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ABSTRACT 

 

This work aims to use Artificial Neural Network (ANN) in prediction of methane 

gas hydrate formation. There are a lot of thermodynamic modelling have been 

developed and applied in prediction of the formation gas hydrate however there is 

still none yet proven model that can predict the formation rate of methane gas 

hydrate. This study emerges as to build a kinetic model consume time and are very 

complex due to stochastic behavior of gas hydrate. Therefore, ANN methods show 

the best potential technology to be used for development of model to predict the 

formation rate of gas hydrate. The aims of this study are to develop artificial kinetic 

models by using ANN that can predict the growth rate of formation of methane gas 

hydrate. To determine the best configuration to be used in ANN involving the 

number of layers and number of hidden neurons to be used in ANN models. In this 

study, pressure and temperature are used as the model’s input with the growth rate of 

methane gas hydrate as the model’s output. The result shows every ANN model has 

different best configuration in prediction of methane gas hydrate. From the study 

also few limitation of ANN also addressed. 
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CHAPTER 1 

 INTRODUCTION 

 

 

1.1 Background of Study 

 

The discovery of gas hydrates is long way back in 18th century by Sir Humphrey 

Davy. Gas hydrates or clathrate is crystalline solid compounds that are formed in 

mixture of water and volatile liquids or non- or slightly polar low molecular weight 

gases. Hydrate form when hydrogen bonded water molecules form cage like 

structure, known as cavities in the crystalline lattice or the host [1, 2]. In these 

cavities hydrate-forming molecule or guest molecules are trapped and stabilize the 

hydrate structure. General conditions for gas hydrates formation are high pressure, 

low temperature and gas composition of the guest molecules in supersaturated 

solution[1]. 

 

The structure of gas hydrate varies depending on the gas molecules that are 

trapped within the cavities. Common gases that form gas hydrates are methane, 

ethane, propane and carbon dioxide. These guest molecules form different type or 

structure of gas hydrates depending on their sizes and shape. Currently, three 

different hydrate structures are known and well-studied as in the Figure 1.1; cubic 

structure I (sI), cubic structure II (sII) and hexagonal structure H (sH). These 

structures form depending on the guest molecules that are trapped within the 

cavities. The unit cell of sI hydrate consist of 46 water molecules forming two small 

cavities and six large cavities[1, 2] 

. 
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The small cavity has the shape of pentagonal dodecahedron (512), while large 

cavity has the shape of a tetradecahedron (51262). The sII hydrate unit cell consists 

of 136 water molecules forming sixteen small cavities and eight large cavities. 

Similarly to sI shape, structure of sII small cavity is also pentagonal dodecahedron 

(512) but the large cavity has the shape of hexadecahedron (51264). In sH structure, 

the unit cell is divided into three small cavities of (512), two medium (435663) and 

one large cavity of (51268) as shown in Figure 1.1. 

 

 

Figure 1.1:  Common Structures of Gas Hydrates 

 

Gas hydrate is considered as new energy sources aside from fossil fuel as it is 

abundantly found in onshore and offshore. It is estimated, approximately 200,000 

trillion cubic feet of methane could exist in hydrates form in the U.S. permafrost 

regions and its surrounding waters However, further study on how to extract the 

methane from gas hydrate is need. Gas hydrate is also considered as a technology for 

storage and transportation of gases such as hydrogen gas etc. 

 

In contrary, due to low temperature and high pressure conditions that exist in 

deep offshore and deep well drilling in oil and gas industries, gas hydrate easily 

formed and plugs oil and gas production pipeline, facilities and drilling wells.  This 

is a major problem to flow assurance in oil and gas industry. When gas hydrates form 
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it causes pipeline plugging and to remove the plugging is very expensive. The 

prevention of hydrate formation requires a vast amount of money as much 10-15% of 

production cost and the removal cost of this hydrate from an offshore pipeline 

somehow around $2-$4 million [3, 4]. 

 

Water removal, heating, depressurization and chemical inhibition are the 

available gas hydrate mitigation methods. Currently, chemical inhibition is used due 

to economic applicability advantage. Gas hydrate inhibition is study can be 

categorized in two different areas, thermodynamics and kinetics; Thermodynamic 

inhibition concentrate on measuring the pressure-temperature condition at which 

three phases, liquid-hydrate-vapor (L-H-V) are in equilibrium and aimed in shifting 

the L-H-V equilibrium curve to low temperature and high pressure region. Figure 1.2 

show the concentration of thermodynamic inhibitor used in industry and typical 

inhibitor are methanol but it requires up until 60 wt% concentration. 

