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ABSTRACT 

 

UTP High Performance Computing Cluster (HPCC) is a collection of computing 

nodes using commercially available hardware interconnected within a network to 

communicate among the nodes. This campus wide cluster is used by researchers from 

internal UTP and external parties to compute intensive applications. However, the 

HPCC has never been benchmarked before. It is imperative to carry out a performance 

study to measure the true computing ability of this cluster.  

 

This project aims to test the performance of a campus wide computing cluster using a 

selected benchmarking tool, the High Performance Linkpack (HPL). HPL is selected 

as a result of comparative studies and analysis with other HPC performance 

benhmarking tool.  The optimal configuration of parameters of the HPL benchmark 

will be determined and run in the cluster to obtain the best performance.   

 

Through this research project, it is the hope of the author that the outcome of this 

research project will help to determine the peak potential performance of the 

computing cluster.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of Study 

 

There are a number of factors which result in the formation and the ubiquity of 

computer clusters nowadays, such as the availability of high speed computer 

interconnections, the reduction in cost of components such as microprocessors, and 

emergence of parallel programs or software where distributed computers can work 

together. Computer clusters are increasingly used in a wide-ranging variety of 

purposes, sizes and compositions, varying between small clusters formed from a few 

computer nodes to huge clusters which form the fastest supercomputers in the world, 

capable of a few petaFLOPS (Floating Operations Per Second). 

 

Benchmarking is needed in order to show the theoretical maximum performance and 

calculation ability of a computing cluster. By determining the max performance, the 

capability of a cluster and improvisation to the architecure and processes can be 

recognised. However, the parallel benchmark test have not been carried out in the High 

Performance Computing (HPC) Cluster in Universiti Teknologi Petronas (UTP) as of 

this time. 

 

As such, the research project’s main objectives are to investigate the importance of 

benchmark tools in gauging the performance of a computing cluster and carry out the 

profiling test on UTP’s High Performance Computing Cluster. The test will use the 

HPL Linpack benchmark to measure performance. 
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The rest of this chapter will be structured as follows: Section 1.1 will explain about 

the problem statement of this project. And Section 1.2 will explain about the objectives 

section and also the scope section. 

 

1.2 Problem Statement 

 

Measuring and evaluating the performance of a computing cluster is important to 

identify the potential of a cluster and to develop strategic recommendations for its 

further development. As the performance of the HPC cluster in UTP has not been 

measured using any benchmarking tool, and thus its theoretical maximum potential 

performance cannot be readily determined and any potential improvements to the 

system cannot be identified. 

  

1.3 Objectives 

 

As such, some of the main objectives of this research are: 

- To study on gauging the performance of a computing cluster through use of 

benchmarking tool. 

- To carry out the benchmark testing tool in a small scale computing cluster such 

as UTP’s High Performance Computing Cluster.  

 

1.4 Scope of Study 

 

This benchmarking study will be limited to the High Performance Computing Cluster  

(HPCC) of Universiti Teknologi Petronas (UTP) as there is only a short period for this 

research to be completed. Only benchmark testing of the computer cluster located in 

UTP will be carried out. 

 

Also, after the comparison study between different benchmarking tools has been 

completed, the HPL Linpack benchmark is chosen and only this benchmark tool will 

be implemented on the UTP HPC cluster. The selection of only one tool is needed to 

ensure consistent results and sufficient time to complete the research. 
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CHAPTER 2 

LITERATURE REVIEW  

 

2.1 Definition of a Computing Cluster 

 

A computer cluster can be defined as a collection of stand-alone computers connected 

via a network which work together as a single system (El-Rewini & Abd-El-Barr, 

2005). A computer cluster have each node set to perform the identical task, managed 

and planned by software and with all of its component subsystems are managed within 

a single administrative domain (Sterling, 2001). A cluster is normally enclosed within 

a room and handles as a single computer system (Bakery & Buyyaz, 1999). The 

components of a cluster, also known as nodes are connected to each other through 

networks such as fast Local Area Networks (LAN) or a hierarchy of networks or even 

several dispersed network structures (Bakery & Buyyaz, 1999), with each node 

running its own instance of an operating system (El-Rewini & Abd-El-Barr, 2005). In 

most circumstances, all of the nodes are similar in terms of hardware and operating 

system. In a small-scale computer cluster with Beowulf architecture, most cluster 

nodes contain commercial hardware and can perform operations independently 

(Sterling, 2001).  

 

The UTP HPC cluster for the UTP campus comprises of sixty cluster nodes. Each of 

the nodes contain AMD processors and AMD / Nvidia GPUs in various 

configurations. Ten out of twenty cloud nodes in the HPC cluster have been chosen to 

run the benchmark, and a detailed specification of the Cloud Nodes is shown below.  

 

The suite of software running on the nodes include the Ubuntu Linux 14.0.1 LTS 

operating system, mpich2 Message Passing Interface (MPI) and Automatically Tuned 

Linear Algebra Software (ATLAS) as the Basic Linear Algebra Subprogram (BLAS).  
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A detailed list of technical specifications about a single UTP HPC cloud node is as 

follows (all of them are configured identically): 

 

TABLE 1.  Technical Specifications of Cloud Nodes 

Processor 8 core AMD FX 8150 processor 

3.1 GHz 

Graphics Card AMD HD7970 

Memory 32 GB DDR3 

Interconnection bet. nodes Ethernet 

Operating System  Ubuntu Linux 14.0.1 LTS 

 

2.2 Working Principle Behind A Computing Cluster 

 

The working principle of parallel computation enables the high number of calculations 

or floating point operations per second (FLOPS) by interconnected computer cluster 

nodes. Parallel computation are effective when the calculations can be conducted in 

parallel and are calculated at the same time by dividing them to be handled by different 

processors (Barney, 2010).  

