

The High Performance Linpack (HPL) Benchmark Evaluation on UTP High

Performance Computing Cluster

By

Wong Chun Shiang

16138

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Technology (Hons)

(Information and Communications Technology)

MAY 2015

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

ii

CERTIFICATION OF APPROVAL

The High Performance Linpack (HPL) Benchmark Evaluation on UTP High

Performance Computing Cluster

by

Wong Chun Shiang

16138

A project dissertation submitted to the

Information & Communication Technology Programme

Universiti Teknologi PETRONAS

In partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION & COMMUNICATION TECHNOLOGY)

Approved by,

(DR. IZZATDIN ABDUL AZIZ)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

MAY 2015

iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

WONG CHUN SHIANG

iv

ABSTRACT

UTP High Performance Computing Cluster (HPCC) is a collection of computing

nodes using commercially available hardware interconnected within a network to

communicate among the nodes. This campus wide cluster is used by researchers from

internal UTP and external parties to compute intensive applications. However, the

HPCC has never been benchmarked before. It is imperative to carry out a performance

study to measure the true computing ability of this cluster.

This project aims to test the performance of a campus wide computing cluster using a

selected benchmarking tool, the High Performance Linkpack (HPL). HPL is selected

as a result of comparative studies and analysis with other HPC performance

benhmarking tool. The optimal configuration of parameters of the HPL benchmark

will be determined and run in the cluster to obtain the best performance.

Through this research project, it is the hope of the author that the outcome of this

research project will help to determine the peak potential performance of the

computing cluster.

v

ACKNOWLEDGEMENT

I would like to thank my supervisor, Mr Izzatdin Abul Aziz, for his guidance, help,

motivation and patience. Without him, this project will not be able to be accomplished

and I have learned a lot under his supervision about the whole research.

I would also want to thank to Universiti Teknologi Petronas (UTP) and the Computer

and Information Sciences (CIS) department and the High Performance Computing

(HPC) center for providing the resources and facilities needed to complete the project

successfully. I would like to direct my gratitude to Mr Helmi for his helping hand and

guidance whenever I face problems in completing the research project.

To my family members and friends, I truly appreciate your love and close support for

me which compels me to finish the project.

For other people who have been involved directly or indirectly in my project, I am

grateful for your help and offer my deepest thanks.

Thank you.

vi

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL ii

CERTIFICATION OF ORIGINALITY iii

ABSTRACT

 Error! Bookmark not defined.

ACKNOWLEDGEMENT

 Error! Bookmark not defined.

LIST OF FIGURES viii

LIST OF TABLES viii

CHAPTER 1: INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 2

1.3 Objectives 2

1.4 Scope of Study 2

CHAPTER 2: LITERATURE REVIEW 3

2.1 Definition of a Computer Cluster 3

2.2 Working Principle Behind a Computer Cluster 4

2.3 Factors for Employing a Computer Cluster 5

2.4 Definition of a Benchmark 7

 2.4.1 High Performance Linpack (HPL) 7

 2.4.2 NAS Paralllel Benchmarks 12

CHAPTER 3: METHODOLOGY 15

3.1 Problem Definition 15

3.2 Literature Review 15

 3.3 Methodology Definition 16

3.4 Basic Workspace Setup 16

 3.4.1 Creating a New User 16

 3.4.2 Checking CPU Specifications 17

 3.4.3 Checking Top Running Processes 18

_Toc415532616
_Toc415532617

vii

 3.4.4 Checking MPI Version 18

3.5 Test Environment Setup 19

3.6 Benchmark Test 22

3.7 Results Evaluation 22

CHAPTER 4: RESULTS AND DISCUSSION 24

 4.1 Test Run Results 24

 4.1.1 Number of Nodes, P x Q 24

 4.1.2 Problem Size, N 26

 4.1.3 Distribution Size, NB 28

 4.1.4 Panel Factorization, PFACT 29

 4.1.5 Recursive Panel Factorization, RFACT 31

 4.1.6 Broadcast Parameter, BCAST 32

 4.1.7 Look-ahead Depth, DEPTH 33

 4.2 Final Test Run Results 35

CHAPTER 5: CONCLUSION AND RECOMMENDATION 37

REFERENCES 38

APPENDICES 39

viii

LIST OF FIGURES

Figure 1 Graph of Amdahl's law 5

Figure 2 Structed Matrices 9

Figure 3 LU matrix factorization 10

Figure 4 Panel factorization 10

Figure 5 Research methodology 15

Figure 6 Screenshot of logging as super user 17

Figure 7 Screenshot of checking CPU specifications 17

Figure 8 Screenshot of top running processes and details 18

Figure 9 Screenshot of MPI version 19

Figure 10 Screenshot of a HPL test result 22

Figure 11 Number of Nodes and Speed of Processing 25

Figure 12 Number of Nodes and Speedup in Processing 25

Figure 13 Problem Size and Speed of Processing 27

Figure 14 Problem Size and Speedup in Processing 27

Figure 15 Distribution Size and Speed of Processing 28

Figure 16 Panel Factorization and Speed of Processing 30

Figure 17 Recursive Panel Factorization and Speed of Processing 31

Figure 18 Broadcast Parameter and Speed of Processing 32

Figure 19 Look-ahead Depth and Speed of Processing 34

Figure 20 Test Results with Optimised Parameters 36

LIST OF TABLES

Table 1 Technical Specification of Cloud Nodes 4

Table 2 Operations of Each Parallel NAS Benchmark Modules 13

Table 3 Comparative Study Between NAS and HPL Benchmarks 14

Table 4 Number of Nodes and Speed of Processing 24

Table 5 Problem Size and Speed of Processing 26

Table 6 Distribution Size and Speed of Processing 28

Table 7 Panel Factorization and Speed of Processing 29

ix

Table 8 Recursive Panel Factorization and Speed of Processing 31

Table 9 Broadcast Parameter Speed of Processing 32

Table 10 Look-ahead Depth and Speed of Processing 33

Table 11 Optimised Parameters for HPL Based on HPC Cluster 35

Table 12 Test Results with Optimised Parameters 36

1

CHAPTER 1

INTRODUCTION

1.1 Background of Study

There are a number of factors which result in the formation and the ubiquity of

computer clusters nowadays, such as the availability of high speed computer

interconnections, the reduction in cost of components such as microprocessors, and

emergence of parallel programs or software where distributed computers can work

together. Computer clusters are increasingly used in a wide-ranging variety of

purposes, sizes and compositions, varying between small clusters formed from a few

computer nodes to huge clusters which form the fastest supercomputers in the world,

capable of a few petaFLOPS (Floating Operations Per Second).

