Power consumption measurements under normal operating conditions

2- Under TightVNC Remote Control while idle:

- The Raspberry PI draws 0.44 A

- Average Power = 2.2 W

3- Remote Control while compiling or code running without Servo movement:

- The Raspberry PI draws 0.55 A

- Average Power = 2.75 W

4- Remote Control while code running with Servo movement:

- The Raspberry PI draws 0.67 A

- Average Power = 3.35 W

34

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION:

Digital image processing is becoming a vital part of many applications, specially

navigation and medical application. In order to make digital image processing

applicable to more fields, embedded platforms are used to implement specific image

processing tasks, which is the main aim of this project.

The project uses a Raspberry-Pi, which is a relatively powerful and reasonably

priced embedded platform, which is becoming more used in educational and

research applications. The Raspberry-Pi is used with a webcam and an object

recognition script, to recognize and track a specified object, namely a red circular

object.

The Object recognition algorithm is based on Circular Hough Transform (CHT).

However, some preprocessing operations must be performed on the image, through

image processing, before it becomes suitable to undergo CHT. These preprocessing

operations are; Color detection (thresholding), Image restoration (noise filtering) and

edge detection.

A C++ code was developed to implement the algorithm along with its preprocessing

operations. The code was developed using Microsoft Visual Studio compiler and

OpenCV library on the PC, and implemented on Raspberry PI using Cmake and

OpenCV library.

The code was successfully compiled and run on Raspberry PI, giving results

consistent was the results obtained from the PC, however, the processing time is

much higher.

Three implementations of the algorithm were done, they make use of; Arrays,

Pointers and OpenCV functions. All three implementations were assessed in terms

of their capabilities and processing times.

35

The USB camera was attached to a Servo Motor that is controlled by the Raspberry

PI PWM pin in a way to centralize the Object in the middle one third of the image.

The prototype was tested under various conditions.

There are some problems that the Raspberry PI suffers from; overheating, Low USB

power and screen blanking. Some solutions were implemented to solve these arising

problems as adding heat sinks to the board IC units and voltage regulator.

Further improvements can be done to the algorithm and the code to increase the

accuracy and decrease the processing time; such as improving the tracking

algorithm, and overclocking of the board SOC.

5.2 RECOMMENDATION AND FUTURE DEVELOPMENT:

As this project does not just address the problem of implementing image processing

applications on Raspberry PI, it also examines three of the possible ways to

implement these applications and comparison between them for different

applications.

So it can be concluded that generally, Arrays and Pointers implementations provides

control on the algorithm and robustness of the program, however, they have more

processing time, which is also exponentially proportional to median filter block size,

radius and angle step sizes in the Hough Transform. OpenCV functions provides

less processing time that also is not much affected by changing these parameters, but

it lacks control on some of the code aspects such as angle step size and the number

of votes achieved by the recognized circles.

There are many ways to carry this project forward; the first and most important

initiative is by replacing the OpenCV functions used only to acquire the image and

write it back to the PC or Raspberry PI with C or C++ syntax, so that there will be

no need to install or use the OpenCV library. One other initiative is to find ways to

create the code into an independent executable file that can be portable to platforms

without the need to install OpenCV or even compile the code on the platform.

36

REFERNCES:

[1] Space Foundation, “Digital Image Processing - Medical Applications”,

Internet: http://www.spacefoundation.org/programs/space-technology-hall-

fame/inducted-technologies/digital-image-processing-medical, 1994.

[2] S. Liangwongsan et al. “Extracted Circle Hough Transform and Circle

Defect Detection algorithm”, International Science Index, World Academy

of Science Engineering and Technology, Vol. 5, No. 12, 2011.

[3] R. Duda. and P. Hart. Use of the Hough transform to detect lines and curves

in pictures. Communications of the ACM,15(1):11–15, January 1972.

[4] Wikipedia, “Hough space plot example”, Internet:

http://en.wikipedia.org/wiki/Hough_transform, February 19, 2006.

[5] Jung, C.R.; Schramm, R., "Rectangle detection based on a windowed Hough

transform," Computer Graphics and Image Processing, 2004. Proceedings.

17th Brazilian Symposium on, vol., no., pp.113, 120, 17-20 Oct. 2004

[6] G. T. Shrivakshan, C. Chandrasekar, “A Comparison of various Edge

Detection Techniques used in Image Processing”, IJCSI International

Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012.

[7] H. Rhody. (2005, Oct. 11). Lecture 10: Hough Circle Transform [Online].

Available:

https://www.cis.rit.edu/class/simg782/lectures/lecture_10/lec782_05_10.pdf

[8] T. Gevers, J. Weijer, and H. Stokman.“Color feature detection”. Color Image

Processing: Emerging Applications.