 

A single calculation process usually consists of multiple parts. These parts can be 

broken down and translated into multiple instructions. The commands in each part can 

be completed by multiple processors at the same time, while under the regulation or 

synchronisation of a central mechanism (Barney, 2010). The time taken for the 

problem to be resolved can be significantly shortened by spreading the work load 

among several processors.  

 

Amdahl's law dictates this improvement in speed of execution when there are multiple 

processors (Rodgers, 1985). Where n is the number of computational threads, and B 

is the portion of the process that can only run in serial, the time T(n) for the process 

for be completed is: 



5 
 

𝑇(𝑛) = 𝑇(1) (𝐵 +  
1

𝑛
 (1 − 𝐵)) 

 

And the improvement in computation time, also known as speedup, S(n) is calculated 

by (Rodgers, 1985): 

  

𝑆(𝑛) =
𝑇(1)

𝑇(𝑛)
=  

𝑇(1)

𝑇(1) (𝐵 +  
1
𝑛

(1 − 𝐵))

=  
1

𝐵 +  
1
𝑛

(1 − 𝐵)
 

 

 

FIGURE 1.   Graph of Amdahl's law  

 

This graph illustrates the improvement in speed (or speedup) of a process relative to 

the percentage of portion in the process that can run in parallel. When the percentage 

of parallel portion in the process increases along with the number of processors, the 

speedup in processing time will have increase significantly. However the speedup will 

increase up to a certain number of processors (again depending on the percentage, 

higher percentage has a limit of higher number of processors), after which the speedup 

will plateau.  
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2.3 Factors For Employing Computer Clusters 

 

Computer clusters have a faster execution speed as compared to a single computer, 

while typically being much more cost-effective than single computers of comparable 

speed or availability (Bader & Pennington, 2001). A computer cluster can have better 

availability Certain large and complex computational problems require parallel 

computing to be effectively and efficiently solved. Usual examples of such problems 

include weather modeling, computational fluid dynamics (CFD) simulation, designing 

semiconductors etc. There are also many real world problems and occurrences that are 

well-matched for parallel computations (Barney, 2010).  

 

The processors currently available are better suited for parallel computation, with 

features such as hyperthreading and virtualisation (Barney, 2010). Parallel 

computation can be time saving and money saving. This is due to running a task using 

more computing resources will result in a shorter time to completion and less resource 

time usage (Barney, 2010). Parallel computations can also cost less money when using 

cheaper hardware which are off the shelf.  

 

Clusters which load balancing feature distributes network service requests between 

the nodes of the cluster, so that the burden is equally distributed between them. This 

load balancing feature enables failure management, because if one of the nodes have 

failed, the software responsible for load balancing will redistribute its requests to the 

other nodes, and makes the failure invisible to the end user (Red Hat, n.d.). Load 

balancing also enables scalability, distributing to more nodes or less nodes as needed, 

which is useful and cost effective for organisations (Red Hat, n.d.). 

 

To balance out the processes and operations of software which run on servers (a Web 

server, parallel processing programs etc), the requests from clients are allocated to 

several servers at one time (Microsoft, n.d.-b). All inbound client requests for service 

are accepted and forwarded to particular servers to evenly utilize the servers using load 

balancing technologies, for example load balancers. Each of the servers will 

simultaneously process several requests for service at one time. In the case of Web 
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servers, several elements of the webpage shown to the client can be gathered from a 

few host machines in the cluster, so that the webpage can be loaded in a short time.  

 

By distributing loads for processing by multiple nodes, the clients get serviced faster 

and in a shorter time. Besides that, more servers are utilized in processing requests, 

instead of only a few servers being occupied with requests while others are idling 

(Microsoft, n.d.-b).  

 

2.4 Definition of a Benchmark 

 

A benchmark's main function is to perform a selection of complex problem solving 

tests so as to evaluate the potential capability or performance of something. Generally, 

benchmarks are used against computer hardware to measure the maximum achievable 

performance under the test conditions, such as the floating point operations per second 

(FLOPs) of a CPU.  

 

The capabilities and profile of the clusters and the factors which influence their 

performance need to be comprehended and analyzed in order to improve on the 

processes and performance of the clusters. The benchmark results also cancan also 

show how different configurations can may affect the performance of the computation. 

 

A few different benchmarks are available. In this study, the High Performance Linpack 

(HPL) benchmarking tool and NAS Parallel benchmarking tools are compared and 

examined.  

 

2.4.1 High Performance Linpack (HPL) 

 

The HPL benchmarking tool is a portable application which works across various 

platforms and is written in C (Jack J Dongarra, Bunch, Moler, & Stewart, 1979). The 

Linpack benchmark was primarily an auxiliary program which is developed from the 

Linpack package. The function of the program is to analyse and solve linear equations 

using FORTRAN. Linpack Fortran n = 100 benchmark is one of the benchmarks, 
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where the problem size is 100. Linpack n = 1000 benchmark has a problem size of 

1000 while there is another benchmark known as Linpack’s Highly Parallel 

Computing benchmark (J. J. Dongarra, 1990).  

 

The Linpack Benchmark is a measurement of the computing power by gauging the 

rate of calculation of a computer. FORTRAN functions are run which decomposes and 

resolves a dense matrix into complex linear equations systems and linear least-squares 

problems in double precision (J. J. Dongarra, 1990). This enables the benchmarking 

tool to establish the floating-point computation speed of the computing cluster. One 

of the features of the Linpack benchmark is that it is able to handle distributed memory 

and vector supercomputers (J. J. Dongarra, 1990). 

