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ABSTRACT 

 

 

Nowadays, most vehicles are integrated with autonomous control system such 

as Stability Control System (SCS) and Traction Control System (TCS) which aim to 

improve the car safety by compensating the error made by the drivers. This thesis 

focuses on the enhancement of the previous work on path following ability of a linear 

car model. The path following is the ability of the vehicle to follow the vehicle’s path 

and keeping the vehicle in its lane as accurately as possible. When the car maneuvers 

itself to follow the prescribed path, the car tends to off track when it undergoes 

cornering. This is due to the constant speed which the car is traveling. The vehicle is 

unable to adjust its speed to reduce its lateral speed when it undergoes cornering. As a 

result, the car will take cornering at high speed and consequently introduces greater 

path following error to the vehicle. The speed of the vehicle needs to be varied by 

introducing the speed controller. The speed controller of the vehicle functions to vary 

the speed of the vehicle to achieve certain speed trajectories when it approaching 

cornering. This can be well understood by the natural behavior of the driver which 

tend to reduce the speed of the vehicle when approach cornering. This project utilizes 

the potential of the neural network predictive controller as the information processing 

element to control the forward speed of the vehicle when the vehicle approaching 

cornering.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of the Project 

The increment of road accidents over past few years have drew automakers’ attention 

to produce cars with more safety features. Road accidents typically occur due to the 

careless of the drivers and their inability to efficiently control the car. Due to that 

reasons, we have seen major improvement in the vehicle safety systems starting from 

the development of three-point seatbelts to airbag system to Anti-Lock Braking 

Systems (ABS) which have proved to save many lives on the road. 

  

The advance in microchip technology has accelerated the development of active 

vehicle safety system. The aim for this system is to improve the driving safety by 

introducing the automated control systems such as Traction Control System (TCS), 

Acceleration Slip Regulation (ASR) traction control, Electronic Stability Control 

(ESP), Autonomous Cruise Control System and many more. The introduction if these 

systems have made driving more relaxing, less stressful and the driver can 

concentrate on other important factors.  

 

The purpose of these systems is to enhance the stability of the vehicle especially 

when facing difficult situation such as loss of control due to slip road or when there is 

sudden change of the car’s direction due to obstacles avoidance. The systems will 

help drivers to maneuver the cars to the correct position by applying autonomous 

control over the engine speed, wheels rotation and the brakes.
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Autonomous Cruise Control System helps drivers to automatically maneuver the cars 

on its prescribed path based on the information it received from the sensor unit. 

However, being autonomous, the degree of safety and the reliability of this 

technology on the roadways are inevitably debated. Therefore, this thesis employing 

neural network predictive controller as the speed controller for the vehicle would 

demonstrate the ability of the autonomous cruise control to provide safer journey to 

the drivers as the cars travelling safely, accurately and eventually give a comfortable 

ride to the drivers autonomously.  

 

1.2 Problem Statement 

With the number of vehicle are dramatically increased over past few years, greater 

attention need to be given on the safety aspects and comfortable driving experiences. 

This phenomenon also is supported by the lower cost for producing high reliability 

electronics equipment for various functions in the vehicle.  

 

1.2.1 Improve Safety 

A vehicle travel at high speed is more likely to loss steerability and controllability 

especially when the vehicle is approaching sharp turn or corner. The phenomenon 

arises due to the vehicle wheel slip during vehicle acceleration maneuver. At high 

speed, the vehicle requires no margin of errors as any of it would introduce high 

risk to the vehicle’s passengers and road users. The condition become more 

critical when cruise control system is engaged as the vehicle would travel at 

preset speed which normally at speed higher than 80 km/h.  

1.2.2 Driving Comfort 

Since the cruise control system aims to relieve the drivers from constantly 

adjusting the vehicle’s speed, the system should provide automatic speed 

adjustment to reduce the speed of the vehicle when needed and resume to the 

preset speed when the road is clear from any obstacles or curvature. Even though 

the Adaptive Cruise Control (ACC) has made possible for the vehicle to 
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automatically adjust its speed when it detects any obstacles in its view, the system 

do not offer speed adjustment when the vehicle approaching cornering or 

curvature. Therefore, it is a much interest in this project to develop such system 

which primary interest is paid upon longitudinal control of the vehicle. 

Furthermore, cornering at high speed would results in uncomfortable situation felt 

by the driver and passengers which eventually could reduce less stressful driving 

experiences.  

 

This situation is well simulated in the previous work done by [1] which the linear 

car model employed tends to get off track when the vehicle undergone cornering 

and the error became more significant at high speed. This is due to the constant 

speed that was set to the linear car model when it is following the predetermined 

path. Therefore, when the linear car model approaching sharp curves or cornering, 

it does not have the ability to reduce the speed to enable the car to grip to its path 

properly.   

 

1.3 Objective and Scope of Study 

This project is an extension of current cruise control system. However, the system 

does not only take care of the prescribed speed set by the driver but at the same time, 

has the ability to reduce its preset speed whenever necessary. The system would then 

resume its previous prescribed speed after the vehicle left the triggering situation such 

as after the vehicle leaving the road curvature or cornering. It is an interest in this 

project to maintain both lateral and longitudinal control of the vehicle in order to have 

more control over vehicle behavior during driving activities.  

 

Lateral control of the vehicle has been well presented in the previous works done by 

[2,3] .This project can be assumed as the extension of the previous works with great 

attention given on controlling the longitudinal displacement of the vehicle. In order to 
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achieve this, a suitable speed controller needs to be designed so that the car can 

achieve its desired speed trajectories.  