[9] The Raspberry Pi Foundation,” DOWNLOADS”, Internet:

http://www.raspberrypi.org/downloads/ , [Dec. 20, 2014]

[10] SourceForge, Internet:

http://sourceforge.net/projects/win32diskimager/?source=typ_redirect , [Dec.

20, 2014]

http://www.spacefoundation.org/programs/space-technology-hall-fame/inducted-technologies/digital-image-processing-medical
http://www.spacefoundation.org/programs/space-technology-hall-fame/inducted-technologies/digital-image-processing-medical
http://en.wikipedia.org/wiki/Hough_transform
https://www.cis.rit.edu/class/simg782/lectures/lecture_10/lec782_05_10.pdf
http://www.raspberrypi.org/downloads/
http://sourceforge.net/projects/win32diskimager/?source=typ_redirect

37

[11] The Raspberry Pi Foundation, “INSTALLING OPERATING SYSTEM

IMAGES USING WINDOWS”, Internet:

http://www.raspberrypi.org/documentation/installation/installing-

images/windows.md , [Dec. 20, 2014]

[12] The Raspberry Pi Foundation, “RASPI-CONFIG”, Internet:

http://www.raspberrypi.org/documentation/configuration/raspi-config.md ,

[Dec. 20, 2014]

[13] The Raspberry Pi Foundation, “CONFIG.TXT”, Internet:

http://www.raspberrypi.org/documentation/configuration/config-txt.md ,

[Dec. 20, 2014]

[14] B. Gaines. “Instructions for setting up a New Raspberry Pi OS and

OpenCV”, Internet:

https://docs.google.com/document/d/1wmcaBUogffbxD78IghNyag4jl2gAZp

1d_9HLkBGriLA/edit , March, 2014 [Dec. 20, 2014].

[15] R. Castle. “Installing OpenCV on a Raspberry Pi”, Internet:

http://robertcastle.com/2014/02/installing-opencv-on-a-raspberry-pi/ , Feb.

22, 2014 [Dec. 20, 2014].

[16] The Raspberry Pi Foundation, “VNC (VIRTUAL NETWORK

COMPUTING)”, Internet:

http://www.raspberrypi.org/documentation/remote-access/vnc/ [Feb. 20,

2014]

[17] opencv dev team, “Hough Circle Transform”, Internet:

http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/hough_circle/hough_c

ircle.html, Feb 25, 2015 [April 4, 2015].

[18] B. Traynor. “RPi Low-level peripherals”, Internet:

http://elinux.org/RPi_Low-level_peripherals , [Jan. 14, 2015 [April 4, 2015].

http://www.raspberrypi.org/documentation/installation/installing-images/windows.md
http://www.raspberrypi.org/documentation/installation/installing-images/windows.md
http://www.raspberrypi.org/documentation/configuration/raspi-config.md
http://www.raspberrypi.org/documentation/configuration/config-txt.md
https://docs.google.com/document/d/1wmcaBUogffbxD78IghNyag4jl2gAZp1d_9HLkBGriLA/edit
https://docs.google.com/document/d/1wmcaBUogffbxD78IghNyag4jl2gAZp1d_9HLkBGriLA/edit
http://robertcastle.com/2014/02/installing-opencv-on-a-raspberry-pi/
http://www.raspberrypi.org/documentation/remote-access/vnc/
http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.html
http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.html
http://elinux.org/RPi_Low-level_peripherals

38

[19] F. Buss. “PWM example”, Internet:

 http://www.frank-buss.de/raspberrypi/pwm.c, 2012 [April 4, 2015].

[20] M. Dornisch. “DIY Raspberry Pi Heat Sink”, Internet:

http://www.michaeldornisch.com/2012/06/diy-raspberry-pi-heat-sink.html ,

June 25, 2012 [Dec. 20, 2014].

http://www.frank-buss.de/raspberrypi/pwm.c
http://www.michaeldornisch.com/2012/06/diy-raspberry-pi-heat-sink.html

39

APPENDIX A: C++ Code

#include <opencv/cv.h>
#include <opencv/highgui.h>
#include <stdio.h>
#include "opencv2/opencv.hpp"

#include <stdlib.h>
#include <math.h>
//== Servo Settings start ============//
#define BCM2708_PERI_BASE 0x20000000
#define GPIO_BASE (BCM2708_PERI_BASE + 0x200000) /* GPIO controller */
#define PWM_BASE (BCM2708_PERI_BASE + 0x20C000) /* PWM controller */
#define CLOCK_BASE (BCM2708_PERI_BASE + 0x101000)

#define PWM_CTL 0
#define PWM_RNG1 4
#define PWM_DAT1 5

#define PWMCLK_CNTL 40
#define PWMCLK_DIV 41

//#include <stdio.h>
#include <string.h>
//#include <stdlib.h>
#include <dirent.h>
#include <fcntl.h>
#include <assert.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>

