Design of Control System for Quadruped Robot
(4-Legged Robot)
by
YEE YUAN BIN

Dissertation submitted in partial fulfillment of
the requirements for the
Bachelor of Engineering (Hons)

(Mechanical Engineering)

MAY 2009

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Design of Control System for Quadruped Robot
(4-Legged Robot)
by

YEE YUAN BIN

A project dissertation submitted to the
Mechanical Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfillment of the requirement for the
BACHELOR OF ENGINEERING (Hons)

(MECHANICAL ENGINEERING)

Approved by,

ROSMAWATI MAT ZAIN

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

MAY 2009

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

YEE YUAN BIN

il

ABSTRACT

The project outcome is to design a control system for quadruped robot (4-legged
robot). Early 2007, a quadruped robot was built by an UTP graduate; Mr. Tnay Chiat
Siang (Matric No. 6114). The quadruped robot is well constructed in mechanical-
wise; however, it has never been able to move as there is no motor driver and control
system being developed for it. Therefore, the author has decided to come in on Mr.
Tnay Chiat Siang’s quadruped project and continue his work to develop a control
system which will eventually drive the quadruped robot to perform crawling gait on
flat and horizontal ground. The control system of quadruped involves gait control,
stability control and motor control. This project is split to three phases. The timeline
of each phase is that phase 1 is carried out at semester FYP 1 while phase 2 begins
during the year-end semester break. Phase 3 is commenced during FYP 2. The work
aspect of phase 1 is on schematic design and crawling gait planning of quadruped. A
preliminary simulation is used to demonstrate the planned crawling gait. The focus of
phase 2 is more on learning how to manipulate PIC microcontroller and servomotors.
At last, phase 3 is the prototype fabricating and testing stage with the presence of
servomotors and circuit board. At the end of project, the quadruped prototype is

meant to perform forward crawling gait on flat and horizontal ground.

il

ACKNOWLEDGEMENT

First and foremost, [would like to thank immediate supervisor, Puan Rosmawati Mat
Zain for her excellent guidance and advices. Her dedication of time and effort,
relentless teaching and motivation has been the major factor towards the completion
of my final year project. Besides, she has also been extremely supportive by giving
me numerous of freedom and support in which it helps in unleashing my creativity

and innovation.

Apart from that, I would like to express my thanks to the laboratory assistants Mr.
Hafiz, Mr. Jani and Ms. Siti Fatimah for their supportive involvement in helping the

project runs as scheduled.

Last but not least, I would also like to thank express my love and thanks to my
family members for their understanding, support, love and encouragement

throughout this period.

v

TABLE OF CONTENTS

CERTIFICATION ...ttt ettt ettt et entesseebesneesneennens i
ABSTRACT ...ttt ettt ettt et e s e te et eeaeenbeensesaeeseenee e il
ACKNOWLEDGEMENToooiiiiiiieee ettt v
LIST OF FIGURES ..ottt st ix
LIST OF TABLES ...ttt et st ix
CHAPTER 1: INTRODUCTION.....cc.coiiiiiiiiiieiteeeteet ettt 1
1.1 Background StUAYccccoouieiiiiiiiiiiecieetee e 1
1.2 Problem Statementcocceeiiviiiiiinieniieierteeee e 1
1.3 Significance of StUAYccccociiiiiiiiiiii e 1
| © o <ot 5 Al PRSP 2
L5 SCOPE OF WOTK ..ooiiiiiiiiecie ettt e et e e eesenee s 2
CHAPTER 2: LITERATURE REVIEW.........ccoooiiiiiiiieeeee e 3
2 B O 11 F- T | (1101 RSP PS 3
2.2 LegMechanism of 3 DOFcooooiiiiiiieeeee et 3
2.3 WOTK ENVEIOPEeiiiiieiiieiie ettt ettt e 4
24 Gait ConSIAEration........coeivuerieriieieeiierieete sttt st sae e st 5
2.5 Stability ConSIAerationccceeveeruierieeiiienieetieeieerieeseeeiee e ereeseaeebeessaeeneeas 5
2.6 Lifting and Landing Timing Consideration.............cceceevueriereenienienennieneenieene. 6
2.7 Electronic HardwWare...........cocueviiiiiiiiniiiiiieseeieeesicee e 7
271 SEIVOIMOTOTS ..ccueviriiieiieeiieeniie et et ettt et e bttt et e sate e b e sateebeesbeeeneesaneens 7

VY, 1o ¢ 1oTe) 8 15 (o) | <3 4 T 8

2.7.3 PICI8F Microcontrollerccecuerieniiriiniiiiiiieniieieceeeeeeeee e 9
2.7.4 OSCHIALOTS ..ttt ettt ens 9
2.8 Pulse-Width Modulationccooceeiiiiiiiiiiiiee e 10
CHAPTER 3: METHODOLOGYc..ooiiiiiiieieeeeeeee et 11
R T8 B o (o) 1ot A od T2 USRS 11
3.2 PRASE L. et 12
3.2.1 FIOW CRAIt...ciiiiiieiiiieeee et st e 12
3.2.2 Schematic DESIZN.......cccueriieriieeiieiieeie ettt et e e e 13
3.2.3 Coordinate and Joint Angle Notation...........ccceveeriieriienieeniienieeiee e 13
3.2.4 Calculation of Joint Angle and PoSitionccceceevieecieeniieniieiieeieeee. 13
3.2.5 Crawling Gait Planning...........ccoceevieeiiienieniieiie et 14
3.2.6 Creating Preliminary SImulatorc..cccceveevinienenienienenienceceeenee 14
3.3 PRASE 2.ttt 15
3.3.1 FIOW CRAIt...ciiiiiieiieciieeee e 15
3.3.2 Hitec HS-322HD ServOmOtOr......ccc.eeiiiiiieiiieiienie et 16
3.3.3 PICTISFASE ...ttt e 16
3.3.4 Software and Hardware............cocooiiiiiiiiiiiiiiieceeee e 17
3.3.5 Constructing C Language Program...........ccccecveeeiiieeiciieeniie e 18
3.3.6 Single ServOmOtOT.cccuieiiieiieeiieiie ettt ettt et 19
3.3.7 Several SErVOMOLOLSc.eeveriieriirieniieieeienie ettt 21
314 PRAS@ 3.ttt et 22
341 FIOW CRAIt....ciiiiiiiiiiiieieceeee e 23

vi

342 CAD DIaWING ..ooouviiiiiieiieeiiieiteeie ettt eite st ste et e ssaeesaesnteenseessseenneas 24

3.4.3 FabIiCAtION.iitiiiiiieiieieeiesieee ettt ettt 24
3.4.4 Readjusting STMUIAtOT......c..eiiiiiieiiieeiiecee e 25
3.4.5 Calibrating Motor Controllerccccvuieeiiieriiiieeiie e 26
3.4.6 Test RUN Of PrOtOtYPE ..oeeeevieeiiieeieeee ettt 26
3.5 GANtE CRAIT ..ottt 27
3.5.1 Gantt Chart Of FYP 1 ..ooiiiiiieee e 27
3.5.2 Gantt Chart of Semester Breakccoocoiiiiiiiniiiiieeeee, 28
353 Gantt Chart of FYP 2 oo 29
CHAPTER 4: RESULTS AND DISCUSSIONcccoiiiiiiiniiniirienienieeieeeenieeie s 30
4.1 Preliminary Simulation (Phase 1).........ccooieriiiiiiniiieieiiceeee e 30
4.1.1 Crawling Gait ANalYSIS.....cccueeriieriieiiienieeieerie ettt 30
4.1.2 Static Stability ANalYiS......cccceerieriiiiiiiiieeiiee e 30
4.1.3 TImMING ANALYSIS c.uvieiiiiieiieeeiieeeiee et ettt e e e e et e e s aee e eraeeseneeeenns 31
4.2 Prototype (Phase 3)cceeeeiiiiiiieeciie ettt ettt eaee e 31
4.3 Readjusted Simulation (Phase 3)........cccceeevuiieriieeiiieecieeeeeeeee e 32
4.3.1 Crawling Gait ANALYSISccccvieriiieeriieeiieeerreeerree e ereeeeeeeereeeeaee e 32
4.3.2 Static Stability ANalyiS......ccccviieeiiiieiiiieieeeee e 32
4.3.3 TIMING ANALYSIS c.uvieiiiiiiiieeciie ettt et ettt tre et eeaee e eraeeseseeeeens 32
4.4 Motor Controller (Phase 3)......c..ccovuiiiiiiieiiie ettt 33
S U o (0 o4 ¢ 1 1 | OSSO SU R SRRTPP 33
442 WITINE ottt ettt ettt ettt e et e st e e sateesbeeseesnbeeseesnseenseennne 34
CHAPTER 5: CONCLUSION AND RECOMMENDATIONcccccoeviininiinnnne 35

vii

5.1 COMNCIUSION ...t eeeeeeeeeesneememnnnns 35

5.2 RecOMMENAAtIONciiiiiiiiiiieiiierteeieetee ettt ettt 36
REFERENCES ...ttt ettt sttt e ee st saeente e e e seeensesneens 37
APPENDICES ...ttt ettt ettt et et aeebeeneesaeenseeneens 38

Appendix 1: Example Crawling Gait Cycle of Quadruped Robot.............ccccuvvennennn. 39

Appendix 2: Schematic Design of Quadruped (Top VIEW).....cccccveeeviievcieeniieeeieeens 40

Appendix 3: Schematic Design of Quadruped (Right-hand Side View) 41

Appendix 4: Global Coordinate Notation of Quadruped (Top View)cccccvveeuneenn. 42

Appendix 5: Joint Angle of Quadruped (Top VIEW) ...cccoevveviirieneniiiniiiciieneeee 43

Appendix 6: Joint Angle of Quadruped (Right-hand Side View)......c..cccceeeveniinennnene 44

Appendix 7: Example of Joint Angle and Coordinates Calculationc.cccueunee. 45

Appendix 8: Crawling Gait of 16 Steps (Timing Adjusted)c.cceceveereriienennennne 48

Appendix 9: Single Servomotor Program.............ccccueevieiieeniieniieniesieeiee e 49

Appendix 10:
Appendix 11:
Appendix 12:
Appendix 13:
Appendix 14:
Appendix 15:
Appendix 16:

Appendix 17:

Single Servomotor Wiring Diagramccceeevveevieeeniiesiieeeieeeeenn 50
Three Servomotors Programcccceeevieeiiieeniie e 51
Three Servomotors Wiring Diagram............ccceevveeevieeeiieesiieeeieeeene 54
Technical Drawings of Quadrupedc.ccccevveeviieeiiieeiiieeieeee e 55
Preliminary Gait SImulationcccccceeeviieeiiieeiieecieeeee e 77
Readjusted Gait SIMulationc.cccceveeeiiieeiiieeiieeeeee e 94
Motor Controller Programs............ccoccveeviieniieiiienieeieeie e 111

Motor Controller Wiring Diagramccccoeevevieeniienieeniieeieeiene 124

viii

Figure 2.1:

Figure 2.2:

Figure 2.3:

LIST OF FIGURES

Example of Quadruped Robot..........coocuiveiiiiiiiieeeee e 3
3 DOF of Single Leg MechaniSm............ccceeeviiieiiiieiiieeriee e 4

Top View of Quadruped Robot with COG inside Stability Polygon. (a)

COG barely lay inside stability polygon. (b)COG lay inside stability

POlygon cOmMPIEtely.cc.eiiiiiiiiiieiiee e 7
Figure 2.4: PWM Signal for ServOmOtOrscceeeiieiiienieeiieeieeiieeie et 8
Figure 2.5: Pulse Width Modulation as Average DC Voltage..........cccoeeuveviieniiiniennn. 10
Figure 3.1: Project Phase Chart...........ccociiiiiiiiiiieccie ettt 11
Figure 3.2: Phase 1 FIOW Chart........cc.coooiiieiiiiiiicce et 12
Figure 3.3: Phase 2 FIOW Chart.........c.coooiiiiiiiiiiiece et 15
Figure 3.4: Hitec HS-322HD ServomOtorcccvieiiieeiiieeciieeiee et 16
Figure 3.5: Pin Diagram of PICI8F458ooooiiieieeeeeeeeee et 17
Figure 3.6: Flow Chart of PWM Output by Using Timer 0 and Interrupt...................... 19
Figure 3.7: Simulation Result of Single Servomotor............ccccceeviiieiieiiiienienieeieee 21
Figure 3.8: Simulation Result of Three Servomotorscceeeveeeiieiieniienienieeeeee 22
Figure 3.9: Phase 3 FIOW Chart.........ccoooiiiiiiiiiiiiieiiecieeiteete e 23
Figure 4.1: QUAadIupedcoueeeiiiiieeii ettt ettt ens 31

LIST OF TABLES

Table 3.1: Parts Fabrication Details...........ccocooiiiiiiiiiiiieeeee 25

X

CHAPTER 1

INTRODUCTION

1.1 Background Study

Robot, a term that once represents an imagination and dream, has captured the
interest of scientist for centuries. There are assorted types of robots today, either
mobile or stationary robot, for instance, robot manipulator, wheeled robot, legged
robot or etc. The idea of legged robot has come from Mother Nature; humanoid robot
is a mimic of Homosapiens; biped (2-legged), quadruped (4-legged), hexapod (6-
legged) and octopod (8-legged) robot are inspired by legged insects and mammals.
The unique gait of legged insect and mammal such as climbing, crawling, jumping

and etc. has inspired scientist to develop nature-like robot.

1.2 Problem Statement

Wheeled robot has less than satisfactory of maneuverability and movability on
rugged terrain. Besides, vibration of wheeled robot moving on uneven surface has
also cost the robot’s lifespan and stability. Therefore, the idea of quadruped robot has

come in to overcome such situation as it is able to maneuver on various surfaces.

1.3 Significance of Study

The outcome of this project will be an enhanced quadruped robot which is able to
maneuver over various surfaces, such as even ground, rugged terrain, slope or even
stairs. Thanks to the unique nature of quadruped robot, it is given the strength to
carry out extreme duty such as bomb and landmine retrieval at war zone, search and

rescue operation at earthquake-hit area, outer space and seabed exploration.

1.4

Objectives

The objective of this project is to:

1.5

Design the control system to drive the quadruped to crawl on flat and

horizontal ground.

Scope of Work

The scopes of work include:

Plan a suitable walking gait for quadruped robot in which the center of
gravity (COG) will be constrained by its static stability margin. EXCEL

spreadsheet will be used to create gait simulator.

Study on choosing the suitable microcontroller and learn about programming
microcontroller in C language as it provides higher flexibility in executing

program instructions.
Draw a CAD model and fabricate a prototype according to the CAD model.

The quadruped equipped with motor controller will be tested on flat and
horizontal ground to observe its mobility and maneuverability when

performing crawling gait.

CHAPTER 2

LITERATURE REVIEW

2.1 Quadruped

Quadruped is a 4-legged robot which is inspired by the unique gait of insects and
mammals, such as crawling, climbing, hopping and etc. Unlike the biped robot, it can
stabilize its own body easily by adjusting its walking gait and body position.
Therefore, due to its special nature of walking gait, it can be used for exploration in

all terrain.

2 S
P e

Figure 2.1: Example of Quadruped Robot

2.2 Leg Mechanism of 3 DOF

For a quadruped, a single leg of 3 degree of freedom leg mechanism is always
favored due to its flexibility in performing various walking gait and the leg is usually
divided into three sections, namely hip, thigh and lower thigh [1]. In such case, the
number of degree of freedom of a quadruped with 3 degree of freedom of each leg

will be 12. There are three joints for each leg: the first joint is laid between the body

and the hip, the second joint is between the hip and the thigh while the third joint is
between the thigh and the lower thigh [1].

- 3rd DOF

Lower Thigh

2nd DOF =~

7 7 > X-axis

Foot Tip

Vo 1st DOF

Figure 2.2: 3 DOF of Single Leg Mechanism

One joint representing 1 degree of freedom and the joint is usually driven by
either actuator or motor drive. In other meaning, it is required 3 motors to drive the 3
degree of freedom of a single leg. The motors used has almost same power rating
except the motor of 2nd degree of freedom has higher power rating as it requires
higher power and torque to lift up a weight summation of thigh, 3rd degree of

freedom motor and lower thigh [1].

23 Work Envelope

Work envelope of a robot arm/manipulator/leg is the boundary in space where the
tool tip or foot tip can reach [2]. The work envelope of legs can be determined by

using graphical analysis provided the angular limit of motors and joints are known.

Forward kinematic method is useful for determining the work envelope as typical leg

mechanism resembles serial manipulator [3].