 

 1.3.1 Controller Selection 

With the advance of control theory and technology, there are numbers of 

choices that could be considered whenever it comes to choose the right 

controller. For example, Proportional-Integral-Derivatives (PID) controller is 

well establish and suitable for many kind of application. Since the controller 

is already recognized, it is easier to convince interested parties whenever the 

responsible parties came to commercialize the application. However, attention 

also needs to be given on the limitation of the controller itself as it would 

really reflect the future performance of the controller. 

 

One of the areas that always come into consideration of the control engineers 

is the non-linearity nature of the system. Therefore, it is important to 

determine whether the chosen controller has the capability to operate on non-

linear system. As for vehicle dynamics, many non-linear factors present in the 

system such as the road conditions, road friction, drag force and many more. 

Since PID controller cannot well operate under non-linear system, another 

suitable controller which could cater the limitation of the PID should be 

considered.  

 

Neural network which the nature of operation is different from conventional 

controller has gained attention to control engineers. The nature of the 

controller which could work on non-linear system makes it suitable to replace 

conventional controller. However, since computation time takes longer than 

conventional controller, many approaches were tested to counter the 

drawbacks. One of the techniques employed is by integrating predictive 

control algorithm into existing neural network architecture. The resulting 

system should produce more satisfactory performance. Hence, the term neural 
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network predictive controller came into consideration which will be 

extensively used throughout this project. 

 

1.3.2 Longitudinal Vehicle Control 

The scope of this project will be revolved around controlling longitudinal 

displacement of the vehicle using neural network predictive controller. The 

project will always started with simpler application first since it would be 

much easier to measure the performance of the outcome. For example, instead 

of starting with complex dynamics of the car model, simpler version of the 

vehicle dynamics representation would be employed without significantly 

degrades the key performance of the tested system. More explanation on the 

vehicle model will be described on the later chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Relevant Research Topics 

Vehicle speed control is becoming crucial area of research in autonomous vehicle 

control. With the success implementation of intelligent vehicle transmission such as 

automatic transmission and continuous variable transmission (CVT), focus has been 

shifted into developing intelligent controller which capable of controlling the 

mechanical part of the transmission system efficiently. Proper management of 

transmission system could result in efficient fuel usage and better driving experience.  

 

In [1], an automotive speed controller based on neural network has been developed 

which work on low and high speed using throttle and brake control input. The 

network itself consists of simple multilayer feedforward perceptron network which 

was trained with dynamic vehicle model. The work suggested that the accuracy of the 

vehicle model and the choice of cost function are important in determining the 

practical use of the controller. However, compromise had to be made between model 

accuracy and computation time as more complex vehicle model could lead to increase 

computation time.  

 

Tight control on the vehicle speed can also improve lateral stability of the vehicle 

especially during the vehicle cornering. It has been shown in [2] that significant 

lateral error occurs during the cornering of the vehicle. This is due to the deployment 

of constant speed for the vehicle which in practical should be reduced when the 

vehicle approach cornering.  
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Vehicle speed control is used in stability control which aims in reducing the risk of 

vehicle collision due to the obstacle avoidance under emergency. In [6], effort has 

been put on developing control strategy for high speed obstacle avoidance under 

emergency. The developed control strategy was aimed in preventing vehicles from 

spinning and drifting out on high speed obstacle avoidance under emergency. The 

strategy which is known as Vehicle Dynamics Control (VDC) was achieved by 

applying counter braking at individual wheels as needed until steering control and 

vehicle stability is regained. The system integrates Anti-Lock Braking System (ABS) 

and traction control to stabilize the vehicle when it changes direction from that 

intended by the drivers.  

 

Study has shown that there are increasing tendency of serious traffic accidents while 

cornering. A major cause of such accident is due to the excessive vehicle speed due to 

driver’s misjudgment or incorrect recognition of the road condition. Therefore, study 

that was conducted in [7], try to investigate the base technology for producing self-

reliant cornering vehicle speed system without relying on outside facilities such as 

dedicated traffic monitoring system on roadsides. The paper suggests that information 

obtained from GPS system which already installed in most vehicles could be used to 

predict the oncoming road curvature. This information together with vehicle speed 

data could be used by the judgment unit to decide the appropriate cornering speed for 

the vehicle. Finally, algorithm for better judgment method was developed in order 

produce more reliable and accurate control system. 

 

Another method for controlling longitudinal displacement of the vehicle was done in 

[8]. The work stressed on intelligent communication between infrastructure and 

vehicle (I2C). This system relies on the implementation of RFID that enable vehicles 

to communicate and receive signal from infrastructure on the roadside such as speed 

limit zone, road signs and maintenance work on the road. The system will adjust the 

speed of the vehicle depending on the road circumstances.  
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In order to achieve more satisfactory vehicle dynamic control, both lateral and 

longitudinal control should be introduced on the vehicle. The work done in [ 9] 

attempt to combine both longitudinal and lateral control of a vehicle. The paper 

proposed and evaluated an integrated longitudinal and lateral control for vehicle low 

speed automation. The focus of the system is on congested sub-urban area. A 

simplified coupled longitudinal/lateral model was employed and the solution for 

vehicle following problem was presented using first and second order sliding mode 

controls.  

 

A simple vehicle model and multi-body vehicle model have been deployed in [3] to 

show the application of optimal preview control to speed tracking of road vehicles. 

The work shows that the appropriate feedback gains need to be obtained in order for 

the vehicle to accurately track the speed demand. Since the optimal gain is employed, 

gain scheduling may not be necessary as the effect is small on the vehicle 

performance. In the nutshell, the work can be seen as a preliminary work before the 

integration of the lateral and longitudinal control of a vehicle which is important in 

order to simulate more realistic vehicle dynamics problem.  