#include <unistd.h>

#define PAGE_SIZE (4*1024)
#define BLOCK_SIZE (4*1024)

// I/O access
volatile unsigned *gpio;
volatile unsigned *pwm;
volatile unsigned *clk;

// GPIO setup macros. Always use INP_GPIO(x) before using OUT_GPIO(x) or SET_GPIO_ALT(x,y)
#define INP_GPIO(g) *(gpio+((g)/10)) &= ~(7<<(((g)%10)*3))
#define OUT_GPIO(g) *(gpio+((g)/10)) |= (1<<(((g)%10)*3))
#define SET_GPIO_ALT(g,a) *(gpio+(((g)/10))) |= (((a)<=3?(a)+4:(a)==4?3:2)<<(((g)%10)*3))

#define GPIO_SET *(gpio+7) // sets bits which are 1 ignores bits which are 0
#define GPIO_CLR *(gpio+10) // clears bits which are 1 ignores bits which are 0

volatile unsigned *mapRegisterMemory(int base);
void setupRegisterMemoryMappings();
void setServo(int percent);
void initHardware();
//== Servo Settings end ==============//
using namespace cv;
using namespace std;

#define x 480
#define y 640

40

#define block 3
#define r_step 5
#define sobel_max 3*255
#define edge_max 4*255
#define edge_min 255
int r_thresh=240;
int r_min=30;
double theta_step=0.35;
int wait;
unsigned char img[x][y][3];
int accum[240][x][y];
unsigned char img_gray[x][y];
unsigned char img_median[x][y];
unsigned char img_filtered[x][y];
int img_edge[x][y];

int red_max_perc=80;
int red_min_perc=40;
int green_max_perc=30;
int green_min_perc=10;
int blue_max_perc=30;
int blue_min_perc=7;

long long starttime,
endtime,endtime_opencv_1,endtime_opencv_2,starttime_opencv_2,endtime_pointer_1,starttime_pointer_2,
endtime_pointer_2;
double sec;

void sort_array(int array[],int index);
void zero_array(int array[],int index);
void sort_array_pointer(unsigned char*,int index);
void zero_array_pointer(unsigned char*,int index);

int main(){
 // init PWM module for GPIO pin 18 with 50 Hz frequency
 initHardware();

FILE *fi,*fo;
printf("Program Start\nParameters: Radius step:%2d\tTheta step: %2.2f\tMedian block: %d\n",r_step,
theta_step, block);
Mat bugz(x,y,CV_8UC3);
int sz[3] = {x,y,3};
Mat img_cap(3,sz, CV_8UC1, Scalar::all(1));
int sez[3] = {x,y,3};
Mat img_show(3,sez, CV_8UC1, Scalar::all(0));
Mat img_show_opencv(3,sez, CV_8UC1, Scalar::all(0));
Mat img_show_pointer(3,sez, CV_8UC1, Scalar::all(0));
Mat img_show_gray(x,y, CV_8UC1, Scalar::all(0));
Mat img_show_filtered(x,y, CV_8UC1, Scalar::all(0));
Mat img_show_edge(x,y, CV_8UC1, Scalar::all(0));
Mat img_show_filtered_opencv(x,y, CV_8UC1, Scalar::all(0));
Mat img_show_edge_opencv(x,y, CV_8UC1, Scalar::all(0));
Mat img_show_gray_pointer(x,y, CV_8UC1, Scalar::all(0));
Mat img_show_filtered_pointer(x,y, CV_8UC1, Scalar::all(0));
Mat img_show_edge_pointer(x,y, CV_8UC1, Scalar::all(0));
VideoCapture cap;

try
{

 setServo(servo_angle);

41

 sleep(1);
 printf("\nServo at %d degree", servo_angle)

while(1)
{

starttime=getTickCount();
cap.open(0);
waitKey(10);
cap>>bugz;
cap>>img_cap;
cap>>img_show;
cap>>img_show_pointer;
cap>>img_show_opencv;
cap.release();
endtime_pointer_1=getTickCount();

int i=0,j=0,h=0;
char cd;
for(i=0;i<240;i++)for(j=0;j<x;j++)for(h=0;h<3;h++)img[i][j][h]=0;
for(i=0; i<480; i++)
{

 for(j=0; j<640; j++)
 {
 for(h=0; h<3; h++)
 {
 img[i][j][2-h]=(*(img_cap.data+(y*3*i)+(3*j)+(h)));
 }
 }
}
//------------------------------ Color Detection --
--------//

for(i=0;i<240;i++)for(j=0;j<x;j++)img_gray[i][j]=0;
 double red, green, blue;
 for(i=1;i<x;i++)
 {
 for(j=1;j<y;j++)
 {
 red=(100.0*(img[i][j][0])/((img[i][j][0])+(img[i][j][1])+(img[i][j][2])));
 green=(100.0*(img[i][j][1])/((img[i][j][0])+(img[i][j][1])+(img[i][j][2])));
 blue=(100.0*(img[i][j][2])/((img[i][j][0])+(img[i][j][1])+(img[i][j][2])));
 // if(red<=red_max_perc && red>=red_min_perc && green<=green_max_perc &&
green>=green_min_perc && blue<=blue_max_perc && blue>=blue_min_perc &&
img[i][j][0]>=edge_thresh)img_gray[i][j]=255;
 if(red<=red_max_perc && red>=red_min_perc && green<=green_max_perc &&
green>=green_min_perc && blue<=blue_max_perc && blue>=blue_min_perc)img_gray[i][j]=255;

 else img_gray[i][j]=0;

