CERTIFICATION OF APPROVAL

RAINFALL-RUNOFF SIMULATIONS FOR SUNGAI KURAU, PERAK

By

Madina Binti Abdullah

A project dissertation submitted to the
Civil Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(CIVIL ENGINEERING)

(Dr. Muhammad Raza Ul Mustafa)
Department of Civil Engineering
Universiti Teknologi PETRONAS
Tronoh, Perak.

Approved by,

January 2015

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by
unspecified sources or persons.

MADINA BINTI ABDULLAH

ABSTRACT

Flood risks can be reduced by either reducing the probability or the causes of a flooding. These causes can be quantified with rainfall-runoff models. The calibration process was carried out by using the available data in Kerian district. This project was conducted in order to develop Hydrologic Model for Sungai Kurau and analyze the precipitation-runoff processes from year 2005 to 2010. The impact of northeast monsoon was causes the Bukit Merah Dam release the excess water when reaches dangerous level, therefore it was released to Sungai Kurau and low-lying areas. To achieve the project objectives, the hydrological modeling is a common practice tool to estimate the basin's hydrological response due to precipitation. In this project, Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS) is used to simulate rainfall-runoff process at Sungai Kurau, Kerian for year 2005 to 2010 whereby the HEC-HMS are suitable model to predict the hydrologic changes in Sungai Kurau.

ACKNOWLEDGEMENTS

First and foremost, I express my highest gratitude and praises to Allah S.W.T for all the blessing He has showered onto us. Alhamdulillah, I am able to go through the paces of this Final Year Project (only with His will), from the beginning until completed the project.

My highest appreciation is extended to my supervisor, Dr. Muhammad Raza Ul Mustafa for being very helpful throughout the whole project, in giving me a lot of encouragements, ideas, suggestions, and comments. He was always there to support the development of this Final Year Project from the beginning and throughout the whole process of completing it.

Not forgetting Dr. Nik & Associates staffs for providing assistance to author during hydrologic modelling, their assistance is gratefully acknowledged.

Other than that, my highest appreciation goes to my mother, Madam Fatimah binti Mohd Ali for keeping me motivated always throughout the year. Not forgetting my family, they are my key sources of strength in whatever I do in my life. Thank you so much for always be there through my ups and downs.

Last but not least, the author would like to thank Miss Zainab, PhD student which always motivated me, assist me in whatever condition until my final project done. To Jabatan Pengairan dan Saliran, Jabatan Pertanian and Majlis Daerah were provide hydrologic data for my final year project. Thank you so much for everything.

TABLE OF CONTENTS

No	Title	Page
	Certification	i
	Abstract	iii
	Acknowledgements	iv
	Table of contents	v
	List of figures	vii
	List of tables	viii
	List of Graphs	viii
	Summary	viii
	Abbreviations and Nomenclatures	ix
	CHAPTER 1: INTRODUCTION	
1.1	Background of study	1
1.2	Problem Statement	4
1.3	Objectives	5
1.4	Scope of Study	5
	CHAPTER 2: LITERATURE REVIEW	
2.1	Hydrologic Cycle	6
2.2	Monsoon pattern in Malaysia	7
2.3	The Comprehensive Study on the Flood Risk	10
2.4	Rainfall-runoff model: HEC-HMS	14
	CHAPTER 3: METHODOLOGY	
3.1	Project Flowchart	17
3.2	Data Collection	18

3.3	Digitizing Satellite Imagery		
3.4	Area of Sub-division in Kerian District		
3.5	Thiessen polygon method		
3.6	Hydrologic Engineering Center's Hydrologic Modeling System		
3.7	Project Key milestones		
3.8	3.8 Project timeline		
	CHAPTER 4: RESULT AND DISCUSSION		
4.1	Simulation with HEC-HMS	30	
4.2	Peak discharge at Sub-basin	30	
4.3	Peak discharge at Junction	34	
4.4 Discussion		37	
	CHAPTER 5: CONCLUSION AND RECOMMENDATION		
5.1	Conclusion	41	
5.2	Recommendation	42	
	REFERENCES	43	
	APPENDICES	46	

LIST OF FIGURES

Figure	Title	Page
Figure 1.1	Sungai Kurau and Bukit Merah Dam	3
Figure 1.2	Bukit Merah Dam	4
Figure 1.3	Water from Bukit Merah	4
Figure 2.1	Hydrologic cycle	7
Figure 2.2	Rainfall amount in Peninsular, Sabah and Sarawak	10
Figure 2.3	Flood prone area in Malaysia	13
Figure 2.4	Systems diagram of the runoff process	14
Figure 3.1	Satellite Image of Sungai Kurau	20
Figure 3.2	The elevation profile for Sungai Kurau	20
Figure 3.3	The Export/Add geometry columns	21
Figure 3.4	Thiesson Polygon method	21
Figure 3.5	Basin Model Manager	22
Figure 3.6	New basin model	23
Figure 3.7	Basin model map of Sungai Kurau	24
Figure 3.8	Component Editor for a sub-basin element	24
Figure 3.9	Open the Meteorological Model Manager	25
Figure 3.10	Component Editor for a Meteorological element	25
Figure 3.11	Gage weights window	26
Figure 3.12	Component Editor for a Control Specifications	26
Figure 3.13	Simulation run	27
Figure 3.14	Viewing results	27

LIST OF TABLES

Table	Title	Page
Table 2.1	General precipitation information	10
Table 3.1	Inventory Station Perak	19
Table 3.2	Project Timeline for FYP 1 and FYP 2	29
Table 4.1	Peak discharge parameter for Sub-basins 1 to 5 from 2005 until 2010	31
Table 4.2	Peak discharge parameter for Junctions 1 to 5 from 2005 until 2010	34
Table 4.7	Comparison of peak discharge for calibration result in 2005 to 2010	54

LIST OF FLOWCHART

	Page
Final year project flowchart	28

ABBREVIATIONS AND NOMENCLATURES

No	Abbreviation	Abbreviated Term
1	HEC-HMS	Hydrologic Engineering Center's Hydrologic modeling system.
2	DID	Drainage and Irrigation Department
3	CN	Curve Number
4	HSG	Hydrologic Soil Group

- 5 ARC Antecedent runoff condition
- 6 GIS Geographic information system