 

Developed from the Linpack benchmark, the High Performance Linpack (HPL) 

benchmark tool is a software suite developed for computers with distributed memory 

such as a computer cluster, that similar to the Linpack benchmark, calculates and 

resolves a dense linear system in double precision arithmetic of 64 bits (Petitet, 

Whaley, Dongarra, & Cleary, 2004). The HPL benchmark has been used by various 

organization and institutions as a standard yardstick to evaluate the general floating-

point rate performance of their supercomputers since its introduction. The TOP500 

project employs the HPL benchmark suite to use as a standard of measurement  of 

performance benchmarking or profiling. 

 

The HPL benchmark solves linear algebraic problems by breaking down the matrix 

using Lower-Upper (LU) factorization. LU factorization decomposes a matrix as a by 

multiplying the lower triangular part of matrix with the upper triangular part of matrix. 

One example of an equation that the benchmark tool solves is: 

 

𝐴𝑥 =  𝑏;   𝐴 ∈  𝑅𝑛𝑥𝑛; 𝑥, 𝑏 ∈  𝑅𝑛   (1) 

 

The left side of the equation contains matrix A, while the right hand side is a vector b. 

The solution to the problem is established by calculating the factor of A. 
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FIGURE 2.   Structed Matrices  (Petitet et al., 2004) 

 

Provided a matrix A and right-hand-side vector b, the algorithm of the HPL performs 

an LU factorization calculation through partial pivoting of rows of the matrix [A b] = 

[[L,U] y] with the coefficient of n-by-n+1 in order to solve a linear system with the 

order n in equation (1) (J. Dongarra, Luszczek, & Petitet, 2001).  

 

The decomposition of the dense matrix A is then commenced and the final outcome 

of the calculation are well-structured matrices where every one of its elements are non-

zero. Calculating the equation of U x = y in the upper triangular resolves into the 

solution x given that the lower triangular factor L is applied to b as the factorization 

progresses. The only unpivoted part of the matrix is the lower triangular matrix L and 

is not returned to the calculation (Petitet et al., 2004). 

 

To make sure load balancing is well-adjusted and the ability to scale to multiple 

computers, the results of calculation is allocated onto a two-dimensional P-by-Q grid 

of processes and structured using block-cyclic organisation. The matrix with n-by-n+1 

coefficient is then segregated into NB-by-NB blocks according to logic, which are 

intermittently distributed into the P-by-Q process grid. The process is repeated for both 

width and height of the matrix (Petitet et al., 2004). 
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FIGURE 3.   LU matrix factorization  (Petitet et al., 2004) 

 

The main iteration of the LU factorization calculation will select and employ the right-

looking variant. Each repetition of the calculation loop will factorize a section of NB 

columns and after that, updates to the trailing submatrix is applied. The identical block 

size NB that was intended for distribution of data is used to logically divide the 

computation into partitions (Petitet et al., 2004). 

 

 

FIGURE 4.   Panel factorization  (Petitet et al., 2004) 

 

Every one of the panel factorization happens in one column of processes at a specific 

repetition of the main iteration and according to the distribution system’s Cartesian 
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property. This specific calculation method is an important part of the critical path in 

the complete process. There are three recursive variants of matrix multiplication 

methods offered to the user, which are the Crout method, left-looking method and 

right-looking method. The user is similarly permitted to adjust the number of sub-

panels the main panel is separated into when separation occurs in the repetition of 

algorithm. Another selection factor for the user is the criteria to stop the run-time of 

the recursion, such as how many columns are left to factorise.  

 

Upon reaching this maximum limit, factorisation of the sub-panel will be calculated 

according to the user selected variant out of the three matrix-vector based variant 

(Crout, left- or right-looking) (Imran, Nor, & Othman, 2013). After that, every panel 

of column is communicated in a single process which merges the pivot search, the 

accompanying swap and broadcast procedure of the pivot row. The three processes 

are executed at the same time using a binary-exchange (leave-on-all) reduction (Petitet 

et al., 2004). 

 

The resulting panel of columns is transmitted to the other process columns using 

broadcast with the completion of the panel factorization operation. When the panel 

has been broadcasted to the other columns, updates are applied to the resulting 

submatrix with the last panel in the look-ahead pipe. This is due to the factorization of 

the panel is one of the critical operations in the algorithm, so with the completion of 

factorization and broadcasting of panel k, the panel of k+1 will be factorized and 

broadcasted to the other columns ensues (Petitet et al., 2004).  

 

This method is known in literature as "look-ahead" or "send-ahead" method. The user 

can choose several depth values of look-ahead for this software. A zero depth value 

brings about no lookahead in normal situations, which means the panel presently being 

broadcast will affect the following submatrix. The look-ahead technique retains all the 

panels of columns which are presently in the look-ahead pipe by using up extra 

memory. According to the authors, the value 1 or 2 of look-ahead depth value possibly 

enables the greatest improvement in terms of performance (Petitet et al., 2004). 
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2.4.1 NAS Parallel Benchmark 

 

The NAS Parallel Benchmark (Bailey et al., 1991) (NPB) suite are a set of computer 

programs. The benchmark is designed for testing parallel computer clusters in order 

to gauge the performance of parallel computer clusters. NAS Parallel Benchmarks are 

frequently used by organisations as an alternative of HPL to measure of cluster 

performance.  

 

The NAS benchmark was created as the widespread kernel benchmarks such as 

Livermore Loops, the Linpack benchmark and the NAS Kernels are more suited to 

evaluate vector supercomputers, and not the highly parallel machines popularly used 

nowadays (Bailey et al., 1991).  

 

There are eight benchmark modules available in the NAS Parallel Benchmark suite. 

In the newest NPB version, there are additional modules are included (UA, DC and 

DT). The five problem sizes available for each of the applications are class A, class B, 

class C, class D and class E, increasing in problem size with each class. The detailed 

working behind each of the NAS benchmarks is explained as follows (Bailey et al., 

1991): 

 

TABLE 2. Operations of Each NAS Parallel Benchmark Modules. 