 

2.2 Linear Car Model 

Two vehicle models have been considered to represent lateral and longitudinal 

translation dynamics of the vehicle. For the lateral control, the car model from [4] has 

been considered and the parameters of the model are shown in Table 1. The equation 

of motion of the linear car model is as follows: 

 ẋ = Ax + Bδsw ,        (1) 

with the state vector, x = [ x1 x2 x3 x4 ]
T
 

where, x1 = global lateral position, y 

  x2 = global lateral speed, 𝑦  
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  x3 = global attitude angle, ψ  

  x4 = global attitude rate,ψ   

A =   

0 1 0 0
0 −(𝐶𝑓 + 𝐶𝑟)/𝑀𝑢 (𝐶𝑓 + 𝐶𝑟)/𝑀 (𝑏𝐶𝑟 − 𝑎𝐶𝑓)/𝑀𝑢
0 0 0 1
0 (𝑏𝐶𝑟 − 𝑎𝐶𝑓)/𝐼𝑧𝑢 (𝑎𝐶𝑓 − 𝑏𝐶𝑟)/𝐼𝑧 −(𝑎 ∗ 𝑎𝐶𝑓 + 𝑏 ∗ 𝑏𝐶𝑟)/𝐼𝑧𝑢

   

B =   

0
𝐶𝑓/𝑀𝐺

0
𝑎𝐶𝑓/𝐼𝑧𝐺 

  

Table 1: Parameters for Lateral Linear Car Parameters 

Parameters Values 

Body Mass (M) 1200 Kg 

Yaw Inertia (Iz) 1500 Kgm
2
 

Distance from center of gravity to front 

axle (a) 

0.92 

Distance from center of gravity to rear 

axle (b) 

1.38 

Cornering stiffness of front axle tyres (Cf) 1.2x10
5 

Nrad
-1

 

Cornering stiffness of rear axle tyres (Cr) 8x10
4
 Nrad

-1
 

Fixed Steering Ratio (Hand wheel/ road 

wheel ) (G) 

17 

 

The model which based on standard yaw/sideslip model and it is assumed that the car 

is a rigid body, moves on a flat path with three degree of freedom which is forward, 

lateral (side) and yaw (side to side) motions. Four types of forces which react on the 

car model are: 

 Front axle longitudinal force 

 Front axle lateral force 
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 Rear axle longitudinal force 

 Rear axle lateral force 

The suspension, aerodynamic force, tire aligning moment and lateral weight shift are 

neglected in this vehicle model in order to simplify the simulation as it is not much 

affected the normal car at normal speed. On the other hand, the dynamic model for 

longitudinal translation of the vehicle was obtained from [3] and the state space 

equation is given by the following equation. The diagram of the model is shown in 

Appendix B, figure 25. 

 

The equation of motion of the linear car model is as follows: 

  ẋ = Ax + Btc ,          (2) 

with the state vector, x = [ x1 x2 x3 x4 ]
T
 

where, x1 = longitudinal position, x 

  x2 = longitudinal speed, u 

  x3 = front wheel spin angle, wf  

  x4 = rear wheel spin angle, wr 

A =   

0 1 0 0
0 −(𝐶𝑓 + 𝐶𝑟)/𝑀𝑢 (𝐶𝑓𝑥𝑅𝑓)/(𝑀𝑢) (𝐶𝑟𝑥𝑅𝑟)/𝑀𝑢
0 (𝐶𝑓𝑥𝑅𝑓)/(𝐼𝑓𝑢) (𝐶𝑓𝑥𝑅𝑓^2)/(𝐼𝑓𝑢) 0
0 (𝐶𝑟𝑥𝑅𝑟)/(𝐼𝑟𝑢) 0 −(𝐶𝑟𝑥𝑅𝑟^2)/(𝐼𝑟𝑢)

   

B =   

0
0

𝑇𝑓/𝐼𝑓
0 
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Table 2 shows the parameters for the longitudinal car model. 

 

Table 2: Parameters for Longitudinal Car Model 

Parameters Values 

Body Mass (M) 1200 Kg 

Front Wheel Inertia (If) 2 kgm
2
 

Rear Wheel Inertia (Ir) 2 kgm
2
 

(mf) 100 kg 

(mr) 100 kg 

Front Longitudinal Slip Stiffness (Cfx) 80,000N 

Rear Longitudinal Slip Stiffness (Crx) 80,000N 

Front and Rear Wheel Radius (Rf & Rr) 0.3m 

 

The model has a main body with longitudinal translational freedom only and front 

and rear axles with spinning wheel. The tyres interact with the ground with a simple 

force slip relationship independent of tyres loading. The car model is assumed to be 

driven by front axle with a torque that is reacted to the main body. The car model also 

is assumed to have three degrees of freedom with tyres longitudinal forces 

proportional to longitudinal slip. 

 

2.3 Speed Preview Model 

Based on the work done in [2], five road models were used in the study. The path can 

be described by lateral deviation, yr from a fixed straight line at sampling time kT .  If 

the forward speed is constant, the lateral deviation at time kuT meters ahead of the 

car can be represented as:  

yred(k) = [y0 y1 …. ym]
T
 

The uT is the x spacing in which u is the speed of the vehicle. The x spacing is 

the interval between the consequence path at instance k. 
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Figure 1: Road Preview Model [2] 

The state space equation of the road preview model is  

yref(k+1) = D.yref(k) + E.yri         (3) 

and the vector of D and E are:  

D = 

 
 
 
 
 

0 1 0 … 0
0 0 1 … 0
… … … … …
0 0 0 … 1
0 0 0 … 0  

 
 
 
 

  E = 

 
 
 
 
 

0
0
…
0
1  
 
 
 
 

 

However, referring to the work done in [3], the road preview model can be used as 

speed preview model for vehicle speed tracking. Therefore, in this project, the speed 

preview model can be described by the same formula as road preview model.  