2.4 Gait Consideration

Generally, the term “walking gait” is used in describing legged robot’s moving
pattern. Gait is literally describing the sequence of the lifting and the placing of the
legs and the relative time between these movements [4]. For a quadruped robot, it is
able to perform three kinds of gaits, namely crawling gait, trotting gait and a gait that
combining crawl and trot [4]. However, the author believes to study and develop all
three gaits for quadruped robot might take years to achieve. Therefore, only crawling
gait is paid attention in this project due to the time constraint imposed on the final
year project. On the other hand, even though crawling gait is relatively slow than
other gaits, it still deserves the author’s attention because robot’s speed is not a focus
in this project. On top of that, it complies with the aim of driving the quadruped
robot to move as the previous robot by Mr. Tnay Chiat Siang failed to do so. Gait is
assumed to be cyclic and only one leg is lifted once per cycle [4]. In other words,
legs are lifted up in a manner of one leg per cycle and one leg after another. Such
manner of gait is to adjust the body motion in an attempt to maintain its stability. An

example of crawling gait sequence is defined in Appendix 1.

2.5 Stability Consideration

Stability is an utterly important issue in walking robots. Generally, all the walking
robots confront with the problem of what is the suitable distance that each leg
transfer in order to maintain its stability [5]. Therefore, how and where does the
center of gravity (COG) lie has becoming an important factor in maintain the robot’s

stability.

There are two types of stability for a walking robot, namely static stability
and dynamic stability. Static stability is meaning as the robot’s center of gravity

(COG) is always within the polygon formed by its supporting leg. The gait

performed under such stability condition is called static gait, for instance a walk or
crawl [6]. Whereas, the dynamic stability which performing dynamic gait such as a
trot or gallop does not necessarily have the center of gravity (COQG) lies within the
supporting polygon; it involves a much more difficult balancing task [6]. In view of
the objective of this project is to have a quadruped robot crawling on flat and
horizontal ground. Apparently, it only requires a moderate speed of gait or even

slower. Hence, the author will only focus on the static stability of the robot.

The gait of the quadruped robot in this project is technically crawling with
moderate moving speed, and thus static stability is emphasized. Static stability
margin is defined as the smallest horizontal distance from the center of gravity (COG)
to the border of the support polygon [7]. In other words, the margin is a measure of
stability where positive stability margin indicates the robot is statically stable while
the negative goes the other way round. One important fact is that a legged robot is
not statically balanced if fewer than three legs are on the ground. Therefore only one
leg is allowed to lift at one time because leaving two legs in the air will not be
possible for a quadruped to stabilize. Moreover, to achieve static stability, a legged
robot is required to perform gait slowly in order to minimize the body velocity and in

turn the inertial force [6].

2.6 Lifting and Landing Timing Consideration

Step 1 in Appendix I is taken as an example in Figure 2.3 for illustration of timing
consideration altogether with static stability margin. Figure 2.3 (a) shows that the
COG barely laid inside the stability polygon. This happens because red-colored leg
lifts up simultaneous with the forward motion of body. The COG lay right on the
boundary line of stability polygon at the moment red-colored leg lifts up. Although
the COG will be pushed forward by the other legs, the static stability still hard to be
secured when red-colored leg lifts up. Figure 2.3 (b) shows the COG is already
farther from the boundary line of stability polygon when red-colored leg lifts up and
travels forward. At the first moment of gait, red-colored leg lay on the ground instead
of lifting up. The red-colored leg will only lift up after a short moment of delay in

order to avoid tip-over.

(@) (b) Legend

ﬂ @ COG
R
~eo

e Lifted-up

.

=

|

|

: ® Grounded

|

i/// - Stability
Polygon

Figure 2.3: Top View of Quadruped Robot with COG inside Stability Polygon. (a)
COG barely lay inside stability polygon. (b)COG lay inside stability polygon
completely.

9

AV ARRERSNY

2.7 Electronic Hardware

The basic electronic components which are required in such a legged robot project
are, for example servomotors, microcontrollers, crystal clock and some other basic

electronic components such as resistors and LEDs.

2.7.1 Servomotors

Servomotors are usually used in remote-controlled model such as airplanes, cars,
helicopters models and etc. because of its feature of high positioning accuracy yet
easy to manipulate [8]. Servomotors are actually DC motors with feedback control
system which allows the rotors to be positioned with extremely high accuracy. Due
to its internal feedback control system, the position of rotor of a powered-up
servomotor will not be altered by external load easily. The feedback control system
will automatically adjust the rotor back to the desired position. Therefore, the author
find that Proportional-Integral-Derivative (PID) controller is not needed for this

project since the servomotors already have its own feedback control system.

Generally, servomotors are able to position at a range of 90 degrees rotation
(clockwise 45 degrees rotation or anti-clockwise 45 degrees rotation) depends on the

manufacturer’s specification. However, the range of position can be extended to 180

7

degrees by adjusting the control signal. Servomotor has three wires, where two of
them are for power of +5V and GND, while the third wire is for position control
signal input. The position of the servomotor rotor is controlled by pulse-width
modulation (PWM) signal which is a variable width of signal-ON pulse ranged from
1 to 2 milliseconds. A 1 millisecond PWM signal places the rotor at the extreme anti-
clockwise position (-45 degrees) while 2 milliseconds PWM signal places the rotor at
the extreme clockwise position (+45 degrees). A 1.5 millisecond signal will place the
rotor at the neutral position (0 degree). The PWM signal for servomotor is usually
configured at 50 to 60 Hz which set the pulses period to be approximate 16 to 18

milliseconds [8]. Figure 2.4 shows the PWM signal for servomotors.

> < Pulse Width
1-2ms

e

Period 18ms €— (Approximate frequency of 55Hz)

x|
\\ : Ims pulse width drives the rotor 45° anti-clockwise

B

!~ 2ms pulse width drives the rotor 45° clockwise

L

(Note: 1.5ms pulse width position the rotor at neutral position)

Figure 2.4: PWM Signal for Servomotors

2.7.2 Microcontrollers

Microcontrollers are preprogrammed electronic devices that are able to perform
particular output based on electronic input [9]. To do so, a microcontroller has to
have a CPU (microprocessor) in addition of certain amount of RAM (Random

Access Memory), ROM (Read Only Memory), I/O ports and timers on a single chip.

RAM is used by the microcontroller to store the temporary data while the
program is running. Higher amount of RAM means higher capability of the chip to
process more data during operation. The data stored in RAM will be lost if the power
goes off and it is therefore called as volatile memory. ROM is the memory space for
storing fixed and permanent data such as application software and this type of
memory will not disappear even if the power supply is disconnected [10]. When the
microcontroller has CPU and sufficient and necessary memory spaces to operate, it
needs something to trigger an expected event. In other meaning, it needs input to
prompt the decision making process and output corresponding event. Therefore, I/O
pins are essential for microcontroller in order to render something happening. Timer
is considered peripheral device of microcontroller in which it exists either internally
or externally. The function of timer is to measure time period, determine pulse width

and the periodic event [11].

2.7.3 PIC18F Microcontroller

There are quite a number of microcontroller manufacturers in the market, for
instance, Microchip, Motorola, Intel and etc. Microcontrollers from Microchip which
named as PIC are chosen in this project because of its availability at the electronic
store of UTP and most importantly, UTP has the programmer of PIC which allows
reprogramming of a PIC. On the other hand, PIC18F series chips are chosen as the
letter ‘F’ of PIC18F is an abbreviation of flash which means the PIC18F chips have
on-chip program ROM in the form of flash memory. Flash memory is an EEPROM
(Electrically Erasable PROM) where it can be reprogrammed easily in seconds and

this is the reason why PIC18F series chips are chosen [10].

2.7.4 Oscillators

Oscillator is a processor clock that sequences the instructions within the CPU of
microcontroller and provides time base for peripheral application. The range of
frequency starts from as low as few kilohertz to as high as hundred megahertz
depends on the specification of the microcontroller. As for PIC18F458, it is able to

operate at a maximum frequency of 40 MHz. Generally, PIC microcontrollers can be

operated in four different oscillator modes, i.e. low-power crystal (LP),
crystal/resonator (XT), high-speed crystal/resonator (HS) and resistor/capacitor (RC).
LP, XT and HS modes are all using crystal or ceramic oscillator with certain range of
frequency. Crystal and ceramic oscillator are both having satisfactory timing
accuracy. RC oscillator, being the remaining mode of oscillator, is only consisting of
resistor and capacitor. This turns out to be extremely low cost. However, such

oscillator has low timing accuracy [8].

2.8 Pulse-Width Modulation

Pulse-width modulation (PWM) is a method to provide digital to analog signal
conversion. PWM is a series of pulses in which the duty cycle (logic high) of a
square wave output is varying to provide a varying average DC output voltage [11].
In other words, PWM is used by microcontroller to output average DC voltage to
analog device as microcontroller itself is only capable of operating in digital signal

(logic high or low). An example illustrates PWM is shown in Figure 2.5.

Low Duty Cycle ———— iI ————————— 1 ———————— (Average DC voltage)

_____ 1t _______ (Average DC voltage)

High Duty Cycle

Figure 2.5: Pulse Width Modulation as Average DC Voltage

10

CHAPTER 3

METHODOLOGY

3.1 Project Phase

Phase 1 of the project was completed in last semester while phase 2 is currently

underway in this semester. Phase 3 is supposed to be completed by the end of FYP 2.

Phase 1 e Study on quadruped (e.g. gait, stability)

—=@ Draft schematic design (dimension of body and legs)
—e Plan a suitable crawling gait

—= Create simulator for crawling gait

—=e Verify planned crawling gait using simulator

Phase 2 e Study on PIC18F458

—e Manipulate I/O ports to control LED and servomotors

—e Configure timer to generate 18ms pulses (55Hz)
—e Trigger interrupt to create PWM duty pulses

—e Control single servomotor by PWM

e Control several servomotors by PWM

\ 4
Phase 3 ® Draw a CAD model of quadruped

—® Fabricate a prototype according to CAD model

—=@ Test run on flat and horizontal ground

—a@ Troubleshooting

Figure 3.1: Project Phase Chart

11

3.2 Phase 1

3.2.1 Flow Chart

(Phase 1)

A 4

Study on quadruped

A 4
Draft schematic design for quadruped

A 4

A 4
Plan a suitable crawling gait for quadruped

A 4
Create crawling gait simulator

A 4
Verify planned crawling gait using simulator

Failed

Legend

Successful Completed

Sort out coordinates of legs for every step

In Progress

Pending

\ 4

(Phase 2)

Figure 3.2: Phase 1 Flow Chart

12

3.2.2 Schematic Design

A schematic design of quadruped robot is drafted at first in order to have a set of
preliminary dimensions of the body and legs. CAD model is not started yet at this
point as the specifications of quadruped are not finalized. On top of that, schematic
design is preferable instead of CAD model at this stage because it is not a wise act to
fix the dimensions without taking simulation result into consideration. CAD drawing
will only be started after all the completion of mechanical simulation and wiring,
circuit-board design. Moreover, schematic allows changes and modifications if
problems incur the mechanical simulation. The schematic design of quadruped robot
in top view and right-hand side view are defined in Appendix 2 and Appendix 3

respectively.

3.2.3 Coordinate and Joint Angle Notation

Coordinate of each joints are labeled with specified notations for the sake of reading
and tracking. Such notations are named as global coordinate notation as all joints are
referring to common reference axes, namely x-axis, y-axis and z-axis. Each joint
consists of x-axis, y-axis and z-axis coordinates with COG of quadruped defined as
the origin of all axes, i.e. (0. 0. 0). The global coordinate notation of quadruped in

top view is defined in Appendix 4.

Joint angle always refer to a reference axis. Joint angles of quadruped in top
view and right-hand view are defined as per Appendix 5 and Appendix 6 respectively.
The reference axis is where the arrow starts from. The heading direction of each

arrow indicates the positive value of angle while the negative value goes inversely.

3.2.4 Calculation of Joint Angle and Position

Joint angle can be obtained by using Trigonometry and Law of Cosines provided the

positions of joint 2 and foot tip are known (position is named as coordinate from here

13

on since the position of joints or foot tips are represented by global coordinate
notation). Same method is used to calculating joint 3 coordinate if the coordinates of
joint 2 and foot tip are known. An example of joint angle and coordinate calculation

1s shown in Appendix 7.

3.2.5 Crawling Gait Planning

A crawling gait of 8 steps is explained previously in Section 2.4 and the author does
mention that the number of steps can be any number of common factors of four with
condition no less than eight. Therefore, the author has come up with a 16 steps
crawling gait which has higher resolution (meaning more detailed movements are
shown). Static stability margin is the main issue during the planning of crawling gait
in which COG has to be constraint within the boundary of stability polygon. Other
than that, the timing of leg lifting and landing mentioned in Section 2.6 is taken into
account for the gait planning. The crawling gait of 16 steps with adjusted-timing is

defined in Appendix 8.

3.2.6 Creating Preliminary Simulator

The simulator is addressed as preliminary simulator is because the parameters used
in this simulator is somewhat ‘immature’ which means the dimensions of quadruped
are still in schematic design stage and are not finalized yet. The preliminary
simulator will simulate the crawling gait cycle of 16 steps with adjusted timing of leg

lifting and landing. The result of preliminary simulator will be discussed in Chapter 4.

14

3.3 Phase 2

The focus of phase 2 is on the electronic part involves programming the PIC

microcontroller and control the servomotors according to the gait planned in phase 1.

3.3.1 Flow Chart

(Phase 2)

A 4

Study on PIC18F458

A 4

Input or output signal via IO ports

\ 4
Set timer to generate PWM pulses

A 4

A 4

Trigger interrupt to create PWM duty pulses

A 4

Control single servomotor by PWM

A 4
Control several servomotors by PWM

Legend

Failed Completed

In Progress

Successful Pending

Figure 3.3: Phase 2 Flow Chart

15

3.3.2 Hitec HS-322HD Servomotor

The servomotors used in this project are HS-322HD servomotors from Hitec. This
series of servomotors are designed for hobbyist’s application such as model aircraft,
steering and throttle control for model car and etc. This motor operates under the
same concept mentioned in Section 2.7.1 in which the rotor position +/- 45 degrees
by manipulating the pulse width from range 1 to 2 milliseconds. However, according
to the official specification from website this motor is able to extend its working
range by extending to +/- 90 degrees when given a pulse ranged ranging from 0.6 to
2.4 milliseconds. The operating voltage for HS-322HD is approximate 4.8 to 6.0 V
with 4.8 V generate output torque of 3 kg.cm while 6.0 V generate output torque as
high as 3.7 kg.cm. An example of HS-322HD servomotor is shown in Figure 3.4.

Figure 3.4: Hitec HS-322HD Servomotor

3.3.3 PIC18F458

Based on the available data sheet (released by Microchip Technology, Inc.) and
reference book, i.e. the book titled “Embedded C Programming and the Microchip
PIC” from Thomson Learning, Inc., PIC18F458 are used in this project for
servomotors control. According to its data sheet, PIC18F458 is available in 28-pins,
40-pins and 44-pins. It has 32k bytes of internal program memory, 1536 bytes of
RAM memory and 256 bytes of EEPROM memory. Other than that, it also has four

internal timers with selectable pre-scaler. It also provides two

16

Capture/Compare/PWM modules to capture and compare the timing when external
event occur or send out PWM signal. The pin diagram of PIC18F458 is shown in
Figure 3.5.

/ 40 [1 =——= RB7/PGD

MCLR/VPP —= [1
RAO/ANO/CVREF <—»[] 2 39] -—» RB6/PGC
RA1/AN1 <—[]3 38 [J «— RB5/PGM
RA2/AN2/VREF- «—[] 4 37 0 =— RB4
RAB/AN3/VREF+ <—[] 5 36 [1 <— RB3/CANRX
RA4/TOCKI <—»[] 6 35 [] =— RB2/CANTX/INT2
RA5/AN4/SS/LVDIN <—[] 7 34 [J =— RB1/INT1
REOQANS/RD =——0j8 8 B 330 <—» RBO/INTO
RE1/AN6/WR/C1OUT =—=L19 Q Q 321 <—VDD
RE2/AN7/CS/C20UT <—=[]10 g g 310 =—Vss
VDD —— 11 m M 30[J<—= RD7/PSP7/P1D
Vss —=[]12 & § 29 <— RD6/PSPE/P1C
OSC1/CLKI —=[] 13 G & 281 <—» RD5/PSP5/P1B

OSC2/CLKO/RA6 «—[] 14 27 [0 -—» RD4/PSP4/ECCP1/P1A
RCO/T10SO/T1CKlI -—=[] 15 26 1 =—— RC7/RX/DT
RC1/T10S| -] 16 25 [1 «— RC6/TX/CK
RC2/CCP1 <« []17 24 [«—» RC5/SDO
RC3/SCK/SCL =+—=[] 18 23 [J ==— RC4/SDI/SDA
RDO/PSPO/C1IN+ -—=[119 22 [1 «+—» RD3/PSP3/C2IN-
RD1/PSP1/C1IN- =—= []20 21 [0 =— RD2/PSP2/C2IN+

Figure 3.5: Pin Diagram of PICI18F458

3.3.4 Software and Hardware

As for the software, PICC C Compiler by CCS, Inc. is used to compile program in C
language and generate hex-code (hexadecimal numbers) file for re-programming
(burning) the PIC microcontrollers. Other than that, MPLAB IDE from Microchip
Technology, Inc. which is also compatible with PICC C Compiler is used to simulate
and troubleshoot the program before the hex code file is burned into the PIC

microcontroller.

