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ABSTRACT 

 

The performance of model predictive control is highly affected by model-plant 

mismatch. Existing model-plant mismatch detection, isolation and estimation 

techniques do not take into account the threshold of significant mismatch, preventing 

clear analysis of the implications of mismatch. This study investigates the 

relationship between model-plant mismatch and plant performance in a multiple 

input multiple output system and determines the thresholds of mismatch. The 

approach uses a closed loop system with the Wood and Berry distillation model 

controlled by MPC simulated with varying degrees of parametric mismatch. The 

threshold values above which the MPC performance is unacceptable are determined 

from the Integral Error- MPM graph by specifying the base Integral Error. The 

values for positive mismatches are 27%, 19% 40% and 31% for the four gains, 27%, 

40% 40% and 32% for the time constants and 21%, 9%, 6% and 14% for the time 

delays respectively. The values for negative mismatches are 22%, 22% 38% and 16% 

for the four gains, 20%, 20% 31% and 20% for the time constants and 40%, 10%, 6% 

and 11% for the time delays respectively. Time delay mismatch yields the most 

significant effect on the MPC performance. Gain mismatch causes significant impact 

on the MPC performance when the mismatch increases the condition number 

otherwise its impact is lower than the effect of time delay mismatch. The effect of 

mismatch in time constant becomes significant when the plant time constant 

increases, otherwise, it is minimal. Simultaneous mismatches in two transfer 

functions are pronounced when the mismatches affect the same output.  
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   CHAPTER 1

INTRODUCTION 

 

1.1 Background 

 

Controllers are essential in most industries because of their critical role in 

controlling real processes that are dynamic in nature. This dynamics stems from 

naturally unstable inputs that deviate from the ideal steady state condition, the 

presence of disturbances and changing environmental conditions. In the presence of 

dynamics, controllers control the manipulated variables in order to ensure that the 

critical outputs of the process (product composition, product quality etc.) do not 

stray too far from the specifications.  

Model predictive controllers (MPC) are a class of advanced process controllers 

that use a mathematical model of the actual plant or process to predict the outputs of 

the process in response to past controller actions. Figure 1 [1] shows an example of 

MPC response for a particular instant. These predictions are used as inputs to 

calculate the optimal future controller actions. The structure of MPC makes it 

superior to conventional PID controllers in terms of performance [1] and enables 

processes to operate close to variable constraints [2]. They are first utilized in the 

industry in the 1980s. The main motivation behind its development is its ability to 

handle processes with multiple inputs and multiple outputs in the presence of 

multiple constraints [3]. 
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Figure 1: MPC response 

 

As it is, the performance of MPC highly depends on the accuracy of the 

mathematical model employed. Over time, the difference between the incorporated 

model and the actual process will increase, affecting the performance of MPC. Some 

cases even led to shutdowns [3]. The phenomena is named model-plant mismatch. 

This is due to plant process changes brought about by the change in equipments, 

operating conditions, fouling or degradation [4]. Thus, it is essential for control 

engineers to have in depth knowledge on the relationship between the scale of MPM 

and the MPC performance. This will enable engineers to make decisions on whether 

corrective action is needed in the event of MPM. Furthermore, there is also a need 

for techniques to identify and isolate parts (sub models) of the model of the whole 

plant that contain MPM. This is because model re-identification requires intrusive 

tests on the plant equipment [2], causing the process of re-identifying the model for 

the whole plant time consuming and costly. 

Responding to current needs, a mismatch estimation, detection and isolation 

algorithm is developed based on MPM modeling techniques such as autoregressive 

model average model with exogenous inputs (ARX) using MATLAB Simulink. The 

algorithm models the mismatch using model residual data, predict the mismatch 

using the mismatch model, compare the values with a significance threshold and 

finally decide on the presence of MPM. The algorithm analyzes all sub channels of 

the model to isolate the mismatch. This project will support this algorithm by 
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providing the thresholds of significant mismatch, generated from a stimulation using 

the available model. 