By replacing the notation in equation 3, the new formula for speed preview model is, 

uref (k+1) = D. uref(k) + E. uri         (4) 
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2.4 Optimal Controller 

Referring to the work done in [3], optimal preview controller was employed for the 

purpose of connecting both linear car model and road preview model. Optimal 

preview controller can be assumed as the human representation to represent the vision 

of the driver so that the vehicle can follow the path as accurately. In short, optimal 

controller is used to aid the car to be driven along the path. As shown in [3], optimal 

controller is used to combine speed preview model and linear car model which is 

quite similar to solve the problem involving road preview model and linear car 

model. The state space equation of the car and the speed (having no connection 

between both) is: 

 
𝑥(𝑘 + 1)
𝑦𝑟(𝑘 + 1)

  =  
𝐴𝑑 0
0 𝐷

 . 
𝑥(𝑘)
𝑦𝑟(𝑘)

  +  
0
𝐸
 .yri +  

𝐵𝑑
0

 . δsw 

which takes the standard discrete time form, 

           (5) 

           (6) 

 

As the work done in [3] suggests, optimal preview controller also can be used to 

solve quite similar problem involving longitudinal displacement of the car model. 

Instead of the reference paths, the problem can now be used to combine vehicle-speed 

target system states.  

 

2.5 Neural Network Controller 

The purpose of the neural network controller is to represent the driver information 

processing structure and to output the desired response to the given input. The 

previous work done by [2, 5] used neural network controller to optimize the path 

following of the vehicle. However, in this study, the same neural network is used to 

mimic the driver control of the speed of the vehicle. This neural network utilized the 

speed profile information from the speed preview model.  

)()(

)()()()1(

kCzky

kEkBkAkz riz
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The controller is set to be a linear, single processing neuron. The input to the first 

controller is the augmented state z = [x  ur]
T
 where x is the equation of motion of the 

car model and ur is the speed preview error. The output of the second controller is the 

torque, tc applied on the front wheel of the linear car model since the car is driven by 

front wheel. 

 

2.6 Neural Network Predictive Controller 

 

 

 

 

 

 

Figure 2: Neural Network Predictive Controller [10] 

Neural network predictive controller is a controller that has the ability to predict 

future plant performance. The controller will calculate control signal values that will 

optimize plant performance over specified time horizon. The controller will utilize 

neural network plant model in predicting plant future performance. 

 2.6.1 System Identification 

 The initial stage in model predictive control is to develop neural network and 

trains it to represent the forward dynamics of the plant. Depending on the 

training algorithm used, the different between plant output and the neural 

network output will be used as the training data to the neural network. 

Optimization Neural Network 

Model 

Plant 

yr 
u’ 

u 

ym 

yp 
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Figure 3: Plant Identification [10] 

 There are three important parameters that need to be identified for system 

identification which is network architecture, training data and training 

parameters. Feedforward multilayer neural network was used for this project 

with its parameters were shown in Table 3. Training data parameters are 

shown in Table 4 while the training parameters are shown in Table 5. 

  

Table 3: Network Architecture 

Parameters Values 

Size of hidden layer 7 

Sampling interval (sec) 0.2s 

No. delayed plant inputs 2s 

No. delayed plant outputs 2s 

 

 

 

 

 



16 
 

Table 4: Training Data Parameters 

Parameters Values 

Training samples 2000 

Maximum plant input 2 

Minimum plant input -2 

Maximum interval values (sec) 20s 

Minimum interval values (sec) 5s 

 

Table 5: Training Parameters 

Parameters Values 

Training epochs 200 

Training function Lavenberg-Marquardt (trainlm) 

 

 2.6.2 Predictive Control 

 The predictive control is used to predict plant future performance based on the 

horizon receding technique. The prediction will be used to determine the 

control signal that will minimize the following performance criterion function 

over the specified time horizon.  

 J =   𝑦𝑟 𝑡 + 𝑗 − 𝑦𝑚 𝑡 + 𝑗  
2

+  𝜌  𝑢′ 𝑡 + 𝑗 − 1 − 𝑢′ 𝑡 + 𝑗 − 2  
2

𝑁𝑎
𝑗=1

𝑁2 
𝑗 =𝑁1  (3) 

Where  yr =the desired response 

    u’= tentative control signal 

   ym=network model response 

  yr = desired response 
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Table 6 shows the controller parameters for the neural network predictive controller. 

 

Table 6: Controller Parameters 

Parameters Values 

Cost horizon (N2) 7 

Control horizon (Nu) 2 

Control weighting factor (p) 0.05 

Search parameter (a) 0.001 

Minimization routine csrchbac 

Iteration per sample time 2 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Procedure Identification 
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Figure 4: Project Methodology 
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3.2 Detail Procedure 

 

3.2.1 Determine suitable vehicle model 

Linear car model from the work in [2] only consider lateral displacement of 

the vehicle about its center of gravity (CG). In order to control the 

longitudinal translation of the linear car model, appropriate model needs to be 

determined. In order to reduce complexity in the design, another linear car 

model has been considered which based on simple trolley model [3]. The 

dynamics of the model describes its important parameters for longitudinal 

displacement such as longitudinal position, longitudinal speed, front wheel 

spin angle and rear wheel spin angle. The model as shown in Figure 20 

Appendix B is subjected to small velocity perturbation which been 

superimposed on the trim velocity of the linear car model.  

 

3.2.2 Obtain training data for speed control 

Lateral control of the linear car model was re-simulated in order to obtain 

training data for the speed controller. From the information obtained, speed 

trajectories which within the ranges of perfect tracking of the speed controller 

were developed as the reference signal of the controller.  