Benchmark 

Module 

Operations 

Multi Grid Employs the V-cycle multigrid technique to find the 

approximate solution to a three-dimensional (3D) discrete 

Poisson equation. 

Conjugate 

Gradient 

Applies the inverse iteration to approximate the lowest 

eigenvalue of a complex sparse symmetric positive-definite 

matrix problem. The conjugate gradient method is a 

subprocedure used to resolve the system of linear equations. 
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Fast Fourier 

Transform 

Apply the fast Fourier transform (FFT) method to resolve a 

three-dimensional (3D) partial differential equation (PDE). 

Integer Sort Utilizes bucket sort algorithm to assign a list of integers 

positions in the final sorted list accordingly (Grün & Hillebrand, 

1998). 

Embarrassingly 

Parallel 

Employing the Marsaglia polar process to produce independent 

Gaussian random variates. 

Block 

Tridiagonal, 

Scalar 

Pentadiagonal, 

Lower-Upper 

symmetric 

Gauss-Seidel 

Find the answer to a nonlinear PDEs synthetic system using 

three different process of calculations involving block 

tridiagonal, scalar pentadiagonal or symmetric successive over-

relaxation (SSOR) problem solving. 

Unstructured 

Adaptive 

Find the solution to a heat problem of a ball in motion with 

convection and diffusion effects. The mesh has to be adaptive to 

the conditions and is recalculated every five steps of calculation  

and the memory is retrieved dynamically and erratically. 
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 2.4.2 Comparative Study Between HPL and NAS Parallel Benchmarks 

TABLE 3. Comparative Study Between HPL and NAS Parallel Benchmarks 

Benchmarks HPL Linpack NAS Parallel  

Problem solving 

method 

Solves a dense matrix problem 

using LU factorization   

Solves calculations 

involving simulations. 

Conjugate Gradient (CG) 

uses the inverse iteration 

to approximate the lowest 

eigenvalue of a complex 

sparse symmetric 

positive-definite matrix 

problem. The conjugate 

gradient method is a 

procedure used to resolve 

linear equations (Bailey 

et al., 1991) 

Modules Single (LU factorization) Multiple (11 modules in 

total) 

Suited for Parallel 

Computation 

Designed for Parallel 

Computers  

Designed for Parallel 

Computers 

Used widely by 

organisations as 

standard 

Yes (TOP 500 list) No 

 

After having a comparison study between HPL and NAS benchmarks, it is the decision 

of the author to use HPL as HPL measures performance using less number of modules. 

Having less number of modules possibly will take less time than complete than the 

NAS benchmark due to less number of modules to complete. The TOP500 

organisation uses this benchmark to list the world’s fastest computer clusters 

(Strohmaier, Dongarra, Simon, Meuer, & Meuer, 2015), which can help to determine 

the performance. 
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CHAPTER 3 

METHODOLOGY 

 

 

FIGURE 5.   Research Methodology 

 

This figure shows the development methodology of this final year project. There are 

six main stages: Problem Definition, Literature Review, Methodology Defintion, 

Basic Workspace Setup, Test Environment Setup, Benchmark Test, and Result 

Evaluation. 

 

3.1 Problem Definition 

 

In this part of the methodology, the problem is defined and clearly detailed. Measuring 

and evaluating the performance of a cluster of computers is important so that the 

Problem 
Definition

Literature 
Review

Methodology 
Definition

Basic 
Workspace 

Setup

Test 
Environment 

Setup

Benchmark 
Test 

Result 
Evaluation
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potential of a cluster is recognized and the managers can have an idea for what to be 

further developed to improve the system. The problem which the author has defined 

is that the performance of the HPC cluster in UTP has not been measured using a 

benchmark tool. 

 

3.2 Literature Review 

 

In the literature review part, all the related literature in relation to the benchmarks and 

the functionality and inner workings of the benchmark software are reviewed. This 

includes reviewing the steps to be taken and the details on the execution of the 

benchmark tools.  

 

A comparative study between the different benchmarks is carried out to select the most 

suitable benchmark tool to benchmark the UTP HPC campus cluster. The differences 

between the HPL and NAS benchmarking tools have been compared and contrasted, 

and  

 

Also, literature review on optimal configurations of the benchmark cluster have been 

undertaken. The information gathered through literature review is that there are seven 

parameters in the HPL benchmark which need to be optimised for the best results, 

which are: problem size, N, distribution size, NB,   

 

3.3 Methodology Definition 

 

After the related literature have been reviewed, all the processes which need to be 

completed in order to compile, configure and execute the selected benchmark, which 

is High Performance Linpack (HPL), will be listed out and examined.  
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3.4 Basic Workspace Setup 

 

Setting up the workspace involves creating user account, ensuring accesss to required 

resources such as usernames and passwords to server nodes, and dowloading the 

essential files. 

 

3.4.1 Creating New User 

 

The steps to create a new user are as follows: 

1. Obtain administrative permission by logging in as a super user.  

2. Use the useradd command to create new user, example: useradd johnsmith.  

3. To set password for johnsmith, use the command passwd johnsmith. A New 

Password prompt will appear.  

4. Enter the password as desired into the field and press ENTER.  

5. Reconfirm the new password and the password is successfully set for the user 

account. 

 

FIGURE 6.  Screenshot of logging as super user (su) 

 

3.4.2 Checking CPU specifications 

 

To check the specifications of the CPU, use the command lscpu. The specifications of 

the CPU is then listed, including the architecture, CPU operation modes, vendor, MHz 

of the CPU, cores per CPU etc. 
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FIGURE 7.   Screenshot of checking CPU specifications (lscpu) 

 

From the screenshot, the localhost node has an 8-core AMD CPU, with each core 

running at around 3.1 GHz processing speed and having 64-bit architecture. All the 

CPUs are online. 

