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ABSTRACT 

 

 

 

Control valve stiction is one of the main causes that can affect the performance of a 

control loop. As the final control element, it can cause disruptions towards the 

operations especially on the plant production of oil and gas industry. An initiative 

had been made in 1989 where a stiction detection method is first developed to detect 

stiction in control valve. Since then, many methods are produced and redeveloped 

but only few uses the statistical-based methods. Hence, this project will cover 

statistical-based methods which had once been used for fault detection and will be 

tested for the effectiveness in detecting control valve stiction. Two case studies are 

chosen which are simulation case study involving stiction and non-stiction conditions 

namely, well-tuned controller (Base case), tightly-tuned controller (Case 1), presence 

of disturbances controller (Case 2) and presence of stiction controller (Case 3). 

Another case study is the real industrial data from a chemical plant. The process 

output (pv) and controller output (op) for each case are generated based on nonlinear 

principle component analysis (NLPCA) method. Two statistical-based methods are 

chosen to be tested which are generalized likelihood ratio (GLR) test as well as error 

testing method. Based on the results of testing for method 1, there are some 

limitations for GLR test method to detect between the presence of stiction and the 

presence of disturbances in the system. However, for method 2, it can be seen that 

the error testing method focusing at the root mean squared error (RMSE) calculation 

is an effective tool and method to detect stiction and manage to differentiate stiction 

and non-stiction system for the simulation and real industrial case studies chosen.  
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CHAPTER 1 

INTRODUCTION 

 

 This chapter provides some background knowledge related to the field of 

study. The subsections divided include the background and relation of stiction with 

control loop performances, problem statement and the objectives to be achieved by 

the end of this project. The scope of study also covers the methods chosen for this 

project. 

1.1  Background 

For a normal operating of a chemical plant, hundreds of control loops are 

involved in controlling the process to get the best quality products for customers. 

Control valve is the final control element for every process loop. In order to optimize 

and maximize productivity, the control valves should always be in their best 

performance. However, according to Paulonis and Cox (2003), around 20-30% of the 

control loops are suffering with the nonlinearities problem which is valve stiction [1]. 

These have caused oscillatory results to the process output. Figure 1.1 shows the 

common problems for poor control performances which includes stiction. 

 

Stiction is derived from the word “static” and “friction”. According to the 

Instrument Society of America (ISA,1979), “Stiction is the resistance to start of 

motion, usually measured as the difference between the driving values required to 

overcome static friction upscale and downscale”[2]. There are abundant methods that 

have been developed in order to detect the stiction of control valve. However, this 

project paper will focus only to the statistical-based methods.  
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Figure 1.1  Common problems and causes of poor control performance [3] 

 

1.2 Problem Statement 

Control valve plays an important role as the final control element to help in 

the production of products at good condition. However, this device has to undergo 

maintenance process from time to time to check its performance based on the process 

output. Throughout the operation, a nonlinearity process output may occur and one 

of the reasons is due to the control valve stiction. This will hinder the process from 

running smoothly. Therefore, the detection of this problem in the control loop is very 

important to make any changes and correction at the control valve. 

Since the early stage of stiction detection, there are many types of approaches 

that have been made. However, in the present work, only few of the methods used 

the statistical-based techniques to detect valve stiction. Meanwhile, there are a lot of 

statistical-based methods used for fault detection but only few are applied to detect 

valve stiction. 
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1.3  Objectives and Scope of Study 

The main objectives of this project are: 

1) To investigate on the existing statistical-based methods for efficient fault 

detection 

2) To simulate the effectiveness of the method on detecting control valve stiction 

The scope of study for this project will be covering the statistical-based 

methods on detecting the control valve stiction. The case studies of the feedback 

control system for simulation and real industrial data had been developed in Matlab 

software using nonlinear principle component analysis (NLPCA) method by H. 

Zabiri and Ramasamy [4]. This method managed to capture the stiction behavior 

based on the curve shape formed. However, the detection of stiction will be 

improved with the generation of controller output (op) and process output (pv) data 

that are further tested with statistical-based methods namely Generalized Likelihood 

Ratio (GLR) and Error Testing Method which will be explained further in chapter 3. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1  Introduction 

 

This chapter will cover few important theories related to the project. It is 

divided into few parts which consist of introduction on control valve, control valve 

stiction, and the existing statistical-based methods for fault detection. An overview 

for some of the chosen statistical-based techniques to be tested is also included under 

this section. 

2.2  Control Valve 

In most of the literatures, control valves are known as the final control 

elements and the moving part in a process control loop. Once there is a flow of the 

process fluid, the valve will control the allowable volume required which can be seen 

at Figure 2.1 below. According to Fisher Controls International (2005), typical 

assembly of a control valve comprises of the valve body, the internal trim parts, the 

actuator and also accessories which includes the position sensors [5]. An ideal valve 

will have a linear flow characteristic with no dead time and properly adjusted 

packing [6]. 

 

 

 

Figure 2.1  Cross-sectional diagram of control valve [7] 
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 In general, there are four types of control valve where any possible of bad 

occurrences are possible to happen at any control system [8]. The categories of the 

control valve are listed in Table 2.1 below. 

Table 2.1 Four general types of valves [8] 

No Types Description 

1 Electronic or electrical 

valves 

The movement of the ball that controls flow is 

controlled electronically through circuits 

2 Non-return valves The valves only allow the flow in one direction 

3 Electromechanical 

valves 

These valves have electromagnets controlling to 

open or close the valve 

4 Mechanical Valves These valves use mechanical energy in the process 

of closing and opening of the valves such as 

pulleys and levers 

 

 There are four commonly used valves which are the ball valves, butterfly 

valves, globe valves and plug valves. Each type of valves has different functions 

depending on the application of the conditions. Despite of their types, any valve can 

suffer mechanical problems such as noise, cavitation, hysteresis and also valve 

stiction. 

2.3  Control Valve Stiction 

Same like other mechanical devices, control valve requires regular 

maintenance after certain period of its operation. There are many problems occurred 

which will then might affect the performance of the control loop. An initiative done 

by Saudi Aramco for process control improvement involving approximately 15,000 

Proportional-Integral-Derivative (PID) loops, 50 Multivariable Predictive Control 

(MPC) and 500 smart positioners had proved that the common reasons for poor 

control loop performances are due to the valve stiction, hysteresis and backlash 

amongst others [9]. However, according to Bakri, et al (2014), valve stiction is the 

main culprit for the bad performance in the control loops [9]. Figure 2.2 illustrates 

the block diagram of closed loop control with sticky valve. 
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Figure 2.2  Typical closed loop control with sticky valve 

 

Stiction has been described with different terms by many people and 

organizations. According to Choudhury, Shah, & Thornhill (2008), the sticky valve 

will illustrate four components which are deadband, stickband, slip-jump and moving 

phase which are shown in the Figure 2.3 [6].  