Benchmarking is needed in order to show the theoretical maximum performance and

calculation ability of a computing cluster. By determining the max performance, the

capability of a cluster and improvisation to the architecure and processes can be

recognised. However, the parallel benchmark test have not been carried out in the High

Performance Computing (HPC) Cluster in Universiti Teknologi Petronas (UTP) as of

this time.

As such, the research project’s main objectives are to investigate the importance of

benchmark tools in gauging the performance of a computing cluster and carry out the

profiling test on UTP’s High Performance Computing Cluster. The test will use the

HPL Linpack benchmark to measure performance.

2

The rest of this chapter will be structured as follows: Section 1.1 will explain about

the problem statement of this project. And Section 1.2 will explain about the objectives

section and also the scope section.

1.2 Problem Statement

Measuring and evaluating the performance of a computing cluster is important to

identify the potential of a cluster and to develop strategic recommendations for its

further development. As the performance of the HPC cluster in UTP has not been

measured using any benchmarking tool, and thus its theoretical maximum potential

performance cannot be readily determined and any potential improvements to the

system cannot be identified.

1.3 Objectives

As such, some of the main objectives of this research are:

- To study on gauging the performance of a computing cluster through use of

benchmarking tool.

- To carry out the benchmark testing tool in a small scale computing cluster such

as UTP’s High Performance Computing Cluster.

1.4 Scope of Study

This benchmarking study will be limited to the High Performance Computing Cluster

(HPCC) of Universiti Teknologi Petronas (UTP) as there is only a short period for this

research to be completed. Only benchmark testing of the computer cluster located in

UTP will be carried out.

Also, after the comparison study between different benchmarking tools has been

completed, the HPL Linpack benchmark is chosen and only this benchmark tool will

be implemented on the UTP HPC cluster. The selection of only one tool is needed to

ensure consistent results and sufficient time to complete the research.

3

CHAPTER 2

LITERATURE REVIEW

2.1 Definition of a Computing Cluster

A computer cluster can be defined as a collection of stand-alone computers connected

via a network which work together as a single system (El-Rewini & Abd-El-Barr,

2005). A computer cluster have each node set to perform the identical task, managed

and planned by software and with all of its component subsystems are managed within

a single administrative domain (Sterling, 2001). A cluster is normally enclosed within

a room and handles as a single computer system (Bakery & Buyyaz, 1999). The

components of a cluster, also known as nodes are connected to each other through

networks such as fast Local Area Networks (LAN) or a hierarchy of networks or even

several dispersed network structures (Bakery & Buyyaz, 1999), with each node

running its own instance of an operating system (El-Rewini & Abd-El-Barr, 2005). In

most circumstances, all of the nodes are similar in terms of hardware and operating

system. In a small-scale computer cluster with Beowulf architecture, most cluster

nodes contain commercial hardware and can perform operations independently

(Sterling, 2001).

The UTP HPC cluster for the UTP campus comprises of sixty cluster nodes. Each of

the nodes contain AMD processors and AMD / Nvidia GPUs in various

configurations. Ten out of twenty cloud nodes in the HPC cluster have been chosen to

run the benchmark, and a detailed specification of the Cloud Nodes is shown below.

The suite of software running on the nodes include the Ubuntu Linux 14.0.1 LTS

operating system, mpich2 Message Passing Interface (MPI) and Automatically Tuned

Linear Algebra Software (ATLAS) as the Basic Linear Algebra Subprogram (BLAS).

4

A detailed list of technical specifications about a single UTP HPC cloud node is as

follows (all of them are configured identically):

TABLE 1. Technical Specifications of Cloud Nodes

Processor 8 core AMD FX 8150 processor

3.1 GHz

Graphics Card AMD HD7970

Memory 32 GB DDR3

Interconnection bet. nodes Ethernet

Operating System Ubuntu Linux 14.0.1 LTS

2.2 Working Principle Behind A Computing Cluster

The working principle of parallel computation enables the high number of calculations

or floating point operations per second (FLOPS) by interconnected computer cluster

nodes. Parallel computation are effective when the calculations can be conducted in

parallel and are calculated at the same time by dividing them to be handled by different

processors (Barney, 2010).

A single calculation process usually consists of multiple parts. These parts can be

broken down and translated into multiple instructions. The commands in each part can

be completed by multiple processors at the same time, while under the regulation or

synchronisation of a central mechanism (Barney, 2010). The time taken for the

problem to be resolved can be significantly shortened by spreading the work load

among several processors.

Amdahl's law dictates this improvement in speed of execution when there are multiple

processors (Rodgers, 1985). Where n is the number of computational threads, and B

is the portion of the process that can only run in serial, the time T(n) for the process

for be completed is:

5

𝑇(𝑛) = 𝑇(1) (𝐵 +
1

𝑛
 (1 − 𝐵))

And the improvement in computation time, also known as speedup, S(n) is calculated

by (Rodgers, 1985):

𝑆(𝑛) =
𝑇(1)

𝑇(𝑛)
=

𝑇(1)

𝑇(1) (𝐵 +
1
𝑛

(1 − 𝐵))

=
1

𝐵 +
1
𝑛

(1 − 𝐵)

FIGURE 1. Graph of Amdahl's law

This graph illustrates the improvement in speed (or speedup) of a process relative to

the percentage of portion in the process that can run in parallel. When the percentage

of parallel portion in the process increases along with the number of processors, the

speedup in processing time will have increase significantly. However the speedup will

increase up to a certain number of processors (again depending on the percentage,

higher percentage has a limit of higher number of processors), after which the speedup

will plateau.

6

2.3 Factors For Employing Computer Clusters

Computer clusters have a faster execution speed as compared to a single computer,

while typically being much more cost-effective than single computers of comparable

speed or availability (Bader & Pennington, 2001). A computer cluster can have better

availability Certain large and complex computational problems require parallel

computing to be effectively and efficiently solved. Usual examples of such problems

include weather modeling, computational fluid dynamics (CFD) simulation, designing

semiconductors etc. There are also many real world problems and occurrences that are

well-matched for parallel computations (Barney, 2010).

The processors currently available are better suited for parallel computation, with

features such as hyperthreading and virtualisation (Barney, 2010). Parallel

computation can be time saving and money saving. This is due to running a task using

more computing resources will result in a shorter time to completion and less resource

time usage (Barney, 2010). Parallel computations can also cost less money when using

cheaper hardware which are off the shelf.

Clusters which load balancing feature distributes network service requests between

the nodes of the cluster, so that the burden is equally distributed between them. This

load balancing feature enables failure management, because if one of the nodes have

failed, the software responsible for load balancing will redistribute its requests to the

other nodes, and makes the failure invisible to the end user (Red Hat, n.d.). Load

balancing also enables scalability, distributing to more nodes or less nodes as needed,

which is useful and cost effective for organisations (Red Hat, n.d.).