 

 

Figure 1.2:  Formation of Gas Hydrates at equilibrium phase 
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Whereas in kinetic inhibition of hydrate concentrate on delaying the 

induction time and /or crystal growth of hydrate formation, polymers are commonly 

applied for kinetic inhibition and are used at less concentrations (> 2 wt%). 

 

  In order to enhance the mitigation of gas hydrate formation in pipelines, 

understanding and modeling of gas hydrate formation and growth kinetics becomes a 

necessity. While extensive studies are available are on thermodynamics of gas 

hydrate, no acceptable model or well established model has been developed for the 

kinetics of gas hydrates, thus making the thermodynamics of gas hydrate well 

understood than kinetics. There have been few attempts in modeling of kinetics of 

gas hydrates but there is still no good result due to the stochastic nature of hydrate 

formation. Also, not only the stochastic nature but gas hydrate formation depends on 

factors such as subcooling, experimental apparatus and stirring speed. 

 

Kinetics of hydrate depends on induction time and crystallization of hydrate 

growth. Induction time is the time taken for crystal nuclei to form and when nuclei 

have reached the requisite critical size they will grow and form hydrate crystals[5, 6]. 

The growth or formation process refers to the growth of a stable hydrate nuclei till it 

become solid hydrates. Mass and heat transfer are essential in hydrate growth process 

although most of the nucleation parameters such as surface area, agitation, gas 

composition and displacement from equilibrium conditions are at stable region. 

Figure 1.3 shows a plot of gas consumed verses time for a typical gas hydrate kinetic 

experiment indicating various stages in the experiment. The induction time is 

stochastic or unpredictable thus require extra attention and difficulty in modeling but 

hydrate growth process is quite predictable and therefore give a relief for hydrate 

formation modeling.   

 

Artificial Neural Networks (ANN) are quite simple where it is an electronic 

models inspired based on the biological nervous system[7]. The brain basically 

learns from experience and so does ANN. It is a proof that some problems are 

beyond the scope of present computers are indeed solvable by this system[8]. This 
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modeling also assures a less technical way toward developing machine solutions. 

This innovative approach of solving problems also provides a smoother degradation 

during system overload than its traditional counterparts.  

 

 

Figure 1.3:  Gas Consumption vs. time for hydrate formation 

 

Therefore, the application of ANN in prediction of methane gas hydrate 

formation rate is crucial for better understanding the formation rate of a gas hydrate. 

If this application of ANN successfully can predict the formation rate the studies for 

prevention gas hydrate formation and plug can be studies well. When a gas hydrate 

formation can be predicted the inhibitor quality for kinetic inhibition will be 

improved and the result will be more accurate.  This work therefore seeks to develop 

an ANN model to predict the formation rate of pure methane gas hydrate. 
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1.2 Problem Statement 

 

Gas hydrate plug oil and gas pipeline, the understating and modeling of kinetics 

gas hydrate formation growth is necessary for mitigating hydrate plugs problems. 

While extensive studies are available are on thermodynamics of gas hydrate, no 

acceptable model or well established model has been developed for the kinetics of 

gas hydrates. Therefore, this work seeks to develop an ANN model to predict the 

growth rate of formation of pure methane gas hydrate.  

 

1.3 Objectives 

 

The objectives of this research are: 

1. To develop artificial kinetic models by using ANN that can predict the 

growth rate of formation of methane gas hydrate. 

2.  To determine the best configuration to be used in ANN involving the number 

of layers and number of hidden neurons to be used in ANN models 

 

 

1.4 Scope of Study 

 

The scopes of study for this research are directed towards developing an 

artificial kinetic model by using neural network starting from training of ANN 

models to the testing and compare the performance and result from the model. ANN 

in the Matlab software is used for the modelling and experimental data in open 

literature are used to train and verify the model. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1  Previous Kinetic Modelling 

 

The first kinetic modeling was developed by Englezos et al. by combing 

crucial key factors of hydrate formation and it was tested under isothermal and 

isobaric condition. The model indicates the formation is depending on appearance of 

nuclei and its growth. However, the growth is dependent on interfacial area, 

pressure, temperature and the degree of supercooling[9]. The model can be 

summarized as three-step process transport of the gas from bulk of the gas phase to 

liquid bulk phase, diffusion of gas from the bulk of water phase and liquid film to 

hydrate crystal-liquid interface through a laminar diffusion layer around the hydrate 

particle, and “Reaction” at the interface, which is adsorption process describing how 

the gasses incorporated to the cavities of water structure and stabilization of 

framework of the structure. The global rate of reaction used in Englezos et al. is as 

equation (1) 