 }
 }

printf("\nColor Detection Done");
//------------------------------ Write Mat Color Detection --
------------------//

for(int i=0; i<x; i++)
{

42

 for(int j=0; j<y; j++)
 {

 (*(img_show_gray.data+(y*i)+(j)))=img_gray[i][j];

 }
}

endtime_opencv_1=getTickCount();
//------------------------------ Median Filter --
--------//

int counter=0,max=0,k=0,l=0;
int m=block/2;
int n=m;
if ((block%2)==0)n=m+1;
 double total=0;
for(i=0;i<x;i++)for(j=0;j<y;j++)img_median[i][j]=0;
for(i=0;i<x;i++)for(j=0;j<y;j++)img_filtered[i][j]=0;
int hold[block*block];

for(i=m; i<x-n-1; i++)
 {
 for(j=m; j<y-n-1; j++)
 {
 counter=0;
 max=0;
 zero_array(hold,block*block);
 for(k=i-m;k<=i+n;k++)for(l=j-m;l<=j+n;l++){
 hold[counter]=img_gray[k][l];
 counter++;
 }
 sort_array(hold,block*block);
 img_filtered[i][j]=hold[counter/2];
 }
}
printf("\nMedian Filter Done");
//------------------------------ Write Mat Median Filter --
------------------//

for(int i=0; i<x; i++)
{

 for(int j=0; j<y; j++)
 {

 (*(img_show_filtered.data+(y*i)+(j)))=img_filtered[i][j];

 }
}

//------------------------------ Edge Detection --
--------//
int dx=0,dy=0;
for(i=0;i<240;i++)for(j=0;j<x;j++)img_edge[i][j]=0;
for(i=1;i<x-1;i++)
{

43

 for(j=1;j<y-1;j++)
 {

 dx = (img_filtered[i+1][j+1])+(2*img_filtered[i+1][j])+ (img_filtered[i+1][j-1])-
(img_filtered[i-1][j-1])-(2*img_filtered[i-1][j])-(img_filtered[i-1][j+1]);
 dy = (img_filtered[i+1][j+1])+(2*img_filtered[i][j+1])+ (img_filtered[i-1][j+1])-
(img_filtered[i-1][j-1])-(2*img_filtered[i][j-1])-(img_filtered[i+1][j-1]);

 img_edge[i][j]=((abs(dx)+abs(dy))>=sobel_max)?255:0;

 }
}
//for(i=1;i<x-1;i++)for(j=1;j<y-1;j++)if((img_edge[i-1][j-1]+img_edge[i-1][j]+img_edge[i-
1][j+1]+img_edge[i][j-1]+img_edge[i][j]+img_edge[i][j+1]+img_edge[i+1][j-
1]+img_edge[i+1][j]+img_edge[i+1][j+1])>=4*255)img_edge[i][j]=0;
printf("\nEdge Detection Done");

//--------------------------------------Write Mat Edge---------------------------//

for(int i=0; i<x; i++)
{

 for(int j=0; j<y; j++)
 {

 (*(img_show_edge.data+(y*i)+(j)))=img_edge[i][j];

 }
}

//------------------------------ Hough Transform --
--------//
for(i=0;i<240;i++)for(j=0;j<x;j++)for(k=0;k<y;k++)accum[i][j][k]=0;
double theta=0,pi=22.0/7.0;
int x_max=0,y_max=0,r_max=1,r=0;
m=0;
n=0;
int max_accum=0;
for(i=1;i<x;i++)
{
 for(j=1;j<y;j++)
 {

 if(img_edge[i][j]== 255)
 {

 for(r=(r_min);r<(r_thresh);r+=r_step)
 {

 for(theta=0;theta<=(2*pi);theta+=theta_step)
 {

 m=ceil(i+(r*(cos(theta))));
 n=ceil(j+(r*(sin(theta))));

 if((m>=0) && (m<x) && (n>=0) && (n<y))
 {

 accum[r][m][n]++;

44

 if((accum[r][m][n])>max_accum)
 {
 max_accum=accum[r][m][n];
 x_max=m;
 y_max=n;
 r_max=r;

