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ABSTRACT 

 

In modern plants there are many operating variables measured by sensors and logged into 

the process system database. Thus the amount of available data needs to be analyzed is 

enormous and they are highly correlated. This creates a demand for a system to monitor, 

control and analyzes this complex processes data to ensure the monitored process stays 

within desired conditions, by recognising anomalies in the process behaviour and 

subsequently correcting it. Statistical Process Monitoring (SPM) meets the demands; it is 

a system capable of detecting fault occurrence. In this context, the anomalies or faults 

studied is specifically the fault in structure, which is a type of fault resulted from an 

alteration of the processes main characteristics. SPM can be broken down into two 

methods which are univariate and multivariate methods. Multivariate methods or 

multivariate statistical process monitoring (MSPM) method take into account the 

correlation among the process variables and measurements; and it is capable to accurately 

characterize the behaviour of the processes, subsequently detecting faults, for which 

univariate method unable to adequately perform. MSPM method studied in this research 

project is Dynamic Principal Component Analysis (DPCA) method specifically on its 

structural fault detection ability, along with Hotelling’s (T
2
-statistic) and Squared 

Prediction Error (Q-statistic) techniques. The accuracies of fault detection ability of 

DPCA method will be compared with Principal Component Analysis (PCA) method. 
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CHAPTER 1  

INTRODUCTION 

 

 

1.1  BACKGROUND STUDY 

 

Robert M. Solow, an economist at Massachusetts Institute of Technology 

received a Nobel Prize in 1987, for his work in identifying the sources of economic 

growth. Professor Solow came with a conclusion that the immensity of an economy’s 

growth is the result of technological advances (Crowl & Louvar, 2011). It is also can 

be deduce that the industrial growth is too, rely on technology advancement. 

Industrial evolution, which mean more complex processes, high pressure facilities 

operation, more reactive chemicals, and many more complexities in controlling this 

industrial plant operations. Not to forget that, this industry has to cope with the 

demands on production efficiency, to maintain and improve product quality, and the 

pressure to comply with increasingly stringent safety and environmental regulations. 

Modern industrial processes are dealing with enormous amount of data, 

coming from many variables that need to be monitored and recorded continuously day 

to day. Standard (traditional) process controllers maintain operation conditions, by 

compensating disturbances and changes occurring in the process, however its ability 

is limited. Changes in processes, in which standard controllers cannot handle 

adequately, are called faults. A fault is defined as an unpermitted deviation of 

characteristic property or variable of the system. Fault can severely deteriorate
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production process, causing production outage, and worst case scenario, catastrophic 

industrial incident. Thus, it is significant for these processes, a rapid fault detection 

method that response effectively to fault occurrences. Fault detection, along with fault 

identification, fault diagnosis and process recovery form the basis of process 

monitoring. 

 

 

 

 

 

 

 
 

FIGURE 1.1 Process Monitoring Loop 

 

 
 

Process monitoring goal is to ensure the success of the planned operations by 

recognizing anomalies in the process behavior. This project studies a process 

monitoring method known as multivariate statistical process monitoring (MSPM), 

which capable of analyzing a vast number of highly correlated variable data in a 

process plant control system. The MSPM methods studied are Principal Component 

Analysis (PCA) and Dynamic Principal Component Analysis (DPCA) for relationship 

modelling which exists between process variables, along with Hotelling's T
2
-statistic, 

and Q-statistic (Squared Prediction Error) are used for fault detection, due to their 

capability in providing an indication of abnormal variability within and outside 

normal process workspace. 
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1.2 PROBLEM STATEMENT 

 

As mentioned earlier, complex processes, with thousand of operating variables 

data needed to be continuously monitored and controlled to ensure the processes 

operating within the specified operating conditions. Commonly in industry, the 

monitoring system of these processes works based on a general principle framework, 

in this context it is the general fault diagnosis framework. Based on Figure 1, there are 

many types of disturbances or faults that could occur in a process. 

 

 

 

 

 

 

 

 

                             

FIGURE 1.2 General Fault Diagnosis Framework (Venkatasubramanian et.al, 2003) 

 

 

In this project, focus is given on structural failures, of which it is capable to 

“result in a change in the information flow between various variables” 

(Venkatasubramanian, et.al. 2003). An example of a structural failure would be 

failure of a controller, a stuck valve, or a leaking pipe and so on. In this project, 

structural fault are simulated in Continuous Stirred Tank Reactor (CSTR) in Matlab 

Simulink, the fault data obtained will be statistically analyzed using Principal 

Component Analysis (PCA) and Dynamic Principal Component Analysis (DPCA) 

method, along with Hotelling's T
2
-statistic, and SPE’s Q-statistic, and their fault 

detection ability will be mutually compared. Principal Component Analysis (PCA) is 

a variable-reduction technique, and it determines the number of components to retain, 
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for which technically, a principal component can be defined as a linear combination 

of optimally-weighted observed variables. An extension of PCA to handle process 

dynamics are known as Dynamic Principal Component Analysis (DPCA).  

In this project, structural fault is the main object of study. Fault in structure 

“occur due to hard failures in equipment” (Venkatasubramanian et.al 2003). Change 

in a process structure will caused a change in the information flow between various 

variables. Thus, it means that the data collected from various variables are highly 

correlated when they are affected by a structural fault.  

 

 

1.3  OBJECTIVES AND SCOPE OF STUDY 

The main objective of this project is to investigate the structural fault detection 

performance of DPCA method, along with Hotelling's T
2
-statistic, and Q-statistic 

(Squared Prediction Error) technique, for which DPCA method fault detectability 

accuracies will be compared with PCA method. The scope of this project is to utilize 

CSTR simulation model to generate structural fault. 
 

To achieve the main objective, the sub-objectives of this project are as the following:  

1. To develop structural fault case study using Continuous Stirred Tank Reactor 

 (CSTR) computer simulation model in MATLAB Simulink 

2.  To compare fault detection performance of PCA and DPCA using, Hotelling’s 

 T
2
-statistic and Q-statistic (SPE) techniques  
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CHAPTER 2 

LITERATURE REVIEW & THEORY 

 

 

2.1 TYPES OF PROCESS FAULTS   

 

 In general, fault can be defined as a deviation from an acceptable range of an 

observed variable or designated parameter associated with a process (Himmelblau, 

1978). This defines a fault as a process anomaly; it can be a case such as high 

temperature in a reactor or low product quality and so on. Referring to Figure 1, there 

are three types of faults, which are “structural fault (structural failures & controller 

malfunction), variable fault (process disturbance), and gross errors (sensor and 

actuator failure)” (Venkatasubramanian et.al. 2003).  

 Variables fault is a change of variable parameter that exceeds the acceptable 

range of the observed variables. “Failures in parameter happen when there is a 

disturbance entering the process from the environment through one or more variables” 

(Venkatasubramanian et.al. 2003). An example for such fault is a change in 

temperature or change in concentration of reactant from its steady state value in 

reactor feed. Variable faults are rather easily detectable via univariate process 

monitoring methods. Fault in structures is the changes or deviation of the main 

characteristics governing the processes from ideal operating conditions (Hollender, 

2010). Structural faults are rather difficult to detect compared to variable faults and 

this is the type of faults being studied in this project.                     
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2.2 STATISTICAL PROCESS MONITORING   

 

 The objective of SPM is to ensure success of the planned operation by 

recognizing anomalies of the behaviour (Chiang & Russell, 2001). SPM can be 

divided into univariate methods and multivariate methods. Modern process control 

system becoming more complex and the current commonly employed SPM method 

(univariate) are inadequate. Univariate statistical charts ignore the correlation among 

other variables and measurements; thus it is incapable to accurately characterize the 

behaviour of the current industrial process (Chiang & Russell, 2001).  

 Univariate approaches are adequate for investigating and understanding simple 

systems. Classical univariate data analysis plot the columns of data together two at a 

time, followed by plotting each variable for all samples and look for trends. These 

approaches lead to frustration because of information overload and the time and effort 

required making each plot. Therefore, assumptions are made due to absence of an 

effective way to analyse all data simultaneously, which eventually lead to 

inconclusive result. Univariate methods may provide an oversimplistic and 

overoptimistic assessment of the data. Mean, average, and standard deviations and a 

lot of other statistics that describe one variable, but provide no information on how 

that one variable relates to others. Univariate method failed to detect the variable 

inter-relationships that may exist, as it assumes all variables are independent of each 

other. 

 Multivariate Statistical Process Monitoring (MSPM) address some of the 

limitations of univariate monitoring techniques by considering all the data 

simultaneously and extracting information on the ‘directionality’ of the process 

variations. MSPM are a commonly used method to solve problems occurred in plant 

operation caused by uncertainty, disturbances, faults and incomplete knowledge of the 

process, and its’ performance depends on how well the model describes relationships 

between the variables (Venkatasubramanian et.al. 2003).  

 MSPM also provides monitoring charts that can detect fault and gives warning 

signal earlier than the classical univariate chart (Chiang & Russell, 2001). 
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Multivariate methods can be as simple as analysing two variables right up to millions, 

“it address univariate methods weakness by considering all the data simultaneously, 

and extracting information on the directionality of the variations” of one variable 

relative to the other (Martin et.al. 1996). This is known as covariance or correlation, it 

describe the influence that variables has on each other. Multivariate methods identify 

variables that contribute most to the overall variability in the data, it helps to isolate 

those variables that are related – in other words, that co-vary with each other. 

Multivariate methods present the result in a highly graphical manner, into a one 

interpretable picture. 

 

 

2.3 PRINCIPAL COMPONENT ANALYSIS (PCA) 

   

The basis of MSPM is the projection methods of principal components 

analysis (PCA), for which the primary objectives are data summarisation, 

classification of variables, outlier detection, early warning of potential anomalies, as 

well as providing data for fault identification. PCA reduce the dimensionality of the 

variables data, by forming a new set of variables called principal components, which 

are a linear combination of the original measured variables and which explain the 

maximal amount of variability in the data (Russell et.al. 2000). These principle 

components are sets of new uncorrelated variables.  