 

𝑅𝑦(𝑡) = 𝐾(𝑓 − 𝑓𝑒𝑞)      (1) 

 

Even though this Englezos et al. model is proven but there are lots of 

shortcoming where it only fitted with structure I growth model which are methane, 

ethane and carbon dioxide. Also the model is very sensitive to number of moles 

consumed at the turbidity point, to which is not easy access. The calculation of 

critical 
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radius is assumed at equilibrium pressure not system pressure thus it indicates force 

imbalance. Another problem was that; the predictions were accurate only for 

duration of 80min.  

 

 Later in 1993, Skovborg modified Englezos model by simply replace one 

parameter inside the model. In Englezos et al. model particle population balance is 

used but in Skovborg model it is replace by a simple reaction between total surface 

area of the hydrate particles with the amount of gas consumed [10].  Skovborg made 

an analysis over Englezos et al. model and pointed out that rate of reaction, K* 

simply insensitive because by increasing and decreasing the value of K* with all 

other parameter remain the same does bring significant agreement between the model 

and the results of experiment. Skovoborg assume that this result is because of one of 

the parameter that controlling diffusion is assigned wrongly.  

 

The basis for such a model is, in the water bulk phase equilibrium exists 

between the liquid water with some dissolved gas and the hydrate particle in other 

word the interface is equilibrium between liquid phase and gas phase; Gas is 

transported from the gas-water interface to the water bulk phase according to simple-

film theory. 

 

The mass transfer and total gas consumption are stated in equation (2) and the 

extended or simplified model is stated as equation (3). This simplified model yield 

satisfactory result for the data. 

 

𝑑𝑛

𝑑𝑡
= 𝐾𝐿𝐴(𝑔−𝑙)𝐶𝑤0(𝑥𝑖𝑛𝑡 − 𝑥𝑏)                    (2) 

 

𝑑𝑛𝑡𝑜𝑡

𝑑𝑡
= ∑

𝑑𝑛𝑖

𝑑𝑡
= 𝐶𝑤0 ∑ 𝐾𝐿

𝑖𝐴(𝑔−𝑙)(𝑁𝐺
𝑖=1

𝑁𝐺
𝑖=1 𝑥𝑖𝑛𝑡

𝑖 − 𝑥𝑏
𝑖 )           (3) 
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In 2012, Zare Nezhad et al. come out with a kinetic model for formation of 

hydrate in isothermal-isochoric systems. The model is based on based on the time 

variations of reaction chemical potential of hydrates former such as methane, ethane, 

propane and etc. The model consider homogenous reaction between gas and water 

proceeding in an isochoric system at a fixed temperature [11]. The result shows that 

at high agitation intensities when the intrinsic kinetic is rate controlling, the trends of 

normalized gas consumption profiles of different pure gas hydrate formation 

processes follow a unique path. The proposed model can be conveniently used for 

studying the energy conversion processes via gas hydrate formation in isothermal–

isochoric systems. 

 

Recently, Nazari et al. (2013) developed a kinetic model for gas hydrate 

mitigation in the absence/presence of low-dosage water-soluble ionic liquid for 

methane.  A Five step mechanism is resolved for this kinetic modeling of methane 

hydrate formation [12] as follow: Dissolution of methane molecules in the aqueous 

phase; Clathrate and labile cluster formation by dissolved methane and water 

molecules; Formation of crystal unit cell by clusters; Formation of a crystal nucleus 

by unit cells; Formation of hydrate crystal 

 

From all these steps the mechanism, general rate of formation is derived from 

equation (4)  

 

𝑟𝑖 =
𝑑𝑐𝑖

𝑑𝑡
= 𝑘𝑐𝑖

𝛼𝑐𝑗
𝛽

       (4) 

 

 This Nazari et al. model however experimented to test the Ionic Liquids (IL) 

effect on the formation of gas hydrate and the results are showing ILs is affecting the 

formation of hydrate but still can be studies further. 
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 Kinetic of gas hydrate is a very complex to be modeled and showing an 

accurate result from a kinetic model is nearly impossible because of the formation of 

hydrates is very ambiguous and formation depended on different driving forces. 