 }

 }

 }
 }
 }
 }
}
printf("\nHough Transform Done");
printf("\nCircle Detected:\nCoordinates: X: %d\tY: %d\tRadius: %d\tNo of
votes:%d",x_max,y_max,r_max,max_accum);
//------------------------------ Hough Transform --
--------//
endtime=getTickCount();
sec=((endtime-starttime)/(getTickFrequency()));
printf("\nExecution Time (Seconds): %3.2f\n", sec);

//------------------------------ Highlight Circle--
--------//

 for(j=1;j<y;j++)
 {
 if(x_max>=0 && x_max<x)
 {
 img[x_max][j][0]=255;
 img[x_max][j][1]=0;
 img[x_max][j][2]=0;
 }
 }
 for(i=1;i<x;i++)
 {
 if(y_max>=0 && y_max<y)
 {
 img[i][y_max][0]=255;
 img[i][y_max][1]=0;
 img[i][y_max][2]=0;
 }

 }

for(i=x_max-r_max;i<=x_max+r_max;i+=(2*r_max))
{
 for(j=y_max-r_max;j<=y_max+r_max;j+=(2*r_max))
 {
 for(l=-r_max;l<=r_max;l++)
 {
 for(k=-r_max;k<=r_max;k++)
 {
 if((i>=0) && (i<x) && (j>=0) && (j<y))
 {
 img[i][y_max+k][0]=255;
 img[i][y_max+k][1]=0;

45

 img[i][y_max+k][2]=0;
 }
 if((i>=0) && (i<x) && (j>=0) && (j<y))
 {
 img[x_max+l][j][0]=255;
 img[x_max+l][j][1]=0;
 img[x_max+l][j][2]=0;
 }
 }
 }
 }
}

//---------------------------- Write Highlighted Image-----------------------//

for(int i=0; i<x; i++)
{

 for(int j=0; j<y; j++)
 {

 for(int h=0; h<3; h++)
 {
 (*(img_show.data+(y*3*i)+(3*j)+(h)))=img[i][j][2-h];

 }
 }
}

imwrite("output_c_img_array.jpg",img_show);
imwrite("gray_c_img_array.jpg",img_show_gray);
imwrite("filtered_c_img_array.jpg",img_show_filtered);
imwrite("edge_c_img_array.jpg",img_show_edge);

//=== OPENCV ========================//
starttime_opencv_2=getTickCount();

printf("\n===\n\n\nOPENCV Implementation:\n");
 medianBlur(img_show_gray, img_show_filtered_opencv, block);
 printf("\nMedian Filter Done");
 Canny(img_show_filtered_opencv, img_show_edge_opencv, edge_min, edge_max, 3);
 printf("\nEdge Detection Done");
 vector<Vec3f> circles;
 HoughCircles(img_show_edge_opencv, circles, CV_HOUGH_GRADIENT, 1, 1,200,2*3*r_min/8, r_min,
r_thresh);

 Vec3i c = circles[0];
 printf("\nHough Transform Done");
 printf("\nCircle Detected:\nCoordinates: X: %d\tY: %d\tRadius: %d\tNo of votes: N/A",c[1],
c[0],c[2]);
 circle(img_show_opencv, Point(c[0], c[1]), c[2], Scalar(0,0,255), 3, CV_AA);
 circle(img_show_opencv, Point(c[0], c[1]), 2, Scalar(0,255,0), 3, CV_AA);
imwrite("filtered_c_img_opencv.jpg",img_show_filtered_opencv);
imwrite("edge_c_img_opencv.jpg",img_show_edge_opencv);
imwrite("output_c_img_opencv.jpg",img_show_opencv);

endtime_opencv_2=getTickCount();

sec=(((endtime_opencv_1-starttime)/(getTickFrequency()))+((endtime_opencv_2-
starttime_opencv_2)/(getTickFrequency())));
printf("\nExecution Time (Seconds): %3.2f\n", sec);

46

//=== Pointers ========================//
printf("\n===\n\n\nPOINTERS & Memory Allocation
Implementation:\n");

starttime_pointer_2=getTickCount();
unsigned char* img_gray_pointer;
img_gray_pointer=(unsigned char*)malloc(x*y*sizeof(unsigned char));
for(i=0;i<x;i++)
 {
 for(j=0;j<y;j++)
 {

 red=(100.0*(*(img_cap.data+(y*3*i)+(3*j)+(2)))/((*(img_cap.data+(y*3*i)+(3*j)+(0)))+((*(img_c
ap.data+(y*3*i)+(3*j)+(1))))+((*(img_cap.data+(y*3*i)+(3*j)+(2))))));

green=(100.0*(*(img_cap.data+(y*3*i)+(3*j)+(1)))/((*(img_cap.data+(y*3*i)+(3*j)+(0)))+((*(img_cap.d
ata+(y*3*i)+(3*j)+(1))))+((*(img_cap.data+(y*3*i)+(3*j)+(2))))));