 

Figure 2.3  Typical behavior of a sticky valve [6] 

 

Joe Qin (1998) mentioned that the stiction detection method was first initiated 

by Harris in 1989 which is the Control Performance Monitoring (CPM) by using the 

data of closed-loop to evaluate and diagnose controller performance using a 

minimum variance control [10]. From that time, many people started to develop or 

redesign the stiction detection methods to fit with different situations of the final 

control element. Table 2.2 further describes control valve stiction detection methods 

that have been implemented from 1999 up until 2015[4, 11-18].  
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Table 2.2  Stiction detection methods with descriptions  

No Author (Year) Method Description 

1 H. Zabiri 

M. Ramasamy 

(2009) 

Nonlinear 

Principal 

Component 

Analysis 

(NLPCA) 

 Calculates an index based on NLPCA 

using the distinctive shapes of the 

signals 

 Utilizes the controller output (pv-op) 

 Regression coefficient (R²) is more 

than 0.8 whereby it includes a 

curvature index, INC 

 It will help to distinguish between the 

shapes of the signals caused by 

stiction and other sources 

 It is also known as neural-network 

based generalization of PCA 

2 Choudhury et al 

(2008) 

Bicoherenc 

(automatic method 

to detect 

nonlinearities) 

 Involve the calculation of higher 

order statistics of the closed-loop data  

 It has two indices which are non 

Gaussianity index (NGI) and 

nonlinearity index (NLI) 

3 Singal & Salsbury 

(2005) 

Calculation of 

Ratio of Areas, R 

 Based on calculation of areas before 

and after the peak of an oscillating 

signal 

 As stiction is detected, the R value is 

more than 1. 

4 Jelali et al 

(2008) 

Optimization-

based technique 

 Utilizes two main components which 

are Pattern Search (PS) and Genetic 

Algorithms 

 More towards stiction estimation 

5 M.A Daneshwar, 

Norlaili Mohd Noh 

(2015)  

Well-developed 

fuzzy clustering 

approach 

A new index is proposed and tested 

The steps are: 

1) Find cluster centres using well-

developed fuzzy clustering 

2) Fit a line to the obtained cluster 

centres 

3) Calculate the error of fitting 

4) Decision making using the obtained 

error with predefined threshold 

6 A. Horch 

(1999) 

Shape-based 

Method 

 Based on the cross-correlation 

between the controller input and the 

process output signals. 
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 It is limited due to the flow loop 

dynamics which can distort the shape 

of the stiction pattern 

7 Babji Srinivasan, T. 

Spinner, 

Raghunathan 

Rengaswamy 

(2012) 

Frequency 

Domain Analysis 

 Use Hammerstein-based model  

 This identifies a nonlinear stiction 

element along with a linear dynamical 

model between the process output and 

controller output  

 The differences are calculated using 

Root Mean Squared Error (RMSE) 

8 S. Kalaivani, T. 

Aravind, D. Yuvaraj 

(2014) 

A Single Curve 

Piecewise Fitting 

Method 

 Based on qualitative analysis of the 

control signals 

 To fit two different functions, 

triangular wave and sinusoidal wave, 

to the controller output data 

9 Bartys, M., 

Quevedo, J. Patton, 

RJ 

(2003) 

Development and 

Application of 

Methods for 

Actuator 

Diagnosis in 

Industrial Control 

Systems 

(DAMADICS) 

 Real time training of actuator system 

 The testing was performed by 

inducing abrupt (sudden) and 

incipient (gradually developing) 

faults to the actuators and recording 

data 

 

 

 

From Table 2.2 shown above, a simple graph is plotted and only two out of 

nine methods developed used the statistical-based methods to detect the control valve 

stiction. Figure 2.4 illustrates the comparison of methods described above based on 

the recentness of the literatures. 

 

Figure 2.4  Comparison of stiction detection methods 



 

9 
 

2.4  Statistical-based Methods for Fault Detection 

Fault Detection can be considered as the unpermitted deviation which can 

lead to the failure or malfunction in an engineered system [19].There are several 

methods to detect and diagnose these faults by using either quantitative or qualitative 

models and also by referring to the large history data from the samplings. Srinivas et 

al (2005) stated that one of the history-based methods is the statistical-based method 

which is illustrated in Table 2.5 below: 

 

 

Figure 2.5  Classifications Scheme for Fault Detection [20] 

 

Statistical method can be described as the observations made or 

characteristics that are inferred based on the sample from the entire populations or 

data. Since it is based on historical data from processes, the authors described this 

method and model as easy to be developed for any kind of faults. Meanwhile, L, B. 

Ang et al (2014) stated that additional requirement for this method is the knowledge 

on computational methods to run and evaluate the testing [21]. Some of the methods 

are described in Table 2.3[21-26]. 
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Table 2.3  Fault detection methods using statistical-based method 

No 
Author 

(Year) 
Method Description 

1 Hector J. 

Galicia 

Q. Peter He 

Jin Wang 

(2011) 

Statistics Pattern 

Analysis 

(SPA) 

 A new multivariate statistical monitoring 

framework. This approach is proposed when 

principle component analysis (PCA) method 

had some limitations. The difference is where 

PCA monitors process variables while SPA 

monitors the statistics of the process variables. 

There are two major steps which are: 

1. Statistics Pattern (SP) generation 

2. Dissimilarity quantification 

 In the fault diagnosis, we apply PCA to 

quantify the dissimilarity 

2 Fouzi Harrou, 

Mohamed N. 

Nounou, 

Hazem N. 

Nounou, 

Muddu 

Madakyaru 

(2012) 

PCA-based 

Generalized 

Likelihood Ratio 

(GLR) Fault 

Detection 

Algorithm 

 A statistical hypothesis testing method. This 

algorithm provides optimal properties by 

maximizing the detection probability of faults 

for a given false alarm rate 

 There are two types which are simple 

hypothesis (depends on existence of faults) and 

composite hypothesis (assume a parameter as 

benchmark) 

 GLR approaches replace the unknown 

parameter by its maximum likelihood estimate 

 Advantage of this method is it can handle the 

presence of noise and uncertainties 

3 Carl Svard, 

Mattias 

Nyberg, Erik 

Frisk, Mattias 

Krysander 

(2013) 

Statistical Residual 

Evaluation with an 

automotive 

application 

 This is where residuals are evaluated with the 

aim to detect changes In their behaviors caused 

by faults 

 The framework used is the hypothesis testing 

 Input is the set of residual samples and output 

is the decision to reject the hypothesis or not 
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4 Liu Bo-ang, 

Ye Hao 

(2014) 

Statistical x² testing 

for linear discrete 

time-delay systems 

 The constructed function used the 

measurements observations. It used projection 

and innovation analysis 

i. First step – generate JN (evaluation function) 

online 

ii. Second step - x² statistical testing 

 The strategies are single observation, 

observation sequence, window average of 

observations 

 The important remark is that the process and 

measurement noises being with jointly normal 

distribution  

5 Yang Zhao, 

Shengwei 

Want, Fu 

Xiao 

(2012) 

Exponential-

Weighted Moving 

Average (EWMA) 

control charts with 

Support Vector 

Regression (SVR) 

 Combining EWMA control charts with SVR  

i. EWMA – to detect faults in statistical way to 

improve the ratios of correctly detected points 

ii. SVR – to improve accuracy of the reference 

models 

 Case study showed that this method improved 

the FDD performances especially at low 

severity levels 

6 Ashwani 

Kumar & A. 

P. Singh 

(2013) 

Polynomial Curve 

Fitting 

 It involves with circuit simulation 

 This method used artificial neural networks as 

the case study for the method 

 The results of the fitting are calculation of 

residuals, least squares, residuals and other 

 

 From the listed statistical-based methods that have been tested on fault 

detection, two methods are picked to test the capability on detecting control valve 

stiction based on the generated op-pv data which are generalized likelihood ratio 

(GLR) test and polynomial curve fitting method.  
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CHAPTER 3 

METHODOLODY 

 

3.1  Introduction 

 

This chapter includes the detailed methods in achieving the objectives of this 

study. It starts with general project flow chart which covers the data of process 

output (denoted as pv) and controller output (denoted as op) from the case study or 

industrial data developed based on Nonlinear Principle Component Analysis 

(NLPCA) method as well as the statistical-based techniques steps. Besides that, 

project gannt chart and key milestones for both semesters are included together with 

the tools used for this project.  