To balance out the processes and operations of software which run on servers (a Web

server, parallel processing programs etc), the requests from clients are allocated to

several servers at one time (Microsoft, n.d.-b). All inbound client requests for service

are accepted and forwarded to particular servers to evenly utilize the servers using load

balancing technologies, for example load balancers. Each of the servers will

simultaneously process several requests for service at one time. In the case of Web

7

servers, several elements of the webpage shown to the client can be gathered from a

few host machines in the cluster, so that the webpage can be loaded in a short time.

By distributing loads for processing by multiple nodes, the clients get serviced faster

and in a shorter time. Besides that, more servers are utilized in processing requests,

instead of only a few servers being occupied with requests while others are idling

(Microsoft, n.d.-b).

2.4 Definition of a Benchmark

A benchmark's main function is to perform a selection of complex problem solving

tests so as to evaluate the potential capability or performance of something. Generally,

benchmarks are used against computer hardware to measure the maximum achievable

performance under the test conditions, such as the floating point operations per second

(FLOPs) of a CPU.

The capabilities and profile of the clusters and the factors which influence their

performance need to be comprehended and analyzed in order to improve on the

processes and performance of the clusters. The benchmark results also cancan also

show how different configurations can may affect the performance of the computation.

A few different benchmarks are available. In this study, the High Performance Linpack

(HPL) benchmarking tool and NAS Parallel benchmarking tools are compared and

examined.

2.4.1 High Performance Linpack (HPL)

The HPL benchmarking tool is a portable application which works across various

platforms and is written in C (Jack J Dongarra, Bunch, Moler, & Stewart, 1979). The

Linpack benchmark was primarily an auxiliary program which is developed from the

Linpack package. The function of the program is to analyse and solve linear equations

using FORTRAN. Linpack Fortran n = 100 benchmark is one of the benchmarks,

8

where the problem size is 100. Linpack n = 1000 benchmark has a problem size of

1000 while there is another benchmark known as Linpack’s Highly Parallel

Computing benchmark (J. J. Dongarra, 1990).

The Linpack Benchmark is a measurement of the computing power by gauging the

rate of calculation of a computer. FORTRAN functions are run which decomposes and

resolves a dense matrix into complex linear equations systems and linear least-squares

problems in double precision (J. J. Dongarra, 1990). This enables the benchmarking

tool to establish the floating-point computation speed of the computing cluster. One

of the features of the Linpack benchmark is that it is able to handle distributed memory

and vector supercomputers (J. J. Dongarra, 1990).

Developed from the Linpack benchmark, the High Performance Linpack (HPL)

benchmark tool is a software suite developed for computers with distributed memory

such as a computer cluster, that similar to the Linpack benchmark, calculates and

resolves a dense linear system in double precision arithmetic of 64 bits (Petitet,

Whaley, Dongarra, & Cleary, 2004). The HPL benchmark has been used by various

organization and institutions as a standard yardstick to evaluate the general floating-

point rate performance of their supercomputers since its introduction. The TOP500

project employs the HPL benchmark suite to use as a standard of measurement of

performance benchmarking or profiling.

The HPL benchmark solves linear algebraic problems by breaking down the matrix

using Lower-Upper (LU) factorization. LU factorization decomposes a matrix as a by

multiplying the lower triangular part of matrix with the upper triangular part of matrix.

One example of an equation that the benchmark tool solves is:

𝐴𝑥 = 𝑏; 𝐴 ∈ 𝑅𝑛𝑥𝑛; 𝑥, 𝑏 ∈ 𝑅𝑛 (1)

The left side of the equation contains matrix A, while the right hand side is a vector b.

The solution to the problem is established by calculating the factor of A.

9

FIGURE 2. Structed Matrices (Petitet et al., 2004)

Provided a matrix A and right-hand-side vector b, the algorithm of the HPL performs

an LU factorization calculation through partial pivoting of rows of the matrix [A b] =

[[L,U] y] with the coefficient of n-by-n+1 in order to solve a linear system with the

order n in equation (1) (J. Dongarra, Luszczek, & Petitet, 2001).

The decomposition of the dense matrix A is then commenced and the final outcome

of the calculation are well-structured matrices where every one of its elements are non-

zero. Calculating the equation of U x = y in the upper triangular resolves into the

solution x given that the lower triangular factor L is applied to b as the factorization

progresses. The only unpivoted part of the matrix is the lower triangular matrix L and

is not returned to the calculation (Petitet et al., 2004).

To make sure load balancing is well-adjusted and the ability to scale to multiple

computers, the results of calculation is allocated onto a two-dimensional P-by-Q grid

of processes and structured using block-cyclic organisation. The matrix with n-by-n+1

coefficient is then segregated into NB-by-NB blocks according to logic, which are

intermittently distributed into the P-by-Q process grid. The process is repeated for both

width and height of the matrix (Petitet et al., 2004).

10

FIGURE 3. LU matrix factorization (Petitet et al., 2004)

The main iteration of the LU factorization calculation will select and employ the right-

looking variant. Each repetition of the calculation loop will factorize a section of NB

columns and after that, updates to the trailing submatrix is applied. The identical block

size NB that was intended for distribution of data is used to logically divide the

computation into partitions (Petitet et al., 2004).

FIGURE 4. Panel factorization (Petitet et al., 2004)

Every one of the panel factorization happens in one column of processes at a specific

repetition of the main iteration and according to the distribution system’s Cartesian

11

property. This specific calculation method is an important part of the critical path in

the complete process. There are three recursive variants of matrix multiplication

methods offered to the user, which are the Crout method, left-looking method and

right-looking method. The user is similarly permitted to adjust the number of sub-

panels the main panel is separated into when separation occurs in the repetition of

algorithm. Another selection factor for the user is the criteria to stop the run-time of

the recursion, such as how many columns are left to factorise.

Upon reaching this maximum limit, factorisation of the sub-panel will be calculated

according to the user selected variant out of the three matrix-vector based variant

(Crout, left- or right-looking) (Imran, Nor, & Othman, 2013). After that, every panel

of column is communicated in a single process which merges the pivot search, the

accompanying swap and broadcast procedure of the pivot row. The three processes

are executed at the same time using a binary-exchange (leave-on-all) reduction (Petitet

et al., 2004).

The resulting panel of columns is transmitted to the other process columns using

broadcast with the completion of the panel factorization operation. When the panel

has been broadcasted to the other columns, updates are applied to the resulting

submatrix with the last panel in the look-ahead pipe. This is due to the factorization of

the panel is one of the critical operations in the algorithm, so with the completion of

factorization and broadcasting of panel k, the panel of k+1 will be factorized and

broadcasted to the other columns ensues (Petitet et al., 2004).