blue=(100.0*(*(img_cap.data+(y*3*i)+(3*j)+(0)))/((*(img_cap.data+(y*3*i)+(3*j)+(0)))+((*(img_cap.da
ta+(y*3*i)+(3*j)+(1))))+((*(img_cap.data+(y*3*i)+(3*j)+(2))))));

 if(red<=red_max_perc && red>=red_min_perc && green<=green_max_perc && green>=green_min_perc
&& blue<=blue_max_perc && blue>=blue_min_perc)(*(img_gray_pointer+(y*i)+j))=255;

 else (*(img_gray_pointer+(y*i)+j))=0;
 }
 }

printf("\nColor Detection Done");
//------------------------------ Write Mat Color Detection --
------------------//

for(int i=0; i<x; i++)
{

 for(int j=0; j<y; j++)
 {

 (*(img_show_gray_pointer.data+(y*i)+(j)))=*(img_gray_pointer+(y*i)+j);

 }
}

endtime_opencv_1=getTickCount();
//------------------------------ Median Filter --
--------//
unsigned char* img_filtered_pointer;
img_filtered_pointer=(unsigned char*)calloc(x*y,sizeof(unsigned char));
if(img_filtered_pointer == NULL)
{
 printf("Error: img_filtered_pointer");
 getchar();
 exit(0);
}

counter=0,max=0,k=0,l=0;

m=block/2;

47

n=m;
if((block%2)==0)n=m+1;

//for(i=0;i<240;i++)for(j=0;j<x;j++)img_filtered[i][j]=0;

unsigned char* hold_pointer;
hold_pointer=(unsigned char*)calloc(block*block,sizeof(unsigned char));
 for(i=m; i<x-n-1; i++)
 {
 for(j=m; j<y-n-1; j++)
 {
 counter=0;
 zero_array_pointer(hold_pointer,block*block);
 for(k=i-m;k<=i+n;k++)
 {
 for(l=j-m;l<=j+n;l++)
 {

 (*(hold_pointer+counter))=(*(img_gray_pointer+(y*k)+(l)));
 counter++;

 }
 }
 sort_array_pointer(hold_pointer,block*block);

 (*(img_filtered_pointer+(y*i)+j))=(*(hold_pointer+(counter/2)));

 }
}
printf("\nMedian Filter Done");
//------------------------------ Write Mat Median Filter --
------------------//

for(int i=0; i<x; i++)
{

 for(int j=0; j<y; j++)
 {

 (*(img_show_filtered_pointer.data+(y*i)+(j)))=(*(img_filtered_pointer+(y*i)+j));

 }
}

//------------------------------ Edge Detection --
--------//
unsigned char* img_edge_pointer;
img_edge_pointer=(unsigned char*)calloc(x*y,sizeof(unsigned char));
if(img_edge_pointer == NULL)
{
 printf("Error: img_filtered_pointer");
 getchar();
 exit(0);
}
dx=0,dy=0;
for(i=1;i<x-1;i++)

48

{
 for(j=1;j<y-1;j++)
 {

 dx =
(*(img_filtered_pointer+y*(i+1)+(j+1)))+(2*(*(img_filtered_pointer+y*(i+1)+(j))))+(*(img_filtered_p
ointer+y*(i+1)+(j-1)))-(*(img_filtered_pointer+y*(i-1)+(j+1)))-(2*(*(img_filtered_pointer+y*(i-
1)+(j))))-(*(img_filtered_pointer+y*(i-1)+(j-1)));
 dy =
(*(img_filtered_pointer+y*(i+1)+(j+1)))+(2*(*(img_filtered_pointer+y*(i)+(j+1))))+(*(img_filtered_p
ointer+y*(i-1)+(j+1)))-(*(img_filtered_pointer+y*(i-1)+(j-1)))-(2*(*(img_filtered_pointer+y*(i)+(j-
1))))-(*(img_filtered_pointer+y*(i-1)+(j-1)));

 (*(img_edge_pointer+(y*i)+j))=((abs(dx)+abs(dy))>=sobel_max)?255:0;

 }
}
printf("\nEdge Detection Done");

//--------------------------------------Write Mat Edge---------------------------//

for(int i=0; i<x; i++)
{

 for(int j=0; j<y; j++)
 {

 (*(img_show_edge_pointer.data+(y*i)+(j)))=(*(img_edge_pointer+(y*i)+j));