 

3.4.3 Checking top running processes  

 

To check the top running processes currently in the system, use the command ps. The 

list of processes will be shown, including the user running the process and percentage 

of CPU usage and memory usage etc. 

 

 

FIGURE 8.  Screenshot of top running processes and details (ps) 

As shown in the screenshot, there are 2 running tasks in the system and 222 sleeping 

tasks. The CPU usage, memory usage, and swap usage is also shown. Under that, the 

details on each of the processes are shown including PID, user who launced the task, 
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stats such as percentage of CPU and memory used, how long the process has been 

running and the command being run. 

 

3.4.4 Checking MPI version  

 

To check the version of Message Passing Interface (MPI) used by the system, use the 

command mpiexec --version. The list of processes will be shown, including the user 

running the process and percentage of CPU usage and memory usage etc. 

 

 

FIGURE 9.  Screenshot of MPI version (mpiexec --version) 

As shown in the screenshot, the MPI version running in the system is OpenMPI 

version 1.4.1. 

 

3.5 Test Environment Setup 

 

One of the benchmark configurations needed in running the benchmark is to setup the 

High Performance Linpack configurations. Determining and selecting the correct 

compiler for C and FORTRAN is one of the parts in this stage. The message passing 

interface (MPI) also needs to be preinstalled and setup. For the UTP cluster, mpich2 

will be used.  

 

The Basic Linear Algebra Subprograms (BLAS) which is responsible for the basic 

mathematical procedures involving vector and matrix also needs to be setup and 

configured. The BLAS library contains a specific collection of low-level 

subprocedures for common linear algebraic operations. BLAS contains 3 levels: Level 

1 is employed in vector procedures, Level 2 completes processes between matrix and 
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vector, whereas at Level 3, matrix-matrix processes are calculated. BLAS is frequently 

utilised in creating software tools which need to perform linear algebra, such as 

Linpack and LAPACK, as they have high efficiency, are transferrable across platforms 

and have many open source implementations (Strohmaier et al., 2015).  

 

The Automatically Tuned Linear Algebra Software (ATLAS) is another BLAS routine 

alternative which employs practical procedures for better execution and portability 

across platforms. The interfaces of ATLAS are written using C and includes some 

LAPACK routines (Strohmaier et al., 2015).  The Linpack does not have high 

efficiency in resolving matrix computations because of the memory access method by 

both the algorithm and software, which decreases the overall efficiency, and has been 

superseded by LAPACK (Strohmaier et al., 2015). LAPACK is a suite of software 

which can resolve linear algebra involving matrices, with distinctive specialization 

towards series of linear equations, least squares calculations, eigenvalue calculations, 

and decomposition of singular value (Strohmaier et al., 2015). The basis of the 

software emulates the use of block partitioned matrix techniques in order to 

accomplish great performance on systems with RISC architecture, vector computers, 

and parallel processors with common memory (Strohmaier et al., 2015). The ATLAS 

library will be used as BLAS library for the HPL benchmark. 

 

 In the following phase, the parameters to HPL.dat is tuned. There are 17 parameters 

which need to be assigned to HPL.dat. In these 17 parameters, only seven of these 

parameters are usually configured according to the cluster during benchmarking 

process. The default good start value will normally be used for the remaining 

parameters as suggested by HPL. The seven parameters which need to be configured 

are: problem size (N), processor grid (P x Q), broadcast (BCAST), block size (NB), 

panel factorization (PFACT), recursive panel factorization (RFACT), and look-ahead 

depth (DEPTH). 

  𝑁 =  √𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑀𝑒𝑚𝑜𝑟𝑦 (𝑖𝑛 𝑏𝑦𝑡𝑒𝑠) × 0.80  (2) 

 

The solution to equation (2) shown above is theoretically the best problem size, N to 

be solved. Research by Petitet,Whaley, Dongarra and Cleary suggest that the largest 
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size of N which can fit around 80% of the memory should be used (Petitet et al., 2004). 

However, when assigning the size of N too large, data swap can happen between 

memory and disk, which will lead to a reduction in the overall performance, as the 

system will need to read from the disk instead of directly from the memory. Thus, only 

80% of the total problem size will be utilised, with the remaining 20% left for other 

uses (Petitet et al., 2004).  

 

The processor grid (P x Q) parameters that denote the size or proportions of the process 

grid. In the processor grid (P x Q), P represents the process rows while Q represents 

the process columns. The size of both P and Q should be determined by the physical 

interconnection network. For a mesh or a switch network, which is preferred, the 

values of P and Q should be approximately equal, with Q having a slightly larger value 

than P. Nevertheless, a the research conducted in Universiti Teknologi MARA on their 

Khaldun Sandbox Cluster, after trying a number of configurations, their findings was 

that the best values for the processor grid are P is 2 while Q is 16 in order to achieve 

the best benchmark results among the configurations of 26.88 Gflops (Imran et al., 

2013). This finding is a little contrasting with the recommended processor grid 

configuration, and will need to be checked out.  

 

In HPL, the block size, NB is used to allocate the data and also determines the level 

of detail in computation. From the perspective of data distribution, having a smaller 

block size will result in a better distributed load equilibrium. Nevertheless, in the view 

of computation, when the value of NB is too small, the NB can be the limiting factor 

of the computational performance by a large factor due to almost none of data will be 

reused in the highest level of the memory hierarchy (Petitet et al., 2004). This problem 

will result in increase of the number of messages. Therefore, the values of block size 

for highest performance usually lies between 32 to 256 intervals. The best values 

largely relies on the computation per communication performance ratio of a system 

(Petitet et al., 2004). A balanced between performance and data distribution size needs 

to be achieved for the best performance in benchmark result. There are also panel 

factorization and recursive panel factorization variants to choose from, which are: 

right-looking variant, left-looking variant and Crout variant. These three variants are 
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different methods in which these computations are carried out (Petitet et al., 2004), 

and can have minor performance differences in the result. 