 

3.2.3 Speed controller design  

 

3.2.3.1 Neural network predictive controller 

The choice of the training algorithm and search routine for the neural 

network predictive controller is quite crucial at this stage as it would 

determine the performance of the speed controller to track the speed 

trajectories. However, compromise needs to be made between precise 

tracking and computing time since perfect speed tracking would 
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require more complex training algorithm and hence increasing 

computing time. For this project, the parameters for the controller have 

been described in previous chapter. However, it is worth to draw the 

architecture of the speed controller to further enhance the 

understanding.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Speed Controller Design 

 

Where ur is the reference speed trajectories, ua is the actual speed from 

the linear car model and uer is the difference between reference speed 

trajectories and actual speed trajectories of linear car model. The 

output of the controller is the front wheel drive torque, tc , which is the 

input to the linear car model. 

 

3.2.3.2 Neural network and optimal controller 

Referring to the work done in [3], the speed tracking system was 

simulated using optimal controller but the work done in [2] suggested 

that the tracking performance of the controller could be improved with 

the use of neural network controller together with optimal controller. 

Therefore, this project also considers this controller configuration in 

NN predictive 

Controller 

Linear Car 

Model 

Optimization Unit 

ur 

ur 
ua tc 

uer

r 
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order to compare its speed tracking performance with the neural 

network predictive controller. Figure 5 shows the algorithm for neural 

network and optimal controller configuration,  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Neural Network with Optimal Controller Algorithm 

 

3.2.4 Speed control simulation 

Once the parameters for the speed controller have been determined, the 

performance of the controller is simulated by inputting appropriate command 

signal such as random reference signal. After the controller shows satisfactory 

performance, the desired speed trajectories are fed to the controller and the 

corresponding results were recorded.  

 

 

Start 

Linear car model Speed preview 

model 

Optimal controller 

Neural network 

controller 

Vehicle speed 

tracking 

End 
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3.2.5 Speed Profile 

Speed profile which has been generated from lateral path errors is feed into 

the speed controller input. The speed controller will track the desired speed 

trajectories with the help of neural network predictive controller. The tracking 

performance is dependent on the learning algorithm used, number of the 

hidden layer and also the search routine used for the controller. 

 

 

3.3 Tools and Software 

 

The main software used in this project is MATLAB and the toolboxes used in this 

software are: 

 

 Neural network tool 

 Simulink 

 M-file 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

 

4.1 Neural Network Predictive Controller 

4.1.1 Plant Identification 

Prior to employing neural network predictive controller, linear car model (plant) 

needs to be identified by the system. Below are the result obtained from plant 

identification with 2000 sampling data. Sampling data was taken from random signal 

in order to train the forward dynamics of the plant. Increasing sampling data will 

improve the accuracy of the neural network model but too many sampling data could 

lead to increase in computing time. Therefore, 2000 sampling data was taken as it is 

optimal to the system. 

 

 

Figure 7: Plant Identification Result
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4.1.2 Neural Network Training 

Once the plant has been identified, the controller is then trained with the training data. 

Figure below shows the results from the training. The errors between plant output and 

NN output are significantly small which indicate that the plant has been well 

indentified and can approximate actual plant output quite well.  

 

 

Figure 8: Neural Network Training 

 

Once neural network training was completed, the neural network model was again 

being validated by randomly supplied with input values. The output of the neural 

network plant and actual plant were compared to measure the accuracy of the neural 

network model. The errors shown in model validation window are quite small and 

acceptable.  

 



25 
 

 

Figure 9: Model Validation 

 

4.2 Simulation Results 

 4.2.1 Path and Speed Profiles 

 Path profiles from lane change path and sudden change of direction have been 

considered for the simulation. These paths are perfect for the purpose of 

monitoring the lateral path errors both at straight and curve profile. 
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Figure 10: Lane Change Path Profile 

Figure 11: Speed Profile for Lane Change Path 

 

From Figure 8 and Figure 9, speed reduction occurred at 50m away from the initial 

position which correspond to the first curve on the path profile. The speed resumes 

to its original value after 100m away from the initial position which correspond to 

the second turning on the path profile.  

 

Figure 12: Sudden Change of Lane Profile 
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Figure 13: Speed Profile for Sudden Change of Lane 

The path profile for sudden change of direction is shown in Figure 10 and the 

resulting speed profile is shown in Figure 11. For this path profile, speed reduction 

occurred at 60m away from the initial position and was maintained throughout the 

path profile.   

 

4.2.2 Speed Tracking Profile 

 4.2.2.1 Neural Network Predictive Controller 

Speed tracking using neural network predictive controller was simulated using 

two different trim velocities; 20 m/s and 30 m/s. The purpose of introducing 

trim velocity is to simulate the steady state speed of the linear car model when 

disturbance is not present. The following results were obtained for two 

different trim velocities. 
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Figure 14: Speed Tracking for Lane Change Path at 20 m/s Trim Velocity  

 

 

 

Figure 15: Speed Tracking for Sudden Change of Lane at 20 m/s Trim   

Velocity 

 

From figure 14 and figure 15, the speed tracking performance experiences 

excessive fluctuation particularly after the speed change took place. For 
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reduced speed profile, the actual speed seems increasing downward along the 

reference speed.  

 

 

Figure 16: Speed Tracking for Lane Change Path at 30 m/s Trim Velocity 

 

 

Figure 17: Speed Tracking for Sudden Change of Lane at 30 m/s Trim 

Velocity 
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The controller achieves satisfactory performance which can be seen in figure 

14 and figure 15. However, it can be seen that the controller experience slight 

overshoot when the speed reduction occurred.  

 

4.2.2.2 Neural Network and Optimal Controller 

 

Speed tracking also was simulated using neural network and optimal 

controller. The simulation was conducted using two different trim velocities, 

20 m/s and 30 m/s. The desired speed profile is the same as in neural network 

predictive controller. 