 }
}

//------------------------------ Hough Transform --
--------//

unsigned char* accum_pointer;
accum_pointer=(unsigned char*)calloc(240*x*y,sizeof(unsigned char));
if(accum_pointer == NULL)
{
 printf("Error: img_filtered_pointer");
 getchar();
 exit(0);
}
theta=0,pi=22.0/7.0;
x_max=0,y_max=0,r_max=1,r=0;
m=0;
n=0;
max_accum=0;
int holder=0;
for(i=1;i<x;i++)
{
 for(j=1;j<y;j++)
 {

 if((*(img_edge_pointer+(y*i)+j))== 255)
 {

 for(r=(r_min);r<(r_thresh);r+=r_step)

49

 {

 for(theta=0;theta<=(2*pi);theta+=theta_step)
 {

 m=ceil(i+(r*(cos(theta))));
 n=ceil(j+(r*(sin(theta))));

 if((m>=0) && (m<x) && (n>=0) && (n<y))
 {

 holder=++(*(accum_pointer+((x*y)*r)+(y*m)+n));

 if(holder>max_accum)
 {
 max_accum=holder;
 x_max=m;
 y_max=n;
 r_max=r;

 }

 }

 }
 }
 }
 }
}
printf("\nHough Transform Done");
printf("\nCircle Detected:\nCoordinates: X: %d\tY: %d\tRadius: %d\tNo of
votes:%d",x_max,y_max,r_max,max_accum);
//------------------------------ Hough Transform --
--------//
endtime_pointer_2=getTickCount();
sec=((endtime_pointer_2-starttime_pointer_2)/(getTickFrequency()))+((endtime_pointer_1-
starttime)/(getTickFrequency()));
printf("\nExecution Time (Seconds): %3.2f\n", sec);
//... Set Servo
Angle..................//
if (y_max <= y/3) servo_angle-=10; //10 % which translates to 18 degrees.
else if (y_max <= 2*y/3) servo_angle-=0;
else if (y_max <= y) servo_angle+=10;

if (servo_angle > 100) servo_angle=100;
if (servo_angle < 0) servo_angle=0;
//------------------------------ Highlight Circle--
--------//

 for(j=1;j<y;j++)
 {
 if(x_max>=0 && x_max<x)
 {
 (*(img_show_pointer.data+(y*3*(x_max))+(3*(j))+(2-0)))=0;
 (*(img_show_pointer.data+(y*3*(x_max))+(3*(j))+(2-1)))=0;
 (*(img_show_pointer.data+(y*3*(x_max))+(3*(j))+(2-2)))=255;
 }
 }
 for(i=1;i<x;i++)
 {
 if(y_max>=0 && y_max<y)
 {

50

 (*(img_show_pointer.data+(y*3*i)+(3*(y_max))+(2-0)))=0;
 (*(img_show_pointer.data+(y*3*i)+(3*(y_max))+(2-1)))=0;
 (*(img_show_pointer.data+(y*3*i)+(3*(y_max))+(2-2)))=255;
 }

 }

for(i=x_max-r_max;i<=x_max+r_max;i+=(2*r_max))
{
 for(j=y_max-r_max;j<=y_max+r_max;j+=(2*r_max))
 {
 for(l=-r_max;l<=r_max;l++)
 {
 for(k=-r_max;k<=r_max;k++)
 {
 if((i>=0) && (i<x) && (j>=0) && (j<y))
 {
 (*(img_show_pointer.data+(y*3*i)+(3*(y_max+k))+(2-0)))=0;
 (*(img_show_pointer.data+(y*3*i)+(3*(y_max+k))+(2-1)))=0;
 (*(img_show_pointer.data+(y*3*i)+(3*(y_max+k))+(2-2)))=255;
 }
 if((i>=0) && (i<x) && (j>=0) && (j<y))
 {
 (*(img_show_pointer.data+(y*3*(x_max+l))+(3*j)+(2-0)))=0;
 (*(img_show_pointer.data+(y*3*(x_max+l))+(3*j)+(2-1)))=0;
 (*(img_show_pointer.data+(y*3*(x_max+l))+(3*j)+(2-2)))=255;
 }
 }
 }
 }
}
//---------------------------- Write Highlighted Image-----------------------//

imwrite("gray_c_img_pointer.jpg",img_show_gray_pointer);
imwrite("filtered_c_img_pointer.jpg",img_show_filtered_pointer);
imwrite("edge_c_img_pointer.jpg",img_show_edge_pointer);
imwrite("output_c_img_pointer.jpg",img_show_pointer);

setServo(servo_angle);
sleep(1);
printf("\nServo at %d degree", servo_angle)

}

}
catch (Exception& e)
{
 const char* err_msg = e.what();
 std::cout << "exception caught: imshow:\n" << err_msg << std::endl;
}

cout << "\n* End of Program *";
getchar();

return 0;

}
void sort_array(int array[],int index)
{
 int i=0,j=0,mid=0;