 

3.2  General Project Work 

 

The process flow for this research project is divided into five stages which are 

shown in Figure 3.1. Based on the previous chapter, the literature review also covers 

few options of statistical-based methods for fault detection. From Table 2.3 which 

covers the existing fault detection techniques using statistical-based methods, two 

techniques are chosen to be tested with the generated data with some modifications 

on the methods. Furthermore, both of the methods are tested with real industrial data 

from existing process plant for better justifications. 
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Figure 3.1  Process flow chart 

3.2.1  Development of pv and op data 

3.2.1.1 Simulation case study 

 

In order to test on the effectiveness of the statistical-based method of fault 

detection in detecting control valve stiction, a case study had been chosen with some 

operating parameters involving stiction and non-stiction conditions. A simple single-

input and single-output (SISO) feedback control system is used to generate the 

simulated data. The transfer function of the process is: 

         
               

     
                  (1) 
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The process was assumed to be linear and controlled using the Proportional 

Integral (PI) controller. Each four cases are described based on the process output 

and the controller output. The simulated results were produced based on nonlinear 

principal component analysis (NLPCA) done by Zabiri and Ramasamy [4]. 

Base case : Well-tuned controller 

The PI controller is designed with the controller gain of    = 0.15 and 

integral time   = 0.15. It is considered as well-tuned controller because of the high 

stability of the system with no presence of stiction and external oscillatory 

disturbances. The block diagram for the base case is as follows in Figure 3.2: 

 

Figure 3.2  Block diagram for well-tuned controller 

Case 1 : Tightly-tuned controller 

 For case 1 controller, the PI controller operating parameters are Kc = 0.15 

and I = 0.27s
-1

. There are no stiction or external oscillatory disturbances action 

towards the system. However, the integral time increases which make the integral 

action disturb the output from the controller. The block diagram is shown in Figure 

3.3. 

 

Figure 3.3  Block diagram for excessive integral action controller 
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Case 2 : Existence of external oscillatory disturbances 

Similar to base case condition, the parameters are designed with the same 

values for controller gain and integral time. However, a sinusoidal disturbance with 

amplitude of 2 and a frequency of 0.01 is added to the process which resulted with a 

disturbance action towards the performance of the control loop. The block diagram in 

Figure 3.4 further describes the condition of case 2. 

 

Figure 3.4  Block diagram for external oscillation controller 

Case 3 : Presence of stiction 

In this case, the simulation is done with the presence of stiction in the control 

loop. The stiction method proposed will then prove the existence of stiction in the 

process loop. The stiction model is shown in Figure 3.5 after the PI controller. 

 

Figure 3.5  Block diagram for control system with presence of stiction 

3.2.1.2. Industrial case study 

After being tested with the simulation case study, the evaluation is continued 

by applying the methods to different kind of industrial loops. The performance of the 

chosen methods are then been applied with some real data from flow control loops 
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which are based on fuzzy clustering data [14]. Table 3.1 had simplified the flow 

control loops chosen. 

Table 3.1  Industrial data from flow control loops 

Flow Loops Number of data Conditions 

Loop 1 1441 samples Evident absence of stiction 

Loop 2 1998 samples Presence on stiction 

Loop 3 200 samples Presence of stiction 

Loop 4 719 samples Presence of external disturbances 

Loop 5 721 samples Presence of external disturbances 

 

3.2.2 Statistical-based methods steps 

Based on the statistical methods for fault detection which had been described 

earlier in chapter 2, the chosen methods to be tested are generalized likelihood ratio 

(GLR) test as well as error testing method. 

3.2.2.1 Generalized likelihood ratio (GLR) test 

To implement the GLR test with the data generated from the case study, a 

statistical hypothesis testing was adopted. Since the main objective of this fault 

detection system is to detect any existence of stiction, the test had come out with two 

decisions which are null hypothesis (indicates stiction free condition) and alternative 

hypothesis (indicates stiction exists). The equation for the GLR,      test was 

computed using equation (2) below; 

      
 

    
   

  

          
 

       (2) 

From the above equation,   is defined as the standard deviation,    is the 

variance,   is the residual and   is the mean from the data generated. With a 

significance level of 5% and one degree of freedom, the decision threshold value is 

chosen to be 3.841 for both case studies. Hence the method can detect and report the 

existence of stiction if     is bigger than the decision threshold value. For non-
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stiction system, the null hypothesis is accepted which indicates stiction free 

condition.  

To summarize the steps involves, Figure 3.6 is developed which explained 

the actions to run this method for the case study. 

 

Figure 3.6  Flowchart of GLR testing method 

 

3.2.2.2 Error Testing Method 

For error testing method, the fitting known as curve fitting is applied whereby 

the generated data from the case studies are fitted to obtain few parameters which are 
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sum of the squared error (SSE), regression (R²) as well as root mean squared error 

(RMSE). All of these can be obtained by applying the Curve Fitting Toolbox 

(‘cftool’ command) in Matlab software for fitting curves and generates the data [27]. 

Additional steps are made which involve with the calculation of slope at three 

different points. For each slope values, any changes in the positive and negative 

values will indicates the curve shapes and can be said as stiction system. Figure 3.6 

shows the Curve Fitting Toolbox used in this project. 

 

Figure 3.7  Curve Fitting Toolbox in Matlab 

Controller output (op) 

Process output (pv) 
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 Figure 3.8 further illustrates the steps to be applied in error testing method for 

the case study. 

 

 

Figure 3.8  Flowchart of error testing method 
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3.3  Project Gannt Chart and Key Milestone 

Throughout the two semester of completing the project, there are two project 

gannt charts which act as the main guideline for every work as shown below: 

Table 3.2 Project gannt chart and key milestone 

Final Year Project (Semester 1) 

No Detail Work 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 Selection of Project Topic                             

2 

Preliminary Research work and 

Literature Review 
                            

3 

Submission of Extended Proposal (first 

draft) 
                            

4 

Submission of Extended Proposal (final 

draft) 
              

5 Preparation for Proposal Defense               

6 Proposal Defense                             

7 Project Work Continues                             

8 Submission of Interim Draft Report                             

9 Submission of Interim Report                             

Final Year Project (Semester 2) 

No Detail Work 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 Selection of Project Topic                             

2 Submission of Progress Report                             

3 Project Work Continues                             

4 Pre-SEDEX               

5 Submission of Draft Final Report               

6 Submission of Dissertation (soft bound)                             

7 Submission of Technical Paper                             

8 Viva                             

9 

Submission of Project Dissertation (Hard 

bound)                             

Gantt chart    Key Milestone  
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3.4  Tools 

The tools used are software tools which are mainly used for simulation, 

testing and documentation purposes.  

a. MATLAB – this tool is used for simulation purposes 

b. Microsoft Office Words – this tools is mainly used for writing such as the 

proposal, interim report and full report 

c. Microsoft Office Excel – this tool is used to develop any tables from the 

generated data for analysis purposes 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1  Introduction 

 

This chapter describes on the results obtained based on the application of the 

two selected statistical-based methods with both case studies of simulation and real 

industrial data respectively. The first part presents the outcomes from the GLR 

stiction detection method followed by the error testing method. The results are well 

analysed and discussed in the following sections together with the constraints if any. 