Furthermore, growth rate is dependent on the composition and testing conditions for 

the gas hydrate formation. Therefore, emerge the new technologies that can help 

prediction of gas hydrate. 

 

2.2  Artificial Neural Network 

 

An Artificial Neural Network (ANN) is an information processing paradigm 

such as the brain and how its process information or pattern [13]. The key component 

of this paradigm is the novel information processing system structures. It is 

composed of large number neurons (highly interconnected processing elements) 

functioning in unison to solve a specific problem. ANN is like people and it learns by 

experience and example. An ANN is designed for a specific application, such as data 

classification or pattern recognition, through learning processes. Learning in the 

biological systems comprises the adjustments to the synaptic connections that exist in 

between the neurons. 

 

A neuron is a device that comprise with numerous inputs and one output[14]. 

The operation of a neuron has two modes; the mode for training and the mode of. In 

the training mode, neuron can be trained to identify or differentiate for particular 

input patterns. When it comes to the using mode, when a taught input data or pattern 

is detected by neuron at the input; its associated output turn out to be the current 

output. If the input pattern is not in the taught list of input patterns, the outcome will 

be determined by the firing rule. The rule will determine the output of the neuron 

configuration work. Figure 2.2 show how simple neuron configuration work.  
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Figure 2.2:  Simple Neurons Configuration 

 

An important application of neural networks is pattern recognition. Pattern 

recognition can be implemented by using a feed-forward (Figure 2.3) neural network 

that has been trained accordingly. During training, the network is trained to associate 

outputs with input patterns. When the network is used, it identifies the input pattern 

and tries to output the associated output pattern. The power of neural networks 

comes to life when a pattern that has no output associated with it, is given as an 

input. In this case, the network gives the output that corresponds to a taught input 

pattern that is least different from the given pattern. Feed-forward ANNs (Figure 2.3) 

allow signals to travel one way only; from input to output. There is no feedback 

(loops) i.e. the output of any layer does not affect that same layer. Feed-forward 

ANNs tend to be straight forward networks that associate inputs with outputs. They 

are extensively used in pattern recognition. This type of organisation is also referred 

to as bottom-up or top-down. 

 

 

Figure 2.3:  Example of Pattern Recognition of ANN 
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2.2.1  Multilayer perceptron 

 

A multilayer perceptron (MLP) is a model that use feedforward artificial 

neural network to maps sets of inputs onto a set of relevant outputs. A MLP model 

contains of multiple layers of nodes, each node is a neuron (processing element) with 

a nonlinear activation function in a fixed graph, with each layer is completely 

connected to the next layer except the input nodes[7, 8, 14]. MLP employs a 

supervised learning technique for training of the network called backpropagation. 

 

Learning occurs in the perceptron by changing connection weights after each 

piece of data is processed, based on the amount of error in the output compared to the 

expected result. This is an example of supervised learning, and is carried out through 

backpropagation, a generalization of the least mean squares algorithm in the linear 

perceptron.  

 

Backpropagation is the abbreviation for backward propagation calculation of 

errors. This method is very common training of ANN. Backpropagation calculate the 

gradient of a loss function in the network with respect to all the weightage within the 

network. The gradient then fed to the optimization process which in turn applies to 

update the weights, in order to minimize the loss function. Backpropagation needs a 

known desired output for each input data in order to calculate the gradient. 

 

When a specified training pattern is fed to the input layer, the weighted sum 

of the input to the jth node in the hidden layer is given by  

 

𝑁𝑒𝑡𝑗 =   ∑ 𝑤𝑖𝑗𝑥𝑗 + 𝜃𝑗     (5) 
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Equation (5) is to calculate the aggregate of input data to the neurons. The 

term is the weighted value from a bias node that frequently has 1 an output value. 

The "Net" term, also known as the action potential, is passed onto an appropriate 

activation function used to decide whether a neuron should fire. Since algorithm used 

for the activation function is differentiable, Sigmoid equation is used as the 

activation function, 

 

𝑂𝑗 − 𝑋𝑘 −
1

1+𝑒
𝑁𝑒𝑡𝑗

     (6) 

 

For error calculation and weight adjustment is backpropagation the equation 

used are as follows, If the value of the output node of actual activation, k, is Ok, thus 

the expected output for node k is tk where in equation (3) Ok (1- Ok) is the derivative 

of Sigmoid function.  