To burn the program into the PIC microcontroller, WARP13 programmer
board is used. WARPI3 programmer board is able to erase and re-write the
EEPROM memory of PIC14F/16F/18F series microcontroller. What WARP13
programmer needs is only a hex-code file which generated by PICC C compiler to

program a PIC Flash series microcontroller. Assembly language needs not be

17

bothered because MPLAB IDE is able to convert the C language program into
assembly language program based on the hex-code file generated by PICC C
Compiler. Note that microcontroller recognizes hex-code only whereas C language
and assembly language are recognized by human and this is the reason why a
compiler is needed (to convert either C language program or assembly language

program to hex-code).

3.3.5 Constructing C Language Program

The PICC C Compiler is very much the same with other C language compiler, with
additional microcontroller-specified function library. To create PWM output signal
from PIC18F458, at least one internal timer and relevant interrupt function is needed.
The concept of the program is enabling timer to run once the microcontroller is
powered up and let the timer counts 18 ms (there are delay functions within the
library of PICC C Compiler). When the timer’s count reach 18ms, an interrupt
function is prompted and output logic high at pre-set pins/ports for certain period (in
this case, 1 to 2 milliseconds duty cycle is used for servomotors control). When the
selected pin/ports output logic low, the timer will be reset and run for another 18
millisecond which then prompt interrupt function again and so on. By varying the
duty cycle time (the pulse width of logic high), the position of the rotor can be varied.
The concept of creating PWM in PIC18F458 is illustrated in flow chart as shown in
Figure 3.6.

When the microcontroller executes the main program, it is possible to
interrupt the main program and executes something else by enabling interrupt
function. The microcontroller will resume or return to the breakpoint where it had
stopped after the tasks in the interrupt function are completed. Such function
therefore makes the application to be more real-time operating because interrupt
function allows the microcontroller to respond to changes of hardware environment.
By a look at the data sheet of PIC18F458, it has 21 interrupt sources relevant to

timers, external input, ADC and etc.

18

(Program Starts >

v

Setting:
e Setup Timer 0 Timer O Interrupt Function
e Enable Timer 0 interrupt L
e Setup output pins/ports o =Y -
utput logic high at U
v O logic high at PIN_#
> Set/Reset Timer 0

v

Delay 1 to 2 ms

'

Output logic low at PIN_#

v

|
|
|
|
|
|
Timer O runs for 18 ms |
|
|
|
|
|

v

Prompt Timer O interrupt

yy [

Figure 3.6: Flow Chart of PWM Output by Using Timer 0 and Interrupt

3.3.6 Single Servomotor

To learn about the PWM technique using PIC18F458, an example program is
constructed by the author and it has been tried out on with a servomotor. The single
servomotor program is shown in Appendix 9. The lesson of this program is to find
out how exactly a PIC18F458 send out PWM signal to servomotor. There are three
possible techniques of creating PWM in PIC18F458, namely using internal CCP
module, for loop and timer interrupt. Fortunately, one of the possible techniques, and
the only one which is proved to be working well with the Hitec HS-322HD

servomotor is using timer interrupt.

The problem of internal CCP module is because of the pulse period generated
is too small for the required frequency of servomotors, i.e. 50 to 60 Hz (approximate
period time of 16 to 20 milliseconds). For loop technique is not a viable option either
because of the inaccuracy of the timing, which meaning the pulse width and pulse

period are difficult to control. Explanation in detail why these two techniques are not

19

chosen will not be demonstrated as the author’s interest is solely laid on the viable

solution.

Timer interrupt, being the only viable technique is used to send out PWM
signal. Refer to Appendix 9, RTCC timer (same with timer 0) starts counting up until
65535 ($FF FF in hexadecimal number) where RTCC interrupt function will be
triggered. Output pin is set logic high for 1 ms (syntax: delay ms(1);) at the
beginning of RTCC interrupt function and the logic high status will be extended for
more time depends on the duty value. For instance, duty value of 15 means the logic
high status will be extended for 500 us more (syntax: delay us(500);). Output pin
will be set logic low before the ending of RTCC interrupt function. Note that RTCC
timer is reset at 47535 ($B9 AF in hexadecimal number; syntax: set rtcc(47535);)
which means the RTCC timer will start counting from 47535 to 65535 where RTCC

interrupt function will be triggered again and so on.

The reason of resetting RTCC timer at 47535 is because counting from 47535
to 65535 takes 18000 instruction cycles to complete, and this 18000 instruction
cycles are just nice to create 18 milliseconds of pulse period. Note that the clock
frequency is 4 MHz which means each instruction cycle takes 1 ps (clock frequency

of 4 MHz shall be divided by 4 according to data sheet).

Simulation of the single servomotor program is done in MPLAB IDE and the
logic analyzer tracks a series of pulses are generated successfully as shown in Figure
3.7. The program is justified at this moment from the software-wise. However, it
needs to be justified with the hardware as well. Fortunately, the program is proven to
be working as expected when a programmed PIC18F458 is connected to the wiring

diagram as shown in Appendix 10.

20

Mtest3 - MPLAB IDE v8.10 - [Logic Analyzer] M=l %

"] File Edit View Project Debugger Programmer Tools Corfigure Window Help - | &%
O | it b B L A 7 | o B %R Checksum: 0x0fcl I o ¢ I E @
Trigger Position Trigger PC = Timz Baze, Maode

Start (3) Center () End () C}'cv Simple
[+ & alal f B

RD4

T T T T T T T T T T T TT TT T T T T T T T T T T T T T T T 17771
G0000.0 B5000.0 70000.0 F5000.0 20000.0 850000 30000.0 950000 1000000 1050000 1100000 1150000

T
55000.0

MPLAB SIN PIC18F458 pc:0xed W0 novZdocc 4MHz bank O

Figure 3.7: Simulation Result of Single Servomotor

3.3.7 Several Servomotors

After the completion of single servomotor program, controlling several servomotors
(three servomotors in this case) has been tried out by the author. The concept of this
program is very much the same with the single servomotor program as mentioned in
Section 3.3.6, the different part of this program is the implementation of timer 0,
timer 1 and timer 3 altogether. The simulation result is shown in Figure 3.8. The

program is shown in Appendix 11 and the wiring diagram is shown in Appendix 12.

21

™3 timers - MPLAB IDE v8.10 - [Logic Analyzer]

"I File Edit View Project Debugger Programmer Tools Corfigure Window Help -8 %
DEH| L MW.E E o R | o B &b | ® B Checksum: 0xa369 | » M PIRE®
Trigger Pasition Trigger PC = Tirme Base: Mode

Start (2) Center () End () Ey.c V I Simple
[+ & a@l o BEER

RD4

RD&

RDE

T T T T T T T T T T T T T T T T T T T T
800000 50000.0 1000000 110000.0 120000.0 130000.0

MPLAB SIM PIC18F458 pc:0xfc W0 novZdcc 4MHz hank O

Figure 3.8: Simulation Result of Three Servomotors

34 Phase 3

Phase 3 is the last phase of the entire project which basically involves fabrication,
testing and troubleshooting. The reason of placing CAD and prototyping in the last
phase is that there are too many uncertainties and modifications in phase 1 and phase
2, such as robot body size might change to fit in the circuit board and motors, leg
dimension might change to ensure COG lay within stability polygon and etc. All

these uncertainties will only be clarified after the completion of phase 1 and phase 2.

After prototype is built, motors will be mounted onto the prototype and the
simulator will be readjusted by using the finalized parameters (leg dimensions). At
this point, the quadruped prototype shall be acting as expected as the result from

simulation. Any deviation from expectation shall be investigated and analyzed.

22

3.4.1 Flow Chart

(Phase 3)

A 4

Part design

\ 4

CAD Drawing (CATIA)

\ 4

Fabrication (drilling, milling and etc.)

A 4
> Readjust simulator (Excel spreadsheet)

A 4
Calibrating motor controller

A

Test run on flat horizontal ground

Legend

Completed

Failed

In Progress

Successful Pending

Completion

Figure 3.9: Phase 3 Flow Chart

23

3.4.2 CAD Drawing

Leg dimensions are clarified prior to the commencing of CAD drawing.
Consideration such as availability of material and machine, method of fabrication
and complexity of the part design are taken into account so that the design of

prototype will not lead to any difficulty of material preparation and parts fabrication.

Motor brackets and linkages are standardized for all twelve motors in order to
reduce the fabrication time and complexity. Other than that, such approach is able to
reduce possibility of dimension error as less part design will be less error. The

technical drawings of quadruped are in Appendix 13.

3.4.3 Fabrication

Fabrication is currently underway and most of the parts are nearly finished
fabricating. The material used for this prototype is aluminium plate because of its
characteristic of light weight and considerable strength. The prototype basically
consists of body frame, motor bracket, linkages and all four legs are sharing the same
design which means each leg has same number of motors, motor brackets and

linkages.

The methods of fabricating the aluminium plates into particular parts involve
shearing, bending, milling and drilling. Shearing is used to cut a large piece of
aluminium plate into small pieces or raw plate of each part. Bending is a process to
bend a flat plate by certain angles. Milling and drilling are the processes of removing
material by using special cutting tools such as drill bit and carbide. The process

details of each part are shown in Table 3.1.

24

Table 3.1: Part Fabrication Details

Parts Description Processes
Motor bracket (Qua-J1) | Bracket of holding motor and acts as | Shearing
joint
Drilling
Milling
Bending
Linkage type-I (Qua-L2) | Link joint 2 to joint 3 and acts as thigh | Shearing
Drilling
Milling
Bending
Linkage type-II (Qua-L3) | Extend from joint 3 to foot tip and | Shearing
acts as lower thigh
Drilling
Milling
Body frame (Qua-F1) Body of quadruped and this is where | Shearing
the COGQG lies.
Drilling
Milling

3.4.4 Readjusting Simulator

The spreadsheet simulator has to be readjusted by using the real parameters of the
prototype because the dimensions of the prototype are different from the preliminary
simulator which is developed based on the schematic design. The purpose of the
readjusted simulation is to provide a close-to-reality gait pattern for quadruped in
which the prototype will perform crawling gait according to simulation. Therefore,

the dimensions of the prototype have to be taken into account when readjusting the

simulator.

On the other hand, timing adjustment has to be made as calibrating and test

run goes because the timing consideration in Section 2.6 is yet to be proven with the

25

prototype. The lifting and landing timing adjustment mentioned in Section 2.6 (a
short moment of delay or advance) might have to be scrapped and implement the
conventional crawling gait as shown in Appendix I if the stability of prototype is

jeopardized during performing crawling gait.

3.4.5 Calibrating Motor Controller

Based on the result of readjusted simulation mentioned in Section 3.4.4, all joint
angles and coordinates shall be implemented in the motor controller programs. The
motor controller programs consist of PWM duty cycles of all servomotors which are
corresponding to the joint angles throughout the entire cycle of crawling gait. The

result of the calibrated motor controller will be discussed in Chapter 4.

3.4.6 Test Run of Prototype

Prototype equipped with motor controller will first be tested by elevating the body
frame which means all four legs are placed above the ground. Such test is to verify if
the crawling gait of prototype is parallel to the readjusted simulation under condition
of no load (by its body weight and reaction force upon the foot tip). If the crawling
gait of prototype performs as what expected from the readjusted simulation, the test
shall be carried out on the ground. In case of any failure, i.e. tip over, unable to lift
up its own body and etc., investigation and troubleshooting shall be started from the

readjustment of simulator and calibrating of motor controller.

26

Gantt Chart

35

3.5.1 Gantt Chart of FYP 1

uonejuasald [elt0

1odoy

WLIOJU] JO UOISSIQNS

uone[NUIS JIen) o
u3ISop JRWAYIS e

i1 oseyqd

Jeurwe S

Mid-Term Break

Jodoy

$S913014 JO UOISSIIIqNS

NO D1d Sunusws[dur

uo Juruwied[pue ApmsS e

:1 aseyqd

podoy

Areurr[axd Jo uorssruqng

padnupenb uo yoreasoy e

IO AN UoIeasay Aleurwurjard

14!

el

4!

I

ardo, 309(01g JO UOnIIAS

A[PM /1Te1ed

ON

27

3.5.2 Gantt Chart of Semester Break

BREAK

Io[[onuosodTw D4 dendiuew 03 SUIUIBY] o

{60 Ul (,LT — 80 990 ,87) T 3seud

IS[[0NUOJ0IOIW D[] UO ApIS e

1(80 9201 ,,0T — 80 9 ;1) T 2seyd

<

oM /IERd

ON

28

3.5.3 Gantt Chart of FYP 2

(punoq pieH) uoneLASSI(|

100014 JO uOISSIUQNS

0T

uoreuasald [e1i0

(punoq 130S) uonNeIssIq

19)S0{ JO uoIssiuqng

3unsay, e
:¢ aseyd

Teuruog

7 1odoy

$S91301 JO UOISSIUQNS

Mid-Term Break

adKy0j01d Suneouiqe, e
usisop qvO e
:¢ aseyd

[Bodoy

$S913014 JO UOISSIWIqNS

uonedIUNWWOd H[J e

[o1u0d NMd e
17 aseyqd

14!

el

14!

I

01

A[PM /1Te1ed

ON

29

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Preliminary Simulation (Phase 1)

Microsoft EXCEL spreadsheet is used to create a crawling gait simulator. The
purpose of the preliminary simulator is to provide a basic concept of quadruped
crawling gait with adjusted timing of leg lifting and landing which is elaborated in
Section 2.6. Note that the result of the preliminary simulation is not yet finalized and

some modifications might have to be made in latter stage.

4.1.1 Crawling Gait Analysis

Joint coordinates and joint angles of each step are calculated based on Trigonometry
and Law of Cosines as shown in Appendix 7. The crawling gait result of preliminary
simulation is defined in Appendix 14. Note that apart from the joint coordinates of

each step, static stability of quadruped is demonstrated in the simulation as well.

4.1.2 Static Stability Analysis

Having the COG lay within the boundary line of stability polygon indicates the
quadruped is balanced / stabilized statically. Planning crawling gait without
considering static stability will not drive the quadruped far even if it is able to move.
Quadruped with the COG out of the stability polygon will bound to tip-over.
Therefore, static stability is taken into account when the simulation of crawling gait
is created. The static stability result of preliminary simulation is defined in Appendix

14.

30

4.1.3 Timing Analysis

Timing consideration of quadruped has been discussed in Section 2.6. The leg lifting
and landing action of some steps are either delayed or brought ahead in the
simulation. The leg lifting action of step 1 and step 9 are delayed in order to push the
COG farther from the boundary limit of the stability polygon. Whereas, step 7 and
step 11 has same approach of ahead leg landing action to avoid the COG closing to
the boundary limit of the stability polygon. All the respective approaches are defined
in Appendix 14.

4.2 Prototype (Phase 3)

A prototype is constructed according to the CAD model. The fabrication processes of
various parts are defined in 7able 3.1 and the technical drawings of the CAD model
are defined in Appendix 13. The motor-mounted prototype without circuit board is
weighted 1547 gram as measured by digital weight indicator. The image of
quadruped prototype is shown below.

Figure 4.1: Quadruped Prototype

31

4.3 Readjusted Simulation (Phase 3)

The preliminary simulation is readjusted in phase 3 by referring to the real
dimensions of the prototype. The result of the readjusted simulation is a basic
structure for the motor controller and it provides the joints angles, or motor rotational
angles that are required in the motor controller. The result of readjusted simulation is

defined in Appendix 15.