4.2  Generalized Likelihood Ratio (GLR) Test 

For this first chosen statistical-based method, a closed-loop feedback system 

with a process model which uses equation (1) as mentioned earlier is constructed in 

Matlab software. It will be used to generate the simulated data. The Simulink blocks 

for each case are attached in Appendix A. The process was assumed to be linear and 

controlled using the PI controller. Each four cases under this simulation case study 

which have been described earlier in chapter 3 will produce different set of process 

output (pv) and controller output (op) data based on the nonlinear principle 

component analysis (NLPCA) method[4]. 

For base case which is considered as the well-tuned controller in Figure 4.1 

below, it shows the graph plotted after 10 runs from NLPCA technique.  
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Figure 4.1  The pv-op plotted graph for base case  

 

As expected, the op and pv system generated for base case is in straight line 

without any curvature shape. The system is more stable without oscillation. In order 

to get the best fit curve from the plotted graph, calculations of regression are made. 

With the help from Matlab software, the command of polyfit and polyval have helped 

the author in selecting the lowest regression value from all the data generated which 

will be chosen for further quantification of stiction with GLR test. Case 1, 2 and 3 

also undergo NLPCA method and the shape generated for the 10 times run are shown 

in Figure 4.2, Figure 4.3 and Figure 4.4. For the lowest regression values based on op 

and pv data, the chosen graph are also included in Table 4.1. 
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Table 4.1 The curve-shaped of lowest regression for each case 

 

 

Figure 4.2  The pv-op plotted graph for case 1 

 

 

 

 

 

 

 

 

 

 

Figure 4.3  The pv-op plotted graph for case 2 
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Figure 4.4  The pv-op plotted graph for case 3 

 

Table 4.1  The chosen pv and op data for lowest regression values 

  

Base case Well-tuned controller Case 1 Tightly-tuned controller 

  

Case 2 Presence of oscillation Case 3 Presence of stiction 
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 The ability of GLR test in detecting stiction for each case study is 

investigated and further discussed. After choosing the set of pv and op data based on 

the lowest regression values calculated in Matlab software, the GLR test statistic 

value is tested using equation (2) mentioned in section 3.1.2.1 earlier. The testing 

was done using the method of residual calculation. The probability of significance 

level used is 5% and the chi-square value for 5% with 1 degree of freedom is 3.841. 

The GLR test statistic value is compared with the chi-square value to detect the 

existence of valve stiction. For values that are lower than 3.841, it indicates no 

stiction and higher than 3.841 indicates the existence of stiction in the loop. Hence, 

Table 4.2 summarized the results of the statistical-based method.  

Table 4.2  Summary of results generated for all case studies 

Case Study GLR Test Statistic Value Detection Result 

(1) well-tuned controller 0.1152 The system has no stiction 

(2) tightly-tuned controller 0.9289 The system has no stiction 

(3) presence of external 

oscillatory disturbances 
7.8129 

Fault present. The system 

has stiction 

(4) presence of stiction 

controller 
11.9713 

Fault present. The system 

has stiction 

   

Based on the results of the testing, it can be seen that three out of four cases 

resulted in the correct output. However, case study 3 which involves with the 

presence of oscillatory disturbances produced higher value than the chi-square value, 

3.841. It is then accidently shows the existence of stiction to the system. This 

actually indicates the error of calculations and input for the case study.  

Hence, based on the above results, it is proven that the test is only applicable 

for base case, case 1 and case 3 conditions. For presence of external disturbances 

controller, it has a high possibility to be detected as stiction system due to the 

curvature and high value of GLR test statistic value.  
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4.3  Error Testing Method Test 

For error testing method, similar procedures are applied for the generation 

and selection of pv and op data with the GLR testing method. Before applying the 

calculation, the cases are first been filtered out with the slope calculation. If there are 

some changes for the sign, it will indicate curvature shape which has high possibility 

with the presence of stiction in the system. Table 4.3 summarizes the results of the 

slope calculation. 

Table 4.3  Slope calculations for simulation case study 

Base Case 

Straight line Slope 1 Slope 2 Slope 3 

-1.2494 -1.2783 -1.2561 

Case 1 

Straight line Slope 1 Slope 2 Slope 3 

-22.4225 -26.2544 -23.0422 

Case 2 

Curve shape Slope 1 Slope 2 Slope 3 

-0.2092 0.9163 -0.6246 

Case 3 

Curve shape Slope 1 Slope 2 Slope 3 

0.8645 -0.2923 0.839 

 

It can be seen from Table 4.3 whereby for case 2 and case 3, it has a high 

possibility to be detected as stiction system. For base case and case 1, since there are 

no changes for the slope at three different points, it indicates straight line and there 

are absent of stiction in both of the system.  
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With the help of Curve Fitting Toolbox in Matlab, the op and pv data chosen 

is used to be plotted and calculated for the values of regression, sum squared error 

and root mean squared error. Figure 4.5 until 4.8 show the polynomial plot of all 

cases.  

 

Figure 4.5  Polynomial plot for base case 

 

 

Figure 4.6  Polynomial plot for case 1 
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Figure 4.7  Polynomial plot for case 2 

 

Figure 4.8  Polynomial plot for case 3 

 

 Based on the above figures, it can be seen that for well-tuned controller and 

tightly-tuned controller, the plotted polynomial curve contain some part of straight 

line which have been detected earlier in the slope calculation. Meanwhile for case 2 

and case 3, both portrayed curvature shape but for stiction case, the curvature is 

higher and had different direction compared to case 2. The next part of this testing is 

the calculation of the values for regression (R
2
), sum squared error (SSE) and also 

root mean squared error (RMSE). Table 4.4 developed shows the summary of the 

calculations for all cases. 
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Table 4.4  Summary of error calculation for each case 

Error 

Calculation 
Base case Case 1 Case 2 Case 3 

R
2
 0.9996 0.9976 -0.05131 0.3547 

SSE 0.01501 0.1438 20.28 113.7 

RMSE 0.001891 0.005852 0.0695 0.1645 

 

Based on the data above, it can be seen that the regression value for base case 

and case 1 are approaching to 1. This shows that for these cases, the ideal and the 

actual have not much difference as for perfect case without stiction will have the 

regression value of 1. Similar thing for case 3 whereby the extreme curve portrayed 

in this situation had caused the regression value to be low which is 0.3547. However, 

for case 2 involving the external disturbances, there are some challenges as the 

regression value calculated is negative value. This shows that the regression 

calculation is sensitive to upward curvature. Hence, the calculation of regression to 

indicate stiction is not enough. Figure 4.9 shows the plotted graph of all the R
2
 

values. 

 

Figure 4.9  Comparison on the regression values 
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Meanwhile, the method is continued with the calculation of sum squared of 

error, SSE. In general, base case and case 1 had very small values of SSE which is 

less than 1. Meanwhile for case 2, the value of SSE is slightly higher and case 3 with 

stiction has the highest among others. Figure 4.10 shows the comparison for all SSE 

values for this case study. A simple hypothesis can be made that for stiction system, 

the values of SSE is the highest among other cases.  

 

Figure 4.10  Comparison on the sum squared of error values 

 

 Another calculation of error is done which is the root mean squared of error, 

RMSE. According to the values generated in Matlab toolbox, similar to the previous 

error of SSE, the base case and case 1 have very small values of RMSE. Meanwhile 

case 2 has slightly higher which is 0.0695 which is smaller than 0.1. However, for 

stiction system, the RMSE is higher than 0.1 which is 0.1645. This can be considered 

for the comparison especially to differentiate between case 2 and case 3. Figure 4.11 

represents the values of RMSE for all four case studies.  
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Figure 4.11  Comparison on the RMSE for all cases 

 

 Now the error testing method is further tested for the real industrial data. This 

is very important as the main goal for this statistical-based detection technique is to 

be able on detecting the stiction system for real plant operations. Similar steps are 

repeated whereby the industrial case studies undergo NLPCA method to generate the 

op and pv data. Then, the minimum regression values among the 10 run will be 

chosen as the pv and op data for the polynomial curve fitting.  