This method is known in literature as "look-ahead" or "send-ahead" method. The user

can choose several depth values of look-ahead for this software. A zero depth value

brings about no lookahead in normal situations, which means the panel presently being

broadcast will affect the following submatrix. The look-ahead technique retains all the

panels of columns which are presently in the look-ahead pipe by using up extra

memory. According to the authors, the value 1 or 2 of look-ahead depth value possibly

enables the greatest improvement in terms of performance (Petitet et al., 2004).

12

2.4.1 NAS Parallel Benchmark

The NAS Parallel Benchmark (Bailey et al., 1991) (NPB) suite are a set of computer

programs. The benchmark is designed for testing parallel computer clusters in order

to gauge the performance of parallel computer clusters. NAS Parallel Benchmarks are

frequently used by organisations as an alternative of HPL to measure of cluster

performance.

The NAS benchmark was created as the widespread kernel benchmarks such as

Livermore Loops, the Linpack benchmark and the NAS Kernels are more suited to

evaluate vector supercomputers, and not the highly parallel machines popularly used

nowadays (Bailey et al., 1991).

There are eight benchmark modules available in the NAS Parallel Benchmark suite.

In the newest NPB version, there are additional modules are included (UA, DC and

DT). The five problem sizes available for each of the applications are class A, class B,

class C, class D and class E, increasing in problem size with each class. The detailed

working behind each of the NAS benchmarks is explained as follows (Bailey et al.,

1991):

TABLE 2. Operations of Each NAS Parallel Benchmark Modules.

Benchmark

Module

Operations

Multi Grid Employs the V-cycle multigrid technique to find the

approximate solution to a three-dimensional (3D) discrete

Poisson equation.

Conjugate

Gradient

Applies the inverse iteration to approximate the lowest

eigenvalue of a complex sparse symmetric positive-definite

matrix problem. The conjugate gradient method is a

subprocedure used to resolve the system of linear equations.

13

Fast Fourier

Transform

Apply the fast Fourier transform (FFT) method to resolve a

three-dimensional (3D) partial differential equation (PDE).

Integer Sort Utilizes bucket sort algorithm to assign a list of integers

positions in the final sorted list accordingly (Grün & Hillebrand,

1998).

Embarrassingly

Parallel

Employing the Marsaglia polar process to produce independent

Gaussian random variates.

Block

Tridiagonal,

Scalar

Pentadiagonal,

Lower-Upper

symmetric

Gauss-Seidel

Find the answer to a nonlinear PDEs synthetic system using

three different process of calculations involving block

tridiagonal, scalar pentadiagonal or symmetric successive over-

relaxation (SSOR) problem solving.

Unstructured

Adaptive

Find the solution to a heat problem of a ball in motion with

convection and diffusion effects. The mesh has to be adaptive to

the conditions and is recalculated every five steps of calculation

and the memory is retrieved dynamically and erratically.

14

 2.4.2 Comparative Study Between HPL and NAS Parallel Benchmarks

TABLE 3. Comparative Study Between HPL and NAS Parallel Benchmarks

Benchmarks HPL Linpack NAS Parallel

Problem solving

method

Solves a dense matrix problem

using LU factorization

Solves calculations

involving simulations.

Conjugate Gradient (CG)

uses the inverse iteration

to approximate the lowest

eigenvalue of a complex

sparse symmetric

positive-definite matrix

problem. The conjugate

gradient method is a

procedure used to resolve

linear equations (Bailey

et al., 1991)

Modules Single (LU factorization) Multiple (11 modules in

total)

Suited for Parallel

Computation

Designed for Parallel

Computers

Designed for Parallel

Computers

Used widely by

organisations as

standard

Yes (TOP 500 list) No

After having a comparison study between HPL and NAS benchmarks, it is the decision

of the author to use HPL as HPL measures performance using less number of modules.

Having less number of modules possibly will take less time than complete than the

NAS benchmark due to less number of modules to complete. The TOP500

organisation uses this benchmark to list the world’s fastest computer clusters

(Strohmaier, Dongarra, Simon, Meuer, & Meuer, 2015), which can help to determine

the performance.

15

CHAPTER 3

METHODOLOGY

FIGURE 5. Research Methodology

This figure shows the development methodology of this final year project. There are

six main stages: Problem Definition, Literature Review, Methodology Defintion,

Basic Workspace Setup, Test Environment Setup, Benchmark Test, and Result

Evaluation.

3.1 Problem Definition

In this part of the methodology, the problem is defined and clearly detailed. Measuring

and evaluating the performance of a cluster of computers is important so that the

Problem
Definition

Literature
Review

Methodology
Definition

Basic
Workspace

Setup

Test
Environment

Setup

Benchmark
Test

Result
Evaluation

16

potential of a cluster is recognized and the managers can have an idea for what to be

further developed to improve the system. The problem which the author has defined

is that the performance of the HPC cluster in UTP has not been measured using a

benchmark tool.

3.2 Literature Review

In the literature review part, all the related literature in relation to the benchmarks and

the functionality and inner workings of the benchmark software are reviewed. This

includes reviewing the steps to be taken and the details on the execution of the

benchmark tools.

A comparative study between the different benchmarks is carried out to select the most

suitable benchmark tool to benchmark the UTP HPC campus cluster. The differences

between the HPL and NAS benchmarking tools have been compared and contrasted,

and

Also, literature review on optimal configurations of the benchmark cluster have been

undertaken. The information gathered through literature review is that there are seven

parameters in the HPL benchmark which need to be optimised for the best results,

which are: problem size, N, distribution size, NB,

3.3 Methodology Definition

After the related literature have been reviewed, all the processes which need to be

completed in order to compile, configure and execute the selected benchmark, which

is High Performance Linpack (HPL), will be listed out and examined.

17

3.4 Basic Workspace Setup

Setting up the workspace involves creating user account, ensuring accesss to required

resources such as usernames and passwords to server nodes, and dowloading the

essential files.

3.4.1 Creating New User

The steps to create a new user are as follows:

1. Obtain administrative permission by logging in as a super user.

2. Use the useradd command to create new user, example: useradd johnsmith.

3. To set password for johnsmith, use the command passwd johnsmith. A New

Password prompt will appear.

4. Enter the password as desired into the field and press ENTER.

5. Reconfirm the new password and the password is successfully set for the user

account.

FIGURE 6. Screenshot of logging as super user (su)

3.4.2 Checking CPU specifications

To check the specifications of the CPU, use the command lscpu. The specifications of

the CPU is then listed, including the architecture, CPU operation modes, vendor, MHz

of the CPU, cores per CPU etc.