 

 

Figure 18: Speed Tracking for Lane Change Path at 20 m/s Trim Velocity 

(top) and Corresponding Speed Tracking Error (bottom) 
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Figure 19: Speed Tracking for Sudden Change of Lane at 20 m/s Trim 

Velocity (top) and Corresponding Speed Tracking Error (bottom) 

 

 

Figure 20: Speed Tracking for Lane Change Path at 30 m/s Trim Velocity 

(top) and Corresponding Speed Tracking Error (bottom) 

 



32 
 

 

Figure 21: Speed Tracking for Sudden Change of Lane at 30 m/s Trim 

Velocity (top) and Corresponding Speed Tracking Error (bottom) 

 

The speed tracking for this controller configuration is smoother compared to 

the neural network predictive controller. The controller also has successfully 

track the desired speed profile give zero offset at the end of the speed 

tracking. 

 

4.2.3 Controller Performance 

 

In order to evaluate the performance of the speed controller, the deviation of the 

actual speed (linear car model’s speed) with the reference speed is observed.  
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Table 7: Maximum Speed Error for Neural Network Predictive Controller 

Trim Velocity (m/s) Path Profile Maximum Speed Error (m/s) 

 

20 

Lane change 0.10 

Sudden change of lane 0.40 

 

30 

Lane change 0.10 

Sudden change of lane 0.10 

 

 

Table 8: Maximum Speed Error for Neural Network and Optimal Controller 

Trim Velocity (m/s) Path Profile Maximum Speed Error (m/s) 

 

20 

Lane change 0.10 

Sudden change of lane 0.10 

 

30 

Lane change 0.14 

Sudden change of lane 0.12 

 

 

The maximum speed errors show the maximum speed error when the linear car 

model changes its speed from its trim velocity or steady state velocity to the new 

velocity. Even though the controller performance is not very good but it shows the 

ability of the controller to track the desired speed profile. Both controller 

configuration show quite similar maximum speed error, however, since neural 

network and optimal controller give the smoother speed tracking response, it is the 

preferred controller configuration. Even though the comparison is done between two 

different simulation environment (simulink and m-file), the results obtained should 

give a rough idea on stabilizing the linear car model. The results obtained in simulink 

environment (nn predictive controller) contain ripple in speed tracking response 

which might indicate the instability of the controller or the car model.  

However, in m-file simulation (neural network and optimal controller), the ripple is 

not present in the speed tracking response and that shows the stability of both 

controller and car model in speed tracking. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

Neural network predictive controller for vehicle speed control has been developed 

and the performance of the controller was simulated using two different trim 

velocities; 20 m/s and 30 m/s. Speed tracking simulation was also conducted using 

neural network controller that coupled together with optimal controller in order to 

compare the speed tracking stability with neural network predictive controller. 

 

Great emphasis was given on the choice of the linear car model whereby the model 

itself should have the component of longitudinal displacement apart from the lateral 

displacement. To reduce the complexity in this project while preserving the main 

objective of the project, longitudinal displacement of the vehicle is separately 

evaluated from its lateral displacement counterpart. The task is important prior to the 

integration of both components (lateral and longitudinal displacement) in order to 

represent more realistic vehicle maneuvering problems.  

 

All in all, the resulting speed controller can be applied to control the longitudinal 

displacement of a vehicle such as in cruise control application. The controller also 

could enhance existing traction control system which only considers lateral control of 

the vehicle.
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5.2 Recommendations 

 5.2.1 Improvement on the Reference Speed 

In order to simulate more realistic speed trajectories generation, real-time or 

online speed trajectories translation can be employed. The speed trajectories 

can be directly input to the speed controller without involving offline 

calculation / speed generation. In another words, the path information can be 

directly translated by the system to produce desired speed trajectories for the 

speed controller.  

 

5.2.2 Integration between Lateral and Longitudinal Displacement 

The ultimate aims for this project and previous project is to dynamically 

control both lateral and longitudinal translation of the vehicle. Both 

components (lateral and longitudinal displacement) have direct effect to each 

other. For example, excessive forward speed during cornering could increase 

the lateral path error of the vehicle from its intended path. Furthermore, by 

incorporating both dynamics in single state space representation, more 

realistic linear car model could be developed.  
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APPENDIX A 

 

 

Figure 22: Plan View of Linear Car Model with its Lateral Dynamics  

 

 

Figure 23: Representation of Linear Car Model in Simulink 
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APPENDIX B 

 

Figure 24: NN Predictive Controller Block 

 

 

Figure 25: Longitudinal Car Model 
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APPENDIX C 

Main Program 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %                         LNN.m                            % 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

disp('     ---------------------------------------------------------

---------') 

disp('       One Single Processing Element, Linear Car Model  ') 

disp('     ---------------------------------------------------------

---------') 

disp('') 

clear all;close all;  

% forward speed  

    u=input('Base speed ?  (using 20 par (default))'); 

    u=u*1000/3600; %convert km/h to m/s 

     

    if isempty(u), u=20; disp('Using u=20m/s (default)'), end 

% sampling period T  

    T=0.2;  

 

% number of preview points 

    n=input('how many preview points (using 20 par (default))'); 

    if isempty(n), n=2/T; disp('Using a number corresponding to 1sec 

ahead (default)'), end     

     

%car parameters definition 

Cfx=80000; 

Crx=80000; 

Rf=0.30; 

Rr=0.30; 

M=800; 

If=2; 

Ir=2; 

mf=100; 

mr=100; 

Tf=0.37; 

Mt=M+mf+mr; 

  

%%%%%%%%%%%%%%%%%%%%% Speed Model Matrices %%%%%%%%%%%%%%%%%%%% 

  

%speed shift operators 

  

D=[zeros(n,1) eye(n); zeros(1,n+1)]; 

%D=[0 1 0 0 0 0 0 0 0 0 ; 