PCA determines a set of orthogonal vectors called loading vector and it is 

ordered by the amount of variance explained in the loading vector direction. PCA can 

greatly simplify data into lower-dimensional space without any loss of variance 

between variables, and finding a few linear combinations which can be used to 

summarized the data with a minimal loss of information. It preserves the correlation 

structure between process variables and captures variability of the data.  
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A set of n observations and m process variables stacked into a matrix X: 

 

 

                (1) 

 
 

 

The loading vectors are calculated by solving the stationary points of the optimization 

problem               (2) 

  

where  v ∈ R
m

   

          
 

The stationary points of (1) can be computed via the singular value decomposition 

(SVD):                (3) 

 

 

 

where U ∈ R 
n x n 

 and V ∈ R
 m x m

 are unitary matrices and Σ ∈ R
 n x m

 is the matrix 

containing the non-negative singular values.  

 

Eq (3) is equivalent to solving an eigenvalue decomposition of the covariance matrix 

S of the data set:             (4) 

 

 

where V (loading matrix) is the orthogonal and Λ (eigenvalue) is the diagonal (Golub 

& Loan, 1983) and the new loading matrix P is then built from the columns of V. 

 

The data set is then projected into a lower dimensional score matrix T: 

              

             (5) 
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2.4 DYNAMIC PRINCIPAL COMPONENT ANALYSIS (DPCA) 

 

Monitoring system based on PCA approach assumes observations at any time 

instant statistically independent to observations in the past time. However, in typical 

industrial processes, assumption is only valid for long sampling intervals i.e. 2 to 12 

hours. X
T
 is the m-dimensional observation vector in the training set at time instance 

t. By performing PCA on the data matrix in Eq. (6), a multivariate autoregressive 

(AR) model is extracted from the data. The Q-statistic is then the squared prediction 

error of the model. If enough lags l are included in the data matrix, the Q-statistic 

becomes statistically independent between time instances, and the threshold Eq. (12) 

is justified. This approach is known as dynamic PCA (DPCA). 

 For shorter sampling intervals and faster fault detection, the PCA methods are 

extended to take into account the serial correlations, by augmenting each observation 

vector with the previous l observations and stacking the data matrix as following 

(Chiang & Russell, 2001): 

 

 

 

           

  

                (6) 

 

 

 

 

2.5 FAULT DETECTION 

 2.5.1 Hotelling’s (T
2
-Statistic) 

 

Multivariate process control techniques were established by Hotelling in his 

1947 pioneering paper, in which he applied multivariate process control methods to a 

bombsights problem (Hotelling, 1947).  Multivariate process control procedure should 

fulfill four conditions: (1) an answer to the question ‘Is the process in control?’ must 
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be available; (2) an overall probability for the event ‘Procedure diagnoses an out-of-

control state inaccurately’ must be specified; (3) the relationships among the 

variables–attributes should be taken into account; and (4) an answer to the question ‘If 

the process is out of control, what is the problem?’ should be available (Jackson, 

1991). Multivariate control chart for process mean is based greatly upon Hotelling's-

T
2
 distribution, which was introduced by Harold Hotelling on 1947. Hotelling's T

2
- 

distribution is the multivariate analogue of the univariate t-distribution for the use of 

standard value μ or individual observations [(Sultan, 1986), (Blank, 1988), & 

(Morrison, 1990)].  

For an observation vector x and assuming that Λ=ΣTΣ is invertible, the T
2 

–

statistic can be obtained from the PCA and DPCA representation respectively Eq. (5) 

as such: 

               (7) 

 

By including the matrix P the loading vectors associated with the a largest 

singular values, the T
2 
-statistic is then computed as (Jackson & Mudholkar, 1979) : 

                    (8) 

 

where,  Σa contains the first a rows and columns of  Σ, and x is an observation vector 

of dimension m. The T
2 
-statistic threshold is: 

                (9) 

and for a normalised data set, the T
2 
-statistic threshold is derived as: 

                     (10) 

where Fα (a, n - a) is the upper 100α% critical point of the F-distribution with a and  

n - a degrees of freedom (Kourti & MacGregor, 1995).   
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2.5.2 Squared Prediction Error, SPE (Q-Statistic) 

 The Q-statistic, also known as the squared prediction error (SPE), is a squared 

2-norm measuring the deviation of the observations to the lower dimensional PCA 

representation (Russell et.al. 2000). 

For robust monitoring of the portion of the measurement space corresponding to the  

m – a smallest singular values, Q-statistic would be of better use: 

                     (11) 

where r is the residual vector, a projection of observation x into residual space 

(Russell et.al. 2000). The threshold for Q-statistic can be approximated as (Jackson & 

Mudholkar, 1979) : 

           

                     (12) 

Where cα is the normal deviate which corresponds to (1- α) percentile.                                             

                                                                                                                                                                                                                                                         (13)
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CHAPTER 3 

METHODOLOGY 

 

 

3.1 CSTR MODEL DEVELOPMENT 

 

In a normal operation of a continuous flow stirred-tank reactor (CSTR), the 

contents are well stirred and it runs with continuous flow of reactants, as well as the 

products. The CSTR normally runs at a steady state condition, with a uniform 

distribution of concentration and temperature throughout the reactor. For this project, 

the CSTR system will be modelled using Matlab Simulink software. This model is 

then used to generate a sample of baseline data (without faults) to be tested and used 

as benchmark later on, thus the following assumption are made:  

1. Heat losses from the process are negligible (well insulated) 

2. The mixture density and heat capacity are assumed constant 

3. There are no variations in concentration, temperature, or reaction rate 

throughout the reactor as it is perfectly mixed 

4. The exit stream has the same concentration and temperature as the entire 

reactor liquid 

5. The overall heat transfer coefficient is assumed constant
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6. No energy balance around the jacket is considered. This means that the jacket 

temperature can directly be manipulated in order to control the desired reactor 

temperature.  

7. The reactor is a flat bottom vertical cylinder and the jacket is around the 

outside and the bottom.  

 

 

 

 

 

 

 

 

 

The CSTR simulation model in Matlab Simulink will be build based on these 

predefined parameters and operating conditions (Table 3.1). 

 

TABLE 3.1  Default operating parameters (Jana, 2011). 
 

Operating Parameter Notation Value 

Cross sectional area of the reactor, ft2 Ac 10.36 

Concentration of reactant A in the exit stream, lb-

mol/ft3 
CA 0.05 

Concentration of reactant A in the feed stream, 

lb-mol/ft3 

CAin 0.9 

Diameter of cylindrical reactor, ft D 3.6319 

Activation energy, BTU/ lb-mol E 30000 

Volumetric feed flow rate, ft3/h Fin 20 

Height of the reactor liquid, ft h 3.8610 

Heat of reaction, BTU/ lb-mol -∆Hr -30000 

FIGURE 3.1: Schematic representation of CSTR 
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Universal gas constant, BTU/ (lb-mol)(R) R 1.987 

Frequency factor, h-1 α 7.08 x 1010 

Multiplication of mixture density and heat 

capacity, BTU/ (ft3)(R) 
ρCp 37.5 

Reactor temperature, R T 650 

Feed temperature, R Tin 600 

Jacket temperature, R Tj 70.0 

Overall heat transfer coefficient, BTU/(ft2)(R)(h) Ui 150 

 

 3.1.1  CSTR Modelling Equation 

 

Total Continuity Equation: 

Mass inflow rate = Fi 

Mass outflow rate = Fo 

 

Rate of mass accumulation within reactor  =                (14) 

 

Ac is cross-sectional area of reactor and h is the height of the reactor liquid. 

 

                     (15) 

 

The reactor holdup, V and the exit flow rate Fo can be related as: 

 

For this CSTR,                     (16) 

 

Combining equations 15 and 16:       

                     (17)
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Component Continuity Equation: 
 

Mass inflow rate component A  = FiCAf, 

Mass outflow rate component A  = FoCA, 

Rate of generation of component A  = – (–rA)V 

Rate of accumulation of component A within the reactor  =  
 

 

where –rA is the rate of consumption of chemical species A. The basic balance 

equation then becomes, 
 

 

                     (18)

   

Substituting equation 15  into 17 and simplifying, 

                     (19) 

 

For the given first-order reaction, 

                     (20) 

 

Combining equations 18 and 19, 

Energy input rate     = FiCpTf 

Energy output rate     = FoCpT + UiAh(T-Tj) 

 

Energy added by exothermic reaction =                (21) 

 

Energy accumulation rate:  

                     (22) 
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Using equation 22 and further simplifying: 

                     (23) 

 

And therefore, this is the final form of the energy balance equation. 

 

 

3.2 SIMULATION OF FAULTS 

 

 Once base data is generated by MATLAB Simulink model, a simulation of 

non-ideal operating conditions is fabricated and run to obtain a set of structural fault 

data. This is done in MATLAB Simulink by adding disturbances, for example; a sine 

wave function or random number function for measurement noise. The data will be 

studied using the PCA, DPCA, Hotelling’s and SPE to detect the presence of any such 

faults. The results from each fault detection method would then be compared to 

investigate the accuracies of each methods utilized.  For fault simulation, the Simulink 

model is slightly modified. The structural fault studied in this project will be as 

following: 

1) Drift in heat transfer coefficient 

 Eg: fouling of heat exchanger 

 Drift ranges: 1%, 5%, and 10% 

 

2) Drift in reaction kinetics 

 Eg: catalyst deactivation 

 Drift ranges: 1%, 5% and 10% 

 

3) Simultaneous simulation (Drift in heat transfer coefficient and reaction 

kinetics) 

 Eg: simultaneous simulation (Eg: fouling of heat exchanger and 

catalyst deactivation) 

 Drift ranges: 1%, 5% and 10% 
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 A sine wave function, random number function or ramp tool can be added 

added as disturbances input to simulate the structural faults occurrence at 1%, 5% and 

20% drift. Therefore, nine fault data sets corresponding to the different drift levels are 

generated, with each set consist of n = 5000 observations. 