 

Once the factorization of the panel had been calculated, HPL broadcasts panel 

factorization column from one process column to other process columns. There are 6 

alternatives of broadcast algorithms available can be employed, which are Increasing-

ring, Modified Increasing-ring, Increasing-2-ring, Modified Increasing-2-ring, Long 

bandwidth reducing and modified Long bandwidth reducing (Petitet et al., 2004). 

Research has suggested that the Modified Increasing-ring algorithm is one of the best 

in efficiency (Microsoft, n.d.-a). However, in the research conducted in Universiti 

Teknologi MARA on their Khaldun Sandbox Cluster, the results from their benchmark 

test saw that the Modified Increasing-ring does not perform as well as compared to the 

Long bandwidth reducing algorithm. The Long bandwidth reducing algorithm allows 

them to obtain their best results of 31.33 Gflops (Imran et al., 2013). This findings will 

be tested when benchmarking the UTP HPC cluster. 

 

The look-ahead depth is also an important parameter. Look-ahead denotes the ability 

of the algorithm to reorganize the most efficient operations to run with the least 

efficient, and store the panels being currently factorized in the memory for a better 

performance. A look-ahead depth of 1 is recommended by most use cases (Petitet et 

al., 2004). 

 

 3.6 Benchmark Test 

 

Once all the benchmark configuration processes have been completed, test runs will 

be conducted using the benchmarking tool on the 10 cloud nodes of the HPC cluster 

of 4 nodes to determine the optimal benchmark configuration and parameters. After 

the test runs are successful, the benchmark tool will be configured with the optimal 

parameters from evaluating the test runs and the final test run is carried out. Details 

on the optimal parameters and results of the test runs are detailed more in Chapter 5: 

Results and Discussion part. The results from the benchmark tool will be recorded and 

evaluation of the results will be carried out in the following section.  
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 3.7 Results Evaluation 

 

FIGURE 10.  Screenshot of a HPL test result 

 

The results obtained after the benchmark tool has been executed, as shown in Figure 

10, is then collected and evaluated in order to determine if the benchmark test is 

successful and ensure that no problems are encountered during the execution. In 

addition, the results will be examined to make sure that the configuration on the 

benchmark has been optimised for the best results. 

 

The results from running the benchmark tool will be specified and detailed more in 

the Chapter 5: Results and Discussion in this paper. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Test Run Results 

 

Seven test runs are conducted on the HPC cluster based on the seven main parameters 

to be configured in the HPL benchmark, which are Number of Nodes (P x Q), Problem 

Size (N), Distribution Size (NB), Factorization (FACT), Recursive Factorization 

(RFACT), Broadcast (BCAST) and Look-ahead Depth (DEPTH). The results and 

discussion from each of the test runs are shown and detailed in the following sections.  

 

 4.1.1 Number of Nodes, P x Q 

 

The purpose of the first testing is to determine how the number of nodes, P x Q, 

influence the speed of processing and the time taken to solve the problem. The other 

parameters to be tested are fixed. The results of the test are as follows: 
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TABLE 4.  Number of Nodes and Speed of Processing. 

Number of Nodes Time Taken 

(s) 

Speed of Processing 

(Gflops) 

Speedup in 

Processing 

1 29.62 2.815 1.00 

2 59.65 1.398 0.50 

4 39.86 2.092 0.75 

6 26.21 3.181 1.13 

8 23.17 3.597 1.28 

10 18.79 4.436 1.58 

 

 

FIGURE 11.  Number of Nodes and Speed of Processing. 
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FIGURE 12.  Number of Nodes and Speedup in Processing. 

 

As number of nodes increases from one node to two nodes, the computation speed 

drops as shown in Figure 11. due to a delay of communication. This delay is caused 

by the computation problem being transmitted over an Ethernet network through 

Message Passing Interface (MPI) and distributed among the cluster nodes. The delay 

in communication increases the overhead for problem computation and can cause a 

slowdown in performance as shown in Figure 12. 

But when the number of nodes keeps increasing, the delay in communication is 

compensated by the speed of processing of the cluster nodes. Thus, the speedup in 

processing increases until all the processors are saturated with computations 

(saturation point), then the increase in speed remains constant.  

 

4.1.2 Problem Size, N 

 

The purpose of the second testing is to determine how the problem size, N influence 

the speed of processing and the time taken to solve the problem. The other parameters 

to be tested are fixed. The results of the test are as follows: 
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TABLE 5.  Problem Size and Speed of Processing. 

Problem Size, N Time Taken (s) Speed of Processing (Gflops) Speedup 

5000 18.79 4.436 1.00 

10000 114.68 5.815 1.31 

15000 374.78 6.003 1.35 

20000 812.09 6.568 1.48 

25000 1605.56 6.488  1.46 

 

 

FIGURE 13. Problem Size and Speed of Processing. 
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FIGURE 14. Problem Size and Speedup in Processing. 

 

Problem size dictates the size of the matrix to be decomposed. A larger problem size 

engages more processing power in finding the solution, and thus resulting in a higher 

computation speed as shown in Graph 13.  

 

However the increase in computation speed or speedup will only keep increasing until 

a saturation point, where all the processors are being used to solve the problem, then 

the increase in speed stabilises. This is due to the maximum effectiveness and 

efficiency of processing power had been reached. 

 

4.1.3 Distribution Size, NB 

 

The purpose of the third testing is to determine how the distriution size, NB influence 

the speed of processing and the time taken to solve the problem. The other parameters 

to be tested are fixed. The results of the test are as follows: 

 

TABLE 6.  Distribution Size and Speed of Processing. 