18

FIGURE 7. Screenshot of checking CPU specifications (lscpu)

From the screenshot, the localhost node has an 8-core AMD CPU, with each core

running at around 3.1 GHz processing speed and having 64-bit architecture. All the

CPUs are online.

3.4.3 Checking top running processes

To check the top running processes currently in the system, use the command ps. The

list of processes will be shown, including the user running the process and percentage

of CPU usage and memory usage etc.

FIGURE 8. Screenshot of top running processes and details (ps)

As shown in the screenshot, there are 2 running tasks in the system and 222 sleeping

tasks. The CPU usage, memory usage, and swap usage is also shown. Under that, the

details on each of the processes are shown including PID, user who launced the task,

19

stats such as percentage of CPU and memory used, how long the process has been

running and the command being run.

3.4.4 Checking MPI version

To check the version of Message Passing Interface (MPI) used by the system, use the

command mpiexec --version. The list of processes will be shown, including the user

running the process and percentage of CPU usage and memory usage etc.

FIGURE 9. Screenshot of MPI version (mpiexec --version)

As shown in the screenshot, the MPI version running in the system is OpenMPI

version 1.4.1.

3.5 Test Environment Setup

One of the benchmark configurations needed in running the benchmark is to setup the

High Performance Linpack configurations. Determining and selecting the correct

compiler for C and FORTRAN is one of the parts in this stage. The message passing

interface (MPI) also needs to be preinstalled and setup. For the UTP cluster, mpich2

will be used.

The Basic Linear Algebra Subprograms (BLAS) which is responsible for the basic

mathematical procedures involving vector and matrix also needs to be setup and

configured. The BLAS library contains a specific collection of low-level

subprocedures for common linear algebraic operations. BLAS contains 3 levels: Level

1 is employed in vector procedures, Level 2 completes processes between matrix and

20

vector, whereas at Level 3, matrix-matrix processes are calculated. BLAS is frequently

utilised in creating software tools which need to perform linear algebra, such as

Linpack and LAPACK, as they have high efficiency, are transferrable across platforms

and have many open source implementations (Strohmaier et al., 2015).

The Automatically Tuned Linear Algebra Software (ATLAS) is another BLAS routine

alternative which employs practical procedures for better execution and portability

across platforms. The interfaces of ATLAS are written using C and includes some

LAPACK routines (Strohmaier et al., 2015). The Linpack does not have high

efficiency in resolving matrix computations because of the memory access method by

both the algorithm and software, which decreases the overall efficiency, and has been

superseded by LAPACK (Strohmaier et al., 2015). LAPACK is a suite of software

which can resolve linear algebra involving matrices, with distinctive specialization

towards series of linear equations, least squares calculations, eigenvalue calculations,

and decomposition of singular value (Strohmaier et al., 2015). The basis of the

software emulates the use of block partitioned matrix techniques in order to

accomplish great performance on systems with RISC architecture, vector computers,

and parallel processors with common memory (Strohmaier et al., 2015). The ATLAS

library will be used as BLAS library for the HPL benchmark.

 In the following phase, the parameters to HPL.dat is tuned. There are 17 parameters

which need to be assigned to HPL.dat. In these 17 parameters, only seven of these

parameters are usually configured according to the cluster during benchmarking

process. The default good start value will normally be used for the remaining

parameters as suggested by HPL. The seven parameters which need to be configured

are: problem size (N), processor grid (P x Q), broadcast (BCAST), block size (NB),

panel factorization (PFACT), recursive panel factorization (RFACT), and look-ahead

depth (DEPTH).

 𝑁 = √𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑀𝑒𝑚𝑜𝑟𝑦 (𝑖𝑛 𝑏𝑦𝑡𝑒𝑠) × 0.80 (2)

The solution to equation (2) shown above is theoretically the best problem size, N to

be solved. Research by Petitet,Whaley, Dongarra and Cleary suggest that the largest

21

size of N which can fit around 80% of the memory should be used (Petitet et al., 2004).

However, when assigning the size of N too large, data swap can happen between

memory and disk, which will lead to a reduction in the overall performance, as the

system will need to read from the disk instead of directly from the memory. Thus, only

80% of the total problem size will be utilised, with the remaining 20% left for other

uses (Petitet et al., 2004).

The processor grid (P x Q) parameters that denote the size or proportions of the process

grid. In the processor grid (P x Q), P represents the process rows while Q represents

the process columns. The size of both P and Q should be determined by the physical

interconnection network. For a mesh or a switch network, which is preferred, the

values of P and Q should be approximately equal, with Q having a slightly larger value

than P. Nevertheless, a the research conducted in Universiti Teknologi MARA on their

Khaldun Sandbox Cluster, after trying a number of configurations, their findings was

that the best values for the processor grid are P is 2 while Q is 16 in order to achieve

the best benchmark results among the configurations of 26.88 Gflops (Imran et al.,

2013). This finding is a little contrasting with the recommended processor grid

configuration, and will need to be checked out.

In HPL, the block size, NB is used to allocate the data and also determines the level

of detail in computation. From the perspective of data distribution, having a smaller

block size will result in a better distributed load equilibrium. Nevertheless, in the view

of computation, when the value of NB is too small, the NB can be the limiting factor

of the computational performance by a large factor due to almost none of data will be

reused in the highest level of the memory hierarchy (Petitet et al., 2004). This problem

will result in increase of the number of messages. Therefore, the values of block size

for highest performance usually lies between 32 to 256 intervals. The best values

largely relies on the computation per communication performance ratio of a system

(Petitet et al., 2004). A balanced between performance and data distribution size needs

to be achieved for the best performance in benchmark result. There are also panel

factorization and recursive panel factorization variants to choose from, which are:

right-looking variant, left-looking variant and Crout variant. These three variants are

22

different methods in which these computations are carried out (Petitet et al., 2004),

and can have minor performance differences in the result.

Once the factorization of the panel had been calculated, HPL broadcasts panel

factorization column from one process column to other process columns. There are 6

alternatives of broadcast algorithms available can be employed, which are Increasing-

ring, Modified Increasing-ring, Increasing-2-ring, Modified Increasing-2-ring, Long

bandwidth reducing and modified Long bandwidth reducing (Petitet et al., 2004).

Research has suggested that the Modified Increasing-ring algorithm is one of the best

in efficiency (Microsoft, n.d.-a). However, in the research conducted in Universiti

Teknologi MARA on their Khaldun Sandbox Cluster, the results from their benchmark

test saw that the Modified Increasing-ring does not perform as well as compared to the

Long bandwidth reducing algorithm. The Long bandwidth reducing algorithm allows

them to obtain their best results of 31.33 Gflops (Imran et al., 2013). This findings will

be tested when benchmarking the UTP HPC cluster.