 The method starts with the slope calculation for each loop at three different 

points. Similar to Table 4.3, the slope calculations for the real industrial data and the 

indications for the sign changes are summarized in Table 4.5. 

Table 4.5  Slope calculations for real industrial data 

Loop 1 

Straight line Slope 1 Slope 2 Slope 3 

-1.6988 -1.6987 -1.6988 

Loop 2 

Curve shape Slope 1 Slope 2 Slope 3 

1.3240 -1.2879 -0.8842 
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Loop 3 

Straight line Slope 1 Slope 2 Slope 3 

-1.3324 -1.3331 -1.3328 

Loop 4 

Straight line Slope 1 Slope 2 Slope 3 

-0.9470 -0.5177 -1.1225 

Loop 5 

Straight line Slope 1 Slope 2 Slope 3 

-0.0562 -0.2821 -0.2714 

 

 It can be seen from the above table, the changes of sign happened in loop 2 

which has a high possibility to be detected as stiction system. Meanwhile, for other 

loops, it indicates no changes to the sign which have the potential of straight line 

shapes generated from the NLPCA method. Hence, further steps are being made for 

better clarification.  

From Figure 4.12 until Figure 4.16, these show the polynomial plots for each 

loop using the curve fitting toolbox in Matlab software.  

 

Figure 4.12  Polynomial plot for loop 1 
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Figure 4.13 Polynomial plot for loop 2 

 

 

Figure 4.14  Polynomial plot for loop 3 

 

 

Figure 4.15  Polynomial plot for loop 4 
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Figure 4.16  Polynomial plot for loop 5 

 

 As what have been described earlier in chapter 3, loop 1 is the system of non-

stiction followed by loop 2 and loop 3 for stiction system. Then, loop 4 and loop 5 

are system with external disturbances. Table 4.6 shows the results of the errors 

calculation for each case. 

Table 4.6  Error calculation for each industrial case study 

Error 

Calculation 

Industrial 

Loop 1 

Industrial 

Loop 2 

Industrial 

Loop 3 

Industrial 

Loop 4 

Industrial 

Loop 5 

R2 1 0.03121 1 0.9316 0.3684 

SSE 5.41E-06 18.8 1.44E-07 3.30E-01 0.2827 

RMSE 7.33E-05 0.15 3.22E-05 2.57E-02 0.02371 

 

Based on the data above, it can be seen that for regression values of loop 1, 

loop 3 and loop 4 are approaching 1. Meanwhile, for loop 2 and loop5, the values of 

R
2
 are very small. However, this is violating the observations made earlier as for 

non-stiction system, the R
2
 values should be approaching 1 and stiction system, in 

this case is loop 3 should not have the value of 1. This is maybe due to the limitations 

of NLPCA to generate the pv and op data as the number of samples for this system is 

very small which is 200 samples compared to other system. This is the main 

drawback for NLPCA, thus resulting in the incorrect indications for the real 

industrial data. Hence, the R
2
 calculation is not suitable to detect stiction system. 



 

36 
 

Another error calculation is based on the SSE. Previously, the stiction system 

has the highest values among others while for non-stiction system, the SSE is very 

small for tightly-tuned controller and slightly higher for presence of disturbances. 

However, again this observation cannot be applied here as loop 4 also has the SSE 

values almost similar to loop 1. Hence, the SSE calculations cannot be the main 

reference to detect any stiction in the system. 

Lastly is the RMSE calculation. For the simulation case study, for any values 

that is more than 0.1 is considered as stiction system. Here, we can see that for loop2, 

it has values higher than 0.1 which is 0.15. Meanwhile, for loop 3, there is still some 

drawback due to the small number of data of the system. The RMSE for both 

external disturbances cases have lower values than 0.1. This had eventually proven 

the efficiency of RMSE to detect stiction system in the real industrial data.  

In a nutshell, R
2
 and SSE play an important role in supporting the detection 

techniques. However, RMSE is the most essential calculation to be done for 

detection method due to the capability of it in detecting stiction system especially to 

differentiate with other presence of disturbances and tightly-tuned controller 

conditions.  

The proposed error testing method is further compared with existing 

detection method which is the fuzzy clustering method mentioned earlier in Table 2.2 

in chapter 2. Table 4.7 is the comparison table whereby the red colour indicates 

incorrect result and green colour shows the correct result. 

Table 4.7  Comparison of the proposed method with fuzzy clustering method on 

the industrial data set 

Loop number Fuzzy Clustering Method Error Testing Method 

Loop 1 NO  NO 

Loop 2 YES YES 

Loop 3 YES NO 

Loop 4 NO NO 

Loop 5 NO NO 

 

As been stated earlier, the proposed method has some limitations for a small 

set of data. However, for other loops, it manages to generate correct output. This has 

strongly supports the effectiveness of this method as the new stiction detection 

method using statistical-based method especially on the real industrial data. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATION 

 

5.1  Conclusion 

 As a conclusion, there are two statistical-based methods which have been 

used for fault detection and now have been applied to detect control valve stiction. 

However, for GLR testing method, it is not suitable to detect stiction system due to 

the constraint of detecting the presence of oscillatory disturbances as stiction system 

too. Meanwhile, for Error Testing Method with additional slope calculation, this 

method managed to differentiate each simulation and real industrial case studies for 

stiction or non-stiction system. It has proven to be a reliable tool for stiction 

detection. Hence, based on the objectives stated earlier, it can be said that this project 

had achieved the objectives mentioned earlier. 

5.2  Recommendation 

 One of the disadvantages of NLPCA testing method is due to the limitations 

of generating based on smaller number of data. This drawback has effect the data 

generated whereby the op and pv data does not fully portray the conditions of the 

system. Hence, it is recommended to test other statistical-based methods with other 

model in generating the data such as shape-based method and Hammerstein-based 

model. 

 Since there are some limitations and time constraints to expand this project, it 

is recommended for the next research to continue on this application for modelling 

and compensation of stiction. 
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APPENDICES 

 

APPENDIX A 

 

Block Diagram for Base Case 
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Block Diagram for Case 1 
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 Block Diagram for Case 2 
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 Block Diagram for Case 3
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APPENDIX B 

close all; clear;  clc; 

  
Ts = 1; 

  
%%Simulink model 
% sim('system_4_case3'); 
% sim('system_3_case2'); 
% sim('system_2_case1'); 
% sim('system_1_basecase'); 

  
%%Fuzzy Clustering Data 
% A = xlsread('loop1_noS'); 
% A = 

xlsread('loop2_stiction'); 
 A = xlsread('loop3_stiction'); 
% A = 

xlsread('loop4_stiction'); 
% A = xlsread('loop5_dist'); 
% A = xlsread('loop6_dist'); 

  
[Arow,Acol]=size(A); 
u1 = A(1:Arow,2);  
y1 = A(1:Arow,1); 

  
% Extracting data  
op = u1; 
pv = y1; 

  
% Normalization 
min_pv = min(pv); min_op = 

min(op); 
max_pv = max(pv); max_op = 

max(op); 