 

 

3.3 PROJECT TOOLS 

 
 

 The primary tool used for this project is the MATLAB software, specifically 

the SIMULINK simulation environment. MATLAB, (MATrix LABoratory), is a high 

level computing software for numerical computations and graphics developed by 

MathWorks. The SIMULINK simulation environment is a separate feature of 

MATLAB which is a data graphical programming tool. It is widely used in control 

theory as it allows the user to model, simulate and analyse dynamic systems. 

 

 

 

 

 

 

 

 

 

FIGURE 3.2  MATLAB Simulink 
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3.4 GANTT CHART AND KEY MILESTONE 

 

Table 3.2  Gantt Chart and Key Milestone 

No Details 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. Development of 

CSTR Simulation 

Model 

              

2. Generation of Base 

Data and Fault Data  

              

3. Data Analysis using 

using PCA and DPCA 

method, with T
2
-

Statistic and Q-

statistic Technique  

              

4. Preparation and 

Submission of 

Progress Report  

              

5. Project Work 

Continues 

              

6. Pre-EDX               

7. Submission of Draft 

Report 

              

8. Submission of 

Dissertation (soft 

bound) 

              

9. Submission of 

Technical Paper 

              

10. Oral Presentation               

11. Submission of Project 

Dissertation (hard 

bound) 

              

 

 

                    

 

 

Gantt chart 

Key Milestone 
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3.5 PROJECT PROCESS FLOW 

This is the process flow for this research project that must be so that the objectives of 

the study can be successfully achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Development of CSTR model in MATLAB and 
Simulation of Base Data 

Simulation of Structural Fault  in the CSTR 
model to obtain fault data set 

Data  Analysis: 

Data set obtained analyzed using  PCA and 
DPCA  along with T2 –statistic  (Hotellings’) 

and Q-statistic (SPE) techniques 

Result & Discussion: 

Comparison of PCA and DPCA fault 
detection performance 
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CHAPTER 4 

RESULT AND DISCUSSION 

 

 

4.1 CSTR SIMULATION MODEL 

 

 Based on the CSTR simulation model, there are three main inputs, namely 

feed flowrate, temperature and concentration denoted as Fin, Tin and Ca,in. The three 

main outputs which are recorded are the product flowrate, temperature and 

concentration denoted as F, T and Ca. The CSTR computer simulation modelled in 

MATLAB Simulink is shown in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.1  CSTR MATLAB Simulation Model 
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4.2 BASE DATA 

 CSTR simulation model will generate two types of output data, the first one is 

a base data. This base data set is then normalized to 0 mean and unit variance and 

becomes the input for the MATLAB function princomp, which calculates the loading 

vector (V), eigenvalues (Λ) and the score matrix (T). Only the loading vectors 

corresponding to the a largest singular values will be retained.  

 

 The base data obtained in the graphs (figure 6, 7, and 8) shown below above 

are the base data generated without structural faults. The effects of noise are evident 

in all the graphs. 

 

 

 

 

  

 

 

 

 

FIGURE 4.2 Product concentration base data 
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FIGURE 4.3 Product temperature base data 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.4 Product flowrate base data 
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4.3  FAULT DATA 

 4.3.1 Drift in Reaction Kinetics 

 

 

 

 

 

 

FIGURE 4.5 Product concentration fault data  

 

 

 

 

 

 

 

FIGURE 4.6 Product temperature fault data  
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FIGURE 4.7 Product flowrate fault data 

 

As can be seen in the fault data for drift in reaction kinetics, the variation among flowrate and temperature for different 

fault levels are almost non-existent but stark differences can be seen among concentration data. This could be due to the fact 

that at higher activation energies, reaction would not proceed fast and thereby consuming lesser reactants. 
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4.3.2   Drift in Heat Transfer Coefficient 

 

 

 

 

 

 

 

FIGURE 4.8 Product concentration fault data 

 

 

 

 

 

 

 

FIGURE 4.9 Product temperature fault data 
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FIGURE 4.10 Product flowrate fault data  

 

 

 As for fault data of drift in overall heat transfer coefficients, it can be observed that drift for different fault levels are 

present in all three variables of product flowrate, concentration and temperature. This could be due to the fact that drifts in 

overall heat transfer coefficients capable of affecting all three variables. For example, temperature increased reduces the rate of 

reaction (as the reaction is not in favour of high temperature). Thus, lesser reactants consumed resulting in overflow of 

unreacted reactant in the CSTR system. 
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4.3.3 Drift in Heat Transfer Coefficient & Drift in Reaction Kinetics) 

 

 

 

 

 

 

 

FIGURE 4.11 Product concentration fault data 

 

 

 

 

 

 

 

FIGURE 4.12 Product temperature fault data 
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FIGURE 4.13     Product flowrate fault data 

 

 

 Simultaneous simulation of structural fault; drift in overall heat transfer coefficients and reaction kinetics shows stark 

differences in all three variables of product flowrate, concentration and temperature. This could probably because simultaneous 

structural fault occurence can affect or upset a system more severely compared to the effect of only one structural fault 

occurrence
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4.4  STATISTICAL ANALYSIS 

 

 4.4.1 PCA and DPCA 

 

 The PCA is done for normalized base data to obtain the loading matrix, score 

matrix and latent. PCA for the fault data is then done by using loading matrix of base data 

and T
2
 calculated using latent (which store variance) of the base data. For DPCA, the 

time lag shift is introduced to the input/output variables matrix. The chosen time lag shift 

was 2 sample lag.. Two PCs is retained for PCA and three PCs is retained for DPCA 

method. Source code for simulation of PCA and DPCA in Matlab are available on 

appendices. 

 

 4.4.2. T
2
-statistics and Q-statistics 

 

 The PCA and DPCA data are first tested using T
2
-statistics. The thresholds 

calculated using Eq. (2.10) is shown in the table below 

 

Parameter PCA DPCA 

a 2 4 

n 5000 5000 

Tα
2 
(95.0% confidence limit) 6.641 7.825 

Tα
2 
(99.0% confidence limit) 9.223 11.36 

 

TABLE 4.1 T
2
-statistics thresholds 

 

 To model using Q-statistics, the residual matrix of the data is required. This 

residual matrix captures the variations beyond the a loading vectors. The residual matrix 

for PCA and DPCA is obtained from Eq.(2.10). The threshold for Q-statistics is obtained 

from Eq.(2.12). Source code for simulation of T
2
-statistic and Q-statistic in Matlab are 

available on appendices
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T
2
-statistics (Drift in Reaction Kinetics) 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

              FIGURE 4.14    PCA T
2
-statistics                FIGURE 4.15   DPCA T

2
-statistics 
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T
2
-statistics (Drift in Heat Transfer Coefficient) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          FIGURE 4.16   PCA T
2
-statistics                     FIGURE 4.17   DPCA T

2
-statistics 
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T
2
-statistics (Drift in Heat Transfer Coefficient & Drift in Reaction Kinetics) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
            FIGURE 4.18   PCA T

2
-statistics          FIGURE 4.19   DPCA T

2
-statistics 
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Q-statistics (Drift in Reaction Kinetics) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
          FIGURE 4.20   PCA Q-statistics                           FIGURE 4.21   DPCA Q-statistics 
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Q-statistics (Drift in Heat Transfer Coefficient) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
               FIGURE 4.22   PCA Q-statistics                                           FIGURE 4.23   DPCA Q-statistics 
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Q-statistics (Drift in Heat Transfer Coefficient & Drift in Reaction Kinetics)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  FIGURE 4.24   PCA Q-statistics                FIGURE 4.25    DPCA Q-statistics
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4.5 SUMMARY OF FAULT DETECTION TIME  

 

 The summary of the fault detection time for the three types of simulated structural 

faults using Hotelling’s T
2
-statistic are in Table 4.2, 4.3 , and 4.4 while the fault detection 

time for the three types of simulated structural faults using SPE’s Q-statistic are in Table 

4.5, 4.6, and 4.7. 

TABLE 4.2  Detection time for Drift in Reaction Kinetics; (Hotelling’s T
2
-statistic) 

Case PCA DPCA 

95.0%  

confidence limit 

99.0% 

confidence 

limit 

95.0% 

confidence limit 

99.0%  

confidence limit 

1% 0 0 0 0 

5% 30.20 40.50 0 0 

20% 7.20 13.10 0 0 

 

TABLE 4.3 Detection time for Drift in Heat Transfer Coefficients; (T
2
-statistic) 

Case PCA DPCA 

95.0%  

confidence limit 

99.0% 

confidence 

limit 

95.0% 

confidence limit 

99.0%  

confidence limit 

1% 0 9.50 4.9 44.20 

5% 0 7.21 0 9.10 

20% 0 5.09 0 8.00 

 

TABLE 4.4  Detection time for Simultaneous Simulation of (Drift in Reaction Kinetics & 

Heat Transfer Coefficients); (Hotelling’s T
2
-statistic) 

Case PCA DPCA 

95.0%  

confidence limit 

99.0% 

confidence 

limit 

95.0% 

confidence limit 

99.0%  

confidence limit 

1% 25.5 28.0 1.5 0 

5% 8.9 21.9 31.5 44.0 

20% 0.9 4.92 20.0 36.5 
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TABLE 4.5   Detection time for Drift in Reaction Kinetics; (SPE’s Q -statistic) 

Case PCA DPCA 

95.0%  

confidence limit 

99.0% 

confidence 

limit 

95.0% 

confidence limit 

99.0%  

confidence limit 

1% 0.9 13.0 0.3 43.2 

5% 1.0 9.5 0.34 36.1 

20% 0.5 8.1 0.3 27.9 
 

TABLE 4.6   Detection time for Drift in Heat Transfer Coefficients; (SPE’s Q -statistic) 

Case PCA DPCA 

95.0%  

confidence limit 

99.0% 

confidence 

limit 

95.0% 

confidence limit 

99.0%  

confidence limit 

1% 49.89 49.9 49.0 49.9 

5% 48.0 49.9 34.1 36.9 

20% 46.5 48.5 0.1 0.56 
 

TABLE 4.7  Detection time for Simultaneous Simulation of (Drift in Reaction Kinetics & 

Heat Transfer Coefficients); (SPE’s Q -statistic) 

Case PCA DPCA 

95.0%  

confidence limit 

99.0% 

confidence 

limit 

95.0% 

confidence limit 

99.0%  

confidence limit 

1% 48.0 48.9 8.1 48.2 

5% 3.5 7.65 2.0 24.5 

20% 0 0 0 0 
 

 Figure 4.14 shows the result of statistical analysis done on structural fault data 

(Drift in Reaction Kinetics); by using PCA method with Hotelling’s T
2
-statistics. The 

95% and 99% threshold are obtained from T
2
-statistics analysis on the data. The result of 

PCA analysis on the 1% Drift in Reaction Kinetics data shows that no fault is detected. 