51

 for(i=1;i<index;i++)
 {
 for(j=1;j<index;j++)
 {
 if(array[j-1]<array[j])
 {

 mid=array[j];
 array[j]=array[j-1];
 array[j-1]=mid;
 }
 }
}

}

void zero_array(int array[],int index)
{
 int j=0;
 for(j=0;j<index;j++)array[j]=0;
}

void sort_array_pointer(unsigned char* poin,int index)
{
 int i=0,j=0,mid=0;
 for(i=1;i<index;i++)
 {
 for(j=1;j<index;j++)
 {
 if((*(poin+j-1))<(*(poin+j)))
 {

 mid=(*(poin+j));
 (*(poin+j))=(*(poin+j-1));
 (*(poin+j-1))=mid;
 }
 }
}

}

void zero_array_pointer(unsigned char* poin,int index)
{
 int j=0;
 for(j=0;j<index;j++)(*(poin+j))=0;
}
//===
===== servo function declaration
// map 4k register memory for direct access from user space and return a user space pointer to it
volatile unsigned *mapRegisterMemory(int base)
{
 static int mem_fd = 0;
 char *mem, *map;

 /* open /dev/mem */
 if (!mem_fd) {
 if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC)) < 0) {
 printf("can't open /dev/mem \n");
 exit (-1);
 }
 }

52

 /* mmap register */

 // Allocate MAP block
 if ((mem = static_cast<char*>(malloc(BLOCK_SIZE + (PAGE_SIZE-1)))) == NULL) {
 printf("allocation error \n");
 exit (-1);
 }

 // Make sure pointer is on 4K boundary
 if ((unsigned long)mem % PAGE_SIZE)
 mem += PAGE_SIZE - ((unsigned long)mem % PAGE_SIZE);

 // Now map it
 map = (char *)mmap(
 (caddr_t)mem,
 BLOCK_SIZE,
 PROT_READ|PROT_WRITE,
 MAP_SHARED|MAP_FIXED,
 mem_fd,
 base
);

 if ((long)map < 0) {
 printf("mmap error %d\n", (int)map);
 exit (-1);
 }

 // Always use volatile pointer!
 return (volatile unsigned *)map;
}

// set up a memory regions to access GPIO, PWM and the clock manager
void setupRegisterMemoryMappings()
{
 gpio = mapRegisterMemory(GPIO_BASE);
 pwm = mapRegisterMemory(PWM_BASE);
 clk = mapRegisterMemory(CLOCK_BASE);
}

void setServo(int percent)
{
 int bitCount;
 unsigned int bits = 0;

 // 32 bits = 2 milliseconds
 bitCount = 16 + 16 * percent / 100;
 if (bitCount > 32) bitCount = 32;
 if (bitCount < 1) bitCount = 1;
 bits = 0;
 while (bitCount) {
 bits <<= 1;
 bits |= 1;
 bitCount--;
 }
 *(pwm + PWM_DAT1) = bits;
}

// init hardware
void initHardware()
{
 // mmap register space
 setupRegisterMemoryMappings();

53

 // set PWM alternate function for GPIO18
 SET_GPIO_ALT(18, 5);

 // stop clock and waiting for busy flag doesn't work, so kill clock
 *(clk + PWMCLK_CNTL) = 0x5A000000 | (1 << 5);
 usleep(10);

 // set frequency
 // DIVI is the integer part of the divisor
 // the fractional part (DIVF) drops clock cycles to get the output frequency, bad for servo
motors
 // 320 bits for one cycle of 20 milliseconds = 62.5 us per bit = 16 kHz
 int idiv = (int) (19200000.0f / 16000.0f);
 if (idiv < 1 || idiv > 0x1000) {
 printf("idiv out of range: %x\n", idiv);
 exit(-1);
 }
 *(clk + PWMCLK_DIV) = 0x5A000000 | (idiv<<12);

 // source=osc and enable clock
 *(clk + PWMCLK_CNTL) = 0x5A000011;

 // disable PWM
 *(pwm + PWM_CTL) = 0;

 // needs some time until the PWM module gets disabled, without the delay the PWM module
crashs
 usleep(10);

 // filled with 0 for 20 milliseconds = 320 bits
 *(pwm + PWM_RNG1) = 320;

 // 32 bits = 2 milliseconds, init with 1 millisecond
 setServo(0);

 // start PWM1 in serializer mode
 *(pwm + PWM_CTL) = 3;
}

54

APPENDIX B: Format of “CMakeLists.txt” file.

cmake_minimum_required(VERSION 2.8)

project(fyp)

find_package(OpenCV REQUIRED)

add_executable(fyp fyp.cpp)

target_link_libraries(fyp ${OpenCV_LIBS})

55

APPENDIX C: Format of “interfaces.txt” file.

auto lo

iface lo inet loopback

iface eth0 inet static

address 10.10.10.2

netmask 255.255.255.0

gateway 10.10.10.1

allow-hotplug wlan0

iface wlan0 inet manual

wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf

iface default inet dhcp