Distribution Size, NB Time Taken (s) Speed of Processing (Gflops) 

100 19.36 4.307 

125 17.86 4.667 

150 20.99 3.973 

175 18.54 4.497 

200 23.17 4.406 

225 22.30 3.738 

250 21.30 4.706 
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FIGURE 15.  Distribution Size and Speed of Processing. 

 

The distribution size dictates the block size of the problem to be decomposed and 

distributed among the nodes. The optimal distribution sizes will vary depending on 

computational performance and network configuration.  

 

We have tested distribution sizes ranging from 100 to 250 in increments of 25, and the 

results from the test, as shown in Figure 15, found that block size 250 provides the 

best performance in terms of computation speed. A bigger block size means less 

messages to be sent over the network, hence less communication delay.   

4.1.4 Panel Factorization, PFACT  

 

The purpose of the fourth testing is to determine how the selection of panel 

factorization algorithm, PFACT and recursive panel factorization, RFACT influence 

the speed of processing and the time taken to solve the problem. The other parameters 

to be tested are fixed. The results of the test are as follows: 
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TABLE 7.  Panel Factorization and Speed of Processing. 

PFACT Time Taken (s) Speed of Processing (Gflops) 

Left 18.33 4.549 

Crout 17.20 4.847 

Right 18.19 4.583 

 

 

FIGURE 16. Panel Factorization and Speed of Processing. 

 

Panel factorization dictates the type of panel factorization algorithm to be employed 

in solving the matrix decomposition problem. There are three types of algorithm: the 

left looking, right looking and Crout algorithms, which are three different ways of 

solving the computation problem. 

 

The results of the test, as shown in Figure 16, indicate that the Crout algorithm in panel 

factorization increases the computation performance of the cluster as compared to 

other algorithm. 

 

 

 

 

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

4.75

4.8

4.85

4.9

Left Crout Right

Graph of Panel Factor and 
Computation Speed

Computation Speed (Gflops)



31 
 

4.1.5 Recursive Panel Factorization, RFACT 

 

The purpose of the fifth testing is to determine how the selection of recursive panel 

factorization, RFACT influence the speed of processing and the time taken to solve 

the problem. The other parameters to be tested are fixed. The results of the test are as 

follows: 

 

TABLE 8. Recursive Panel Factorization and Speed of Processing. 

RFACT Time Taken (s) Speed of Processing 

(Gflops) 

Left 18.46 4.516 

Crout 17.93 4.649 

Right 19.97 4.175 

 

 

FIGURE 17. Recursive Panel Factorization and Speed of Processing. 

 

Recursive panel factorization dictates the type of recursive panel factorization 

algorithm to be employed in solving the matrix decomposition problem. There are 

three types of algorithm: the left looking, right looking and Crout algorithms, which 

are three different ways of solving the computation problem. 
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The results of the test, as shown in Figure 17, indicate that the right looking algorithm 

in recursive panel factorization has the highest computation performance as compared 

to the other algorithms. 

 

4.1.6 Broadcast Parameter, BCAST 

 

The purpose of the sixth testing is to determine how the selection of broadcast 

algorithm, BCAST influence the speed of processing and the time taken to solve the 

problem. The other parameters to be tested are fixed. The results of the test are as 

follows: 

 

TABLE 9.  Broadcast Parameter and Speed of Processing. 

BCAST Time 

Taken (s) 

Speed of Processing 

(Gflops) 

1 ring 17.58 4.783 

1 ring (modified) 18.35 4.542 

2 ring 16.78 4.967 

2 ring (modified) 16.77 4.972 

Long message 19.94 4.181 

Long message (modified) 19.43 4.291 
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FIGURE 18.   Broadcast Parameter and Speed of Processing. 

 

 

The broadcast parameter dictates the type of panel broadcast algorithm to be utilised 

in distributing messages to other processes. Six types of broadcast algorithm are 

available for the user to select: the increasing-1-ring, the increasing-1-ring (modified), 

the increasing-2-ring, the increasing-2-ring (modified), long (bandwidth reducing) and 

long (bandwidth reducing modified) algorithms, in which are the varied ways of 

message exchange between the processes, which affects the time taken to process and 

also the computation speed, according to the results in Table 9. 

 

The results of the test, as shown in Figure 18, confirms that the increasing-2-ring 

(modified) panel broadcast algorithm provides the best performance in terms of the 

computation performance of the cluster. 

 

4.1.7 Look-ahead Depth, DEPTH 

 

The purpose of the seventh testing is to determine how the selection of look-ahead 

depth, DEPTH influence the speed of processing and the time taken to solve the 

problem. The other parameters to be tested are fixed. 
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TABLE 10.  Look-ahead Depth and Speed of Processing. 

DEPTH Time Taken 

(s) 

Speed of Processing 

(Gflops) 

0 19.10 4.365 

1 16.21 5.143 

 

 

FIGURE 19.  Look-ahead Depth and Speed of Processing. 

 

Look-ahead depth dictates if the benchmark changes the order of the operations so that 

less efficient operations will run together will more efficient operations. If the look-

ahead depth is greater than zero, the benchmark will “look ahead” by storing the panels 

being factorized in memory and uses up more memory in exchange for a better 

performance.  