  
[row1,col1] = size(op); 
norm_op = zeros(row1,col1); 
i = 1; 
for i=1:row1 
    norm_op(i,:) = (op(i,:) - 

min_op)/(max_op - min_op); 
    i = i+1; 
end 

  
[row2,col2] = size(pv); 
norm_pv = zeros(row2,col2); 
j = 1; 
for j=1:row2 
    norm_pv(j,:) = (pv(j,:) - 

min_pv)/(max_pv - min_pv); 
    j = j+1; 
end 

  
% creating index no of original 

sequence 
indexno = ones(row1,1); 
for l=2:row1; 

indexno(l,:) = indexno(l-

1,:)+1; 
end 

  
% create a random number vector 

with the same size as op 
% use rand = between 0 to 1 
randno = rand(row1,1); 

  
% create intermediate data 

matrix for randomization 
datamat = [randno indexno 

norm_op norm_pv]; 

  
% sort data according to random 

numbers 
A = sortrows(datamat,1); 
A = datamat; 
%  
% creating the data matrix 
[row,col] = size(A) ; 
L_tr = round(0.7*row); 

  
% extracting T and V sets  
T_set = A(1:L_tr,2:4); 
V_set = A(L_tr+1:row,2:4); 

  
% re-arrange the original time 

sequence 
T_setr = T_set; 
V_setr = V_set; 
% T_setr = sortrows(T_set,1); 
% V_setr = sortrows(V_set,1); 

  
% NLPCA  
P_tr = T_setr(:,2:3)'; 
T_tr = T_setr(:,2:3)'; 
P_v = V_setr(:,2:3)'; 
T_v = V_setr(:,2:3)'; 

  
% naming TF 
p1 = 'purelin'; t = 'tansig';  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Setup network 

%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% NLPCA 

  
%Figure (1) 
net=newff(minmax(P_tr), [2 3 1 

3 

2],{t,t,p1,t,p1},'trainrp','lea

rngdm','mse');   % 5 layers 
% net = init(net); 
% net.initFcn='initlay'; 
% 

net.layers{1}.initFcn='initnw'; 
% net = init(net); 
% % net = initnw(net,1); 
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% rand('seed',419877); 
rng('default'); 
rng(1,'twister'); 
net = init(net); 
net.trainParam.show=5; 
net.trainParam.epochs=1000; 
net.trainparam.goal=1e-4; 
val.P = P_v; 
val.T = T_v; 
[net tr] = train( 

net,P_tr,T_tr,[],[],val); 
a = sim(net,P_tr); 
figure(1) 
xlabel('op'); 
ylabel('pv'); 
subplot(5,2,1),scatter(a(1,:),a

(2,:),5,'r','filled'); 
drawnow; hold on; 
clear('net'); 

  
net1=newff(minmax(P_tr), [2 3 1 

3 

2],{t,t,p1,t,p1},'trainrp','lea

rngdm','mse');   % 5 layers 
% rand('seed',419877); 
% rng('default'); 
rng(2,'twister'); 
net1 = init(net1); 
net1.trainParam.show=5; 
net1.trainParam.epochs=1000; 
net1.trainparam.goal=1e-4; 
val.P = P_v; 
val.T = T_v; 
[net1 tr] = train( 

net1,P_tr,T_tr,[],[],val); 
a1 = sim(net1,P_tr); 
figure(1) 
xlabel('op'); 
ylabel('pv'); 
subplot(5,2,2),scatter(a1(1,:),

a1(2,:),5,'r','filled'); 
drawnow; hold on; 
clear('net1'); 

  
net2=newff(minmax(P_tr), [2 3 1 

3 

2],{t,t,p1,t,p1},'trainrp','lea

rngdm','mse');   % 5 layers 
% rand('seed',419877); 
% rng('default'); 
rng(3,'twister'); 
net2 = init(net2); 
net2.trainParam.show=5; 
net2.trainParam.epochs=1000; 
net2.trainparam.goal=1e-4; 
val.P = P_v; 
val.T = T_v; 
[net2 tr] = train( 

net2,P_tr,T_tr,[],[],val); 
a2 = sim(net2,P_tr); 

figure(1) 
xlabel('op'); 
ylabel('pv'); 
subplot(5,2,3),scatter(a2(1,:),

a2(2,:),5,'r','filled'); 
drawnow; hold on; 
clear('net2'); 

  
net3=newff(minmax(P_tr), [2 3 1 

3 

2],{t,t,p1,t,p1},'trainrp','lea

rngdm','mse');   % 5 layers 
% rand('seed',419877); 
% rng('default'); 
rng(4,'twister'); 
net3 = init(net3); 
net3.trainParam.show=5; 
net3.trainParam.epochs=1000; 
net3.trainparam.goal=1e-4; 
val.P = P_v; 
val.T = T_v; 
[net3 tr] = train( 

net3,P_tr,T_tr,[],[],val); 
a3 = sim(net3,P_tr); 
figure(1) 
xlabel('op'); 
ylabel('pv'); 
subplot(5,2,4),scatter(a3(1,:),

a3(2,:),5,'r','filled'); 
drawnow; hold on; 
clear('net3'); 

  
net4=newff(minmax(P_tr), [2 3 1 

3 

2],{t,t,p1,t,p1},'trainrp','lea

rngdm','mse');   % 5 layers 
% rand('seed',419877); 
% rng('default'); 
rng(5,'twister'); 
net4 = init(net4); 
net4.trainParam.show=5; 
net4.trainParam.epochs=1000; 
net4.trainparam.goal=1e-4; 
val.P = P_v; 
val.T = T_v; 
[net4 tr] = train( 

net4,P_tr,T_tr,[],[],val); 
a4 = sim(net4,P_tr); 
figure(1) 
xlabel('op'); 
ylabel('pv'); 
subplot(5,2,5),scatter(a4(1,:),

a4(2,:),5,'r','filled'); 
drawnow; hold off; 
clear('net4'); 

  
net5=newff(minmax(P_tr), [2 3 1 

3 

2],{t,t,p1,t,p1},'trainrp','lea

rngdm','mse');   % 5 layers 
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% rand('seed',419877); 
% rng('default'); 
rng(6,'twister'); 
net5 = init(net5); 
net5.trainParam.show=5; 
net5.trainParam.epochs=1000; 
net5.trainparam.goal=1e-4; 
xlabel('op'); 
ylabel('pv'); 
[net5 tr] = train( 

net5,P_tr,T_tr,[],[],val); 
a5 = sim(net5,P_tr); 
figure(1) 
xlabel('u'); 
ylabel('y'); 
subplot(5,2,6),scatter(a5(1,:),

a5(2,:),5,'r','filled'); 
drawnow; hold off; 
clear('net5'); 

  
net6=newff(minmax(P_tr), [2 3 1 

3 

2],{t,t,p1,t,p1},'trainrp','lea

rngdm','mse');   % 5 layers 
% rand('seed',419877); 
% rng('default'); 
rng(7,'twister'); 
net6 = init(net6); 
net6.trainParam.show=5; 
net6.trainParam.epochs=1000; 
net6.trainparam.goal=1e-4; 
val.P = P_v; 
val.T = T_v; 
[net6 tr] = train( 

net6,P_tr,T_tr,[],[],val); 
a6 = sim(net6,P_tr); 
figure(1) 
xlabel('op'); 
ylabel('pv'); 
subplot(5,2,7),scatter(a6(1,:),

a6(2,:),5,'r','filled'); 
drawnow; hold off; 
clear('net6'); 