 

 

Figure 2: New MPM detection and isolation algorithm 
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1.2 Problem Statement 

 

There are limited research done that quantitatively measure the effects of 

MPM on the performance of MPC. This is particularly true in terms of comparative 

study between the scale of mismatch to the scale of impact on controller 

performance. This relationship is critical for control engineers to make informed 

decisions regarding the need for action to be taken in response to the presence of 

MPM. The study will also help develop a suitable method to determine the threshold 

of significant mismatch to be used as a benchmark in mismatch detection algorithms. 

Algorithms with built in consideration for mismatch significance in relation to its 

impact to performance gives critical information for re-identification decisions. 

A model-plant mismatch detection algorithm is developed based on 

predictions of the parametric mismatch by a mismatch model. There is thus a need to 

compare the mismatch estimated with a predetermined threshold in order to make a 

decision on its significance. 

 

1.3 Objectives 

 

1.3.1 To investigate the effects of model-plant mismatch on the 

performance of model predictive a controller. 

1.3.2 To develop a method to determine the mismatch threshold. 
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1.4 Scope of Study 

 

This study focuses on the relationship between MPM and MPC performance 

and how that relationship can be used to determine the threshold of significant 

mismatch in a newly developed MPM detection and isolation algorithm. The study is 

not concerned with the comparison between the performance of MPC and normal 

PID controllers.  

The scope of MPC performance degradation factor is limited to model-plant 

mismatch in multiple inputs multiple outputs systems only. A two by two Wood and 

Berry distillation model is chosen here. The relationship between the magnitude of 

model-plant mismatch, specifically parametric mismatch in the gain, time constant 

and time delay, with the resulting control performance will be studied. Structural 

mismatch is not considered whereby a first order with time delay transfer function 

that is similar to the model structure is assumed to be sufficient to express the 

mismatch. In terms of performance, this study will utilize Integral of Absolute Error 

(IAE), Integral of Squared Error (ISE) and Integral of Time multiplied by Absolute 

Error (ITAE). 

Only linear MPCs are utilized in this study, the scope does not include non-

linear MPCs, nor does it include the comparison between linear and non-linear 

MPCs. This study will use a Wood and Berry model for a dual input and dual output 

distillation column as a benchmark for simulation studies. 

The MPM detection and isolation technique mentioned in this study is a newly 

developed method that calculates and measures parametric mismatch. The mismatch 

is compared to a benchmark to determine which sub models contain mismatch. It 

uses a mismatch model to determine a closed loop mismatch measure. 

Out of scope:  

 Non-linear MPC 

 Comparison with PID controllers 

 Effectiveness of other MPM detection and isolation techniques 

 Other plant models 
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  CHAPTER 2

LITERATURE REVIEW 

 

2.1 Model Predictive Control (MPC) 

 

Model Predictive Control (MPC) is an advanced process control system that 

uses an approximated mathematical model of the process to predict the future 

outputs of the process in response to the inputs or manipulated variables. These 

predicted values are considered alongside the current process outputs to generate a 

series of ideal control steps that would bring the output of the process towards the set 

points in the most efficient manner, which in turn are calculated by maximizing or 

minimizing an economic objective function. The prediction model is usually 

developed in the state space, which can be expressed in a linear discreet time model 

as shown below in equation (1) [1]. 

 ̂(   )  ∑     (     )     (     )                     ( )

   

   

 

Where  ̂(   ) is the output variable at k+1 sampling instant while   (  

   ) denotes the change in controller output from one instant to the next and S 

denotes the step response coefficients. 

A simplified model-based control structure can be seen below [5]: 
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Figure 3: MPC Control Flow 

Where Gc, Gp and Gp
d
 represents the controller, process, and model transfer 

functions respectively. r, e, u, y, ym, v, d, ya, and Ɛ represents the set point, error, 

controller output, process output, predicted process output, disturbance input, 

disturbance output, actual process output and loop residuals respectively.  

The other popular alternative in advanced process control is advanced 

regulatory control (ARC). MPC is now growing in terms of number and is almost 

caught up with ARC. It is slowing introduced in food processing and automotive 

manufacturing. Furthermore, larger companies are also found to be prone to consider 

MPC [6]. 