%   0 0 1 0 0 0 0 0 0 0 ; 

%   0 0 0 1 0 0 0 0 0 0 ; 

%   0 0 0 0 1 0 0 0 0 0 ; 

%   0 0 0 0 0 1 0 0 0 0 ; 
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%   0 0 0 0 0 0 1 0 0 0 ; 

%   0 0 0 0 0 0 0 1 0 0 ; 

%   0 0 0 0 0 0 0 0 1 0 ; 

%   0 0 0 0 0 0 0 0 0 1 ; 

%   0 0 0 0 0 0 0 0 0 0 ]; 

  

E=[zeros(n,1); 1]; 

%E=[0;0;0;0;0;0;0;0;0;1]; 

  

%%%%%%%%%%%%%%%%%%%%% Linear Car Model %%%%%%%%%%%%%%%%%%%%%%% 

longitudinal_car_model_mfile 

disp('') 

  

%%%%%%%%%%%%%%%%% Linear control gain calculaton %%%%%%%%%%%%%%%    

  

Q=[100 0 ;      %Q=[q1 0 

   0  1 ];      %   0 q2] 

R2=1; 

  

LQRgain 

  

%%%%%%%%%%%%%%%%%%%%%% Linear cost parameters %%%%%%%%%%%%%%% 

  

%the cost to be minimised is the folowing one : 

%J=Z(:,k)'*R1cost*Z(:,k)+delta(k)'*R2cost*delta(k) 

  

R1cost=R1; 

R2cost=R2; 

  

tic %Start a stopwatch timer 

disp('  Loading speed information......') 

  

for epoch=1:5 

     

    RefSpeedProfile     %speed perturbation 

      

    [K,nb]=size(uref'); %array size of uref 

     

         

%%%%%%%%%%%%  State definition & initialisation %%%%%%%%%%%%%% 

  

% At each time step, a new global frame is defined 

% The state is based on a frame comprising the local x  

% and y-axes of the vehicle 

  

%     Z=[  local lateral displacement v   ] 

%       [  vdot                           ] 

%       [  local angle phi                ] 

%       [  phidot                         ]  

%       [  local lateral preview errors   ] 

          

Z = zeros(4+n+1,K-n-1); 

Z(2,1) = uref(1);         % Longitudinal speed initialization 
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Z(3,1) = uref(1)/Rf;      % Init. of front and rear wheel spin 

velocity 

Z(4,1) = uref(1)/Rr; 

Z(4+1:4+n+1,1) = uref(1:n+1)'; % Local Speed Preview Errors 

  

%augmented E matrx 

  

Ebis=[zeros(4,1); E]; 

     

%%%%%%%%%%%%%%%%%%%%%%% Paramaters Initialisation %%%%%%%%%%%%%%%%%%     

         

%sensitivity functions initialized to 0 

  

        dzdw = zeros(n+5,n+5);   

        dudw = zeros(1,n+5);    

        dJdw = zeros(1,n+5);   %to be multiplied with gama 

        prevdJdw = zeros(1,n+5);      

        deltaw = zeros(1,n+5);   %to be added to w to obtain w(k+1) 

        prevdeltaw = zeros(1,n+5); 

             

    %other parameters            

        phi(1)=uref(1)/Rf;  %current front wheel spin vel. 

           

        tc(1)=0;            %Initialisation of front wheel torque 

                

        global_speed(1)=Z(2,1); %Initialisaion of speed tracking 

                

        Zinit = zeros(4+n+1,1);  

                 

        Zstep = zeros(4+n+1, 1); 

                 

 %%%%%%%%%%%%%%% Neural network implementation%%%%%%%%%%%%% 

  

disp('               neural network implementation.....') 

  

%choose an input layer with n+4 (number of states) neurons 

input=[-50*ones(n+5,1) 50*ones(n+5,1)]; 

net=newlin(input,1); 

  

%Initialize the vector W(:) containing all weights and biases. 

if epoch==1 

    for jg=1:4+n+1 

        W(jg)=Kt(jg); %Weight based coeff obtained from optimal ctrl 

theory (LQRgain.m), initial weighting parameters 

        W_init=W; 

    end 

     

    %fixed learning rate 

    gama=0.1; 

    gama_init=gama; %Storing the initial learning rate 

    gama_next(1)=gama; 

     

else 

    W=W_last; %Last updated weight from previous epoch 
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    gama=gama_last; %last updated learning rate from previous epoch 

    gama_next(1)=gama; 

end 

  

%Initialize neural network weightings 

net.IW{1,1}=W; 

net.b{1}=[0]; 

  

toc %Read the stopwatch timer 

disp('  main loop....') 

tic %start another stopwatch timer 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%   

%                                  MAIN LOOP                            

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

  

  

for k = 1:(K-n-1) % 300-preview point-1 

%definition of a new global frame based on the local x and y axes of 

the 

%car 

           % definition of the state of the car 

            Zinit = Z(:,k); 

            Ydot = Z(2,k);    

          

                    

        % due to the choice of the frame, absolute positions become 

zero  

            Zinit(2) = 0;   

            Zinit(3) = 0; 

            Zinit(4) = 0; 

                    

        % absolute to relative road data transformation 

    

            local_urefs = uref(k:k+n+1); 

         

                for j = 1:(n+2),  

                     

            local_urefs(j) =  local_urefs(j) - global_speed(k)- ... 