  
net7=newff(minmax(P_tr), [2 3 1 

3 

2],{t,t,p1,t,p1},'trainrp','lea

rngdm','mse');   % 5 layers 
% rand('seed',419877); 
% rng('default'); 
rng(8,'twister'); 
net7 = init(net7); 
net7.trainParam.show=5; 
net7.trainParam.epochs=1000; 
net7.trainparam.goal=1e-4; 
val.P = P_v; 
val.T = T_v; 
[net7 tr] = train( 

net7,P_tr,T_tr,[],[],val); 
a7 = sim(net7,P_tr); 

figure(1) 
xlabel('op'); 
ylabel('pv'); 
subplot(5,2,8),scatter(a7(1,:),

a7(2,:),5,'r','filled'); 
drawnow; hold off; 
clear('net7'); 

  
net8=newff(minmax(P_tr), [2 3 1 

3 

2],{t,t,p1,t,p1},'trainrp','lea

rngdm','mse');   % 5 layers 
% rand('seed',419877); 
% rng('default'); 
rng(9,'twister'); 
net8 = init(net8); 
net8.trainParam.show=5; 
net8.trainParam.epochs=1000; 
net8.trainparam.goal=1e-4; 
val.P = P_v; 
val.T = T_v; 
[net8 tr] = train( 

net8,P_tr,T_tr,[],[],val); 
a8 = sim(net8,P_tr); 
figure(1) 
xlabel('op'); 
ylabel('pv'); 
subplot(5,2,9),scatter(a8(1,:),

a8(2,:),5,'r','filled'); 
drawnow; hold off; 
clear('net8'); 

  
net9=newff(minmax(P_tr), [2 3 1 

3 

2],{t,t,p1,t,p1},'trainrp','lea

rngdm','mse');   % 5 layers 
% rand('seed',419877); 
% rng('default'); 
rng(10,'twister'); 
net9 = init(net9); 
net9.trainParam.show=5; 
net9.trainParam.epochs=1000; 
net9.trainparam.goal=1e-4; 
val.P = P_v; 
val.T = T_v; 
[net9 tr] = train( 

net9,P_tr,T_tr,[],[],val); 
a9 = sim(net9,P_tr); 
figure(1) 
xlabel('op'); 
ylabel('pv'); 
subplot(5,2,10),scatter(a9(1,:)

,a9(2,:),5,'r','filled'); 
drawnow; hold off; 
clear('net9'); 

  
% Method 1 - Getting the best 

fit 
% Calculating the value of SSE 

and Residual for deg 1 
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% Get the yfit and R^2 for each 

data from a-a9 

  
x = a(1,:); 
y = a(2,:); 
p1 = polyfit (x,y,1); 
yfit1 = polyval (p1,x); 
% yfit = p1(1)*x + p1(2); 
yresid1 = y - yfit1; 
SSresid_a1 = sum(yresid1.^2); 
SStotal_a1 = (length(y)-

1)*var(y); 
rsq_a1 = 1 - 

SSresid_a1/SStotal_a1; 
disp (rsq_a1); 
p1a = polyfit (x,y,2); 
yfit1a = polyval (p1a,x); 
yresid1a = y - yfit1a; 
SSresid_a1a = sum(yresid1a.^2); 
SStotal_a1a = (length(y)-

1)*var(y); 
rsq_a1a = 1 - 

SSresid_a1a/SStotal_a1a; 
yfit1b = p1(2); 
yresid1b = y - yfit1b; 
SSresid_a1b = sum(yresid1b.^2); 
SStotal_a1b = (length(y)-

1)*var(y); 
rsq_a1b = 1 - 

SSresid_a1b/SStotal_a1b; 

  
x1 = a1(1,:); 
y1 = a1(2,:); 
p2 = polyfit (x1,y1,1); 
yfit2 = polyval (p2,x1); 
% yfit1 = p1(1)*x1 + p1(2); 
yresid2 = y1 - yfit2; 
SSresid_a2 = sum(yresid2.^2); 
SStotal_a2 = (length(y1)-

1)*var(y1); 
rsq_a2 = 1 - 

SSresid_a2/SStotal_a2; 
disp (rsq_a2); 
p2a = polyfit (x1,y1,2); 
yfit2a = polyval (p2a,x1); 
yresid2a = y1 - yfit2a; 
SSresid_a2a = sum(yresid2a.^2); 
SStotal_a2a = (length(y1)-

1)*var(y1); 
rsq_a2a = 1 - 

SSresid_a2a/SStotal_a2a; 

  
x2 = a2(1,:); 
y2 = a2(2,:); 
p3 = polyfit (x2,y2,1); 
yfit3 = polyval (p3,x2); 
% yfit2 = p2(1)*x2 + p2(2); 
yresid3 = y2 - yfit3; 
SSresid_a3 = sum(yresid3.^2); 

SStotal_a3 = (length(y2)-

1)*var(y2); 
rsq_a3 = 1 - 

SSresid_a3/SStotal_a3; 
disp (rsq_a3); 
p3a = polyfit (x2,y2,2); 
yfit3a = polyval (p2a,x2); 
yresid3a = y2 - yfit3a; 
SSresid_a3a = sum(yresid3a.^2); 
SStotal_a3a = (length(y2)-

1)*var(y2); 
rsq_a3a = 1 - 

SSresid_a3a/SStotal_a3a; 

  
x3 = a3(1,:); 
y3 = a3(2,:); 
p4 = polyfit (x3,y3,1); 
yfit4 = polyval (p4,x3); 
% yfit3 = p3(1)*x3 + p3(2); 
yresid4 = y3 - yfit4; 
SSresid_a4 = sum(yresid4.^2); 
SStotal_a4 = (length(y3)-

1)*var(y3); 
rsq_a4 = 1 - 

SSresid_a4/SStotal_a4; 
disp (rsq_a4); 
p4a = polyfit (x3,y3,2); 
yfit4a = polyval (p4a,x3); 
yresid4a = y3 - yfit4a; 
SSresid_a4a = sum(yresid4a.^2); 
SStotal_a4a = (length(y3)-

1)*var(y3); 
rsq_a4a = 1 - 

SSresid_a4a/SStotal_a4a; 

  
x4 = a4(1,:); 
y4 = a4(2,:); 
p5 = polyfit (x4,y4,1); 
yfit5 = polyval (p5,x4); 
% yfit4 = p4(1)*x4 + p4(2); 
yresid5 = y4 - yfit5; 
SSresid_a5 = sum(yresid5.^2); 
SStotal_a5 = (length(y4)-

1)*var(y4); 
rsq_a5 = 1 - 

SSresid_a5/SStotal_a5; 
disp (rsq_a5); 
p5a = polyfit (x4,y4,2); 
yfit5a = polyval (p5a,x4); 
yresid5a = y4 - yfit5a; 
SSresid_a5a = sum(yresid5a.^2); 
SStotal_a5a = (length(y4)-

1)*var(y4); 
rsq_a5a = 1 - 

SSresid_a5a/SStotal_a5a; 

  
x5 = a5(1,:); 
y5 = a5(2,:); 
p6 = polyfit (x5,y5,1); 
yfit6 = polyval (p6,x5); 
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% yfit5 = p5(1)*x5 + p5(2); 
yresid6 = y5 - yfit6; 
SSresid_a6 = sum(yresid6.^2); 
SStotal_a6 = (length(y5)-

1)*var(y5); 
rsq_a6 = 1 - 

SSresid_a6/SStotal_a6; 
disp (rsq_a6); 
p6a = polyfit (x5,y5,2); 
yfit6a = polyval (p5a,x5); 
yresid6a = y5 - yfit6a; 
SSresid_a6a = sum(yresid6a.^2); 
SStotal_a6a = (length(y5)-