MPC is mainly developed to tackle control problems with multiple inputs and 

multiple outputs (MIMO) in petrochemical plants and oil refineries, where 60% of 

the total application of MPC in the industry resides. PID controllers are better at 

handling process disturbances when the controller gain and derivative term is big in 

a single input and single output (SISO) system. In MIMO systems where there are 

more than one set point and involves various process and control constraints, MPC 

will provide a simpler solution. This is because using PID controllers in these kinds 

of situations will require Shinskey type expertise in the dynamic decoupling of PID 

controllers. The required skills are now gradually diminishing [6]. Significant energy 

savings, product quality improvements and operating costs are brought about by 

MPC [2]. 

The effectiveness of MPC depends highly on the accuracy of the process 

model implemented throughout the life of the plant [1]. Model predictive control 

will deteriorate with time, some deterioration even led to shutdowns. Thus, 
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performance monitoring and deterioration diagnosis is essential successful 

implementations [3]. 

 

2.2 Model Predictive Control Performance 

 

The main problems reported by Bialkowski and Kozub and Garcia for control 

loop performance deterioration is inadequate tuning, poor maintenance of hardware, 

control valve stiction, model-plant mismatch and stochastic disturbances [7]. A 

comprehensive approach to control performance assessments include determining 

current performance using measures such as output variances, selection and 

determination of a benchmark, detecting and diagnosing poor performance and lastly 

improvement of controller inputs [8]. More traditional performance measures are rise 

time, settling time, overshoot, offset and integral error [8]. These measures are 

deterministic and used by Jämsä-Jounela et al in their study of the control of a 

floatation cells in a zinc plant [9]. 

One of the first researches done on MPC performance monitoring is by Harris, 

where the lower bound of achievable controlled variable variance is derived from an 

equivalent multivariable control system and used as a benchmark. This minimum 

variance control is calculated from routine process data [10]. The Harris index 

introduced also includes variance measures of the manipulated variable. Using 

routine operational data, Huang and Shah developed a method that seeks a suitable 

explicit expression of the feedback controller-invariant term for the closed-loop 

multiple inputs and multiple outputs process. This term is subsequently used a 

benchmark for performance [11].  

        
   
 

   
                                                       ( ) 

Schäfer and Cinar proposed a benchmark that takes the ratio of the historical and 

actual performance. The performance measure used is the variance of the control 

error and the control moves [4]. 
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For advanced measures, Grimble suggested a generalized minimum variance, 

which is the extension of the Harris index taking into account control action penalty. 

Huang and Shah proposed the linear-quadratic Gaussion (LQG) benchmark [8].  

        * ( )+      *  ( )+                                     ( ) 

Reviewing the literature, it is determined that deterministic measures are the 

most suitable to be utilized in this project as it enables direct correlation between the 

performance and MPM in order to find the threshold of significance. Deterministic 

measures can also be applied to more specific sub units. On the other hand, 

stochastic measures deal with the performance of the plant in general.  

The table below summarizes the findings: 

 Summary of literature for controller performance measurement Table 1:

Author Summary 

(Harris 1989) Stochastic measure: Minimum variance approach  

(Harris, Boudreau et 

al. 1996) 

Expanded minimum variance approach to MIMO systems, 

highlighted interaction effects 

(Huang, Shah et al. 

1997) 

Stochastic measure: Feedback controller invariant term 

based on FCOR analysis 

(Jämsä-Jounela, 

Poikonen et al. 2003) 

Studied the use of deterministic measures such as PE, IAE, 

ISE, ITAE and ISU. 

(Schäfer and Cinar 

2004) 

Stochastic approach: Ratio between historical and actual 

performance 

(Jelali 2006) Developed a comprehensive approach to control 

performance assessment. 

(Huang and Shah 

1999) in (Jelali 2006) 

Stochastic approach: Linear-Quadratic Gaussian 

benchmark 

(Grimble 2002) in 

(Jelali 2006) 

Stochastic measure: Generalized variance measure 

 

2.3 Model-Plant Mismatch (MPM) 

 

Controllers are subjected to all kinds of errors. Errors that may incur during the 

design stage include approximations of the prediction and disturbance model and 

assumptions on the operating conditions. Controllers that perform well at the start 

still may be subjected to errors thereafter. The performance of controllers will 

deteriorate over time due to sensor or actuator failure, equipment fouling, variation 
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in feedstock and product specifications and seasonal influences. Up to 60% of all 

industrial controllers fall prey to performance degradation [4]. 