 

𝛿𝑘 − ∆𝑘𝑂𝑘(1 − 𝑂𝑘)     (7) 

 

The formulas used to modify the weight, wj,k, between the output node, k, and 

the node, j is: 

 

∆𝑤𝑗,𝑘 =  𝑙𝑟𝛿𝑘𝑥𝑘     (8) 

 

Where ∆𝑤𝑗,𝑘 is the change in the weight between nodes j and k, lr is the learning rate. 

 

For errors of the backpropagation, equation (9) is employed. Ideally, the error 

function should have a value of zero when the neural network has been correctly 

trained. This, however, is numerically unrealistic. 

 

𝐸 −
1

2
∑(∑(𝑡𝑘 − 𝑂𝑘)2)     (9) 
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2.2.2  ANN on Gas Hydrate Formation 

 

Zahedi et al. has done a prediction of hydrate formation temperature with 

assessment by using two different methods. The assessment included statistical 

model and Artificial Neural Network. Statistical model used were Engineering 

Equation Solver (EES) and Statistical Package for Social Sciences (SPSS)[15]. 

Whereas, Multilayer Perceptron (MLP) is used to predict the hydrate formation 

temperature by ANN.   

 

Statistical method used correlation to predict hydrate formation temperature 

such as Berge-correlation and Kobayashi and Sloan-correlation. For neural network 

the MLP used 70% of experimental data is used for training purposes and the rest of 

data are predicted to prove the prediction. From 203 experimental data point it is 

found out ANN can predict excellently the 30% of the data for the hydrate formation 

temperature. 

 

 On the other hand, Ghavipour et al. also studies the use of neural network in 

predicting the hydrate formation conditions. The experiments uses six different gas 

mixtures were done and more than 130 hydrate equilibrium points in the pressure 

range of about 450–3000 psia. The input for ANN training are the pressure and 

specific gravity of the gas mixture and in this neural network prediction 70% of data 

are used to train the network and the remaining is used to test the network[16].  

 

The study also tests the four different methods of training in neural network 

for modelling (1) Levenberg-Marquadt backpropagation (2) gradient descent with 

momentum and adaptive learning rate backpropagation (3) scaled conjugate gradient 

back propagation (4) one-step secant back propagation. The study also uses variable 

of numbers of neuron and number of hidden layer for each of training method. The 
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result showing that using Levenberg-Marquadt backpropagation training, ANN can 

predict very well the formation with lowest mean square error. 

From the literatures, it is proven that ANN is a technology that is showing 

promising attributes to predict the growth rate of methane gas hydrate by teaching 

the neural network with every data that has been collected through previous 

experiments on gas hydrate formation.   
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CHAPTER 3 

METHODOLOGY 

 

 

ANN has been used to predict the methane gas hydrate growth rate with 

pressure and temperature as inputs. To accurately predict the hydrate growth rate 

using ANN, a Multilayer Perceptron (MLP) was employed.  

 

Levenberg-Marquardt backpropagation or trainlm was used to train the MLP. 

The trainlm training method is a dependable training method as its algorithm is 

designed to work with complex data based on theoretical assumption. Result 

produced by trainlm also much faster and accurate compared to other training 

method neural network provides. The training based on trainlm produce a lower 

mean square error thus proving its suitability for training of predicting growth rate of 

methane hydrate. The MLP models used in the work will be identified herein as; 

ANN model One, ANN model Two and ANN model Three. 

 

The data used for this models prediction is the experimental result from Ma 

et al. [17] and Sun et al. [18] as shown in Table 1. The experiments were performed 

in semi-batch reactor under isothermal and isobaric conditions with at constant 

pressure. The experiment studied the gas hydrate formation kinetics on the gas/water 

interface.  
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Table 1:  Experimental data of methane hydrate growth rate from Ma et al [17] 

and Sun et al. [18] 

Temperature 

T(K) 

Pressure 

P (MPa) 

Rate 

R(mm²/s) 

Temperature 

T(K) 

Pressure 

P (MPa) 

Rate 

R(mm²/s) 