                    (j-1)*phi(k)*u*T; 

                      

                     

                end    

           

                

        % definition of the remaining states (preview speed errors) 

            Zinit(4+1:4+n+1) = local_urefs(1:n+1);   

                    

    %%%%%%%%%%%%%%%%%state error%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

        epsB=Zinit; 
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    %%%%%%%%%%%%%front wheel torque %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

               

       tc(k) = sim(net,-epsB); %Simulate speed tracking 

         

    %%%%%%%%%%%%%%state update%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    Zstep=A*Zinit+B*tc(k)+Ebis*local_urefs(n+2); 

                 

    %%%%%%%%%%%%%%%%Weighting update%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

             

            %dudw(k) calculation                               

                dudw= -( Zstep' + W*dzdw);                              

% u is for front wheel torque 

               

%dJdw(k) calculation and keeping the previous derivative of the cost 

                prevdJdw=dJdw;           

                dJdw=2*Zstep'*R1cost*dzdw+2*tc(k)*R2cost*dudw;        

                 

            %dzdw(k+1) calculation 

                dzdw=A*dzdw+B*dudw;  

   

            %adaptive learning rate 

            

                if dJdw/prevdJdw<1.000     % Cost ratio 

                    gama=1.05*gama; 

                end 

                if dJdw/prevdJdw>1.005 

                    gama=0.7*gama; 

                end 

%difference calculation Polak Ribiere or Gradient method 

                deltaw=-gama*dJdw;   %value for deltaw 

               gama_next(k+1) = gama; 

           

            %weighting update       

            W=W+deltaw; 

            net.IW{1,1} = W;  

                

%%%%%%%%%%%%%%%%%% END OF WEGHTINGS UPDATE   %%%%%%%%%%%%%%%%%%% 

                 

    %update absolute speed 

        global_speed(k+1) = global_speed(k) + u*T*phi(k) + 

Zstep(2,1); 

                 

        phi(k+1) = phi(k) + Zstep(3,1); 

                 

   %store the state        

    Z(:,k+1) = Zstep; 

        

    

end    

  

toc 

  

gama_last=gama_next(K-n); 
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gama_end(epoch)=gama_last; 

W_last=W; 

W_end(epoch,1:4+n+1)=W_last(1,1:4+n+1); 

end 

  

Ws=W_init+0.0001; 

xyz=[]; 

for r=1:jg; 

    xyz(r)=abs((net.IW{1,1}(r)-Ws(r))/Ws(r))*100; 

end 

weight_change=(sum(xyz))/jg; 

  

%%%%%%%%%%%%%%%%%%END OF MAIN LOOP %%%%%%%%%%%%%%%%%%%%%%% 

  

PlottingSpeed 

  

%%%%%%%%%%%%%%End of Program%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

Speed Profile Generation 

 

%%%%%% RefSpeedProfile.m %%%%%%%%% 

  
    xr1=[0:u*T:50-u*T]; 
    xr2=[50:u*T:50+60]; 
    xr3=[110+u*T:u*T:300]; 
    xref=[xr1 xr2 xr3]; 
    yr1=0*xr1; 
    yr2=2-2*cos((pi/60)*xr2-50*pi/60); 
    yr3=4*ones(size(xr3)); 
    uref=[yr1 yr2 yr3]; 

     
     ur(1)=0; 
    [Kr,dr]=size(uref'); 
    for t=2:Kr 
        rx=uref(t)-uref(t-1); 
        if rx==0 
            ur(t)=0; 
        else 
            ur(t)=-0.2; 
        end 
    end 

     
    uref=ur; 

     
%%%%% End of RefSpeedProfile.m %%%%%%%% 
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Optimal Controller 
 

%%%%%%%%%%%%%%%%%%%%%%%%% LQRgain.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
% Compute the Linear control gain obtained with the LQR theory    

    
    C=[ 1 0 0 0   -1        0      zeros(1,n-1) ; 
        0 0 1 0 1/(u*T) -1/(u*T)   zeros(1,n-1)  ]; 

    
    R1=C'*Q*C; 

  
    A=[ Ad           zeros(4,n+1);                % Car model 
        zeros(n+1,4)      D       ];              % Road model 
    B=[     Bd; 
       zeros(n+1,1)]; 

  
%non-preview gain using the DLRMI function  
%We could directly have used [Kt,Sbis,Ebis] = DLQR(A,B,R1,R2) 
%but the time to compute would be much greater 

  
    [K1,P11] = dlqr(Ad,Bd,R1(1:4,1:4),R2);     % K1 is gain matrix : 

feedback gain 
                                                % P11 is Riccati 

equation solution 

  
% Use non-preview results to solve the preview problem. 

  
    FC = Ad - Bd*K1;             % xdot 

  
    P12 = zeros(4,n+1); 
    P12(:,1) = R1(1:4,4+1);      % replaces the whole row and first 

column of P12 with first four rows  
                                 % and fifth column of R1   

  
    for i=2:n+1 
        P12(:,i) = R1(1:4, 4+i) + FC'*P12(:,i-1); 
    end 

  
    K2 = inv(Bd'*P11*Bd + R2) * Bd' * P12 * D; 

  
    Kt=[K1 K2]; 

     
%%%%%%%%%%%%%%%%%%%End of LQRgain.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Linear Car Model 
 
%%%%% Longitudianl_car_model_mfile.m %%%%%%%%%%%%%%%% 
%Linear car model with variable forward speed 

  
Acar = [0   1                   0                   0; 
        0 -(Cfx+Crx)/(Mt*u)  (Cfx*Rf)/(Mt*u)        (Crx*Rr)/(Mt*u); 
        0 (Cfx*Rf)/(If*u)      -(Cfx*Rf^2)/(If*u)       0; 
        0 (Crx*Rr)/(Ir*u)          0               -

(Crx*Rr^2)/(Ir*u);]; 

  
Bcar = [0;  
    0;  
    Tf/If;  
    0;]; 

  
Ccar = [0 1 0 0]; 
Dcar = [0]; 

  
%discrete state space of the car model 
[Ad Bd]=c2d(Acar,Bcar,T); 
 

 

 