4.3.1 Crawling Gait Analysis

Joint coordinates and joint angles of each step are calculated according to
Trigonometry and Law of Cosines as shown in Appendix 7. The crawling gait result
of readjusted simulation is defined in Appendix 15. Note that apart from the joint
coordinates of each step, static stability of quadruped is demonstrated in the

simulation as well.

4.3.2 Static Stability Analysis

Stability means the world to quadruped and it can be achieved only if the COG lies
within the boundary line of stability polygon. The static stability result of readjusted

simulation is defined in Appendix 15.

4.3.3 Timing Analysis

Based on the result of readjusted simulation, the timing consideration of quadruped
which has been discussed in Section 2.6 is not necessary for the prototype because
the COG of prototype is still lying within the static stability polygon even though the
adjusted timing of leg lifting and landing mentioned in Section 2.6 is not
implemented. Therefore, the adjusted timing of leg lifting and landing in preliminary
simulation is scrapped and the conventional crawling gait as shown in Appendix I is
implemented instead. The timing of leg lifting and landing result is demonstrated in

Appendix 15.

32

4.4 Motor Controller (Phase 3)

To drive the prototype performs crawling gait, motor controller consists of both
software (i.e. program) and hardware (i.e. wiring) has to be designed to control all
twelve servomotors. The motor rotational angles are referring to the joint angles of

respective step in the readjusted simulator which was elaborated in Section 4.3.

4.4.1 Program

Program 1is the software, or ‘brain’ of the motor controller that determines what
action will be performed by the quadruped. The program is written in C language by
using PICC C Compiler. There are two set of programs, namely program of leg A
and leg B, and program of leg C and leg D. This is meaning that there are two
microcontrollers where each microcontroller controls six servomotors. The reason of
using two microcontrollers is because if only one microcontroller is used to control
all twelve servomotors, the timing of steps appears to be fairly inaccurate. The
explanation of this is probably because of the timer interrupt functions are being
triggered too often (since there are twelve servomotors). Therefore, the author
decided to use two microcontrollers (two sets of programs) so that the timer interrupt
functions will only be triggered at moderate rate. The motor controller programs are

defined in Appendix 16.

Refer to Appendix 16; there is a look-up table in each program. The purpose
of look-up table is providing a database of motor rotational angles of each leg at
respective steps. The four-digit number is equivalent to thousand microseconds. For
instance, a number of 1500 represents 1500 microseconds (1.5 milliseconds) where it
will set the rotor of servomotor at neutral position (0 degree). Number larger than
1500 (1.5 milliseconds above) means clockwise rotation (positive degrees) whereas

number smaller than 1500 means anti-clockwise rotation (negative degrees).

Note that timer RTCC and TIMERI1 are both driven by internal clock of 4
MHz, while TIMER3 is driven by external clock of 4 MHZ with prescaler of 8.

33

Timer RTCC and TIMERI are used to generate the periodic pulses of PWM signal at
rate of 51 Hz. Timer TIMER3 is used to provide time base of 8 seconds period for

the crawling gait (0.5 milliseconds per step).

4.4.2 Wiring

Wiring is the hardware, or ‘body’ of the motor controller that receives power and
delivers power or signal to assorted components. The wiring diagram of motor

controller is defined in Appendix 17.

There are two microcontrollers (PIC18F458); one for controlling leg A and B

(6 servomotors) while another one is for controlling leg C and leg D (6 servomotors).

Two 4 MHz crystals (oscillator) are used in the motor controllers; one is used
to provide time base for timer RTCC and TIMERI (both internal clocks) of both

microcontrollers while another one is for timer TIMER3 (external clock).

Besides, two power regulators (78L05) are used in order to provide steady
power supply of 5 volt to each microcontroller. Power regulating always lead to heat
accumulation at the component, hence, heat sinks are attached to the power

regulators in order to dissipate heat and prevent component from failure.

34

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The project objective is to design a control system for a quadruped robot (4-legged
robot) that built by an UTP graduate; Mr. Tnay Chiat Siang (Matric No. 6114).
However, the mechanical design by Mr. Tnay has been revised and modified by the
author because the prototype built by Mr. Tnay tends to have some mechanical
defects, for instance jamming at knee joint, bending at thigh (link 2). Such problems
are due to the parallel link design in Mr. Tnay’s prototype. To avoid the occurrence
of same problem, the author decided to adopt serial-manipulator-like leg mechanism
for his project because such design has no joint limitation as parallel link does but at

the same time has less link support (lower joint strength).

At the end of project, a new prototype of quadruped is successfully built
along with motor controllers which are developed according to the readjusted
spreadsheet simulator. The motor controllers are able to drive all twelve servomotors
rotating to the respective angles of each step. By experiment, the quadruped is able to
perform forward crawling gait on flat and horizontal ground and thus the objective of

project is met.

35

5.2 Recommendation

Since the quadruped prototype in this project is not able to crawl or even stand on its
own, troubleshooting has been carried out by the author and there are some

recommendations for future reference.

Servomotors of higher torque shall be used in order to withstand the weight
of the prototype. When the motor controllers of quadruped prototype are first
powered up, the quadruped prototype is supposed to be standing with its four legs
and each servomotor shall provide sufficient torque to withstand the body weight.
However, the result of test run failed meeting up the expectation and therefore the

author assumes lack of motor torque could be the reason.

Other than that, weight reduction could be critical as well. The lighter the
prototype is, the lesser the power required or consumed. This can be achieved by
drilling some holes on the prototype as long as the holes are not placed at the area of
high stress concentration. Besides, the material of bolts and nuts do contribute to the
weight of prototype to some extent. Therefore, switching to aluminium bolts and nuts

instead of iron bolts and nuts could be a good approach to reduce weight.

If the quadruped prototype were to crawl on flat and horizontal ground by its
own, it is definitely a good move to try turning gait or even gait on inclined surface

or rugged surface.

36

[6]

[7]

8]
[9]

[10]

[11]

REFERENCES

T. W. Tee, K. H. Low & H. Y. Ng. 2002, “Mechatronics Design and Gait
Implementation of a Quadruped Legged Robot”, Nanyang Technological

University, Singapore

Ashfal, C. Ray. 1992, Robots and Manufacturing Automation, John Wiley &
Sons, New York

W. S. Mark, M. Vidyasagar. 1989, Robot Dynamics and Control, John Wiley
& Sons, U.S.A

Johan Ingvast. 2006, “Quadruped Robot Control and Variable Leg
Transmissions”, KTH Industrial Engineering and Management, Stockholm,

Sweden.

Tsu-Tian Lee & Ching-Long Shih. 1986, “4 Study of the Gait Control of a
Quadruped Walking Vehicle”, IEEE Journal of Robotics and Automation,
Vol. RQ-2, No. 2, June 1986

J. Z. Kolter, M. A. Rodgers & Y. N. Andrew. 2008, “4 Control Architecture
for Quadruped Locomotion over Rough Terrain”, Stanford University,

Stanford

R. B. McGhee & A. A. Frank. 1968, “On The Stability Properties of
Quadruped Creeping Gaits”, J. Math. Biosciences

J. Tovine. 2004, PIC Microcontroller Project Book, McGraw-Hill, U.S.A
M. Predko. 2003, Programming Robot Controllers, McGraw-Hill, U.S.A

M. A. Mazidi, R. D. Mckinlay & D. Causey. 2008, PIC Microcontroller and
Embedded Systems: Using Assembly and C for PICIS, Prentice Hall, New

Jersey

R. Barnett, L. O’Cull & S. Cox. 2004, Embedded C Programming and the
Microchip PIC, Thomson Delmar Learning, New York

37

APPENDICES

38

APPENDIX 1

Example Crawling Gait Cycle of Quadruped Robot

Step 0 Step 1 Step 2 Step 3 Step 4
% *
\d Toe
ﬁ' f}’ * &
v
Step 4 Step 5 Step 6 Step 7 Step 8 = Step 0
5])
& (
ﬂ @T ﬁ @
> g
Step 0 Step 1 Step 2 Step 3 Step 4
°
e
) 28 o
o o s L '\l Legend
@ COG
Step 4 Step 5 Step 6 Step 7 Step 8=0
e Lifted-up
N ? © Grounded
e\T i\é' T/? "
LN | { ? -
v Stability
Polygon

Figure above illustrates the crawling gait sequence of quadruped robot from top view.
Taking step 0 as the original state of position with four legs grounded on floor
forming a parallelogram, when one leg is lifted up (the red dot represents a lifted leg),
a triangular polygon is formed by the remaining legs. These triangular polygon and
parallelogram are known as stability polygon. It is noted that the center of gravity is
fall within the constraint of stability polygon to avoid tip-over [4]. From step 0 to
step 8 is considered as one cycle where one leg is allow to lift up once per cycle. Step
8 has the same posture with step 0 but at a farther distance from the original position.
At this point, the quadruped robot can be reckoned as reaching the end of a crawling

gait cycle and a new cycle will be started.

39

APPENDIX 2

Schematic Design of Quadruped (Top View)

Y -axis

Leg B 4 Leg C

j oint3

Joint2

)t » X-axis

Leg A Leg D

40

APPENDIX 3

Schematic Design of Quadruped (Right-hand Side View)

Jointl
|
Link2
—

Joint3

150mm

Link3 Link1

Joint2 ?

Y -axis

LegD Leg C

41

APPENDIX 4

Global Coordinate Notation of Quadruped (Top View)

Y-axis
1 Leg C Tip: (v, , z)c
Leg B Tip: (x, y, z)8
Leg B Joint 3: (x3, v3, 23)5 Leg C Joint 3: (x3, y3, 23)¢
Leg B Joint 2: (x5, 2, z2)5 Leg C Joint 2: (x5, 2, z2)c
Leg B Joint 1: (0,)p Leg C Joint 1: (6;)c
COG: (X, Yo, Zo)
¢ » X-axis
Leg A Joint 1: (0,)4 Leg D Joint 1: (0)p
Leg A Joint 2: (x2, v2, 22)4 Leg D Joint 2: (x2, y2, z2)p
. eg D Joint 3: (x3, v3, z3)
Leg A Joint 3: (x3, y3,23)4 o
Leg D Tip: (x, v, z)p
Leg A Tip: (x, ¥, 2)4

42

APPENDIX 5

Joint Angle of Quadruped (Top View)

Y -axis

4} » X-axis

43

APPENDIX 6

Joint Angle of Quadruped (Right-hand Side View)

Z-axis

Leg D' Joint 2: (6,)p

J i

\—»Y—axis

Leg D

Leg C

44

APPENDIX 7

Example of Joint Angle and Coordinates Calculation

!@ Y, 2)4 /

Taking leg A as example, the joint angle of joint 1, ;4 can be obtained by using

Trigonometry provided the coordinate of joint 2 and foot tip are known. Note that
purple line is a reference axis where the arrow starts from. Joint 1 angle, 6;, is
positive if foot tip stays below the reference axis, whereas it goes inversely if foot tip
stays above the reference axis.

V24— Va

tan (6,,) = " .
24 A

T — 7
. 1A Vs
;4 = tan f} —)
Xoa — Xy

45

/ Link 2 and Link 3
Vertical Planar View

\i% Z)4 /

Imagine link 2 and link 3 of leg A forms a vertical plane where joint 2 angle, 6,4 and
joint 3 angle, 34 can be seen clearly from this view. 6,4 and 634 can be obtained by
using Trigonometry and Law of Cosines provided the coordinate of joint 2 and foot
tip, length of link 2 (L,) and 3 (L;) are known. The calculation of 6,4 is shown as

below.

Law of Cosines:

La=L3+ (0 — %) + (Vo — V)’ + (2, —25)° —

2[‘2\/{:1:2.4 —X4)% + (Voua—Va)? + (2, — 25) % cOS (HIEA +

tan~ 1 : Zz—Zg)
(*\-" (4, 4%)% +(yo 4 —va)®

46

g — _1 [Le+epa—x4 " +(3na—ya) +E2—20)° L3}
v 24 = CoO f =] z
2L (kpa—x4)%+(y54—¥4) 2 +H=z2—2g)

tan~? (Z2Fo)
-\."'{J'G pa—%4)? +yoa—val®

The joint 3 angle, 034 can be obtained by using the same approach as calculating 6,,.

The calculation of 83,4 is shown as below.

Law of Cosines:

(x4 — xAJE + (Vou— }’.«1)2 + (z, _Zajz = L% + ng -
2]{12 LEGGS(].SO_ ﬂgﬂ]

(24 = %4)° + (Voua — Va)® + (2, —25)> = L5 + L5 + 2L, Lycos(f3,)

2L, L,

" 034 =cos™t ([xm —%0)2 + (Vou — V) + (22— 25)7 — 13— ng)
LBy, =

47

APPENDIX 8

Crawling Gait of 16 Steps (Timing Adjusted)

Step 0 Step 1 Step 2 Step 3 Step 4
(' T/ °
L R
& ! v v
Step 4 Step 5 Step 6 Step 7 Step 8
BB g @
Yv e
Step 8 Step 9 Step 10 Step 11 Step 12
AN
> >
& COG
Step 12 Step 13 Step 14 Step 15 Step 16 =0 | @ Lifted-up
° @ Grounded
é’ | %)
: i % s
v ov

Stability
Polygon

At step 1, all legs remain grounded and push the COG forward. No leg is lifted up at

step 1 because lifting one leg up will leave the COG lay right above the boundary

line of stability polygon and thus static stability is hardly secured. This problem has

been explained in Section 2.6. Same approach is used at step 9 as it has the same

problem with step 1. Note that the red-colored leg at step 6 is landed at step 7 instead

of step 8. This is so because of the stability problem again. If the red-colored leg at

step 6 does not land at step 7 and leave only three legs on the ground, the COG will

be too close to the boundary line of stability polygon and the static stability margin

might turn negative (means tip-over will occur). Therefore, red-colored leg at step 6

will be landed at step 7 ahead of step 8 to avoid tip-over. Step 15 has the same

problem as step 7 and thus same approach is used.

APPENDIX 9

Single Servomotor Program

#include <18F458.h>

#device adc=8

#Huse delay(clock=4000000)

#fuses NOWDT,WDT128,RC 10, NOPROTECT, NOOSCSEN, NOBROWNOUT, BORV20,

NOPUT, NOCPD, NOSTVREN, NODEBUG, NOLVP, NOWRT, NOWRTD, NOWRTB,
NOCPB, NOWRTC, NOEBTR, NOEBTRB

int8 selection, duty;

#int RTCC
RTCC _isr()

set_rtcc(47535);
if(selection & 0x02)
{ duty++;
if(duty>20)
{ duty =20; }

}
else if(selection & 0x04)

{ duty--;
if(duty<10)
{ duty = 10; }
}
else
{ duty=15; }

output_high(PIN_D4);
delay ms(1);

switch(duty)
{ case 10: break;
case 11: delay us(100); break;
case 12: delay us(200); break;
case 13: delay us(300); break;
case 14: delay us(400); break;
case 15: delay us(500); break;
case 16: delay us(600); break;
case 17: delay us(700); break;
case 18: delay us(800); break;
case 19: delay us(900); break;
case 20: delay ms(1); break;

Output logic low
output_low(PIN_D4);

void main()

{ // Setting
setup_adc_ports(NO_ANALOGS);
setup_adc(ADC_OFF);
setup_psp(PSP_DISABLED);
setup_spi(FALSE);
setup_wdt(WDT_OFF);
setup_timer O(RTCC_INTERNALIRTCC_DIV_1);
setup_timer 1(T1_DISABLED);
setup_timer 2(T2_DISABLED,0,1);
setup_timer_3(T3_DISABLEDI|T3_DIV_BY_1);
setup_comparator(NC_NC_NC_NC);
enable_interrupts(INT_RTCC);
enable_interrupts(GLOBAL);

Loop_ Forever
while(1)
{
selection = input_B();
}
}

49

APPENDIX 10

Single Servomotor Wiring Diagram

+5V
A
10 kQ | 1
32
0
v
X %
%) kQ
O 34
aMHZXT 2 S 0/
o
12 Tk
27 p—
31 Servo —
— — Ground —

50

APPENDIX 11

Three Servomotors Program

#include <18F458.h>

#device adc=8

#use delay(clock=4000000)

#fuses NOWDT,WDT128,RC 10, NOPROTECT, NOOSCSEN, NOBROWNOUT, BORV20,

NOPUT, NOCPD, NOSTVREN, NODEBUG, NOLVP, NOWRT, NOWRTD, NOWRTB,
NOCPB, NOWRTC, NOEBTR, NOEBTRB

int8 selection, dutyl, duty2, duty3;