The look-ahead depth is also an important parameter. Look-ahead denotes the ability

of the algorithm to reorganize the most efficient operations to run with the least

efficient, and store the panels being currently factorized in the memory for a better

performance. A look-ahead depth of 1 is recommended by most use cases (Petitet et

al., 2004).

 3.6 Benchmark Test

Once all the benchmark configuration processes have been completed, test runs will

be conducted using the benchmarking tool on the 10 cloud nodes of the HPC cluster

of 4 nodes to determine the optimal benchmark configuration and parameters. After

the test runs are successful, the benchmark tool will be configured with the optimal

parameters from evaluating the test runs and the final test run is carried out. Details

on the optimal parameters and results of the test runs are detailed more in Chapter 5:

Results and Discussion part. The results from the benchmark tool will be recorded and

evaluation of the results will be carried out in the following section.

23

 3.7 Results Evaluation

FIGURE 10. Screenshot of a HPL test result

The results obtained after the benchmark tool has been executed, as shown in Figure

10, is then collected and evaluated in order to determine if the benchmark test is

successful and ensure that no problems are encountered during the execution. In

addition, the results will be examined to make sure that the configuration on the

benchmark has been optimised for the best results.

The results from running the benchmark tool will be specified and detailed more in

the Chapter 5: Results and Discussion in this paper.

24

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Test Run Results

Seven test runs are conducted on the HPC cluster based on the seven main parameters

to be configured in the HPL benchmark, which are Number of Nodes (P x Q), Problem

Size (N), Distribution Size (NB), Factorization (FACT), Recursive Factorization

(RFACT), Broadcast (BCAST) and Look-ahead Depth (DEPTH). The results and

discussion from each of the test runs are shown and detailed in the following sections.

 4.1.1 Number of Nodes, P x Q

The purpose of the first testing is to determine how the number of nodes, P x Q,

influence the speed of processing and the time taken to solve the problem. The other

parameters to be tested are fixed. The results of the test are as follows:

25

TABLE 4. Number of Nodes and Speed of Processing.

Number of Nodes Time Taken

(s)

Speed of Processing

(Gflops)

Speedup in

Processing

1 29.62 2.815 1.00

2 59.65 1.398 0.50

4 39.86 2.092 0.75

6 26.21 3.181 1.13

8 23.17 3.597 1.28

10 18.79 4.436 1.58

FIGURE 11. Number of Nodes and Speed of Processing.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 4 6 8 10

Graph of Number of Nodes
and Computation Speed

Computation Speed (Gflops)

26

FIGURE 12. Number of Nodes and Speedup in Processing.

As number of nodes increases from one node to two nodes, the computation speed

drops as shown in Figure 11. due to a delay of communication. This delay is caused

by the computation problem being transmitted over an Ethernet network through

Message Passing Interface (MPI) and distributed among the cluster nodes. The delay

in communication increases the overhead for problem computation and can cause a

slowdown in performance as shown in Figure 12.

But when the number of nodes keeps increasing, the delay in communication is

compensated by the speed of processing of the cluster nodes. Thus, the speedup in

processing increases until all the processors are saturated with computations

(saturation point), then the increase in speed remains constant.

4.1.2 Problem Size, N

The purpose of the second testing is to determine how the problem size, N influence

the speed of processing and the time taken to solve the problem. The other parameters

to be tested are fixed. The results of the test are as follows:

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1 2 4 6 8 10

Graph of Speedup

Speedup

27

TABLE 5. Problem Size and Speed of Processing.

Problem Size, N Time Taken (s) Speed of Processing (Gflops) Speedup

5000 18.79 4.436 1.00

10000 114.68 5.815 1.31

15000 374.78 6.003 1.35

20000 812.09 6.568 1.48

25000 1605.56 6.488 1.46

FIGURE 13. Problem Size and Speed of Processing.

0

1

2

3

4

5

6

7

5000 10000 15000 20000 250000

Graph of Problem Size and
Computation Speed

Computation Speed (Gflops)

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

5000 10000 15000 20000 250000

Graph of Speedup

Speedup

28

FIGURE 14. Problem Size and Speedup in Processing.

Problem size dictates the size of the matrix to be decomposed. A larger problem size

engages more processing power in finding the solution, and thus resulting in a higher

computation speed as shown in Graph 13.

However the increase in computation speed or speedup will only keep increasing until

a saturation point, where all the processors are being used to solve the problem, then

the increase in speed stabilises. This is due to the maximum effectiveness and

efficiency of processing power had been reached.

4.1.3 Distribution Size, NB

The purpose of the third testing is to determine how the distriution size, NB influence

the speed of processing and the time taken to solve the problem. The other parameters

to be tested are fixed. The results of the test are as follows:

TABLE 6. Distribution Size and Speed of Processing.

Distribution Size, NB Time Taken (s) Speed of Processing (Gflops)

100 19.36 4.307

125 17.86 4.667

150 20.99 3.973

175 18.54 4.497

200 23.17 4.406

225 22.30 3.738

250 21.30 4.706

29

FIGURE 15. Distribution Size and Speed of Processing.

The distribution size dictates the block size of the problem to be decomposed and

distributed among the nodes. The optimal distribution sizes will vary depending on

computational performance and network configuration.

We have tested distribution sizes ranging from 100 to 250 in increments of 25, and the

results from the test, as shown in Figure 15, found that block size 250 provides the

best performance in terms of computation speed. A bigger block size means less

messages to be sent over the network, hence less communication delay.

4.1.4 Panel Factorization, PFACT

The purpose of the fourth testing is to determine how the selection of panel

factorization algorithm, PFACT and recursive panel factorization, RFACT influence

the speed of processing and the time taken to solve the problem. The other parameters

to be tested are fixed. The results of the test are as follows:

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100 125 150 175 200 225 250

Graph of Distribution Size and
Computation Speed

Computation Speed (Gflops)

30

TABLE 7. Panel Factorization and Speed of Processing.

PFACT Time Taken (s) Speed of Processing (Gflops)

Left 18.33 4.549

Crout 17.20 4.847

Right 18.19 4.583

FIGURE 16. Panel Factorization and Speed of Processing.

Panel factorization dictates the type of panel factorization algorithm to be employed

in solving the matrix decomposition problem. There are three types of algorithm: the

left looking, right looking and Crout algorithms, which are three different ways of

solving the computation problem.

The results of the test, as shown in Figure 16, indicate that the Crout algorithm in panel

factorization increases the computation performance of the cluster as compared to

other algorithm.

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

4.75

4.8

4.85

4.9

Left Crout Right

Graph of Panel Factor and
Computation Speed

Computation Speed (Gflops)

31

4.1.5 Recursive Panel Factorization, RFACT

The purpose of the fifth testing is to determine how the selection of recursive panel

factorization, RFACT influence the speed of processing and the time taken to solve

the problem. The other parameters to be tested are fixed. The results of the test are as

follows:

TABLE 8. Recursive Panel Factorization and Speed of Processing.