This probably due to small drifts value or could probably because PCA method is 

incapable or not sensitive enough of detecting the fault occurrences. In contrary, fault is 

detected by PCA analysis on 5% and 20% Drift in Reaction Kinetics data, and the fault 

detection time are summarized in Table 4. Fault is detected earlier on 20% Drift in 

Reaction Kinetics compared 5% drift, probably because larger value of fault is easier to 

be detected. 
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 Figure 4.15 shows the result of statistical analysis done on structural fault data 

(Drift in Reaction Kinetics); by using DPCA method with Hotelling’s T
2
-statistics. The 

95% and 99% threshold are obtained from T
2
-statistics analysis on the data. The result of 

DPCA analysis on 1%, 5% and 20% Drift in Reaction Kinetics data shows that all fault 

are detected at time zero. This probably because DPCA method has better capability of 

detecting this faults occurrence compared to PCA method. The fault detection time are 

summarized in Table 4. 

 

 Figure 4.16 shows the result of statistical analysis done on structural fault data 

(Drift in Heat Transfer Coefficients); by using PCA method with Hotelling’s T
2
-statistics. 

The 95% and 99% threshold are obtained from T
2
-statistics analysis on the data. The 

result of PCA analysis on 1%, 5% and 20% Drift in Heat Transfer Coefficients data 

shows that all fault are detected (by 95% thresholds) at time zero. As for 99% threshold, 

the earliest fault detection time is recorded on 20% drift, followed by 5% drift and 1% 

drift. The fault detection time are summarized in Table 5. 

 

 Figure 4.17 shows the result of statistical analysis done on structural fault data 

(Drift in Heat Transfer Coefficients); by using DPCA method with Hotelling’s T
2
-

statistics. The 95% and 99% threshold are obtained from T
2
-statistics analysis on the 

data. The result of DPCA analysis on Drift in Heat Transfer Coefficients data shows that 

all fault are detected (by 95% thresholds) at time zero except for 1% fault drift. As for 

99% threshold, the earliest fault detected is on 20% drift, followed by 5% drift and 1% 

drift fault. The fault detection time are summarized in Table 5. 

 

 Figure 4.18 shows the result of statistical analysis done on structural fault data 

(Drift in Reaction Kinetics & Heat Transfer Coefficients); by using PCA method with 

Hotelling’s T
2
-statistics. The 95% and 99% threshold are obtained from T

2
-statistics 

analysis on the data. The results of PCA analysis on all the drift level data shows that 

fault are detected and the fault detection times are summarized in Table 6. 
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 Figure 4.19 shows the result of statistical analysis done on structural fault data 

(Drift in Reaction Kinetics & Heat Transfer Coefficients); by using DPCA method with 

Hotelling’s T
2
-statistics. The 95% and 99% threshold are obtained from T

2
-statistics 

analysis on the data. The results of DPCA analysis on all the drift level data shows that 

fault are detected and the fault detection times are summarized in Table 6. 

 

 Figure 4.20 shows the result of statistical analysis done on structural fault data 

(Drift in Reaction Kinetics); by using PCA method with SPE’s Q-statistics. The 95% and 

99% threshold are obtained from Q-statistics analysis on the data. The results of PCA 

analysis on all the drift level data shows that fault are detected and the fault detection 

times are summarized in Table 7. 

 

 Figure 4.21 shows the result of statistical analysis done on structural fault data 

(Drift in Reaction Kinetics); by using DPCA method with SPE’s Q-statistics. The 95% 

and 99% threshold are obtained from Q-statistics analysis on the data. The results of 

DPCA analysis on all the drift level data shows that fault are detected and the fault 

detection times are summarized in Table 7. 

 

 Figure 4.22 shows the result of statistical analysis done on structural fault data 

(Drift in Heat Transfer Coefficients); by using PCA method with SPE’s Q-statistics. The 

95% and 99% threshold are obtained from Q-statistics analysis on the data. The results of 

PCA analysis on all the drift level data shows that fault are detected and the fault 

detection times are summarized in Table 8. 

 

 Figure 4.23 shows the result of statistical analysis done on structural fault data 

(Drift in Heat Transfer Coefficients); by using DPCA method with SPE’s Q-statistics. 

The 95% and 99% threshold are obtained from Q-statistics analysis on the data. The 

results of DPCA analysis on all the drift level data shows that fault are detected and the 

fault detection times are summarized in Table 8. 
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 Figure 4.24 shows the result of statistical analysis done on structural fault data 

(Drift in Reaction Kinetics & Heat Transfer Coefficients); by using PCA method with 

SPE’s Q-statistics. The 95% and 99% threshold are obtained from Q-statistics analysis on 

the data. The results of PCA analysis on all the drift level data shows that fault are 

detected and the fault detection times are summarized in Table 9. 

 

 Figure 4.25 shows the result of statistical analysis done on structural fault data 

(Drift in Reaction Kinetics & Heat Transfer Coefficients); by using DPCA method with 

SPE’s Q-statistics. The 95% and 99% threshold are obtained from Q-statistics analysis on 

the data. The results of DPCA analysis on all the drift level data shows that fault are 

detected and the fault detection times are summarized in Table 9. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

  

 The objective of this work is to investigate structural fault detection performance 

of DPCA method with comparison to PCA. The significant of the study is to fill the gap 

of knowledge in fault detection specifically on structural fault detection. The structural 

change in CSTR model was successfully simulated using Simulink in MATLAB and the 

data obtained was used as feeding data to PCA based monitoring approaches i.e. PCA, 

and DPCA. 

 Based on the result obtained, in general DPCA shows a better performance by 

detecting faults earlier compared to PCA. Therefore, it can be concluded that structural 

fault can be detected using Multivariate statistical Process Monitoring based methods i.e. 

PCA, DPCA and so on. Thus it is too can be concluded that the objectives of the project 

are successfully achieved. 

 

Nevertheless, the suggested work for future is as below: 

1. Continuing this research work by doing more types of structural fault simulation. 

2. Replacing CSTR simulation model with a more complex system/process to 

increase the similarities of this research work to the real operating process plant. 

3. The continuation of the structural fault detection using other MSPM techniques 

and proceeded with fault identification and fault diagnosis. 
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APPENDICES 

Matlab Source Code of CSTR System (for base data) 

 
function [sys,x0,str,ts] = ...  

   s_reactor1a (t,x,u,flag,xinit) 

 

%-------------------------------------------------------------------------- 

% S-function for Reactor block  

%       States: x = [V, VCa, VT, Tc, Ts] 

%       Input: u = [Fin, Tin, Cain, Tcin, Fsin, Fcin, F] 

%       Output: y = [F, T, Ca, V, Tc, Ts, Fs] 

%       Parameters: params = [Ma, rhoa, Cpa,... 

%                           At, Ap, Lp, g, ...  

%                           alpha, E, R, lambda,... 

%                           Uc, Ac, rhoc, Cpc, Vc,... 

%                           Vj, hos, Aos, Ms, Avp, Bvp, Hs_hc ... 

%                           xinit] 

%               xinit = [48, 11.76, 28800, 594.64, 0.245, 600, 40, 49.9, 0.0803, 719] 

%-------------------------------------------------------------------------- 

xinit=[40, 40*0.05, 40*650, 640, 650]; %V, VCa, VT, Tc, Ts 

  

params = [ 100, 50, 0.75, ...  