#int RTCC
RTCC isr()

set_rtec(47535);

if(selection & 0x01)
{ if(duty1<10)
{ dutyl =15;}
dutyl++;
if(duty1>20)
{ dutyl =20; }
}

else if(selection & 0x02)

if(duty1<10)

{ dutyl =15;}
dutyl--;
if(duty1<10)

{ dutyl =10; }

else
{ duty =15; }

output_high(PIN_D4);
delay ms(1)
switch(dutyl)
{case 10: break;
case 11: delay us(100); break;
case 12: delay us(200); break;
case 13: delay us(300); break;
case 14: delay us(400); break;
case 15: delay us(500); break;
case 16: delay us(600); break;
case 17: delay us(700); break;
case 18: delay us(800); break;
case 19: delay us(900); break;
case 20: delay ms(1); break;

}
output_low(PIN_D4);
}

#int TIMERI

TIMERI isr()

{ set_timerl(47535);
if(selection & 0x04)

if(duty2<10)
{ duty2=15;}

duty2++;

if(duty2>20)
{ duty2 =20; }

51

else if(selection & 0x08)
{ if(duty2<10)
{ duty2=15;}
duty2--;
if(duty2<10)
{ duty2=10; }

else

{ duty2=15;}
output_high(PIN_D5);
delay_ms(1);

switch(duty2)
{

case 10: break;

case 11: delay us(100); break;
case 12: delay us(200); break;
case 13: delay us(300); break;
case 14: delay us(400); break;
case 15: delay us(500); break;
case 16: delay us(600); break;
case 17: delay us(700); break;
case 18: delay us(800); break;
case 19: delay us(900); break;
case 20: delay ms(1); break;

}
output_low(PIN_DS5);
}

#int TIMER3
TIMER3 _isr()
{ set_timer3(47535);

if(selection & 0x10)
{ if(duty3<10)
{ duty3 =15;}
duty3++;
if(duty3>20)
{ duty3 =20; }
}

else if(selection & 0x20)
{ if(duty3<10)
{ duty3 =15;}
duty3--;
if(duty3<10)
{ duty3 =10; }
}

else
{ duty3 =15;}

output_high(PIN_D6);
delay_ms(1);
switch(duty3)
{ case 10: break;
case 11: delay us(100); break;
case 12: delay us(200); break;
case 13: delay us(300); break;
case 14: delay us(400); break;
case 15: delay us(500); break;
case 16: delay us(600); break;
case 17: delay us(700); break;
case 18: delay us(800); break;
case 19: delay us(900); break;
case 20: delay ms(1); break;

}
output_low(PIN_D6);
}

52

void main()

{

setup_adc_ports(NO_ANALOGS);
setup_adc(ADC_OFF);
setup_psp(PSP_DISABLED);
setup_spi(FALSE);

setup_ wdt(WDT_OFF);

setup_timer O(RTCC_INTERNAL|RTCC DIV _1);
setup_timer_1(T1_INTERNAL|T1_DIV_BY_1);
setup_timer 2(T2_DISABLED,0,1);
setup_timer 3(T3 _INTERNAL|T3 DIV _BY 1);
setup_comparator(NC_NC_NC_NC);
enable_interrupts(INT_RTCC);
enable_interrupts(INT TIMERI);
enable_interrupts(INT_TIMER3);
enable_interrupts(GLOBAL);

while(1)
{
selection = input_B();
}
}

53

APPENDIX 12

Three Servomotors Wiring Diagram

10 kQ

4 MHz XT 13

29
28

12
31

PIC18F458

— Ground

T

Servol
t L

Servo2

TJ_

Servo3

1

54

APPENDIX 13

Technical Drawings of Quadruped

1
600Z/€0/ 10

I I T |
L/E 133HS LiE o 3708 NI" NVNA 3J3A
3.1vd Ad Od3IN9Is3d

padnJpenyd LA TR NI9 NYNA 33A

HIgNNN 9ONIMYHA| 371IS 31va A AIHIIHID

MBTA Tedauan padndpenp B00z/E0/El NI NYNA JJA

3.1vd Ad NMvwHd

J1LIL ONIMYHd

SYNO4L13d
IO90TTONMIL ILISHIAINN

SHILANITIIN NI 3IHY SHOISNINIAQ
$03I41734S 3ISIMHIHLO SS3TINN

55

v ! 1 a
1 1 1 1 1 1 1 1 1 1
L1 133HS Sil ER AL SO0ZIEaTHO NI9 NYNA J3A
PodipEnD W [mRTE Wik 39K
HIGWNN HNIMvHA| 3ZIS 3lva A9 aIOIHD
padnJpenp 10 uoTidoaloud aTbuy pJdtyl 60027€0/5}H NI9 NVOA 3J3A
3lva A9 NMvHO

J1LIL 9NIMvHd

SVYNOd13d
I90TTONMIL ILISHIAINN

SHILINITIIN NI JHY SNOISNIWIO
+03I4103dS 3ISIMHIHLO SSITNN

MSTA 1137

MBTA 1U0J 4

56

I a

g/v 133Hs

Prb o 3W3S

L0-pPapoTdX3

HIFWNN HONIMYHA

144

I I 1 1 . _
SETEOEITNTE NVNA 33A
31vd Ag9 03INDIsS3d

3718

SEEIENNTE NYNA J3A
31va A8 _Q3INQIHY

padnJpeny JO MOTA PapoOTdx3

J1LIL INIMvHd

0T NTE NYNA 33A
31vd A" NMvHd

SVYNOd13d
I90TTONMIL ILISHIAINN

SHILINITTIN NI 3HY SHNOISNINIA
+03I4I03dS ISIMYIHLO SS3TNN

MATA JTJ]BWOS]

lJed Il wolljog awedd z
1Jed L do] swedd 9
1Jed % ButTdno) g
ATquassy 1 a Be7 ¥
ATquassy 1 9 Ba7 £
ATquassy l g ban Z
ATquassy 1 vy Ba7 b
adAl|AiTiuenp| Jaquny 1Jded|Jaqunp
padnapeny :TeTJalel JO TTTE
p-J m (9] _ o

57

v I | a

| 1 1 1
z/z 133HS zir 3wos| o F | NIEONVNA 33A
31va A8 Q3INOISIa
ND.U&UDHQKN ._u.q._ BO0Z/ B0/S1 ZHm Z{D.r Mm} h__q__m._..__) U._”L”_.wEOmH
wagNnN oNIMvda| 3z1s| 3iva AG AINOTHD
Da7 Jo mMaTA papoTdx3 eonarearst NI NVNA J3A
31va AS NMYHO

J1LIL 9NIMvHd

m{ZOI |_|mn_ SHILINITIIN NI JHY SNOISNIWIO
HOOI_OZV._Ml_l Hn_lemm_},Hz: +03I4103dS 3ISIMHIHLO SSITNN

}Jed | €7 18MoeJd g
1Jed c 21 1e¥oeJd ¥
1Jed Z butTdno) €
1Jed > Lr 18¥oedgd 2
}Jed € JO30l !
adA]l|A1T3uenp| Jdaquny 1Jed| Jaquny

6o :TeTdelew Jo TTTE

58

Front view

Left wview

UNLESS OTHERWISE SPECIFIED:
DIMEMSIONS ARE IMN MILLIMETERS

UNIVERSITI TEKNOLOGI

PETRONAS

DRAWING TITLE

DRAWN BY DATE

YEE YUAN BIMN]is:ass00s Third Angle Projection of Leg A

CHECKED BY DATE SIZE |DRAWING NUMBER

YEE YUAN BIN 15033009

DESIGNED BY DATE Ad |=E'§] A)

YEE YUAN BIN 0110212009 SCALE 1:2 SHEET 1M1
D ! A

59

Isometric view

Left view

Front view

UNLESS OTHERWISE SPECIFIED: UNIHEHSITI TEKNOLDGI
DIMEMSIONS ARE IN MILLIMETERS PET HC‘NAS

DRAWING TITLE

DRANN BY DATE

YEE YUAN BIN |isneae] Third Angle Projection of Leg B

CHECKED BY DATE [SIZE [DRAWING WUMBER

YEE YUAN BIN 1593/ 3009

DESIGNED BY DATE Ad Leg ©

YEE YUAN BIN |ovoeo0]PhRE 132 SHEET 1/1
D ! A

60

Left view

Front wview

UNLESS OTHERWISE SPECIFIED: UNIHEHSITI TEKNOLDGI
DIMEMSIONS ARE IN MILLIMETERS PET HC‘NAS

DRAWING TITLE

DRANN BY DATE

YEE YUAN BIN |isneae] Third Angle Projection of Leg ©

CHECKED BY DATE [SIZE [DRAWING WUMBER

YEE YUAN BIN 1593/ 3009

DESIGNED BY DATE Ad Leg C -

YEE YUAN BIN |ovoeo0]PhRE 132 SHEET 1/1
D ! A

61

[

©

[

Top view

Left wview
Front view
UNLESS OTHERWISE SPECIFIED: UNIVERSITI TEKNOLOGI
DIMEMSIGNS ARE IN MILLIMETERS PETRONAS
_ DRAWING TITLE
DRAWH BY DATE
YEE YUAN BIN {508 /00 Third Angle Projection of Leg D
CHECKED BY DATE SIZE |DRAWING WUMEBER
YEE YUAN BIN 1505 3003
DESIGHNED BY DATE Ad |=E£] D
YEE YUAN BIN J5/05 5009 SCALE 1:2 SHEET
D ! A

62

UNLESS OTHERWISE SPECIFIED:
DIMEMNSICONS ARE IN MILLIMETERS

UNIVERSITI TEKNOLOGI PETRONAS

DRAWING TITLE

DRANN BY DATE
— [¥EE_YUAN BIN 150 300 Servo Motor
CHEGKED BY DATE |SIZE |DRAWING NUMEBER
YEE YUAN BIN 15033003 i M -0
DESIGNED BY DATE Ad Motor-M1-01 .
YEE YUAN BIN |is0sz00|°ORFE 101 SHEET 1/2
D ! A,

63

[[&] o <L
4
47 .26
e @l =
xﬁ'lé_ = ',':_'
® o
il o —
9.66 \@;ﬁ
R’
30.88
54.88
3
(o]
r
o
o[T .
: ; :
i 7.5
UHLESS OTHERWISE SPECIFIED:
DIMEMSIONS &RE IN MILLIMETERS UNI.‘JEHSITI TEKNDLUGI PETHGNAS
_ DRAWING TITLE
DRAWN BY DATE
[YEE YUAN BIN 1503 /3008 Servo Motor 1
CHECKED BY DATE SIZE |DRAWING WUMBER
YEE YUAN BIN |isi000000 totor-M1-0
DESIGNED BY DATE Ad Motor-M1-02 .
YEE YUAN BIN |isi00000|°CPRE 131 SHEET 22
D ! A,

64

4
3
.]
2
UNLESS OTHERWISE SPECIFIED: UNIVERSITI TEKNOLOGI
DIMENSIONS ARE INM MILLIMETERS PET HQNAS
o JDRAWING TITLE
DRAWN BY DATE
YEE YUAN BIN Ji5/005000 Motor Coupling 1
CHECKED BY DATE SIZE |DAAWING NUMBER
YEE YUAN BIN Ji5.00p000 ing-ci-
DESIGNED BY DATE Ad ':DUDM C1-01 .
YEE YUAN BIN |oi0a2000|°CPFE 101 SHEET 1/2
D 1] A

65

UNLESS OTHERWISE SPECIFIED:

UNIVERSITI TEKNOLOGI

DIMEMSIONS ARE IN MILLIMETERS PET H{)NAS
— DREAWING TITLE
DRAWN BY DATE
YEE YUAN BIN |iso0 00 Motor Coupling
CHECKED BY DATE SIZE |DRAWING MUMBER
YEE YUAN BIN 1505/ 2009 ing-ci-
DESIGNED BY DATE Ad GDUDMQ ¢ ﬂg)
YEE YUAN BIN |oyosp00°CR-E 101 SHEET 2/2
D 1] A

66

UNLESS OTHERWISE SPECIFIED:
DIMEMSIONS ARE IMN MILLIMETERS

UNIVERSITI TEKNOLOGI
PETRONAS

DRAWING TITLE

DRAWNN BY DATE

YEE YUAN BIN 1503 300 Motor Bracket

CHECKED BY DATE SIZE |CRAWING MUMBER

YEE YUAN BIN Ji5.00p000 -J1-

DESIGNED BY DATE Ad Bracket-Ji 01)

YEE YUAN BIN |oi0a2000|°CPFE 101 SHEET 1/2
D ! A

67

O] o <L
2 2
4
T 1
o
~ 27.67 ﬂ
= B
> 40.98 !
27.82 | 3
o) Fs 8 <
_- 1& ?l 2
~ = o
},‘_Ju 14 i ﬁ
ol 20.32|] 9 ¢ | o \@\
[=4] 1 ! o
< T -
s M|
‘13/”_ o p=te ,
o 4 e
“ 9.91 o
= —
o

UNLESS OTHERWISE SPECIFIED:

UNIVERSITI TEKNOLOGI

DIMEMSIONS &RE IN MILLIMETERS PET HDNAS
_ DRAWING TITLE
DRAWN BY DATE
YEE YUAN BIN 15 01 S0 Motor Eir‘ar;l»«:et
CHECKED BY DATE S5IZE |DRAWING MUMBER
YEE YUAN BIN 1505/ 2009 NE.
DESIGNED BY DATE Ad Bracket-J1-02 .
YEE YUAN BIN |oyosp00°CR-E 101 SHEET 2/2
D ! A,

68

UNLESS OTHERWISE SPECIFIED:

UNIVERSITI TEKNOLOGI

DIMEMSIGNS ARE IN MILLIMETERS PETRONAS
_ DRAWING TITLE
DRAWH BY DATE
YEE YUAN BIN Jisi005000 Linkage Type-I
CHECKED BY DATE SIZE |DRAWING MUMBER
YEE YUAN BIN 1505/ 2002 : R
DESIGNED BY DATE Ad Qﬂkage_I_E 01 ,
YEE YUAN BIN |oiosom°CRtE 101 SHEET 1/2
D 1] A

69

56

31.26

59

28

UNLESS OTHERWISE SPECIFIED:

UNIVERSITI TEKNOLOGI

DIMEMSIONS ARE IN MILLIMETERS PETH{]MAS
— DREAWING TITLE
DRAWN BY DATE
YEE YUAN BIN Jisi005000 Linkage Type-I
CHECKED BY DATE SIZE |DRAWING MUMBER
YEE YUAN BIN 1505/ 2009 ; R
DESIGHNED BY DATE Ad EI"II(EI e-L2-02)
YEE YUAN BIN |oyosp00°CR-E 101 SHEET 2/2
D 1] A

70

UNLESS OTHERWISE SPECIFIED:
DIMEMSIONS ARE IMN MILLIMETERS

UNIVERSITI TEKNOLOGI
PETRONAS

DRAWING TITLE

DRAWN BY DATE

[YEE YUAN BIN 1503 2008 Linkage Type-II

CHECKED BY DATE S5IZE |DRAWING MUWMBER

EE YUP\N BIN 15,057 2009 A4 ' _ _

DESIGNED BY DATE Linkage-L3-01 .