276.3 8.73 3.886 281.3 8.04 0.09946 

276.2 8.25 3.396 281.6 8.3 0.10498 

276.2 7.88 3.157 278.8 6.7 0.12199 

276.2 7.43 2.747 281.6 8.65 0.14215 

276.2 7.09 2.363 281.4 8.5 0.14728 

276.2 6.85 1.996 282.1 8.98 0.16202 

276.2 6.54 1.841 281.6 8.8 0.14571 

276.2 6.23 1.409 278.8 6.9 0.19019 

276.2 5.62 0.864 281.6 8.95 0.23662 

276.1 5.14 0.586 278.1 6.7 0.28314 

276.1 4.93 0.38 281.6 9.1 0.25738 

276.1 4.83 0.371 281.9 9.5 0.26543 

276.1 4.79 0.328 278.8 7.5 0.37292 

278.1 5.15 0.02794 281.8 10.35 0.38424 

276.6 4.55 0.03143 278.1 7.4 0.38963 

280.4 6.85 0.03385 278.1 7.55 0.35412 

281.1 7.33 0.0445 278.4 7.9 0.48592 

280.4 7.1 0.05983 277.9 8.1 0.6587 

282.4 8.31 0.06448 277.9 8.5 0.81643 

281.4 7.66 0.07096 278.1 8.9 0.77055 

280.6 7.21 0.07535 277.8 9.12 1.61606 

282.5 8.45 0.07815 277.4 9.57 1.9065 

278.9 6.3 0.08491 277.9 10.3 1.8975 

282.6 8.73 0.09026 277.9 10.7 1.86085 

281.4 8.12 0.09356 

 

From data in Table 1, the ANN models will be tested based on the numbers 

of neurons configured in each ANN model as shown in Table 2. Also for 
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consistency, a constant 70% of the data was used training, 15% for validation and 

another 15% for testing or verification in all the ANN models with different neurons.  

 

Table 2:  ANN models and sets of configurations 

ANN Model Number of Layer Number of Neurons 

One 1 

1 

3 

5 

8 

10 

12 

15 

Two 2 

1 

3 

5 

8 

10 

12 

15 

Three 3 

1 

3 

5 

8 

10 

12 

15 

 

Table 3 shows the training parameters used in this work. Based on the 

parameters stated, the models will be trained until it satisfies the set parameter and 

ready for prediction. After completing the training, the models performance is 

evaluated. 
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Table 3:  Set parameters of all ANN Models Training 

Iterations 1000 

Minimum gradient 1E -10 

Validation Check 1000 

 

The performance of every model is evaluated with two factors the Regression 

Values (R2) and Mean Square Errors (MSE). R2 values measure the correlation 

between predicted data from ANN models with the experimental data from previous 

studies. An R value of 1 means a close relationship, 0 a random relationship. The R2 

value is given by the equation: 

 

R2 = 𝑏𝑋 + 𝑎            (10) 

 

Where R2 = Correlation between predicted values with literature experimental values, 

bX = gradient of the R2 of predicted values with literature experimental values. ɑ = 

y-intercept.  

 

Mean Square Error (MSE) is calculated using equation (11). MSE is the 

average squared difference between outputs and targets. Lower MSE values give 

better predictions. 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̃�𝑖)2𝑛

𝑖=1                  (11)   
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3.1  ANN Model Prediction procedure   

 

The ANN models in this were created using Matlab software, all ANN 

models was modelled to undergo training process, validation and testing process to 

predict the growth rate of methane gas hydrate. The summaries on how ANN 

Models are created and trained with the analysis of result validation for prediction 

are as follow; 

 

1. An input data consisting of temperature and pressure obtained from 

experimental data Table 1 was created in an excel file.  

2. Target data using the growth rate of methane hydrate obtained from 

experimental data Table 1 was also created in an excel file. 

3. After which the nntool command in Matlab software lunched, showing the 

Neural Network work space environment. 

4. The input data in the excel file was imported as input for neural network and 

likewise the target data file as targets for the output of the neural network. 

5. The type of ANN model was selected based on the number of layers as 

indicated earlier, then the number of neuron in each layer was also selected 

accordingly in Table 2. In addition, the training method is also selected 

(trainlm (Levenberg-Marquardt Backpropagation)).  

6. The network parameters are set for training, validation and testing.  

7. The network starts training the models until the set parameters are satisfied. 

8. The R2 values for training, validation and testing of the network are check.  

9. The ANN predicted outputs are plotted against experimental data from 

previous study and R2 values and MSE values for each ANN models are 

calculated. 

10. The procedure is repeat for all configurations as in Table 1.  
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CHAPTER 4 

RESULT AND DISCUSSION 

 

 

Focusing to show the ability of ANN in predicting gas hydrate growth rate, 

three ANN models with different configurations of varying number of hidden layers 

and neurons per layer were developed. In ANN, the training and validation testing 

performances are very critical on improving ANN prediction. Predictions comprise 

of 1, 3, 5, 8, 10, 12 and 15 neurons number in each hidden layer of ANN. The result 

of training, validation, testing and overall predictions for each neural network (NN) 

model in this work are presented. 