    10.36, 0.1076, 6.56, 0.414720000000E+09 , ... %g =  31.99846 (s) 

    7.08e10 , 30000, 1.99, -30000, ...%alpha =  1.9667e+007 (s) 

    120, 250, 62.3, 1, 3.85, ...%Uc = 0.0417 (s), 150 (h) 

    18.83, 1000, 56.5, 18, -8744.4, 15.70, 939, 30000 ... %hos = 0.2778 (s), 1000(h)   

    xinit];%Units in Btu etc 

  

switch flag, 

  

  %%%%%%%%%%%%%%%%%% 

  % Initialization % 

  %%%%%%%%%%%%%%%%%% 

  case 0, 

    [sys,x0,str,ts]=mdlInitializeSizes(xinit); 

  

  %%%%%%%%%%%%%%% 

  % Derivatives % 

  %%%%%%%%%%%%%%% 

  case 1, 

    sys=mdlDerivatives(t,x,u,params); 

  

  %%%%%%%%%% 

  % Update % 

  %%%%%%%%%% 

  case 2, 

    sys=mdlUpdate(t,x,u,params); 

  

  %%%%%%%%%%% 

  % Outputs % 

  %%%%%%%%%%% 

  case 3, 

    sys=mdlOutputs(t,x,u,params); 

  

  %%%%%%%%%%%%%%%%%%%%%%% 

  % GetTimeOfNextVarHit % 
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  %%%%%%%%%%%%%%%%%%%%%%% 

  case 4, 

    sys=mdlGetTimeOfNextVarHit(t,x,u,params); 

  

  %%%%%%%%%%%%% 

  % Terminate % 

  %%%%%%%%%%%%% 

  case 9, 

    sys=mdlTerminate(t,x,u,params); 

  

  %%%%%%%%%%%%%%%%%%%% 

  % Unexpected flags % 

  %%%%%%%%%%%%%%%%%%%% 

  otherwise 

    error(['Unhandled flag = ',num2str(flag)]); 

  

end 

  

% end sfun_sub 

  

% ===================================================================== 

function [sys,x0,str,ts]=mdlInitializeSizes(xinit) 

  

sizes = simsizes; 

sizes.NumContStates  = 5; %i.e. V, VCa, VT, Tc, Ts 

sizes.NumDiscStates  = 0; 

sizes.NumOutputs     = 7; %i.e. F, T, Ca, V, Tc, Ts, Fs 

sizes.NumInputs      = 7; %i.e. Fin, Tin, Cain, Tcin, Fsin, Fcin, F 

sizes.DirFeedthrough = 7; 

sizes.NumSampleTimes = 1;   % at least one sample time is needed 

  

sys = simsizes(sizes); 

  

% 

% initialize the initial conditions 

% 

%statenum = sizes.NumContStates; 

%pend = length(params); 

%xinit = params(pend-statenum+1:pend); 

x0  = xinit; 

  

% 

% str is always an empty matrix 

% 

str = []; 

  

% 

% initialize the array of sample times 

% 

ts  = [0 0]; 

  

% end mdlInitializeSizes 

  

% ===================================================================== 

function sys=mdlDerivatives(t,x,u,params) 

  

%disp('--------------------------------------------------'); 

t; 

  

Ma = params(1); 

rhoa = params(2); 

Cpa = params(3); 
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At = params(4); 

Ap = params(5); 

Lp = params(6); 

g = params(7); 

alpha = params(8); 

E = params(9); 

R = params(10); 

lambda = params(11); 

Uc = params(12); 

Ac = params(13); 

rhoc = params(14); 

Cpc = params(15); 

Vc = params(16); 

Vj = params(17); 

hos = params(18); 

Aos = params(19); 

Ms = params(20); 

Avp = params(21); 

Bvp = params(22); 

Hs_hc = params(23);% btu/lbm, i.e. = 522.4877cal/g; 

  

rho = rhoa; 

Cp = Cpa; 

  

%Inputs 

%i.e. Fin, Tin, Cain, Tcin, Fsin, Fcin, F 

Fin = u(1); 

Tin = u(2); 

Cain = u(3); 

Tcin = u(4); 

Fsin = u(5); 

Fcin = u(6); 

Fout = u(7); 

  

%States 

%i.e. V, VCa, VT, Tc, Ts 

V = x(1); 

VCa = x(2); 

VT = x(3); 

Tc = x(4); 

Ts = x(5); 

  

Ca = VCa/V; 

if Ca < 1e-30, Ca = 0; end 

T = VT/V; 

  

%Start: Calculate derivative for Ts (Version 2)---------------------------- 

%Xs = 0.5; %open loop, fixed steam inlet valve 

Pj = exp(Avp/Ts+Bvp); 

rhos = Ms*Pj/(R*Ts); 

drhos_over_dTs = Ms/R * (-1-Avp/Ts) * Pj /Ts/Ts; 

%ws = Fsin * rhos; 

if Pj<35, 

    ws = 112*Fsin*sqrt(35-Pj); 

else 

    ws=0; 

end 

Fs = ws/rhos; 

Qj = -hos*Aos*(Ts-T); 

wc = -Qj/Hs_hc; %steam condensate outlet 

%dTs = (ws-wc) / Vj / drhos_over_dTs; 

dTs = 0 ;% Set dTs always zero for this case 
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%end----------------------------------------------------------------------- 

  

%Derivatives 

F = Fout; 

  

dV = Fin - F; 

dVCa = Fin*Cain - F*Ca - V*alpha*exp(-E/(R*T))*Ca; 

dVT = Fin*Tin - F*T - lambda*V*alpha*exp(-E/(R*T))*Ca / (rho*Cp) - Uc*Ac/(rho*Cp)*(T-Tc) 

- Qj/(rho*Cp); 

dTc = Fcin*(Tcin-Tc)/Vc + Uc*Ac/(rhoc*Vc*Cpc)*(T-Tc); 

  

%Start: Gravity Flow -------------------------------------------------- 

%gc = g; 

%Dt = sqrt(At*4/pi); %tank diameter 

%ff = 3.8488e+003;%12.6239; %friction factor  

%Kf = Ap*rho*2*ff/gc/Dt; 

%h = V/At; 

%dF = g*h/Lp*Ap - Kf*gc*F*F/(Ap*rho)/Ap; %dv = 0.0107*h - 0.00205*v*v; 

%End------------------------------------------------------------------- 

  

%States: V, VCa, VT, Tc, Ts 

sys(1) = dV; 

sys(2) = dVCa; 

sys(3) = dVT; 

sys(4) = dTc; 

sys(5) = dTs; 

  

% end mdlDerivatives 

  

% ===================================================================== 

function sys=mdlUpdate(t,x,u,params) 

  

sys = []; 

  

% end mdlUpdate 

  

% ===================================================================== 

function sys=mdlOutputs(t,x,u,params) 

  

%States 

%i.e. V, VCa, VT, Tc, Ts 

%disp('mdlOutputs --------------------------') 

V = x(1); 

VCa = x(2); 

VT = x(3); 

Tc = x(4); 

Ts = x(5); 

  

Ca = VCa/V; 

if Ca < 1e-30, Ca = 0; end 

T = VT/V; 

  

%Inputs 

%i.e. Fin, Tin, Cain, Tcin, Fsin, Fcin, F 

F = u(7); 

  

Ms = params(20); 

Avp = params(21); 

Bvp = params(22); 

R = params(10); 

Pj = exp(Avp/Ts+Bvp); 

Fsin = u(5); 
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rhos = Ms*Pj/(R*Ts); 

if Pj<35, 

    ws = 112*Fsin*sqrt(35-Pj);%Fsin = extent of valve opening 

else 

    ws=0; 

end 

Fs = ws;%/rhos; 

  

%Output 

%i.e. F, T, Ca, V, Tc, Ts, Fs, alphaout 

sys(1) = F; 

sys(2) = T; 

sys(3) = Ca; 

sys(4) = V; 

sys(5) = Tc; 

sys(6) = Ts; 

sys(7) = Fs; 

% end mdlOutputs 

  

% ===================================================================== 

function sys=mdlGetTimeOfNextVarHit(t,x,u,params) 

  

sys = [];  

  

% end mdlGetTimeOfNextVarHit 

  

% ===================================================================== 

function sys=mdlTerminate(t,x,u,params) 

  

sys = []; 

  

% end mdlTerminate 

  

%F = 40 - 10*(48-V);%control 

%Fc = 49.9 - 4*(600-T);%control 

%%Fc = Fc_prev; 

  

%Start: control for steam inlet valve------------------------- 

%Ptt = 3+(T-510)*12/200;%control for steam inlet valve 

%Pc = 7+2*(12.6-Ptt);%control for steam inlet valve 

%Xs = (Pc-9)/6;%control for steam inlet valve 

%if Xs>1, Xs=1; end%control for steam inlet valve 

%if Xs<0, Xs=0; end%control for steam inlet valve 

%end---------------------------------------------------------- 

  

%Start: Calculate derivative for Ts (Version 1)---------------------------- 

%Xs = 0.5; %open loop, fixed steam inlet valve 

%Pj = exp(Avp/Ts+Bvp); 

%if Pjin < Pj, Xs=0;end % 

%ws = 112*Xs*sqrt(Pjin-Pj); 

%Qj = -hos*Aos*(Ts-T); 

%wc = -Qj/939; %steam condensate outlet 

  

%drhos = (ws-wc)/Vj; 

%rhos_new = rhos + 0.002*drhos;%assume step size of simulation 0.002  

%PjTj = fsolve(@steam,[Pj Ts],optimset('Display','off'),rhos_new,Ms,R,Avp,Bvp); 

%Ts_new = abs(PjTj(2)); 

%dTs = (Ts_new - Ts)/0.002; 

%end----------------------------------------------------------------------- 
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PCA for Base Data 

 
clear all; clc; 

load('cstr_data.mat') 

cstr=cstr(1:5000,2:8); 

mn=mean(cstr); %mean 

sd=std(cstr); %standard deviation 

 

save('cstr_data_HE.mat','mn','sd','-append'); 

save('cstr_data_CAT.mat','mn','sd','-append'); 

 

[cstr_row, cstr_column]=size(cstr); %state column size for normalization loop 

 

for i=1:cstr_column, %normalization loop 

norm_column=(cstr(:,i)-mn(i))./sd(i); 

cstr_norm(:,i)=norm_column; 

end 

i=0; 

 

[coeff,score,latent,tsquare,explained,mu] = princomp(cstr_norm); %principal component 

analysis 

 

save('cstr_data_HE.mat','coeff','latent','-append'); 

save('cstr_data_CAT.mat','coeff','latent','-append'); 

 

[coeff_row,coeff_column]=size(coeff); 

 

for i=1:8, %convert latent to square matrix 

latent_mat(i,i)=latent(i,1); 

end 

i=0; 

 

mn_score=mean(score); %mean of score matrix 

sd_score=std(score); %standard deviation of score matrix 

 

save('cstr_data_HE.mat','mn_score','sd_score','-append'); 

save('cstr_data_CAT.mat','mn_score','sd_score','-append'); 