YEE YUAN BIN |oi0a2000|°CPFE 101 SHEET 1/2
D I| A

71

[[&] m <L
7
4.84
20.32 3
LR 4
-‘-\-\.‘-‘-\-‘-"ICH e ™
O C B
-+
=]
oo M) T
S w‘; E‘?\ |
i
3
15 |
o
uy
o
o .
\> R b T3
o R\\\ ,,.»-""j’ -1
[n]]
/ :
h,]
30 b g
4,77
UNLESS OTHERWISE SPEGIFIED: UNIVERSITI TEKNOLOGI
DIMEMSIONS ARE IN MILLIMETERS PET H{)NAS
— DREAWING TITLE
DRAWN BY DATE
E YIUAN BIN 1B 8% M0 Linkage Type-11I 1
CHECKED BY DATE SIZE |DRAWING MUMBER
YEE YUAN BIN 1505/ 2009 ; o1 1.
DESIGHNED BY DATE Ad EI"II(EIQE_LS Gg .
YEE YUAN BIN |oyosp00°CR-E 101 SHEET 2/2
D 1] A

72

= & o <
UNLESS OTHERWISE SPECIFIED: UNIvEHSITI TEKNOLDGI
DIMEMSIONS SRAE IN MILLIMETERS PET HGNAS

_ IDRAWING TITLE

DRAWN BY DATE
YEE YUAN BIN 150 104 Body Frame Top
CHECKED BY DATE SIZE |DRAWING MUMBER
'YEE YUAN BIN |00 000 “F1-0
DESIGNED BY DATE Ad Frame-F1-01 .
YEE YUAN BIN |ojosgon|SCR-E 102 SHEET 1/2

D ! A,

73

O & o <L
ﬁ
140
31.34 i
&
O =
I ¢ -
2 95 o @
Qﬁ
(=
<
UNLESS OTHERWISE SPECIFIED: UNIVERSITI TEKNOLOGI
DIMEMSIONS ARE IN MILLIMETERS F.'ET HDNAS
____IDRAWING TITLE
DRANN BY DATE
[YEE YUAN BIN 1503 /3008 Body Frame Top
CHECKED BY DATE [S1ZE |DRAWING NUMBER
[YEE YUAN BIN |ici00 00 F1.0
DESIGNED BY DATE Ad Frame-F1-02 .
YEE YUAN BIN |ogs0®PAFE 132 SHEET 2/2
D ! A

74

= (] o <
UNLEES OTHERWISE SPECIFIED: UNIHEHSITI TEKNOLDGI
DIMEMNSIONS ARE IM MILLIMETERS PET HONAS

—JDRAWING TITLE

DRAWNN BY DATE
YEE YUAN BIM 1is:0500a Body Frame Bottom
CHECKED BY DATE |SIZE |DRAWING NUMBER
[YEE YUAN BIN 15030000 -F2-0
DESIGNED BY DATE Ad Frame-F2-01 .
YEE YUAN BIN |oyi0s2000|°CAFE 132 SHEET 1/2

D ! A

75

O & o <L
% 4
©d
140 -
=5
2
= 3
ﬁ\
L]
=+
2
UNLESS OTHERWISE SPECIFIED: UNIVERSITI TEKNOLOGI
DIMEMSIONS ARE IN MILLIMETERS F.'ET HDNAS
____IDRAWING TITLE
DRAWN EBY DATE
YEE YUAN BIN 15,03 308 Body Frame Bottom i
CHECKED BY DATE [SIZE |DRAWING NUMBER
[YEE YUAN BIN 1000000 Cen
DESIGNED BY DATE Ad Frame-F2-02 .
YEE YUAN BIN |ogs0®PAFE 132 | SHEET 2/2
D 1] A

76

APPENDIX 14

Preliminary Gait Simulation
Step 0 (Initial Position)

Input (Step No.} Stability Polygon
[shadaw of Criginal Pasition
no[0 | [<]] 24
o Stability Polygon
] —
Leg B Rear View Leg C'\Rear View \\
—— 48— 140 \
120 \
0 LW 2
50 N ., il 4|
: N /|
0 P il / I
-150 -100 -50 Q a 50 100 150 — I
—T-i LegB re_j LegC | |
Leg A Rear View Leg D Rear View joint3-| ; :
—a 2t 133 i -180 -150 i—‘! i?ﬂ -a0 —ﬁlﬂ ;n 6 Q:’\ ;In ag 1")ﬂi 150 180
| I i
60 - | LegA LQ——l LegD 7’*—
40 ~ | e
2] I i) =
4150 -100 50 0 o | o
I =
-] _—*
Joint2 | -70.00 | 70.00 | 30.00 Jomt2 | 70.00 | 70.00 | 30.00
Joint3 | -114.93 | 62.51 | 119.02 Joint3 | 104.27 | 115.70 | 112.08
Tip [-130.00 | 60.00 0.00 Tip 130.00 | 150.00 | 0.00
Joint2 | -70.00 | -70.00 | 30.00 Joint2 | 70.00 | -70.00 | 30.00
Joint 3 | -104.27 | -115.70 | 112.08 Joint3 | 114.93 | -62.51 | 119.02
Tip |-130.00 | -150.00 | 0.00 Tip 130.00 | -60.00 0.00

77

Step 1

Input (Step No.)

no[1][] [

Leg B Rear View
—_— 340

-150 -100 -50 Q

140

Leg C Rear View

Leg A Rear View

—_— 340
L. 1- S

-150 -100 -50 0

Leg D Rear View

Stability Polygon

[shadow of Criginal Position

H
=

— === -
L]
=1

78

Step 2

Input [Step No.) [¥] stability Polygon
[shadow of Criginal Position
No. g i 2
Leg B Rear View Leg C Rear View
T L 140
120
100
g A
80
40 B — — I
20 " I
=i
0 - = |
86
-150 -100 50 0 0 50 100 150 _‘p/’ |
@
~ I
= 46 T
. . ~
Leg A Rear View Leg D Rear View = 5
~2 |
R L 140 —B —
o]
120 5§ 0 Q0 160 -30 O Tal 1201 150
& T
100 - =]
80 = |
60
20 | /
——20— 20
i} Cal
— 81 R
150 -100 -50 a 0 30 100 150

79

Step 3

Input (Step No.) Stability Polygen

- o [shadow of Criginal Position
Ne. ba Ui (2]

Leg B Rear View Leg C Rear View
T L 140
120
100
80 46 = ~al
80 e / |
40 B — I
20 00
a - I
86
<150 -100 -50 Q 0 50 100 150 j = |
=
~ I
N e |
Leg A Rear View Leg D Rear View = 5
~2 |
————H8— 140 T T T T —& T T T i T
~
7 12 120 4 1 <150 <120 oo Jso -3q 30~ 50 120 150
V4 109 100 — - = ~ T
7 B0 80 |
F 0 §0 S~
40 40 -
d
——20— 20
— 81 0 -
150 -100 -50 a 0 50 100 150

80

Step 4

Input (Step No.)

(<]

No.

[

U

Leg B Rear View
—_— 340

-150 -100 -50 Q

140

Leg C Rear View

Leg A Rear View
L

Leg D Rear View

Stability Polygon

[shadow of Criginal Position

149 :/.
120 s L
|
i |
i
50
_A = |
T I
]
[I
*x |
]
: N T~ b . —
118
-18 0 =120 =00 ‘ ﬂﬂﬂﬂﬂﬂ ﬁ g0 ag 1')ﬂ= 1
~ |

81

Step 5

Input (Step No.)

(<]

No.

i

Leg B Rear View

-150 -100 -50 Q

140

Leg C Rear View

Leg A Rear View
L

Leg D Rear View

Stability Polygon

[shadow of Criginal Position

82

Step 6

Input (Step No.)

No. [

Leg B Rear View
—_— 340

. 28 .
——t

-150 -100 -50 Q

140

Leg C Rear View

Leg A Rear View
L

-150 -100 -50 0

Leg D Rear View

50 100

Stability Polygon

[shadow of Criginal Position

83

Step 7

Input (Step No.)

o e Y

W

Leg B Rear View

—_— 340
120 |

-150 -100 -50 Q

140

Leg C Rear View

Leg A Rear View
L

-150 -100 -50 0

Leg D Rear View

Stability Polygon

[shadow of Criginal Position

84

Step 8

Input (Step No.)

No. [

Leg B Rear View

—_— 340
——————— 320

-150 -100 -50 Q

140

Leg C Rear View

Leg A Rear View
L

-150 -100 -50 0

Leg D Rear View

Stability Polygon

[shadow of Criginal Position

85

Step 9

Input (Step No.)

No. [

Leg B Rear View
—_— 340

-150 -100 -50 Q

140

Leg C Rear View

Leg A Rear View
L

-150 -100 -50 0

Leg D Rear View

Stability Polygon

[shadow of Criginal Position

86

Step 10

Input (Step No.)
No. [«

Leg B Rear View
—_— 340

-150 -100 -50 Q

140

Leg C Rear View

Leg A Rear View
L

-150 -100 -50 0

Leg D Rear View

il

Stability Polygon

[shadow of Criginal Position

-
-
11 50 0 o0 1M 15:

87

Step 11

Input (Step No.) Stabilty Polygon
[shadow of Criginal Position
No. [« 0

Leg B Rear View Leg C Rear View

— 348 140

-150 -100 -50 0 a 50 100 150

Leg A Rear View Leg D Rear View

—— 48— 140 ——— r T T T T —a

-150 -100 -50 0 0 50 100 150

88

Step 12

Input [Step No.) Stability Polygon
[shadow of Criginal Position
No. m U e
R
I N
Leg B Rear View i
g Leg C Rear View } 5o = \
T L 140 | %
=
120 | T .\\
100 | Qf
80 g
0 | ")
G
40 : | = //
20 =
0 - | -
-150 -100 50 0 0 50 100 150 I > =
60
|| i
—
Leg A Rear View Leg D Rear View
L 140 ——————————————— T - . : - —B
120 5§ 20 Tal fal Tal ial 0
100
80
60
40 -
20
i}
-150 -100 -50 a 0 30 100 150

&9

Step 13

Input [Step No.) Stability Polygon
[shadow of Criginal Position
No. m U ed
‘:\ 220 =
Leg B Rear View Leg C Rear View | i 2
S
— 140 @90 ——— | Iy
120 AN | T
100 -
80 AN | []
N 46 —
60 AN | ~ .
+26
20 % I B
0 ———— 106 =
0 4 | - /
A
<150 -100 -50 Q 0 50 100 150 I =
| 7 == N
—_
Leg A Rear View Leg D Rear View
L 140 ————————————— T - . : - —B
120 5§ 20 Tal fal Tal ial 0
100 -
80
60
40 -
20
o4
-150 -100 -50 a 0 50 100 150

90

Step 14

Input (Step No.)
No. [«

Leg B Rear View
—_— 340

-150 -100 -50 Q

140

Leg C Rear View

it

Leg A Rear View
L

-150 -100 -50 0

Leg D Rear View

Stability Polygon

[shadow of Criginal Position

N

N
\
\
A

91

Step 15

Input (Step No.)

o[B] <]

Leg B Rear View
—_— 340

-150 -100 -50 Q

140

Leg C Rear View

Leg A Rear View

—_— 340
_— 130

-150 -100 -50 0

Leg D Rear View

Stability Polygon

[shadow of Criginal Position

N

\

\

\
™\

A

N

- = = = = — ———— —

k—————— f— e e —
N
\

92

Step 16

Input (Step No.)
No. [«

Leg B Rear View
—_— 340

-150 -100 -50 Q

140

Leg C Rear View

Leg A Rear View

—_— 340
_— 130

-150 -100 -50 0

Leg D Rear View

Stability Polygon

[shadow of Criginal Position

N

_1

- 1 = = — ——— ==

93

APPENDIX 15

Readjusted Gait Simulation

Step 0 (Initial Position)

Input (Step No.

N[o] <]

Stability Polygon

&
[[1shadow of Original Position

[

Stability Polygon |

Leg B Rear View
— 150

120
20

AN

v—s 80

30

0
-250 -200 -150 -100 -50

Leg C Redr View :D

| [=] L

] T T Jwc
o 4

o 20 100 150 200

|
4
!
|
150 134
t
|

|
|
r I T T T T
R — 210 JIlBD s0 -120 -o0| -s0 -30 30 s0 [a0 120 210
- 150 150 | [| |
R, T 120 n/"‘-—-l Joint3 I | — 4-—:','—’4
o & 4 | -
B =
Lo 9 /I' . \ & | / gt T
250 200 -150 -100 -50 %5& 100 \150\-;;0\\I_$I !'/,_, =
[v | - [v] -
Joint 1 | -80.00 | 80.00 50.00 Joint 1 | 80.00 80.00 50.00
Joint2 | -115.60 | 77.05 50.00 Joint2 | 105.63 | 105.63 | 50.00
Joint3 | -185.43 | 71.40 | 118.00 Joint3 | 158.87 | 158.87 | 111.56
Tip -186.07 | 71.35 0.00 Tip 186.07 | 186.07 0.00
Joint 1 | -80.00 | -80.00 | 50.00 Joint 1 | 80.00 | -80.00 | 50.00
Joint 2 | -105.63 | -105.63 | 50.00 Joint2 | 116.13 | -77.05 | 50.00
Joint 3 | -158.87 | -158.87 | 111.56 Joint3 | 185.43 | -71.40 | 118.00
Tip -186.07 | -186.07 | 0.00 Tip 186.07 | -71.35 0.00

94

Step 1

Input (Step No.}

H

el U

Leg B Rear View

Leg C Rear View

Stability Polygon

6
[[1shadow of Original Position

-
-
—

.\
150 - 4
T 50 ——— —
i T I
120 120 =
- 3 |
20 20 o = - |
N\ o —= -
N—e 60 |
30 30 - - I
~
r T T T o 0 - T |
-250 -200 -150 -100 -50 0 50 100 150 200 sz |
~ @ i
T — = - - - T+
i i -210 -180 -150 -120 -o0| -0 -30 30~ 80 |s0 120 150 189 210
Leg A Rear View Leg D Rear View 3 = |
_— 150 150 i A
t
120 120 e
90 90 /
60 80 / /-
L 30 30 -
—————— 0 0
-250 -200 -150 -100 -50 0 50 100 150 200

95

Step 2

Input (Step No.}

v [2] W

Stability Polygon

[1shadow of Origin:

&l Position

210

Leg B Rear View Leg C Rear View /ﬂ
—
- 150 0 o T / |
== |
120 120 S I
—
\ 20 90 :’g l
v—t 60 60 ~ ; |
30 30 -~
S~ = I
! T T T 0 o+ -~ N
-250 -200 -150 -100 -50 0 50 100 150 200 [~ — = !
~ I
. X -210 -180 -150 -120 -90] -60 -30 30~ 60 |90 120 150 131!1
Leg A Rear View Leg D Rear View 3 l
-
~
—_ B 150 |
o ~
120 120 |
90 20 /
- 60 60 7/
30 30
— 0 0
-250 -200 -150 -100 -50 0 50 100 150 200

96

Step 3

Input (Step No.}

@

J

Stability Polygon

6
[[1shadow of Original Position

Leg B Rear View Leg C Rear View]
T
=
s -
150 150 — "/ |
—_
120 120 = |
\ 50 20 / = |
—
\ 60 60 — ‘/“ |
30 30 L |
- S~
o 0 S . |
-250 -200 -150 -100 -50 0 50 100 150 200 ™~ [] |
— = ;
T —8 T T T T —
. X -210 -180 -150 -120 -90] -60 -30 3o~ 60 |so 120 150 184 210
Leg A Rear View Leg D Rear View 3
S [
—_— 150 150 & |
b 120 120 N
90 20 /
- 60 60 7
30 30
— 0 0
-250 -200 -150 -100 -50 0 50 100 150 200

97

Step 4

Input (Step No.}

@

U

Stability Polygo

n

6
[[1shadow of Original Position

Leg B Rear View Leg C Rear View
_ 150 150 /'T
o’ |
T 120 120 il I
- 90 20 / o I
—
| -
50 80 / /} — |
r 30 30 o I
o 0 | |
T
-250 -200 -150 -100 -50 0 50 100 150 200 |
‘\n—..
. X -210 -180 -150G120 9060 -30 30 60 |90 120 150 13!1 210
Leg A Rear View Leg D Rear View i -33
- 150 150 |
.
b 120 120 N
=
90 20 /
- 60 60 7
30 30
-0 0
-250 -200 -150 -100 -50 0 50 100 150 200

98

Step 5

Input (Step No.)
vo.[5]

=]

Leg B Rear View

Leg C Rear View

Stability Polygon

[CJshadow of Original Position

— 150 /ﬂ
-
r 120 —
| -
- 80 /
L 60 /
r 30
B
———+ 0 —— sl
250 -200 -150 -100 -50 0 50 100 150 200 -
o
[=

Leg A Rear View
- 150
120
90
\\—. 60
30
0

-250 -200 -150 -100 -50

Leg D Rear View

V4

o—d

o 20

100 150 200

T T T
90 120 150 18

r | — T T —6
-210 -180 -1 0~ 90] -60 -30
— 2.

-..--.____‘_\
—_
-

Il

I

|

I

|

1

|

|
Ay
J 210
1

T

|

I

|

%

99

Step 6

Input (Step No.)