RFACT Time Taken (s) Speed of Processing

(Gflops)

Left 18.46 4.516

Crout 17.93 4.649

Right 19.97 4.175

FIGURE 17. Recursive Panel Factorization and Speed of Processing.

Recursive panel factorization dictates the type of recursive panel factorization

algorithm to be employed in solving the matrix decomposition problem. There are

three types of algorithm: the left looking, right looking and Crout algorithms, which

are three different ways of solving the computation problem.

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Left Crout Right

Graph of Recursive Panel
Factor and Computation Speed

Computation Speed (Gflops)

32

The results of the test, as shown in Figure 17, indicate that the right looking algorithm

in recursive panel factorization has the highest computation performance as compared

to the other algorithms.

4.1.6 Broadcast Parameter, BCAST

The purpose of the sixth testing is to determine how the selection of broadcast

algorithm, BCAST influence the speed of processing and the time taken to solve the

problem. The other parameters to be tested are fixed. The results of the test are as

follows:

TABLE 9. Broadcast Parameter and Speed of Processing.

BCAST Time

Taken (s)

Speed of Processing

(Gflops)

1 ring 17.58 4.783

1 ring (modified) 18.35 4.542

2 ring 16.78 4.967

2 ring (modified) 16.77 4.972

Long message 19.94 4.181

Long message (modified) 19.43 4.291

33

FIGURE 18. Broadcast Parameter and Speed of Processing.

The broadcast parameter dictates the type of panel broadcast algorithm to be utilised

in distributing messages to other processes. Six types of broadcast algorithm are

available for the user to select: the increasing-1-ring, the increasing-1-ring (modified),

the increasing-2-ring, the increasing-2-ring (modified), long (bandwidth reducing) and

long (bandwidth reducing modified) algorithms, in which are the varied ways of

message exchange between the processes, which affects the time taken to process and

also the computation speed, according to the results in Table 9.

The results of the test, as shown in Figure 18, confirms that the increasing-2-ring

(modified) panel broadcast algorithm provides the best performance in terms of the

computation performance of the cluster.

4.1.7 Look-ahead Depth, DEPTH

The purpose of the seventh testing is to determine how the selection of look-ahead

depth, DEPTH influence the speed of processing and the time taken to solve the

problem. The other parameters to be tested are fixed.

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

1 ring 1 ring
(m)

2 ring 2 ring
(m)

long
message

long
message

(m)

Graph of Broadcast Parameter
and Computation Speed

Computation Speed (Gflops)

34

TABLE 10. Look-ahead Depth and Speed of Processing.

DEPTH Time Taken

(s)

Speed of Processing

(Gflops)

0 19.10 4.365

1 16.21 5.143

FIGURE 19. Look-ahead Depth and Speed of Processing.

Look-ahead depth dictates if the benchmark changes the order of the operations so that

less efficient operations will run together will more efficient operations. If the look-

ahead depth is greater than zero, the benchmark will “look ahead” by storing the panels

being factorized in memory and uses up more memory in exchange for a better

performance.

The results of the test, as according to Figure 19, indicate that when the look-ahead

depth is one, the computation performance of the cluster is better than when there is

zero look-ahead depth.

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

0 1

Graph of Look-ahead Depth
and Computation Speed

0 1

35

4.2 Final Test Run Results

The optimised parameters are configured on the HPL benchmarking tool based on the

results from the test runs, which are as follows:

TABLE 11. Optimised Parameters for HPL based on HPC cluster

Parameters Optimised Parameter Value

Number of Nodes, P x Q 10

Problem Size, N 125,000

Block Size, NB 250

Panel Fact, PFACT Crout

Recursive Panel Fact, PFACT Crout

Look-ahead Depth, DEPTH 1

Broadcast Parameter, BCAST 2-ring (modified)

For the problem size, the calculation is based on the recommended 80% of the square

root of total memory size in bytes as written in the Literature Review. The formula of

calculation is as follows:

 𝑁 = √
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑖𝑔𝑎𝑏𝑦𝑡𝑒𝑠 × 10243 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑜𝑑𝑒𝑠

8
× 0.8

 = √
32 × 10243 × 10

8
 × 0.8

 ≈ 165,800

However, when this problem size is tried in the HPC cluster, a segmentation fault error

was given. Thus, the problem size is reduced to 60% to avoid the error, which is

approximated to 125,000.

36

Another test will also be carried out using random and un-optimised parameters. The

results of the test is as follows:

TABLE 12. Test Results with Optimised Parameters

Parameters Time Taken

(s)

Speed of Processing

(Gflops)

Optimised 12830.65 23.78

Random 13978.47 21.16

.

FIGURE 20. Test Results with Optimised Parameters.

As shown in Figure 20, the best results for using HPL benchmarking tool on HPC

cluster is approximately 24 Gigaflops, while using random parameters, the

computation speed is around 21 Gigaflops, a reduction of approximately 12 percent.

19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

Graph of Final Test Run

Computation Speed (Gflops)

37

CHAPTER 5

CONCLUSION AND RECOMMENDATION

Through this research, the UTP HPC cluster has been benchmarked using the HPL

benchmarking tool. The results from benchmarking also shows the peak performance

achievable under the test conditions. The factors which can affect the implementation

of HPL have also been discussed.

A few conclusions can be drawn from the findings obtained in this research. One is

that a lot of factors and parameters need to be taken in account in running the HPL

benchmark process tool. The kind of interconnection system employed, such as

Gigabit Ethernet, InfinitiBand and Myrinet, can influence the effectiveness of the

cluster and in turn the HPL benchmark result (Yeo et al., 2006). A better

interconnection layout with higher bandwidth and lower latency will improve the

maximum performance of the cluster.

Parameters of the HPL.dat and the type of BLAS library utilised can also affect the

benchmark result (Imran et al., 2013). With different configurations of HPL

parameters or even different BLAS libraries employed, a different result will be

obtained.

For future work, a degree of optimisation should be employed for the HPL benchmark,

by changing parameters off the benchmark for better results.

38

References:

Bader, D. A., & Pennington, R. (2001). "Cluster Computing: Applications''. The International
Journal of High Performance Computing, 15(2), 181-185.

Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum, L., . . . Schreiber,
R. S. (1991). "The NAS parallel benchmarks". International Journal of High
Performance Computing Applications, 5(3), 63-73.

Bakery, M., & Buyyaz, R. (1999). "Cluster computing at a glance". High Performance Cluster
Computing: Architectures and Systems, 1, 3-47.