 

[score_row, score_column]=size(score); %state column size for normalization  

loop 

for i=1:score_column, %normalization loop 

nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i); 

score_norm(:,i)=nSCORE_column; 

end 

i=0; 

 

 

no_princomp=2;      %no of retained component.  

score=score(:,1:no_princomp); 

score_square=(score_norm.^2); 

%[coeff,score,latent,tsquare] = princomp(score_norm); 

 

for i=1:5000, 

column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))’; 

tsquare(i,1)=sum(column_t(i,:)); 

end 

i=0; 

 

%r=pcares(cstr_norm,no_princomp);  %pcares return residual from PCA 

%q=r.*r; 

%[r_row, r_column]=size(r); 
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backprojection=score_norm*(coeff)'; 

r=cstr_norm-backprojection; 

q=r.*r; 

[r_row, r_column]=size(r); 

SPE=sum(q'); 

 

figure(2) 

subplot (2,1,1); 

plot (SPE) %SPE Chart 

 

chisquare_99=chi2inv(0.99,cstr_column-1); 

chisquare_95=chi2inv(0.95,cstr_column-1); 

 

theta1=sum(latent((no_princomp+1):cstr_column,1)); 

theta2=sum(latent((no_princomp+1):cstr_column,1).^2); 

theta3=sum(latent((no_princomp+1):cstr_column,1).^3); 

g=theta2/theta1; 

h=(theta1^2)/theta2; 

h0=1-((2*theta1*theta3)/(3*(theta2^2))); 

z_99=norminv(1-0.01); 

z_95=norminv(1-0.05); 

 

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1 

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) 

 

%SPE_threshold99=g*chisquare_99 %SPE limit alternative 2 

%SPE_threshold95=g*chisquare_95 

%SPE_threshold99=g*h*((1-(2/(9*h))+(z_99*((2/(9*h))^0.5)))^3) %SPE limit alternative 3 

%SPE_threshold95=g*h*((1-(2/(9*h))+(z_95*((2/(9*h))^0.5)))^3) 

 

line('XData', [0 5000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', ... 

'LineWidth', 2, 'Color','r'); 

line('xData', [0 5000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', .. 

'LineWidth', 2, 'Color','y'); 

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

'Location','NorthEastOutside') 

 

title('SPE-Chart','FontWeight','bold') 

xlabel('T, (hr)') 

ylabel('residual') 

 

finv_99=finv(0.99,no_princomp,(score_row-no_princomp));  

%F alpha (no_princomp, (no of sample - no_princomp)) 

finv_95=finv(0.95,no_princomp,(score_row-no_princomp));  

%F alpha (no_princomp, (no of sample - no_princomp)) 

 

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99; 

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95; 

 

subplot (2,1,2); 

plot(tsquare) %T2 chart 

 

line('XData', [0 5000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

'LineWidth', 2, 'Color','r'); 

line('xData', [0 5000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

'LineWidth', 2, 'Color','y'); 

legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

'Location','NorthEastOutside') 
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title('T-square Chart','FontWeight','bold') 

xlabel('T, (hr)') 

ylabel('T^2') 

 

'--------------------end of program----------------------' 

 

 

 

PCA for Drift in Reaction Kinetics 
 

clear all; clc; 

load('cstr_data_CAT.mat') 

cstr=cstr(1:5000,2:8); 

 

[cstr_row, cstr_column]=size(cstr); %state column size for normalization loop 

 

for i=1:cstr_column, %normalization loop 

norm_column=(cstr(:,i)-mn(i))./sd(i); 

cstr_norm(:,i)=norm_column; 

end 

i=0; 

 

score=cstr_norm*coeff; 

[coeff_row,coeff_column]=size(coeff) 

 

for i=1:8, %convert latent to square matrix 

latent_mat(i,i)=latent(i,1); 

end 

i=0; 

 

[score_row, score_column]=size(score); %state column size for normalization loop 

 

for i=1:score_column, %normalization loop 

nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i); 

score_norm(:,i)=nSCORE_column; 

end 

i=0 

 

no_princomp=2;      %no of retained component 

score_square=(score_norm.^2) 

%[coeff,score,latent,tsquare] = princomp(score_norm); 

 

for i=1:5000, %T-square loop 

column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))'; 

tsquare(i,1)=sum(column_t(i,:)); 

end 

i=0 

 

%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA 

%q=r.*r; 

backprojection=score_norm*(coeff)'; 

r=cstr_norm-backprojection; 

q=r.*r; 

[r_row, r_column]=size(r); 

SPE=sum(q'); 

 

figure(2) 

subplot (2,1,1); 

plot (SPE) %SPE Chart 
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chisquare_99=chi2inv(0.99,cstr_column-1); 

chisquare_95=chi2inv(0.95,cstr_column-1); 

 

theta1=sum(latent((no_princomp+1):7,1)); 

theta2=sum(latent((no_princomp+1):7,1).^2); 

theta3=sum(latent((no_princomp+1):7,1).^3); 

g=theta2/theta1; 

h=(theta1^2)/theta2; 

h0=1-((2*theta1*theta3)/(3*(theta2^2))); 

z_99=norminv(1-0.01); 

z_95=norminv(1-0.05); 

 

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1 

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) 

 

line('XData', [0 5000], 'YData', [SPE_threshold99 SPE_threshold99],  

'LineStyle', '-', ... 

'LineWidth', 2, 'Color','r'); 

line('xData', [0 5000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', 

... 

'LineWidth', 2, 'Color','y'); 

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

'Location','NorthEastOutside') 

title('Drift in Reaction Kinetics','FontWeight','bold') 

xlabel('T, (hr)') 

ylabel('Q, PCA') 

 

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no of 

sample - no_princomp)) 

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no of 

sample - no_princomp)) 

 

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99; 

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95; 

 

subplot (2,1,2); 

plot(tsquare) %T2 chart 

 

line('XData', [0 5000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

'LineWidth', 2, 'Color','r'); 

line('xData', [0 5000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

'LineWidth', 2, 'Color','y'); 

legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

'Location','NorthEastOutside') 

title('Drift in Reaction Kinetics','FontWeight','bold') 

xlabel('T, (hr)') 

ylabel('T^2, PCA') 

 

'--------------------end of program----------------------' 
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PCA for Drift in Heat Transfer Coefficient  

 
clear all; clc; 

load('cstr_data_HE.mat') 

cstr=cstr(1:5000,2:8); 

[cstr_row, cstr_column]=size(cstr); %state column size for normalization loop 

 

for i=1:cstr_column, %normalization loop 

norm_column=(cstr(:,i)-mn(i))./sd(i); 

cstr_norm(:,i)=norm_column; 

end 

i=0; 

 

score=cstr_norm*coeff; 

[coeff_row,coeff_column]=size(coeff) 

 

for i=1:8, %convert latent to square matrix 

latent_mat(i,i)=latent(i,1); 

end 

i=0; 

[score_row, score_column]=size(score); %state column size for normalization loop 

 

for i=1:score_column, %normalization loop 

nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i); 

score_norm(:,i)=nSCORE_column; 

end 

i=0 

 

no_princomp=2;       %no of retained component 

score=score(:,1:no_princomp); 

score_square=(score_norm.^2) 

%[coeff,score,latent,tsquare] = princomp(score_norm); 

 

for i=1:5000, 

column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))'; 

tsquare(i,1)=sum(column_t(i,:)); 

end 

i=0; 

 

%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA 

backprojection=score_norm*(coeff)'; 

r=cstr_norm-backprojection; 

q=r.*r; 

[r_row, r_column]=size(r); 

SPE=sum(q'); 

 

figure(2) 

subplot (2,1,1); 

plot (SPE) %SPE Chart 

chisquare_99=chi2inv(0.99,cstr_column-1); 

chisquare_95=chi2inv(0.95,cstr_column-1); 

theta1=sum(latent((no_princomp+1):7,1)); 

theta2=sum(latent((no_princomp+1):7,1).^2); 

theta3=sum(latent((no_princomp+1):7,1).^3); 

g=theta2/theta1; 

h=(theta1^2)/theta2; 

h0=1-((2*theta1*theta3)/(3*(theta2^2))); 

z_99=norminv(1-0.01); 

z_95=norminv(1-0.05); 

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1 
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SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) 

 

line('XData', [0 5000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', ... 

'LineWidth', 2, 'Color','r'); 

line('xData', [0 5000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', 

... 