 

4.1  ANN model Training, Validation and Testing 

 

Correlation coefficient (R2) was employed to assess the training performance 

of the models in this work; Table 4 shows the R2 values for the training of each 

ANN model. From Table 4, the models show very strong correlation (R2 > 0.9) in 

their training performance except configuration of 1 neuron per layer in model One 

and 3 neurons in model Two that has R2 values of (0.44181 and 6.6 x 10-35) 

respectively. This occurs when the neural network fails to pick the data for training 

accordingly. Hence, the two configurations result is not valid. For the rest of model 

configurations, the high training performance may be attributed to the increasing 

number of layers and neurons therefore improving the NN learn and prediction 

ability. 
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Table 4:  Training’s result of all ANN models.  

ANN 

Model 

Number of 

Layer 

Number of 

Neurons 

Regression 

(R2)  

One  1 

1 0.44181 

3 0.99912 

5 0.99888 

8 0.99691 

10 0.98619 

12 0.99045 

15 0.99342 

Two  2 

1 0.96031 

3 6.16E-35 

5 0.99427 

8 0.99543 

10 0.98546 

12 0.98564 

15 0.99628 

Three 3 

1 0.98702 

3 0.99837 

5 0.99934 

8 0.99514 

10 0.99965 

12 0.97542 

15 0.99956 

 

Next to training is validation of the ANN models. This is important to 

evaluate the training process of the models. Similarly, the R2 values for validation the 

model is presented in Table 5. The validation process showed similar results as the 

training process, with almost all the model shows R2 > 0.9 except the same two 

configurations in model One and Two as in the training process. Since it has been 

identified the configurations are unable to perform the prediction the result for 

validation and testing is void.  On the other hand, with impressive R2 values showed 

from others models configuration in each model validates that the models are well 

trained with the inputs data. 
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Table 5:  Validation’s result of all ANN models. 

ANN 

Model 

Number of 

Layer 

Number of 

Neurons 

Regression 

(R2)  

One  1 

1 0.58546 

3 0.99169 

5 0.99956 

8 0.99907 

10 0.99994 

12 0.99897 

15 0.99988 

Two  2 

1 0.99887 

3 0.00E+00 

5 0.99406 

8 0.99977 

10 0.99715 

12 0.98848 

15 0.99997 

Three 3 

1 0.97086 

3 0.99966 

5 0.99837 

8 0.99999 

10 0.96845 

12 0.99381 

15 0.99931 

 

After validation of models, the models undergo testing process to see the 

actual performance of the model in predicting the growth rate of methane gas 

hydrate. The testing performance is presented in Table 6. Excellent testing result 

showed by the models with R2 > 0.97 shows that the configurations used in each 

model are well fitted for the predictions. To identify the best configurations, the 

mean square errors for overall prediction is calculated and analyzed. The failure of 1 

neuron in model One and 3 neurons in model Two also shows that in the neural 

network there is possibility of randomness and inability of the network to process the 

data.  
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Table 6:  Testing’s result of all ANN models. 

ANN 

Model 

Number of 

Layer 

Number of 

Neurons 

Regression 

(R2)  

One  1 

1 0.34534 

3 0.99981 

5 0.99933 

8 0.98599 

10 0.99989 

12 0.99894 

15 0.99989 

Two  2 

1 0.99997 

3 0.00E+00 

5 0.99917 

8 0.99997 

10 0.99443 

12 0.99995 

15 0.97373 

Three 3 

1 0.99962 

3 0.98754 

5 0.98896 

8 1 

10 0.98026 

12 0.99711 

15 0.98376 

 

4.2  ANN models overall prediction 

 

Overall performance of prediction of growth rate of methane gas hydrate by 

all models is presented Table 7. The performance consists of the R2 values and MSE 

produced by each configuration in the models. The MSE of each configuration from 

the models is then plotted in Figure 4.1 to find the best configuration in every model 

employed for the prediction. 
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Table 7:  Overall performance of all ANN Models  