Barney, B. (2010). "Introduction to parallel computing". Lawrence Livermore National
Laboratory. Retrieved from https://computing.llnl.gov/tutorials/parallel_comp/

Dongarra, J., Luszczek, P., & Petitet, A. (2001). "The LINPACK Benchmark: Past, Present and
Future": University of Tennessee.

Dongarra, J. J. (1990). "The LINPACK benchmark: an explanation". In S. Aad van der (Ed.),
Evaluating supercomputers (pp. 1-21): Chapman & Hall, Ltd.

Dongarra, J. J., Bunch, J. R., Moler, C. B., & Stewart, G. W. (1979). "LINPACK users' guide" (Vol.
8): Siam.

El-Rewini, H., & Abd-El-Barr, M. (2005). "Advanced Computer Architecture and Parallel
Processing": John Wiley & Sons Inc.

Grün, T., & Hillebrand, M. A. (1998). NAS Integer Sort on multi-threaded shared memory
machines. Paper presented at the Euro-Par’98 Parallel Processing.

Imran, M. J., Nor, A. W. A. H., & Othman, M. (2013). "The High Performance Linpack (HPL)
Benchmark on the Khaldun Sandbox Cluster". Universiti Teknologi Mara, Universiti
Teknologi Mara (Perak) Kampus Tengah, Perak Darul Ridzuan, Malaysia.

Microsoft. (n.d.-a). "Building and Measuring the Performance of Windows HPC Server 2008-
Based Clusters for TOP 500 Runs". Retrieved 24 February, 2015, from
http://go.microsoft.com/fwlink/?LinkId=134483

Microsoft. (n.d.-b). Load-Balanced Cluster. Retrieved 24 Feb, 2015, from
https://msdn.microsoft.com/en-us/library/ff648960.aspx

Petitet, A., Whaley, R. C., Dongarra, J., & Cleary, A. (2004). "HPL-a portable implementation
of the high-performance Linpack benchmark for distributed-memory computers".
Retrieved 18 February, 2015, from www.netlib.org/benchmark/hpl/

Red Hat, I. (n.d.). "Cluster Basics". Retrieved 27 February, 2015 from
https://www.centos.org/docs/5/html/Cluster_Suite_Overview/s1-clstr-basics-
CSO.html

Rodgers, D. P. (1985). Improvements in multiprocessor system design. SIGARCH Comput.
Archit. News, 13(3), 225-231. doi: 10.1145/327070.327215

Sterling, T. (2001). "An introduction to PC clusters for high performance computing".
International Journal of High Performance Computing Applications, 15(2), 92-101.

Strohmaier, E., Dongarra, J. J., Simon, H., Meuer, M., & Meuer, H. (2015). The Linpack
Benchmark, Top 500 Supercomputer Sites. Retrieved 18 February, 2015, from
http://www.top500.org/

Yeo, C. S., Buyya, R., Pourreza, H., Eskicioglu, R., Graham, P., & Sommers, F. (2006). "Cluster
computing: high-performance, high-availability, and high-throughput processing on
a network of computers" Handbook of nature-inspired and innovative computing
(pp. 521-551): Springer.

http://go.microsoft.com/fwlink/?LinkId=134483
http://www.netlib.org/benchmark/hpl/
http://www.centos.org/docs/5/html/Cluster_Suite_Overview/s1-clstr-basics-CSO.html
http://www.centos.org/docs/5/html/Cluster_Suite_Overview/s1-clstr-basics-CSO.html
http://www.top500.org/

39

Appendices

Appendix A Steps Taken to Configure and Run HPL Benchmark in Linux

40

APPENDIX A

Steps to Take to Configure and Run HPL Benchmark in Linux

1. Making sure that necessary libraries/dependencies are installed, i.e. BLAS

libraries (ATLAS/LAPACK/gotoBLAS etc), MPI (openMPI, mpich etc).

Clusters with Intel processors can use a different BLAS called Intel Math

Kernel Library.

2. Copy down the filepaths to the libraries of BLAS and MPI.

3. Create a home directory for HPL and goto directory.

mkdir hpl

cd hpl/

4. Download the source code for HPL. (Current version is 2.1)

wget http://www.netlib.org/benchmark/hpl/hpl-2.1.tar.gz

5. Untar file.

tar -zxvf hpl-2.1.tar.gz

6. Goto the new HPL directory

cd hpl-2.1

7. There is a file named INSTALL, which contain instructions

more INSTALL

8. Goto setup directory

 cd setup

9. Create a generic template

sh make_generic

cp Make.UNKNOWN ../Make.Linux

10. Modify the makefile using favourite text editor (vi, emacs, nano etc)

vi Make.Linux

ARCH = Linux

TOPdir = /home/(fill in user’s home directory)/hpl/hpl-2.1

MPdir = /usr/local/mpi/mvapich/intel/1.1 (example filepath to MPI dir)

MPlib = -L$(MPdir)/lib (example filepath to MPI library directory)

MPinc = -L$(MPdir)/inc (example filepath to MPI include directory)

41

LAdir = /usr/local/atlas-lib/ (example filepath to BLAS directory)

LAlib = -L$(LAdir)/lib (example filepath to BLAS library directory)

11. If Infiniband is used, symbolic links need to be created or install “libibverbs-

devel” and “libibumad-devel”. Root may be required.

12. Build the makefile using make command

make arch=Linux

13. If error encountered:

 copy Make.Linux somewhere else

cp Make.Linux /tmp

 go up parent directory

cd ..

 delete hpl directory

rm –rf hpl-2.1

 untar file again (step 5)

 goto directory (step 6)

 copy Make.Linux back into directory

cp /tmp/Make.Linux

 clean before build

make arch=Linux clean_arch_all

14. Build successful when xhpl binary is created.

cd bin/Linux/

ls

(output) HPL.dat xhpl

15. Create a file containing all the names of the cluster nodes.

vi allnodes (example of filename)

compute-1 (insert name of node)

compute-2

…

After all is finished, save and quit. Alternatively, use bash commands to

create file.

42

16. Modify the desired parameters in HPL.dat (can check with online sources to

see which to modify, such as HPL Tuning at netlib)

vi HPL.dat

17. Create ssh-keygen to generate rsa key pair if nodes require ssh logins. Enter

required passphrase to login.

ssh-keygen

18. Copy the public key to remote host using ssh-copy-id. Do for every node.

ssh-copy-id –i ~/.ssh/id_rsa.pub (name of node here)

19. Add ssh-agent to login only once to all the nodes.

eval `ssh-agent`

ssh-add

Enter required passphrase.

20. Run the HPL benchmark using mpirun command.

mpirun –np 80 –hostfile allnodes ./xhpl | tee HPL.out

(highlighted: np refers to number of processor cores to utilise, hostfile refers

to the filename of file containing the names of the nodes)