1)*var(y5); 
rsq_a6a = 1 - 

SSresid_a6a/SStotal_a6a; 

  
x6 = a6(1,:); 
y6 = a6(2,:); 
p7 = polyfit (x6,y6,1); 
yfit7 = polyval (p7,x6); 
% yfit6 = p6(1)*x6 + p6(2); 
yresid7 = y6 - yfit7; 
SSresid_a7 = sum(yresid7.^2); 
SStotal_a7 = (length(y6)-

1)*var(y6); 
rsq_a7 = 1 - 

SSresid_a7/SStotal_a7; 
disp (rsq_a7); 
p7a = polyfit (x6,y6,2); 
yfit7a = polyval (p7a,x6); 
yresid7a = y6 - yfit7a; 
SSresid_a7a = sum(yresid7a.^2); 
SStotal_a7a = (length(y6)-

1)*var(y6); 
rsq_a7a = 1 - 

SSresid_a7a/SStotal_a7a; 

  
x7 = a7(1,:); 
y7 = a7(2,:); 
p8 = polyfit (x7,y7,1); 
yfit8 = polyval (p8,x7); 
% yfit7 = p7(1)*x7 + p7(2); 
yresid8 = y7 - yfit8; 
SSresid_a8 = sum(yresid8.^2); 
SStotal_a8 = (length(y7)-

1)*var(y7); 
rsq_a8 = 1 - 

SSresid_a8/SStotal_a8; 
disp (rsq_a8); 
p8a = polyfit (x7,y7,2); 
yfit8a = polyval (p8a,x7); 
yresid8a = y7 - yfit8a; 
SSresid_a8a = sum(yresid8a.^2); 
SStotal_a8a = (length(y7)-

1)*var(y7); 
rsq_a8a = 1 - 

SSresid_a8a/SStotal_a8a; 

  
x8 = a8(1,:); 

y8 = a8(2,:); 
p9 = polyfit (x8,y8,1); 
yfit9 = polyval (p9,x8); 
% yfit8 = p8(1)*x8 + p8(2); 
yresid9 = y8 - yfit9; 
SSresid_a9 = sum(yresid9.^2); 
SStotal_a9 = (length(y8)-

1)*var(y8); 
rsq_a9 = 1 - 

SSresid_a9/SStotal_a9; 
disp (rsq_a9); 
p9a = polyfit (x8,y8,2); 
yfit9a = polyval (p9a,x8); 
yresid9a = y8 - yfit9a; 
SSresid_a9a = sum(yresid9a.^2); 
SStotal_a9a = (length(y8)-

1)*var(y8); 
rsq_a9a = 1 - 

SSresid_a9a/SStotal_a9a; 

  
x9 = a9(1,:); 
y9 = a9(2,:);  
p10 = polyfit (x9,y9,1); 
yfit10 = polyval (p10,x); 
% yfit9 = p9(1)*x9 + p9(2); 
yresid10 = y9 - yfit10; 
SSresid_a10 = sum(yresid10.^2); 
SStotal_a10 = (length(y9)-

1)*var(y9); 
rsq_a10 = 1 - 

SSresid_a10/SStotal_a10; 
disp (rsq_a10); 
p10a = polyfit (x9,y9,2); 
yfit10a = polyval (p10a,x); 
yresid10a = y9 - yfit10a; 
SSresid_a10a = 

sum(yresid10a.^2); 
SStotal_a10a = (length(y9)-

1)*var(y9); 
rsq_a10a = 1 - 

SSresid_a10a/SStotal_a10a; 
yfit10b = p10(2); 
yresid10b = y9 - yfit10b; 
SSresid_a10b = 

sum(yresid10b.^2); 
SStotal_a10b = (length(y9)-

1)*var(y9); 
rsq_a10b = 1 - 

SSresid_a10b/SStotal_a10b; 

  
% Identify min and max values 

  
data_loop1pulp = 

[rsq_a1,rsq_a2,rsq_a3,rsq_a4,rs

q_a5,rsq_a6,rsq_a7,rsq_a8,rsq_a

9,rsq_a10]; 
data_loop1pulpa = 

[rsq_a1a,rsq_a2a,rsq_a3a,rsq_a4

a,rsq_a5a,rsq_a6a,rsq_a7a,rsq_a

8a,rsq_a9a,rsq_a10a]; 
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data_loop1pulp_sse = 

[SSresid_a1,SSresid_a2,SSresid_

a3,SSresid_a4,SSresid_a5,SSresi

d_a6,SSresid_a7,SSresid_a8,SSre

sid_a9,SSresid_a10]; 
data_loop1pulpa_sse = 

[SSresid_a1a,SSresid_a2a,SSresi

d_a3a,SSresid_a4a,SSresid_a5a,S

Sresid_a6a,SSresid_a7a,SSresid_

a8a,SSresid_a9a,SSresid_a10a]; 
data_des = sort(data_loop1pulp, 

'descend'); 
a_all = 

[a;a1;a2;a3;a4;a5;a6;a7;a8;a9]; 

  
[minR indmin] = 

min(data_loop1pulp); 
[maxR indmax] = 

max(data_loop1pulp); 

  
% Choosing R2min 

  
if  minR == rsq_a1; 
    R2min = rsq_a1; 
elseif minR == rsq_a1; 
    R2min = rsq_a2; 
elseif minR == rsq_a2; 
    R2min = rsq_a3; 
elseif  minR == rsq_a3; 
    R2min = rsq_a4; 
elseif  minR == rsq_a4; 
    R2min = rsq_a5; 
elseif  minR == rsq_a5; 
    R2min = rsq_a6; 
elseif  minR == rsq_a6; 
    R2min = rsq_a7; 
elseif  minR == rsq_a7; 
    R2min = rsq_a8; 
elseif  minR == rsq_a8; 
    R2min = rsq_a9; 
else  
    R2min = rsq_a10; 
end     

  
% Calculating R2<0.1 
iir2 = 1; 
iisse = 1; 
for ir2 = 

1:length(data_loop1pulp) 
    if data_loop1pulp(ir2)<0.5; 
        ir2ind(iir2)=1; 
        iir2=iir2+1; 
    end 
    if 

(data_loop1pulp_sse(ir2)-

data_loop1pulpa_sse(ir2))>0; 
        isseind(iisse)=1; 
        iisse=iisse+1; 
    end 
end 

% Testing the condition for 

curve fitting 
%  
% if ((mean(data_loop1pulp)-

mean(data_loop1pulpa))<0) && 

((mean(data_loop1pulp_sse)-

mean(data_loop1pulpa_sse))>0); 
%     display('Stiction may 

exist') 
% %     break; 
%  
% else 
%    display('No stiction') 
%     
% end 

  
% if sum(ir2ind) >= 5; 
%     display('No stiction') 
% %     break; 
%  
% else 
%    display('Stiction may 

exist') 
%     
% end 

  
% if (sum(ir2ind)>=1) && 

(sum(isseind)>=1); 
%     display('Stiction may 

exist') 
% %     break; 
%  
% else 
%    display('No stiction') 
%     
% end 

  
%  
if minR >= 0.5; 
    display('No stiction') 
%     break; 
%  
% else 
%    R2min = minR; 
%    disp (R2min); 

    
end 

  
% set variables for cftool 
datamin = a_all(indmin*2-

1:indmin*2,:); 
pv_test = datamin(2,:); 
op_test = datamin(1,:); 

  
cftool 

  
figure(2) 
plot (op_test, pv_test); 
 