For MPC systems, one of the main issues is model-plant mismatch. Model 

plant mismatch is one of the main factors for poor control loop performance [7]. This 

is where the model used by the controller is unable to accurately predict the outputs 

of the process due to physical changes to the plant such as equipment fouling, 

changes in parts of the plant and product specification change leading to changes in 

operating conditions. These conditions lead to a difference in the mathematical 

model identified during design that is implemented in the controller and the current 

actual model of the plant. 

A linearized and simplified mathematical model of the process is usually 

employed in MPC. As such, there will be naturally a mismatch between the 

proposed model and the actual process due to high nonlinearities and high order 

dynamics of actual processes. However, a feedback system integrated in the 

controller will be able to deal with small mismatches, resulting in many successful 

implementations of the simplified models in the industry. As the mismatch increases 

due to the aforementioned factors, the controller performance might degrade to a 

degree where product quality and system stability is compromised [5]. 

 

2.4 Detection and Isolation of Model-Plant Mismatch 

 

Various researches have sought to develop algorithms and methods to detect 

and isolate model-plant mismatch. These techniques and be classified based on 

methods of mismatch measure and analysis methods [5]. It should be noted that the 

techniques reviewed here are ones that are applicable to MIMO systems only. 

Parametric mismatch assume that the mismatch can be measured by the additive or 

subtractive deviation in gain, time constants and delay constants of the model 

transfer functions. They are a subset of transfer function based measures. The 

advantage is easy relations to physical parameters, this relation would enable 

engineers to isolate the part of the plant mismatched by matching the transfer 

function parameters that deviated with its corresponding physical variables. When 
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the mismatch is in the structure of the transfer function itself, it is categorized as 

structural mismatch [5].  

Wang et al. proposed a method to detect parametric mismatch and isolation by 

using routine closed loop operational data. The method models the process using 

Markov parameters and the Subspace approach and can accurately detect parametric 

mismatches in plant models [12, 13]. Selvanathan and Tangirala proposed a method 

for parametric mismatch detection by introducing a new quantity: plant model ratio 

Gp/Gm which is also estimated from routine closed loop operational data [7]. This 

structure is noted to have potential to measure structural mismatch [5]. Their studies 

show that there is a unique signature in the plant model ratio for each type of 

parametric mismatch. Their method is developed using frequency response functions 

of the plant and model transfer functions [7]. The plant model ratio measure is 

further investigated by Kaw et al. In their study, they improved the methodology of 

MPM detection and isolation by introducing an assessment procedure made up of 

statistical procedures to minimize estimation effort in terms of number of unknowns 

and an optimal set-point design for the plant model ratio method. They found that 

the method can only be sued to detect deviations in gain, dynamics and delay but not 

between time constants. Their work reduced the minimal excitation to only 2 

frequencies [14].  

     
  
 ( )

  
 ( )

                                                     ( ) 

Using routine closed loop operational data, Badwe et al. also formulated an 

algorithm to detect and quantify the impact of MPM. Three sensitivities are 

proposed as measure: relative sensitivity (ratio between actual to design error), 

designed sensitivity and the variability ratio. In addition, their studies found that the 

direction of the set point dithering signal also affects the measure of MPM [15]. 

Other transfer function based measures include the Vinnicombe metric, which 

utilizes the left and right normalized co-prime factorizations [16] and the generalized 

closed-loop error transfer function [17]. These measures however, have not yet been 

studies in the context of MPM detection and isolation. 
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Jiang et al. formulated the MPM detection and isolation problem in the 

discreet time state space measure. They proposed 3 MPM detection indices for the 

detection of MPM and also a logic methodology to isolate the state space parameters 

of mismatch. The approach is driven by data and is parametric in nature. The process 

however, can only isolate the state space matrix that has mismatch and not the 

individual components of gain, time constant and time delay [18]. Wang et al.’s 

method is similar, where Markov parameters are utilized. Markov parameters are 

derived from the discreet time state space measure by setting the inputs to impulse 

signals [5].  