'LineWidth', 2, 'Color','y'); 

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

'Location','NorthEastOutside') 

title('Drift in Heat Transfer Coefficient','FontWeight','bold') 

xlabel('T, (hr)') 

ylabel('Q, PCA') 

 

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no of 

sample - no_princomp)) 

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no of 

sample - no_princomp)) 

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99; 

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95; 

 

subplot (2,1,2); 

plot(tsquare) %T^2 chart 

line('XData', [0 5000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

'LineWidth', 2, 'Color','r'); 

line('xData', [0 5000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

'LineWidth', 2, 'Color','y'); 

legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

'Location','NorthEastOutside') 

title('Drift in Heat Transfer Coefficient','FontWeight','bold') 

xlabel('T,  (hr)') 

ylabel('T^2, PCA') 

'--------------------end of program----------------------' 

 

 

 

PCA for Drift in Reaction Kinetics & Heat Transfer Coefficient  

 
clear all; clc; 

load('cstr_data_CAT_HE.mat') 

cstr=cstr(1:5000,2:8); 

[cstr_row, cstr_column]=size(cstr); %state column size for normalization loop 

 

for i=1:cstr_column, %normalization loop 

norm_column=(cstr(:,i)-mn(i))./sd(i); 

cstr_norm(:,i)=norm_column; 

end 

i=0; 

 

score=cstr_norm*coeff; 

[coeff_row,coeff_column]=size(coeff) 

 

for i=1:8, %convert latent to square matrix 

latent_mat(i,i)=latent(i,1); 

end 

i=0; 

[score_row, score_column]=size(score); %state column size for normalization  
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for i=1:score_column, %normalization loop 

nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i); 

score_norm(:,i)=nSCORE_column; 

end 

i=0 

 

no_princomp=2;       %no of retained component 

score=score(:,1:no_princomp); 

score_square=(score_norm.^2) 

%[coeff,score,latent,tsquare] = princomp(score_norm); 

 

for i=1:5000, 

column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))'; 

tsquare(i,1)=sum(column_t(i,:)); 

end 

i=0; 

 

%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA 

backprojection=score_norm*(coeff)'; 

r=cstr_norm-backprojection; 

q=r.*r; 

[r_row, r_column]=size(r); 

SPE=sum(q'); 

 

figure(2) 

subplot (2,1,1); 

plot (SPE) %SPE Chart 

chisquare_99=chi2inv(0.99,cstr_column-1); 

chisquare_95=chi2inv(0.95,cstr_column-1); 

theta1=sum(latent((no_princomp+1):7,1)); 

theta2=sum(latent((no_princomp+1):7,1).^2); 

theta3=sum(latent((no_princomp+1):7,1).^3); 

g=theta2/theta1; 

h=(theta1^2)/theta2; 

h0=1-((2*theta1*theta3)/(3*(theta2^2))); 

z_99=norminv(1-0.01); 

z_95=norminv(1-0.05); 

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1 

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) 

 

line('XData', [0 5000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', ... 

'LineWidth', 2, 'Color','r'); 

line('xData', [0 5000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', 

... 

'LineWidth', 2, 'Color','y'); 

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

'Location','NorthEastOutside') 

title('Drift in Reaction Kinetics & Heat Transfer Coefficient','FontWeight','bold') 

xlabel('T, (hr)') 

ylabel('Q, PCA') 

 

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no of 

sample - no_princomp)) 

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no of 

sample - no_princomp)) 

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99; 

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95; 
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subplot (2,1,2); 

plot(tsquare) %T2 chart 

line('XData', [0 5000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

'LineWidth', 2, 'Color','r'); 

line('xData', [0 5000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

'LineWidth', 2, 'Color','y'); 

legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

'Location','NorthEastOutside') 

title('T-square Chart Drift in Reaction Kinetics & Heat Transfer 

Coefficient','FontWeight','bold') 

xlabel('T, (hr)') 

ylabel('T^2, PCA') 

'--------------------end of program----------------------' 

 

 

 

 

DPCA for Base Data 

 
clear all; clc; 

load('cstr_data.mat') 

cstr=cstr(1:5000,2:8); 

 

[cstr_row, cstr_column]=size(cstr); 

%cstr_tlshift=cstr(3:cstr_row,cstr_column); 

no_lag=2; 

 

for i=1:cstr_column, 

if i==1; 

cstr_tlshift(:,i)= cstr(((no_lag+1):cstr_row),i); 

for n=1:no_lag, 

cstr_tlshift(:,i+n)=cstr((no_lag+1-n):(cstr_row-n),i); 

end 

n=0; 

else 

cstr_tlshift(:,(i*(no_lag+1)-no_lag))= cstr(((no_lag+1):cstr_row),i); 

for n=1:no_lag, 

cstr_tlshift(:,(i*(no_lag+1)-no_lag+n))=cstr((no_lag+1-n):(cstr_row-n),i); 

end 

end 

n=0; 

end 

 

save('dpca_all_column.mat','cstr_tlshift'); 

%---------------------------DPCA----------------------------------% 

 

clear all; clc; 

load('dpca_all_column.mat') 

cstr=cstr_tlshift; 

mn=mean(cstr); %mean 

sd=std(cstr); %standard deviation 

 

save('dpca_all_column_CAT.mat','mn','sd','-append'); 

save('dpca_all_column_HE.mat','mn','sd','-append'); 

[cstr_row, cstr_column]=size(cstr); %state column size for normalization loop 

 

for i=1:cstr_column, %normalization loop 

norm_column=(cstr(:,i)-mn(i))./sd(i); 

cstr_norm(:,i)=norm_column; 
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end 

i=0; 

 

[coeff,score,latent,tsquare,explained,mu] = princomp(cstr_norm); %principal component 

analysis 

 

save('dpca_all_column_CAT.mat','coeff','latent','-append'); 

save('dpca_all_column_HE.mat','coeff','latent','-append'); 

[coeff_row,coeff_column]=size(coeff); 

for i=1:cstr_column, %convert latent to square matrix 

latent_mat(i,i)=latent(i,1); 

end 

i=0; 

 

mn_score=mean(score); %mean of score matrix 

sd_score=std(score); %standard deviation of score matrix 

save('dpca_all_column_CAT.mat','mn_score','sd_score','-append'); 

save('dpca_all_column_HE.mat','mn_score','sd_score','-append'); 

[score_row, score_column]=size(score); %state column size for normalization loop 

 

for i=1:score_column, %normalization loop 

nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i); 

score_norm(:,i)=nSCORE_column; 

end 

i=0; 

 

no_princomp=3;      %no of retained component 

 

save('dpca_all_column_CAT.mat','no_princomp','-append'); 

save('dpca_all_column_HE.mat','no_princomp','-append'); 

 

score=score(:,1:no_princomp); 

score_square=(score_norm.^2); 

%[coeff,score,latent,tsquare] = princomp(score_norm); 

 

for i=1:score_row, 

column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))'; 

tsquare(i,1)=sum(column_t(i,:)); 

end 

i=0; 

 

%r=pcares(cstr_norm,no_princomp);   %pcares return residual from PCA 

backprojection=score_norm*(coeff)'; 

r=cstr_norm-backprojection; 

q=r.*r; 

[r_row, r_column]=size(r); 

SPE=sum(q'); 

 

figure(2) 

subplot (2,1,1); 

plot (SPE) %SPE Chart 

 

chisquare_99=chi2inv(0.99,cstr_column-1); 

chisquare_95=chi2inv(0.95,cstr_column-1); 

theta1=sum(latent((no_princomp+1):cstr_column,1)); 

theta2=sum(latent((no_princomp+1):cstr_column,1).^2); 

theta3=sum(latent((no_princomp+1):cstr_column,1).^3); 

g=theta2/theta1; 

h=(theta1^2)/theta2; 

h0=1-((2*theta1*theta3)/(3*(theta2^2))); 

z_99=norminv(1-0.01); 

z_95=norminv(1-0.05); 
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SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1 

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) 

line('XData', [0 5000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', ... 

'LineWidth', 2, 'Color','r'); 

line('xData', [0 5000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', 

... 

'LineWidth', 2, 'Color','y'); 

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

'Location','NorthEastOutside') 

 

title('SPE-Chart','FontWeight','bold') 

xlabel('T, (hr)') 

ylabel('residual') 

 

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no of 

sample - no_princomp)) 

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no of 

sample - no_princomp)) 

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99; 

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95; 

 

subplot (2,1,2); 

plot(tsquare) %T2 chart 

line('XData', [0 5000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

'LineWidth', 2, 'Color','r'); 

line('xData', [0 5000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

'LineWidth', 2, 'Color','y'); 

legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

'Location','NorthEastOutside') 

 

title('T-square Chart','FontWeight','bold') 

xlabel('T, (hr)') 

ylabel('T^2') 

 

'--------------------end of program----------------------' 

 

 

 

 

DPCA for Drift in Reaction Kinetics 

 
clear all; clc; 

load('cstr_data_CAT.mat') 

cstr=cstr(1:5000,2:8); 

 

[cstr_row, cstr_column]=size(cstr); 

%cstr_tlshift=cstr(3:cstr_row,cstr_column); 

no_lag=2; 

 

for i=1:cstr_column, 

if i==1; 

cstr_tlshift(:,i)= cstr(((no_lag+1):cstr_row),i); 

for n=1:no_lag, 

cstr_tlshift(:,i+n)=cstr((no_lag+1-n):(cstr_row-n),i); 
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end 

n=0; 

else 

cstr_tlshift(:,(i*(no_lag+1)-no_lag))= cstr(((no_lag+1):cstr_row),i); 

for n=1:no_lag, 

cstr_tlshift(:,(i*(no_lag+1)-no_lag+n))=cstr((no_lag+1-n):(cstr_row-n),i); 

end 

end 

n=0; 

end 

 

save('dpca_all_column_CAT.mat','cstr_tlshift','-append'); 

%-------------------------------------DPCA--------------------------% 

 

clear all; clc; 

load('dpca_all_column_CAT.mat') 

cstr=cstr_tlshift; 

[cstr_row, cstr_column]=size(cstr); %state column size for normalization loop 

 

for i=1:cstr_column, %normalization loop 

norm_column=(cstr(:,i)-mn(i))./sd(i); 

cstr_norm(:,i)=norm_column; 

end 

i=0; 

 

score=cstr_norm*coeff 

[coeff_row,coeff_column]=size(coeff) 

 

for i=1:cstr_column, %convert latent to square matrix 

latent_mat(i,i)=latent(i,1); 

end 

i=0; 

[score_row, score_column]=size(score); %state column size for normalization loop 

 

for i=1:score_column, %normalization loop 

nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i); 

score_norm(:,i)=nSCORE_column; 

end 

i=0 

score_square=(score_norm.^2) 

 

for i=1:score_row, %T-square loop 

column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))'; 

tsquare(i,1)=sum(column_t(i,:)); 

end 

i=0 

 

%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA 

%q=r.*r; 

backprojection=score_norm*(coeff)'; %back projection from the score matrix 

r=cstr_norm-backprojection; %residual 

q=r.*r; %the Q/SPE statistics 

[r_row, r_column]=size(r); 

SPE=sum(q'); 

 

figure(2) 

subplot (2,1,1); 

plot (SPE) %SPE Chart 

 

chisquare_99=chi2inv(0.99,cstr_column-1); 

chisquare_95=chi2inv(0.95,cstr_column-1); 

theta1=sum(latent((no_princomp+1):score_column,1)); 
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theta2=sum(latent((no_princomp+1):score_column,1).^2); 

theta3=sum(latent((no_princomp+1):score_column,1).^3); 

g=theta2/theta1; 

h=(theta1^2)/theta2; 

h0=1-((2*theta1*theta3)/(3*(theta2^2))); 

z_99=norminv(1-0.01); 

z_95=norminv(1-0.05); 

 

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1 

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) 

 

line('XData', [0 5000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', ... 