L

Leg B Rear View

Leg C Rear View

Stability Polygon

[CJshadow of Original Position

_ 150 150 —
—
t 120 120 — I
. —
- @0 20 |
/ -
- 60 60 — = |
L 30 30 —= }
-
——T— 7+ 0 a T T T T = I
-250 -200 -150 -100 -50 0 50 100 150 200 o e |
= |
! T T T T T T T T H—
i i -210 -180 -T -e0] -50 -30 30 60 |s0 120 150 180
Leg A Rear View Leg D Rear View
= I
- 150 0 —— |
120 120 - o |
B —
30 90 = !
.
\‘ - 80 60
30 30 A
0 0+
-250 -200 -150 -100 -50 0 50 100 150 200

210

100

Step 7

Input (Step No.}

no.[7]

A

Stability Polygon

6
[[1shadow of Original Position

Leg B Rear View Leg C Rear View \
— 150 150 —
e |
t 120 120 = |
-
- 90 20 / Pl 1
1
L -
50 60 — P |
t 30 30 g I
-
L5 o e . |
250 -200 -150 -100 50 0 50 100 150 200 = |
- 1
. . 210 180 TSor—adg@. 00| 50 -30 30 50 Jao 120 150 189 210
Leg A Rear View Leg D Rear View |
e
- 150 50— —~— \ {
:
120 120 | S e \ |
-
—~
30 50 |
R N
\ 50 60 -
30 30 -
0 o+
250 -200 -150 -100 50 0 50 100 150 200

101

Step 8

Input (Step No.)

Stability Polygon

[CJshadow of Original Position

L
| —
2
I\ ~~
| T~
—

~

(| ~
T —
i B S
Leg B Rear View Leg C Rear View | \ g
-
- 150 150 : — o
——a | 120 120 | |
- @0 20 / : i
1 1
- 860 60 / | I
T 30 30 I |
- o 0 T — T | |
t
-250 -200 -150 -100 -50 0 50 100 150 200 i |
! T T T T T T
i i -210 -180-—-150T 0 120 150 159 1210
Leg A Rear View Leg D Rear View o
~
- 150 150 = \ !
—60 1
120 120 ———————————— TR \ |
~
\ 90 80 - == \ |
v —s 80 60 b |
30 30 hd
0 0+
-250 -200 -150 -100 -50 0 50 100 150 200

102

Step 9

Input (Step No.}

]
]

Stability Polygon

6
[[1shadow of Original Position

\
i) I -
Leg B Rear View Leg C Rear View | !
=
—_ 150 150 | —=

|

T 120 120 T -
I -t

- 80 50 / i

L 60 60 I =

—d | -

r 30 30
| -

o 0 y s

-250 -200 -150 -100 -50 0 50 100 150 200 ! A
| -~
r — = T T T T T T T |
210 iﬁ-rm = 50" 60 30 30 60 120 150 180 210
2

Leg A Rear View

- 150
120
%0

\\—o 50
30
0

-250 -200 -150 -100 -50

Leg D Rear View

A

a 50 100 150 200

B

)

103

Step 10

Input (Step No.}

No. 10|

Stability Polygon

6
[[1shadow of Original Position

T
I 181
I K
Leg B Rear View Leg C Rear View =
g 4 | = e
- 150 150 | \
T 120 120 i
- 90 90 7 | il
| -
60 60 — ! =
r 30 30 T
o 0 I il
-250 -200 -150 -100 -50 0 50 100 150 200 I =T
| -
. . -210 -120 -90 -60 -30 30 60 90 120
Leg A Rear View Leg D Rear View 3
r 150 150 —m8M8MM——
120 120
\ 90 90 -
N 60 60
30 30
0 0 +—

-250 -200 -150 -100 -50

a 50 100 150 200

104

Step 11

[W] stability Polygon
Input (Step No.) td kol a0
[CJshadow of Original Position
No. U
e
e T
| o 5
| =
Leg B Rear View Leg C Rear View | -~
t 158 =
- 150 150 - | -
=
120 120 | LLs -
e
\ 90 20 / | -
® -
Y—e 60 60 4 | P
30 30 f & P
e -
D e 0 0 | et
-250 -200 -150 -100 -50 0 50 100 150 200 | L
| -
—t T y T 7 T T T T T T !
—
’ ; -210 -120 -0 -60 -30 30 60 90 120 150 180 210
Leg A Rear View Leg D Rear View 3
- 150 0 ——
120 120 -
\ 90 50 ~
—s 60 60 -
30 30 A
T T 0 0 +—r T
-250 -200 -150 -100 -50 0 50 100 150 200

105

Step 12

Input (Step No.)

no.| 12]

Stability Polygon

[CJshadow of Original Position

N__
} =

Leg B Rear View Leg C Rear View l -y
[158 —
-
- 150 150 | iy
120 120 | "“ﬁ
20 20
N\ o / i]
N— 60 / I
30 30 I - =
o 0 % | T
t
-250 -200 -150 -100 -50 0 50 100 150 200 | e
R o e e
’ ; -210 8 <120 90 -50 -30 30 60 90 120 150 180 210
Leg A Rear View Leg D Rear View 3
- 150 150
120 120
\ 90 80 /
—s 60 60 o—1v
30 30
0 0
-250 -200 -150 -100 -50 0 50 100 150 200

106

Step 13

Input (Step No.)
No.

Leg B Rear View

~ 150
120
90
\b—o 50
30
0

-250 -200 -150 -100 -50

Leg C Rear View

A

0 50 100 150 200

Stability Polygon

[CJshadow of Original Position

P

—
-~

Leg A Rear View
- 150
120
90
\‘_. 60
30
0

-250 -200 -150 -100 -50

Leg D Rear View

/

—d

o 50 100 150 200

r
-210

B PR PR EIPONE PR SO, |

. B
B
a.o/ae@r’ 30 60 -30
il 2

T T T T T 1
30 60 90 120 150 180 210

=

107

Step 14

Input (Step No.)
No.

=]
E]

Leg B Rear View

~ 150
120
90
\H 50
30
0

-250 -200 -150 -100 -50

Leg C Rear View

A

0 50 100 150 200

Stability Polygon

[CJshadow of Original Position

~

~ ™

-
-~

Leg A Rear View
- 150

T 120
- 90
r 60
- 30
r 0

-250 -200 -150 -100 -50

Leg D Rear View

/

—d

o 50 100 150 200

r
-210

|
|
}
|
|
|
|
f
|
|
4

. e
=
80)in(ug_ 40" -60 -30
= 5

T T T T 1
30 60 90 120 150 180 210

=

108

Step 15

Input (Step No.)

No.[15]

Stability Polygon

[CJshadow of Original Position

I
Leg B Rear View Leg C Rear View | s -
- 150 50— | I
120 120 - ! N :‘ID ~
\ a0 80 | : T~ -
60 60 | =
i 30 30 1 I =
o 0 +—T—T— ! =
-250 -200 -150 -100 -50 0 50 100 150 200 J —
R S et E
i i -210 —ﬁ.ao %20 90 __-60 30 30 60 90 120 150 180 210
Leg A Rear View Leg D Rear View } — = 3
—— 150 150 % -
- 120 120
- %0 20
- &0 50 ._‘/
30 30
Fo 0

-250 -200 -150 -100 -50

o 50 100 150 200

109

Step 16

Input (Step No.)
No.

Leg B Rear View

Leg C Rear View

Stability Polygon

[CJshadow of Original Position

——

:
|
~ 150 150 |
120 o :
90 20 - i
N o B] i |
30 30 - [
o 0 - | Pl
250 -200 -150 -100 -50 0 50 100 150 200 | / ™ =
— : : o : : : : : !
R —_——— s 210 180 -130/120 90 50 30~ 30 60 90 120 150 180 210
4 ear View eg ear View —
- 150 150 !/, -
—_— 1120 120 &
L oo 20
- 60 80 ._.,/
| 30 0
o 0

-250 -200 -150 -100 -50

o 50 100 150 200

110

APPENDIX 16

Motor Controller Programs

Program of Leg A and Leg B
#include <18F458.h>
#device adc=8
#use delay(clock=4000000)
#fuses NOWDT,WDT128,RC_10, NOPROTECT, NOOSCSEN, NOBROWNOUT, BORV20,

NOPUT, NOCPD, NOSTVREN, NODEBUG, NOLVP, NOWRT, NOWRTD, NOWRTB,

NOCPB, NOWRTC, NOEBTR, NOEBTRB

unsigned int16 duty_Al, duty_A2, duty_A3,
duty_B1, duty B2, duty B3;
unsigned int8 count, prev_step, curr_step;
signed intl6 temp[6];
signed intl16 LUT[17][6] = {1950, 2007, 1298, 1547, 1956, 1059,

1764, 1904, 1153, 1609, 1957, 1067,
1578, 1829, 1118, 1671, 1957, 1082,
1391, 1885, 1090, 1733, 1959, 1105,
1205, 1964, 1138, 1795, 1964, 1138,
1267, 1959, 1105, 1609, 1885, 1090,
1329, 1957, 1082, 1422, 1829, 1118,
1391, 1957, 1067, 1236, 1904, 1153,
1453, 1956, 1059, 1050, 2007, 1298,
1515, 1956, 1058, 1112, 1982, 1216,
1578, 1956, 1063, 1174, 1968, 1160,
1640, 1957, 1074, 1236, 1961, 1120,
1702, 1958, 1092, 1298, 1958, 1092,
1764, 1961, 1120, 1360, 1957, 1074,
1826, 1968, 1160, 1422, 1956, 1063,
1888, 1982, 1216, 1485, 1956, 1058,
1950, 2007, 1298, 1547, 1956, 1059 };

#define joint Al PIN DI
#define joint A2 PIN_DO
#define joint A3 PIN _C3
#define joint Bl PIN_AO
#define joint B2 PIN_Al
#define joint B3 PIN_A2
#int RTCC

RTCC isr()

{ set RTCC(46035);

output_high(joint Al);
delay us(600);

if((0x0258 <= duty Al) && (duty Al <= 0x02EE))
{ delay_us(duty_A1-0x0258);
}

111

else if((0x02EE < duty_Al) && (duty Al <= 0x03ER))
{ delay us(150);

delay _us(duty_A1-0x02EE);
}

else if((0X03E8 < duty Al) && (duty_Al <= 0x04E2))
{ delay _us(400);

delay _us(duty A1-0x03ES);
}

else if((0X04E2 < duty Al) && (duty_Al <= 0x05DC))
{ delay us(650);

delay_us(duty_A1-0x04E2);
}

else if((0x05DC < duty Al) && (duty_Al <= 0x06D6))
{ delay us(900);

delay_us(duty_A1-0x05DC);
}

else if((0x06D6 < duty Al) && (duty Al <= 0x07D0))
{ delay_us(1150);

delay_us(duty_A1-0x06D6);
}

else if((0x07D0 < duty Al) && (duty_Al <= 0x08CA))
{ delay_us(1400);

delay_us(duty_A1-0x07DO0);
}

else if((0x08CA < duty Al) && (duty_Al <= 0x0960))
{ delay _us(1650);

delay_us(duty_A1-0x08CA);
}

output_low(joint Al);

output_high(joint A2);
delay _us(600);

if((0x0258 <= duty_A2) && (duty_A2 <= 0x02EE))
{ delay_us(duty_A2-0x0258);
}

else if((0x02EE < duty_A2) && (duty A2 <= 0x03ER))
{ delay us(150);

delay_us(duty_A2-0x02EE);
}

else if((0x03E8 < duty A2) && (duty A2 <= 0x04E2))
{ delay us(400);

delay _us(duty A2-0x03ES);
}

else if((0X04E2 < duty A2) && (duty_A2 <= 0x05DC))
{ delay _us(650);

delay_us(duty_A2-0x04E2);
}

else if((0x05DC < duty A2) && (duty_A2 <= 0x06D6))
{ delay us(900);

delay_us(duty_A2-0x05DC);
}

else if((0x06D6 < duty_A2) && (duty_A2 <= 0x07D0))
{ delay_us(1150);

delay_us(duty_A2-0x06D6);
}

112

else if((0x07D0 < duty A2) && (duty_A2 <= 0x08CA))
{ delay_us(1400);

delay_us(duty_A2-0x07DO0);
}

else if((0x08CA < duty A2) && (duty_A2 <= 0x0960))
{ delay _us(1650);

delay_us(duty_A2-0x08CA);
}

output_low(joint_A2);

output_high(joint A3);
delay us(600);

if((0x0258 <= duty A3) && (duty A3 <= 0x02EE))
{ delay_us(duty_A3-0x0258);
}

else if((0x02EE < duty A3) && (duty_A3 <= 0x03ER))
{ delay us(150);

delay_us(duty_A3-0x02EE);
}

else if((0x03E8 < duty_A3) && (duty_A3 <= 0x04E2))
{ delay us(400);

delay _us(duty A3-0x03ES);
}

else if((0X04E2 < duty A3) && (duty_A3 <= 0x05DC))
{ delay _us(650);
delay _us(duty A3-0x04E2);

}
else if((0x05DC < duty_A3) && (duty_A3 <= 0x06D6))
{ delay us(900);

delay_us(duty_A3-0x05DC);
}

else if((0x06D6 < duty_A3) && (duty_A3 <= 0x07D0))
{ delay us(1150);

delay_us(duty_A3-0x06D6);
}

else if((0x07D0 < duty A3) && (duty_A3 <= 0x08CA))
{ delay_us(1400);

delay_us(duty_A3-0x07DO0);
}

else if((0x08CA < duty A3) && (duty_A3 <= 0x0960))
{ delay _us(1650);

delay_us(duty_A3-0x08CA);
}

output_low(joint_A3);

#int TIMERI
TIMERI isr()
{ set_ RTCC(46035);

output_high(joint B1);
delay us(600);

113

if((0x0258 <= duty B1) && (duty_B1 <= 0x02EE))
{ delay_us(duty_B1-0x0258);
}

else if((0x02EE < duty B1) && (duty Bl <= 0x03ES))
{ delay us(150);

delay_us(duty_B1-0x02EE);
}

else if((0x03E8 < duty_B1) && (duty B1 <= 0x04E2))
{ delay us(400);

delay _us(duty B1-0x03ES);
}

else if((0x04E2 < duty B1) && (duty Bl <= 0x05DC))
{ delay _us(650);

delay us(duty B1-0x04E2);
}

else if((0x05DC < duty B1) && (duty_B1 <= 0x06D6))
{ delay us(900);

delay_us(duty_B1-0x05DC);
}

else if((0x06D6 < duty B1) && (duty Bl <= 0x07D0))
{ delay _us(1150);

delay_us(duty_B1-0x06D6);
}

else if((0x07D0 < duty B1) && (duty B1 <= 0x08CA))
{ delay_us(1400);

delay_us(duty_B1-0x07DO0);
}

else if((0x08CA < duty_B1) && (duty B1 <= 0x0960))
{ delay_us(1650);

delay_us(duty_B1-0x08CA);
}

output_low(joint_B1);

output_high(joint B2);
delay_us(600);

if((0x0258 <= duty B2) && (duty_B2 <= 0x02EE))
{ delay_us(duty_B2-0x0258);
}

else if((0x02EE < duty_B2) && (duty B2 <= 0x03ES))
{ delay _us(150);

delay_us(duty B2-0x02EE);
}

else if((0x03E8 < duty B2) && (duty B2 <= 0x04E2))
{ delay _us(400);

delay_us(duty_B2-0x03ESR);
}

else if((0x04E2 < duty_B2) && (duty B2 <= 0x05DC))
{ delay us(650);

delay_us(duty_B2-0x04E2);
}

else if((0x05DC < duty_B2) && (duty_B2 <= 0x06D6))
{ delay _us(900);

delay_us(duty_B2-0x05DC);
}

114

else if((0x06D6 < duty B2) && (duty B2 <= 0x07D0))
{ delay us(1150);

delay_us(duty B2-0x06D6);
}

else if((0x07D0 < duty B2) && (duty B2 <= 0x08CA))
{ delay_us(1400);

delay_us(duty B2-0x07DO0);
}

else if((0x08CA < duty_B2) && (duty B2 <= 0x0960))
{ delay _us(1650);

delay_us(duty_B2-0x08CA);
}

output_low(joint_B2);

output_high(joint B3);
delay us(600);

if((0x0258 <= duty B3) && (duty_B3 <= 0x02EE))
{ delay_us(duty B3-0x0258);
}

else if((0x02EE < duty B3) && (duty B3 <= 0x03ES))
{ delay _us(150);

delay_us(duty B3-0x02EE);
}

else if((0x03E8 < duty B3) && (duty B3 <= 0x04E2))
{ delay us(400);

delay_us(duty_B3-0x03ESR);
}

else if((0x04E2 < duty_B3) && (duty B3 <= 0x05DC))
{ delay us(650);

delay us(duty B3-0x04E2);
}

else if((0x05DC < duty B3) && (duty B3 <= 0x06D6))
{ delay us(900);

delay_us(duty_B3-0x05DC);
}

else if((0x06D6 < duty B3) && (duty B3 <= 0x07D0))
{ delay us(1150);

delay_us(duty_B3-0x06D6);
}

else if((0x07D0 < duty_B3) && (duty B3 <= 0x08CA))
{ delay_us(1400);

delay_us(duty_B3-0x07DO0);
}

else if((0x08CA < duty_B3) && (duty B3 <= 0x0960))
{ delay_us(1650);

delay_us(duty_B3-0x08CA);
}

output_low(joint_B3);