ANN 

Model 

Number of 

Layer 

Number of 

Neurons 

Regression 

(R)  
MSE 

One  1 

1 1E-14 4.31E-01 

3 0.99976 7.1548E-04 

5 0.998 5.9945E-04 

8 0.9943 1.9925E-03 

10 0.9836 5.1934E-03 

12 0.9876 3.9554E-03 

15 0.9932 2.0092E-03 

Two  2 

1 0.9725 8.5551E-03 

3 6.00E-16 4.31E-01 

5 0.9904 2.9082E-03 

8 0.9945 1.6978E-03 

10 0.9728 8.9651E-03 

12 0.9978 6.8455E-03 

15 0.9942 1.7396E-03 

Three 3 

1 0.9786 6.3832E-03 

3 0.9969 9.1557E-04 

5 0.998 6.0818E-04 

8 0.992 2.5083E-03 

10 0.998 5.9371E-04 

12 0.9544 1.5071E-02 

15 0.9961 1.2864E-03 
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Figure 4.1:  Means Square Errors (MSE) against number of neurons in ANN 

models 

 

Overall, all models show impressive result of prediction may be because of 

number of training for each model has been contributing to its efficiency of 

predicting the growth rate of methane gas hydrate. For each model the best 

configuration is determined by the lowest MSE produced in each model with the R2 

values produced by models’ testing. This is because the actual performance of the 

model is shown from testing the model with training data and MSE of overall shows 

the successfulness of data selection by NN for training and validation. 

 

For ANN model One the best configurations is five neurons in a hidden layer 

of NN with R2 from testing is 0.999 and MSE of 5.995E-04. Whereas, in ANN 

model Two eight neurons in each layer shows the lowest MSE of 1.698E-03 and R2 

values of 0.999 and lastly in ANN model Three, the best configuration is with five 

neurons per layer produce R2 values of 0.989 and MSE of 5.9371E-04. 
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The challenges in this work is to set the best configuration to predict the 

growth rate is erratic because by using excessive hidden neurons can cause network 

over-fitting or in other word the network over-estimate the complexity of the 

prediction target outputs. Similarly, this problem happens when a network has very 

low number of hidden neurons that cause under-fitting of network. Bias/ or dilemma 

in determining the best number of neurons in the layers cause the capability of 

network to predict an output decreases.  

 

Limitation for this model prediction is that the prediction only valid from the 

range of input data means the prediction of growth rate of methane gas hydrate is 

only valid in the range of input pressure and temperature. The NN cannot extrapolate 

the prediction in areas where pressure or temperature is not trained as input data. 

 

Also in this work, the selections of data by NN are not specified as nntool 

function in Matlab does not specify data which 70% of the data used for training and 

30% of the data used for validation and testing of the models. Therefore, the result 

obtained from the network varies every time training is done.  
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CHAPTER 5 

CONCLUSION 

 

 

In conclusion, three ANN models have been developed and tested to predict the 

formation rate of methane gas hydrate. The results from all the models to identify 

best configuration for every model is presented where the best for ANN model One 

is five neurons in a layer with R2 values of 0.999 and MSE of 5.995E-04 whereas, for 

ANN model Two the best is configuration of eight neurons in each layers with MSE 

of 1.698E-03 and R2 values of 0.999 and lastly ANN model Three with the best 

configuration comprise of five neurons produce R2 values of 0.989 and MSE of 

5.9371E-04. There are some limitations in the work where two of configuration from 

the models unable to select the data properly that resulting randomness in prediction 

of the network. Also, the models only can predict growth rate of methane gas hydrate 

based on the range of input pressure and temperature only and lastly the selection of 

data for training, validation and testing of the model are randomly selected therefore 

produce different result when running the network. 
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APPENDICES 

ANN configuration tools 
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ANN Models 

ANN model One: Example configuration of 1 hidden neuron in a layer 

 

ANN model Two: Example configuration of 10 hidden neuron in each layer 

 

ANN model Three: Example configuration of 8 hidden neuron in each layer 
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Gantt Chart & Key Milestone 

Table A: Gant Chart & key milestone for FYP1 & FYP 2 

No  Detail Work (FYP1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 Selection of Project Topic               

2 Preliminary Research Work               

3 Submission of Extended Proposal               

4 Proposal Defense               

5 Project Work Continues               

6 Submission of Interim Report               

No  Detail Work (FYP2) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 Project Work Continues                

2 Submission of Progress Report                

3 Pre-SEDEX                

4 Submission of Draft Final Report                

5 Submission of Dissertation (soft bound)                

6 Submission of Technical Paper                

7 Viva                

8 Submission of Project Dissertation (Hard 

Bound) 
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