'LineWidth', 2, 'Color','r'); 

line('xData', [0 5000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', 

... 

'LineWidth', 2, 'Color','y'); 

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

'Location','NorthEastOutside') 

 

title('Drift in Reaction Kinetics','FontWeight','bold') 

xlabel('T, (hr)') 

ylabel('Q, DPCA') 

 

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no of 

sample - no_princomp)) 

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no of 

sample - no_princomp)) 

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99; 

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95; 

 

subplot (2,1,2); 

plot(tsquare)     %T2 chart 

line('XData', [0 5000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

'LineWidth', 2, 'Color','r'); 

line('xData', [0 5000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

'LineWidth', 2, 'Color','y'); 

legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

'Location','NorthEastOutside') 

 

title('Drift in Reaction Kinetics','FontWeight','bold') 

xlabel('T, (hr)') 

ylabel('T^2, DPCA') 

 

 

'--------------------end of program----------------------' 
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DPCA for Drift in Heat Transfer Coefficient 

 
clear all; clc; 

load('cstr_data_HE.mat') 

cstr=cstr(1:5000,2:8); 

 

[cstr_row, cstr_column]=size(cstr); 

%cstr_tlshift=cstr(3:cstr_row,cstr_column); 

no_lag=2; 

 

for i=1:cstr_column, 

if i==1; 

cstr_tlshift(:,i)= cstr(((no_lag+1):cstr_row),i); 

for n=1:no_lag, 

cstr_tlshift(:,i+n)=cstr((no_lag+1-n):(cstr_row-n),i); 

end 

n=0; 

else 

cstr_tlshift(:,(i*(no_lag+1)-no_lag))= cstr(((no_lag+1):cstr_row),i); 

for n=1:no_lag, 

cstr_tlshift(:,(i*(no_lag+1)-no_lag+n))=cstr((no_lag+1-n):(cstr_row-n),i); 

end 

end 

n=0; 

end 

 

save('dpca_all_column_HE.mat','cstr_tlshift','-append'); 

%-------------------------------------DPCA------------------------% 

 

clear all; clc; 

load('dpca_all_column_HE.mat') 

cstr=cstr_tlshift; 

[cstr_row, cstr_column]=size(cstr); %state column size for normalization loop 

 

for i=1:cstr_column, %normalization loop 

norm_column=(cstr(:,i)-mn(i))./sd(i); 

cstr_norm(:,i)=norm_column; 

end 

i=0; 

 

score=cstr_norm*coeff; 

[coeff_row,coeff_column]=size(coeff); 

for i=1:cstr_column, %convert latent to square matrix 

latent_mat(i,i)=latent(i,1); 

end 

i=0; 

[score_row, score_column]=size(score); %state column size for normalization loop 

 

for i=1:score_column, %normalization loop 

nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i); 

score_norm(:,i)=nSCORE_column; 

end 

i=0; 

score_square=(score_norm.^2); 

 

for i=1:score_row, %T-square loop 

column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))'; 

tsquare(i,1)=sum(column_t(i,:)); 

end 

i=0; 
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%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA 

%q=r.*r; 

backprojection=score_norm*(coeff)'; %back projection from the score matrix 

r=cstr_norm-backprojection; %residual 

q=r.*r; %the Q/SPE statistics 

[r_row, r_column]=size(r); 

SPE=sum(q'); 

 

figure(2) 

subplot (2,1,1); 

plot (SPE) %SPE Chart 

 

chisquare_99=chi2inv(0.99,cstr_column-1); 

chisquare_95=chi2inv(0.95,cstr_column-1); 

theta1=sum(latent((no_princomp+1):score_column,1)); 

theta2=sum(latent((no_princomp+1):score_column,1).^2); 

theta3=sum(latent((no_princomp+1):score_column,1).^3); 

g=theta2/theta1; 

h=(theta1^2)/theta2; 

h0=1-((2*theta1*theta3)/(3*(theta2^2))); 

 

z_99=norminv(1-0.01); 

z_95=norminv(1-0.05); 

 

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)); %SPE limit alternative 1 

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)); 

 

line('XData', [0 5000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', ... 

'LineWidth', 2, 'Color','r'); 

line('xData', [0 5000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', 

... 

'LineWidth', 2, 'Color','y'); 

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

'Location','NorthEastOutside') 

 

title('Drift in Heat Transfer Coefficient','FontWeight','bold') 

xlabel('T, (hr)') 

ylabel('Q, DPCA') 

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no of 

sample - no_princomp)) 

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no of 

sample - no_princomp)) 

 

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99; 

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95; 

 

subplot (2,1,2); 

plot(tsquare) %T2 chart 

line('XData', [0 5000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

'LineWidth', 2, 'Color','r'); 

line('xData', [0 5000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

'LineWidth', 2, 'Color','y'); 

legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

'Location','NorthEastOutside') 

title('Drift in Heat Transfer Coefficient ','FontWeight','bold') 

xlabel('T, (hr)') 

ylabel('T^2, DPCA') 

'--------------------end of program----------------------' 
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DPCA for Drift in Reaction Kinetics & Heat Transfer Coefficient  

 
clear all; clc; 

load('cstr_data_CAT_HE.mat') 

cstr=cstr(1:5000,2:8); 

 

[cstr_row, cstr_column]=size(cstr); 

%cstr_tlshift=cstr(3:cstr_row,cstr_column); 

no_lag=2; 

 

for i=1:cstr_column, 

if i==1; 

cstr_tlshift(:,i)= cstr(((no_lag+1):cstr_row),i); 

for n=1:no_lag, 

cstr_tlshift(:,i+n)=cstr((no_lag+1-n):(cstr_row-n),i); 

end 

n=0; 

else 

cstr_tlshift(:,(i*(no_lag+1)-no_lag))= cstr(((no_lag+1):cstr_row),i); 

for n=1:no_lag, 

cstr_tlshift(:,(i*(no_lag+1)-no_lag+n))=cstr((no_lag+1-n):(cstr_row-n),i); 

end 

end 

n=0; 

end 

 

save('dpca_all_column_HE.mat','cstr_tlshift','-append'); 

%-------------------------------------DPCA------------------------% 

 

clear all; clc; 

load('dpca_all_column_HE.mat') 

cstr=cstr_tlshift; 

[cstr_row, cstr_column]=size(cstr); %state column size for normalization loop 

 

for i=1:cstr_column, %normalization loop 

norm_column=(cstr(:,i)-mn(i))./sd(i); 

cstr_norm(:,i)=norm_column; 

end 

i=0; 

 

score=cstr_norm*coeff; 

[coeff_row,coeff_column]=size(coeff); 

for i=1:cstr_column, %convert latent to square matrix 

latent_mat(i,i)=latent(i,1); 

end 

i=0; 

[score_row, score_column]=size(score); %state column size for normalization loop 

 

for i=1:score_column, %normalization loop 

nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i); 

score_norm(:,i)=nSCORE_column; 

end 

i=0; 

score_square=(score_norm.^2); 

 

for i=1:score_row, %T-square loop 

column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))'; 

tsquare(i,1)=sum(column_t(i,:)); 

end 

i=0; 
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%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA 

%q=r.*r; 

backprojection=score_norm*(coeff)'; %back projection from the score matrix 

r=cstr_norm-backprojection; %residual 

q=r.*r; %the Q/SPE statistics 

[r_row, r_column]=size(r); 

SPE=sum(q'); 

 

figure(2) 

subplot (2,1,1); 

plot (SPE) %SPE Chart 

 

chisquare_99=chi2inv(0.99,cstr_column-1); 

chisquare_95=chi2inv(0.95,cstr_column-1); 

theta1=sum(latent((no_princomp+1):score_column,1)); 

theta2=sum(latent((no_princomp+1):score_column,1).^2); 

theta3=sum(latent((no_princomp+1):score_column,1).^3); 

g=theta2/theta1; 

h=(theta1^2)/theta2; 

h0=1-((2*theta1*theta3)/(3*(theta2^2))); 

 

z_99=norminv(1-0.01); 

z_95=norminv(1-0.05); 

 

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)); %SPE limit alternative 1 

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)); 

 

line('XData', [0 5000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', ... 

'LineWidth', 2, 'Color','r'); 

line('xData', [0 5000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', 

... 

'LineWidth', 2, 'Color','y'); 

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

'Location','NorthEastOutside') 

 

title(' Drift in Reaction Kinetics & Heat Transfer Coefficient ','FontWeight','bold') 

xlabel('T,(hr)') 

ylabel('Q, DPCA ') 

 

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no of 

sample - no_princomp)) 

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no of 

sample - no_princomp)) 

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99; 

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95; 

 

subplot (2,1,2); 

plot(tsquare) %T2 chart 

line('XData', [0 5000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

'LineWidth', 2, 'Color','r'); 

line('xData', [0 5000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

'LineWidth', 2, 'Color','y'); 

legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

'Location','NorthEastOutside') 

title(' Drift in Reaction Kinetics & Heat Transfer Coefficient','FontWeight','bold') 

xlabel('T, (hr)') 

ylabel('T^2, DPCA') 

'--------------------end of program----------------------' 