#int TIMER3
TIMER3_isr()
{ set_timer3(40535);

115

if(input(PIN_B3) & 1)
{

if(count < 10)
{ count+t;

if(curr_step > prev_step)

temp[0] = LUT[prev_step][0] + (LUT[curr_step][0] - LUT[prev_step
temp[1] = LUT[prev_step][1] + (LUT[curr_step][1] - LUT[prev_step
[2]=LUT[prev_step][2] + (LUT
temp[3] = LUT[prev_step][3] + (LUT]
[4
[5

temp

temp[4] = LUT[prev_step][4] + (LUT[curr_step][4] - LUT[prev_step
temp[5] = LUT[prev_step][5] + (LUT[curr_step][5] - LUT[prev_step

}

else

{
temp[0] = LUT[prev_step][0],
temp[1] = LUT[prev_step][1],
temp[2] = LUT[prev_step][2];
temp[3] = LUT[prev_step][3],
temp[4] = LUT[prev_step][4],
temp[5] = LUT[prev_step][5];

}

}

else
{ count=0;

prev_step = curr_step;
curr_stept+;

if(curr_step > 16)
{ curr_step =16; //step=0;
}

temp[0] = LUT[prev_step][0],
temp[1] = LUT[prev_step][1],
temp[2] = LUT[prev_step][2];
temp[3] = LUT[prev_step][3],
temp[4] = LUT[prev_step][4],
temp[S] = LUT[prev_step][5];
}

}

else

{

curr_step = 0;

temp[0] = LUT[curr_step]
temp[1] = LUT[curr_step]
temp[2] = LUT[curr_step]
temp[3] = LUT[curr_step]
temp[4] = LUT[curr_step]
temp[5] = LUT[curr_step]

0],
1],
2];
3],
4],
51;

P/,

duty_Al = temp[0],
duty A2 =temp[1],
duty A3 =temp[2];
duty B1 =temp[3],
duty B2 = temp[4],
duty B3 = temp[5];

110]

1(1]

curr_step][2] - LUT[prev_step][2]

curr_step][3] - LUT[prev_step][3])*(count)/10;
1[4]
1(5]

)*(count)/10,
)*(count)/10;
)*(count)/10,

)*(count)/10,
)*(count)/10;

116

void main()

{
setup_adc_ports(NO_ANALOGS);
setup_adc(ADC_OFF);
setup_psp(PSP_DISABLED);
setup_spi(FALSE);
setup_wdt(WDT_OFF);
setup_timer O(RTCC_INTERNALIRTCC_DIV_1);
setup_timer 1(T1 INTERNAL|T1 DIV _BY 1);
setup_timer 2(T2_DISABLED,0,1);
setup_timer_3(T3_EXTERNAL|T3_DIV_BY_8);
setup_comparator(NC_NC_NC_NC);
enable_interrupts(INT_RTCC);
enable_interrupts(INT_TIMER1);
enable_interrupts(INT TIMER3);
enable_interrupts(GLOBAL);

count =0;
prev_step =0;
curr_step =0;
while(1)
{
}

}

117

Program of Leg C and Leg D

#include <18F458.h>

#device adc=8

#Huse delay(clock=4000000)

#fuses NOWDT,WDT128,RC_IO, NOPROTECT, NOOSCSEN, NOBROWNOUT, BORV20,

NOPUT, NOCPD, NOSTVREN, NODEBUG, NOLVP, NOWRT, NOWRTD, NOWRTB,

NOCPB, NOWRTC, NOEBTR, NOEBTRB

unsigned int16 duty_C1, duty C2, duty_C3,
duty DI, duty D2, duty D3;
unsigned int8 count, prev_step, curr_step;
signed intl16 temp[6];
signed int16 LUT[17][6] = {1950, 993, 1702, 1547, 1044, 1941,

1888, 1018, 1784, 1485, 1044, 1942,
1826, 1032, 1840, 1422, 1044, 1937,
1764, 1039, 1880, 1360, 1043, 1926,
1702, 1042, 1908, 1298, 1042, 1908,
1640, 1043, 1926, 1236, 1039, 1880,
1578, 1044, 1937, 1174, 1032, 1840,
1515, 1044, 1942, 1112, 1018, 1784,
1453, 1044, 1941, 1050, 993, 1702,
1391, 1043, 1933, 1236, 1096, 1847,
1329, 1043, 1918, 1422, 1171, 1882,
1267, 1041, 1895, 1609, 1115, 1910,
1205, 1036, 1862, 1795, 1036, 1862,
1391, 1115, 1910, 1733, 1041, 1895,
1578, 1171, 1882, 1671, 1043, 1918,
1764, 1096, 1847, 1609, 1043, 1933,
1950, 993, 1702, 1547, 1044, 1941 };

#define joint C1 PIN_B7
#define joint C2 PIN_B6
#define joint C3 PIN_BS5
#define joint D1 PIN_D2
#define joint D2 PIN_D3
#define joint D3 PIN_C4
#int RTCC

RTCC _isr()

{ set RTCC(46035);

output_high(joint C1);
delay _us(600);

if((0x0258 <= duty Cl) && (duty_C1 <= 0x02EE))
{ delay_us(duty_C1-0x0258);
}

else if((0x02EE < duty_C1) && (duty _C1 <= 0x03ES))
{ delay _us(150);

delay _us(duty C1-0x02EE);
}

else if((0x03E8 < duty C1) && (duty C1 <= 0x04E2))
{ delay _us(400);

delay_us(duty_C1-0x03ES);
}

118

else if((0x04E2 < duty Cl) && (duty C1 <= 0x05DC))
{ delay _us(650);

delay _us(duty C1-0x04E2);
}

else if((0x05DC < duty_Cl) && (duty_C1 <= 0x06D6))
{ delay us(900);

delay_us(duty_C1-0x05DC);
}

else if((0x06D6 < duty Cl1) && (duty C1 <= 0x07D0))
{ delay _us(1150);

delay_us(duty_C1-0x06D6);
}

else if((0x07D0 < duty C1) && (duty C1 <= 0x08CA))
{ delay_us(1400);

delay_us(duty_C1-0x07DO0);
}

else if((0x08CA < duty_Cl) && (duty C1 <= 0x0960))
{ delay_us(1650);

delay_us(duty_C1-0x08CA);
}

output_low(joint_Cl);

output_high(joint C2);
delay us(600);

if((0x0258 <= duty_C2) && (duty_C2 <= 0x02EE))
{ delay_us(duty_C2-0x0258);
}

else if((0x02EE < duty C2) && (duty C2 <= 0x03ES))
{ delay _us(150);

delay_us(duty_C2-0x02EE);
}

else if((0x03E8 < duty_C2) && (duty_C2 <= 0x04E2))
{ delay us(400);

delay_us(duty_C2-0x03ES);
}

else if((0x04E2 < duty_C2) && (duty C2 <= 0x05DC))
{ delay _us(650);

delay _us(duty C2-0x04E2);
}

else if((0x05DC < duty_C2) && (duty_C2 <= 0x06D6))
{ delay _us(900);

delay_us(duty_C2-0x05DC);
}

else if((0x06D6 < duty C2) && (duty C2 <= 0x07D0))
{ delay _us(1150);

delay_us(duty_C2-0x06D6);
}

else if((0x07D0 < duty_C2) && (duty C2 <= 0x08CA))
{ delay_us(1400);

delay_us(duty_C2-0x07DO0);
}

else if((0x08CA < duty_C2) && (duty C2 <= 0x0960))

{ delay_us(1650);
delay_us(duty_C2-0x08CA);
}

output_low(joint_C2);

119

output_high(joint C3);
delay us(600);

if((0x0258 <= duty C3) && (duty_C3 <= 0x02EE))
{ delay_us(duty_C3-0x0258);
}

else if((0x02EE < duty C3) && (duty C3 <= 0x03ES))
{ delay us(150);

delay_us(duty_C3-0x02EE);
}

else if((0x03E8 < duty_C3) && (duty C3 <= 0x04E2))
{ delay us(400);

delay _us(duty C3-0x03ES);
}

else if((0x04E2 < duty C3) && (duty C3 <= 0x05DC))
{ delay _us(650);

delay _us(duty C3-0x04E2);
}

else if((0x05DC < duty_C3) && (duty_C3 <= 0x06D6))
{ delay us(900);

delay_us(duty_C3-0x05DC);
}

else if((0x06D6 < duty C3) && (duty C3 <= 0x07D0))
{ delay us(1150);

delay_us(duty_C3-0x06D6);
}

else if((0x07D0 < duty C3) && (duty C3 <= 0x08CA))
{ delay_us(1400);

delay_us(duty_C3-0x07DO0);
}

else if((0x08CA < duty_C3) && (duty C3 <= 0x0960))
{ delay_us(1650);

delay_us(duty_C3-0x08CA);
}

output_low(joint_C3);

#int TIMERI
TIMERI isr()
{ set_ RTCC(46035);

output_high(joint D1);
delay _us(600);

if((0x0258 <= duty_D1) && (duty_D1 <= 0x02EE))
{ delay_us(duty_D1-0x0258);

}

else if((0x02EE < duty D1) && (duty_D1 <= 0x03ES))
{ delay us(150);

delay_us(duty_D1-0x02EE);
}

else if((0x03E8 < duty_D1) && (duty_D1 <= 0x04E2))
{ delay _us(400);

delay_us(duty_D1-0x03ES);
}

120

else if((0X04E2 < duty D1) && (duty_D1 <= 0x05DC))
{ delay _us(650);

delay_us(duty_D1-0x04E2);
}

else if((0x05DC < duty_D1) && (duty_D1 <= 0x06D6))
{ delay us(900);

delay_us(duty_D1-0x05DC);
}

else if((0x06D6 < duty D1) && (duty_D1 <= 0x07D0))
{ delay_us(1150);

delay_us(duty_D1-0x06D6);
}

else if((0x07D0 < duty D1) && (duty_D1 <= 0x08CA))
{ delay_us(1400);

delay_us(duty_D1-0x07D0);
}

else if((0x08CA < duty _D1) && (duty_D1 <= 0x0960))
{ delay _us(1650);

delay_us(duty_D1-0x08CA);
}

output_low(joint_D1);

output_high(joint D2);
delay us(600);

if((0x0258 <= duty D2) && (duty D2 <= 0x02EE))
{ delay_us(duty_D2-0x0258);
}

else if((0x02EE < duty D2) && (duty_D2 <= 0x03E8))
{ delay us(150);
delay_us(duty_D2-0x02EE);

}
else if((0x03E8 < duty_D2) && (duty_D2 <= 0x04E2))
{ delay us(400);

delay _us(duty_D2-0x03ES);
}

else if((0X04E2 < duty D2) && (duty_D2 <= 0x05DC))
{ delay _us(650);

delay _us(duty_D2-0x04E2);
}

else if((0x05DC < duty_D2) && (duty_D2 <= 0x06D6))
{ delay us(900);

delay_us(duty_D2-0x05DC);
}

else if((0x06D6 < duty D2) && (duty_D2 <= 0x07D0))
{ delay _us(1150);

delay_us(duty_D2-0x06D6);
}

else if((0x07D0 < duty D2) && (duty_D2 <= 0x08CA))
{ delay_us(1400);

delay_us(duty_D2-0x07DO0);
}

else if((0X08CA < duty_D2) && (duty_D2 <= 0x0960))
{ delay _us(1650);

delay_us(duty_D2-0x08CA);
}

output_low(joint_D2);

121

output_high(joint D3);
delay us(600);

if((0x0258 <= duty D3) && (duty D3 <= 0x02EE))
{ delay_us(duty_D3-0x0258);
}

else if((0x02EE < duty D3) && (duty_D3 <= 0x03ES))
{ delay us(150);

delay_us(duty_D3-0x02EE);
}

else if((0x03E8 < duty_D3) && (duty_D3 <= 0x04E2))
{ delay us(400);

delay _us(duty_D3-0x03ES);
}

else if((0X04E2 < duty _D3) && (duty_D3 <= 0x05DC))
{ delay _us(650);

delay _us(duty_D3-0x04E2);
}

else if((0x05DC < duty_D3) && (duty_D3 <= 0x06D6))
{ delay us(900);

delay_us(duty_D3-0x05DC);
}

else if((0x06D6 < duty D3) && (duty_D3 <= 0x07D0))
{ delay us(1150);

delay_us(duty_D3-0x06D6);
}

else if((0x07D0 < duty D3) && (duty_D3 <= 0x08CA))
{ delay_us(1400);

delay_us(duty_D3-0x07DO0);
}

else if((0X08CA < duty_D3) && (duty_D3 <= 0x0960))
{ delay _us(1650);

delay_us(duty_D3-0x08CA);
}

output_low(joint_D3);

#int TIMER3
TIMER3 _isr()
{ set_timer3(40535);

if(input(PIN_A3) & 1)
{

if(count < 10)

{ count++;

if(curr_step > prev_step)
{
temp
temp
temp[2] = LUT[prev_step][2] + (LUT]
temp
temp

[0]=LUT[prev_step][0] + (LUT[curr_step][0] - LUT[prev_step
[1]=LUT[prev_step][1] + (LUT[curr_step][1] - LUT[prev_step
[2] [curr_step][2] - LUT[prev_step
temp[3] = LUT[prev_step][3] + (LUT[curr_step][3] - LUT[prev_step
[4] = LUT[prev_step][4] + (LUT[curr_step][4] - LUT[prev_step
[5]=LUT[prev_step][5] + (LUT[curr_step][5] - LUT[prev_step

)*(count)/10,
)*(count)/10;
)*(count)/10,
)*(count)/10;
)*(count)/10,
)*(count)/10;

[t N it el et S Rt
[t St R SR e

[0
[1
[2
[3
[4
[5

122

else

{
temp[0] = LUT[prev_step][0],
temp[1] = LUT[prev_step][1],
temp[2] = LUT[prev_step][2];
temp[3] = LUT[prev_step][3],
temp[4] = LUT[prev_step][4],
temp[5] = LUT[prev_step][5];

}

}

else
{ count=0;

prev_step = curr_step;
curr_stept+;

if(curr_step > 16)
{ curr_step =16; //step=0;
}
temp[0] = LUT[prev_step][0],
temp[1] = LUT[prev_step][1],
temp[2] = LUT[prev_step][2];
temp[3] = LUT[prev_step][3],
temp[4] = LUT[prev_step][4],
temp[S] = LUT[prev_step][5];
}
}
else
{
curr_step =0;
temp[0] = LUT[curr_step]
temp[1] = LUT[curr_step]
temp[2] = LUT[curr_step]
temp[3] = LUT[curr_step]
[
[

01,
1],
2];
3],
4],
5];

temp[4] = LUT[curr_step]
temp[5] = LUT[curr_step]

P —,

duty_C1 = temp[0],
duty_C2 =temp[1],
duty_C3 = temp[2]
duty D1 =temp[3],
duty D2 =temp[4],
duty D3 =temp[5]

B

B

void main()

{ setup_adc_ports(NO_ANALOGS);
setup_adc(ADC_OFF);
setup_psp(PSP_DISABLED);
setup_spi(FALSE);
setup_wdt(WDT_OFF);
setup_timer O(RTCC_INTERNALIRTCC_DIV_1);
setup_timer 1(T1 INTERNAL|T1 DIV _BY 1);
setup_timer 2(T2_DISABLED,0,1);
setup_timer_3(T3_EXTERNAL|T3_DIV_BY_8);
setup_comparator(NC_NC_NC_NC);
enable_interrupts(INT_RTCC);
enable_interrupts(INT_TIMER1);
enable_interrupts(INT TIMER3);
enable_interrupts(GLOBAL);

count =0;
prev_step =0;
curr_step =0;
while(1)
{
}

}

123

Motor Controller Wiring Diagram

APPENDIX 17

o

@

i

995

PIC18F458
(C & D)

10kQ

1
12

i

78L05

0.1uF —
Lo

=i

—e

100uF

M\

36

j]
—|
N
L =
5
g "o
D—\N\/‘—o—~“||
=
a4 S
o
PIC18F458
(A & B)

<t| —| | | | 9 (=1
— =] = A ISyl

—

78L05

0.1uF

100uF T

M

c \
S Tj

Ol

I

124