 

The results of the test, as according to Figure 19, indicate that when the look-ahead 

depth is one, the computation performance of the cluster is better than when there is 

zero look-ahead depth. 
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4.2 Final Test Run Results 

 

The optimised parameters are configured on the HPL benchmarking tool based on the 

results from the test runs, which are as follows: 

 

TABLE 11.  Optimised Parameters for HPL based on HPC cluster 

Parameters Optimised Parameter Value 

Number of Nodes, P x Q 10 

Problem Size, N 125,000 

Block Size, NB 250 

Panel Fact, PFACT Crout 

Recursive Panel Fact, PFACT Crout 

Look-ahead Depth, DEPTH 1 

Broadcast Parameter, BCAST 2-ring (modified) 

 

For the problem size, the calculation is based on the recommended 80% of the square 

root of total memory size in bytes as written in the Literature Review. The formula of 

calculation is as follows: 

 𝑁 =  √
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑖𝑔𝑎𝑏𝑦𝑡𝑒𝑠 × 10243 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑜𝑑𝑒𝑠

8
×  0.8 

                   = √
32 × 10243 × 10

8
 ×  0.8 

                   ≈ 165,800 

 

However, when this problem size is tried in the HPC cluster, a segmentation fault error 

was given. Thus, the problem size is reduced to 60% to avoid the error, which is 

approximated to 125,000. 
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Another test will also be carried out using random and un-optimised parameters. The 

results of the test is as follows: 

 

TABLE 12.  Test Results with Optimised Parameters 

Parameters Time Taken 

(s) 

Speed of Processing 

(Gflops) 

Optimised 12830.65 23.78 

Random 13978.47 21.16 

. 

 

FIGURE 20.  Test Results with Optimised Parameters. 

 

As shown in Figure 20, the best results for using HPL benchmarking tool on HPC 

cluster is approximately 24 Gigaflops, while using random parameters, the 

computation speed is around 21 Gigaflops, a reduction of approximately 12 percent. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

Through this research, the UTP HPC cluster has been benchmarked using the HPL 

benchmarking tool. The results from benchmarking also shows the peak performance 

achievable under the test conditions. The factors which can affect the implementation 

of HPL have also been discussed.  

 

A few conclusions can be drawn from the findings obtained in this research. One is 

that a lot of factors and parameters need to be taken in account in running the HPL 

benchmark process tool. The kind of interconnection system employed, such as 

Gigabit Ethernet, InfinitiBand and Myrinet, can influence the effectiveness of the 

cluster and in turn the HPL benchmark result (Yeo et al., 2006). A better 

interconnection layout with higher bandwidth and lower latency will improve the 

maximum performance of the cluster. 

 

Parameters of the HPL.dat and the type of BLAS library utilised can also affect the 

benchmark result (Imran et al., 2013). With different configurations of HPL 

parameters or even different BLAS libraries employed, a different result will be 

obtained. 

 

For future work, a degree of optimisation should be employed for the HPL benchmark, 

by changing parameters off the benchmark for better results. 
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Appendices 

 

Appendix A  Steps Taken to Configure and Run HPL Benchmark in Linux 
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APPENDIX A 

Steps to Take to Configure and Run HPL Benchmark in Linux 

1. Making sure that necessary libraries/dependencies are installed, i.e. BLAS 

libraries (ATLAS/LAPACK/gotoBLAS etc), MPI (openMPI, mpich etc). 

Clusters with Intel processors can use a different BLAS called Intel Math 

Kernel Library. 

2. Copy down the filepaths to the libraries of BLAS and MPI. 

3. Create a home directory for HPL and goto directory. 

mkdir hpl 

cd hpl/ 

4. Download the source code for HPL. (Current version is 2.1) 

wget http://www.netlib.org/benchmark/hpl/hpl-2.1.tar.gz 

5. Untar file. 

tar -zxvf hpl-2.1.tar.gz 

6. Goto the new HPL directory 

cd hpl-2.1 

7. There is a file named INSTALL, which contain instructions 

more INSTALL 

8. Goto setup directory 

 cd setup 

9. Create a generic template 

sh make_generic 

cp Make.UNKNOWN ../Make.Linux 

10. Modify the makefile using favourite text editor (vi, emacs, nano etc) 

vi Make.Linux 

ARCH = Linux 

TOPdir = /home/(fill in user’s home directory)/hpl/hpl-2.1 

MPdir = /usr/local/mpi/mvapich/intel/1.1 (example filepath to MPI dir) 

MPlib = -L$(MPdir)/lib (example filepath to MPI library directory) 

MPinc = -L$(MPdir)/inc (example filepath to MPI include directory) 
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LAdir = /usr/local/atlas-lib/ (example filepath to BLAS directory) 

LAlib = -L$(LAdir)/lib (example filepath to BLAS library directory) 

11. If Infiniband is used, symbolic links need to be created or install “libibverbs-

devel” and “libibumad-devel”. Root may be required. 

12. Build the makefile using make command 

make arch=Linux 

13. If error encountered: 

 copy Make.Linux somewhere else 

cp Make.Linux /tmp 

 go up parent directory 

cd .. 

 delete hpl directory 

rm –rf hpl-2.1 

 untar file again (step 5) 

 goto directory (step 6) 

 copy Make.Linux back into directory 

cp /tmp/Make.Linux 

 clean before build 

make arch=Linux clean_arch_all 

14. Build successful when xhpl binary is created. 

cd bin/Linux/ 

ls 

(output) HPL.dat xhpl 

15. Create a file containing all the names of the cluster nodes. 

vi allnodes (example of filename) 

compute-1 (insert name of node) 

compute-2 

… 

After all is finished, save and quit. Alternatively, use bash commands to 

create file. 
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16. Modify the desired parameters in HPL.dat (can check with online sources to 

see which to modify, such as HPL Tuning at netlib)  

vi HPL.dat 

17. Create ssh-keygen to generate rsa key pair if nodes require ssh logins. Enter 

required passphrase to login. 

ssh-keygen 

18. Copy the public key to remote host using ssh-copy-id. Do for every node. 

ssh-copy-id –i ~/.ssh/id_rsa.pub (name of node here) 

19. Add ssh-agent to login only once to all the nodes. 

eval `ssh-agent` 

ssh-add 

Enter required passphrase. 

20. Run the HPL benchmark using mpirun command. 

mpirun –np 80 –hostfile allnodes ./xhpl | tee HPL.out 

(highlighted: np refers to number of processor cores to utilise, hostfile refers 

to the filename of file containing the names of the nodes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