A variable based measure identifies the presence of correlation between the 

model residuals and the inputs. This correlation will point towards model plant 

mismatch when the noise is white in an open loop system [5]. Badwe et al. proposed 

a technique to detect model-plant mismatch by the analysis of partial correlations 

between model residuals and the manipulated variables in closed loop, colored noise 

systems as shown in equation (5).  This technique filters out the effect of 

disturbances in the model residuals so that mismatch can be accurately detected from 

the routine operation data [19].  

                                                                 ( ) 

To solve the linearity problem that stems from autocorrelation and cross-

correlation between input variables in MIMO control, Kano et al. proposed a 

statistical stepwise variable selection method to determine sub models that contain 

significant mismatch. A sub model is concluded to have model plant mismatch when 

a large enough number of past inputs is determined to contribute to the correlation. 

Routine process data is utilized [20]. Webber and Gupta introduced a technique that 

checks for correlation between the set-point that is manipulated to become a 

dithering signal to the model residuals. The dithering is introduced to overcome 

problems of colored noise affecting the correlation between u and the set point. They 

also used the cross correlation approach to determine the sub models that contain the 

mismatch [21]. 

Ji et al. uses a three point frequency response estimation to test an online 

system. The results are used to quantify the errors in a model error index matrix by 
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comparing it with the frequency response of the current model, taking into account 

an upper error bound [22]. 

Earlier in time, researchers mainly focused on detecting the mismatch and not 

isolating them. These techniques are also known as model validation techniques. 

Kesavan and Lee proposed a statistical chi-squared test to determine MPM. The test 

is done on the errors of output and prediction with operational data [23]. Huang 

formulated a model validation detection algorithm using two-model divergence 

algorithm in the frequency domain [24]. Kammer et al. in turn developed a semi-

intrusive MIMO model invalidation technique by analyzing the deviation between 

open-loop and closed-loop signals. The technique enables a disturbance model to be 

identified during open loop. This model is then compared with the model of white 

noise. If there are no differences, MPM is not present [25]. Kendra and Cinar studied 

a method that uses sensitivity functions of a MIMO system in the frequency domain. 

The results are compared with the design specifications, a mismatch will be detected 

if it differs from the design [26]. Harrison and Qin devised a method to differentiate 

between MPM and disturbance on the poor performance of MPC. The method 

monitors the innovations of the Kalman filter to look for autocorrelation. The order 

of the correlation will determine if either MPM or noise is causing the suboptimal 

operation of the controller [27]. 

 Mismatch identification techniques can also be categorized as partial or 

holistic mismatch. Partial mismatch detects mismatch in the sub model elements 

while holistic mismatch detects mismatch in the whole matrix. Both partial and 

holistic mismatch is considered in Badwe et al. and Kano et al. [5]. Open loop 

mismatch parameters are mostly studies in the above research papers. They include 

deviations in gain, time constants, delay time, state space parameters, additive and 

multiplicative deviation of transfer functions and the plant model ratio. They take 

into account the changes caused by the process itself only. Closed loop parameters 

such as the v-gap (Vinnicombe metric) and generalized close loop error transfer 

function are better at identifying mismatches in closed loop as there is sometimes a 

large difference in the response of closed loop dynamics when compared to open 

loop dynamics in response to a mismatch [5]. Closed loop techniques are also better 

at capturing control relevant frequencies in the data generated, enabling the 

corrective action to better suit closed loop performance specifications [15]. Finally, 
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there is a distinction between direct and indirect mismatch detection techniques. 

Direct techniques use mathematical models such as ODEs, transfer functions, state 

space equations or Markov parameters. Indirect techniques use correlations or 

explanatory relationships, such as in Kano et al. and Badwe et al. [5]. 

Reviewing these techniques, the following critical analyses are developed: 

 Model-plant mismatch detection and isolation techniques are mostly 

developed separately from MPC performance studies. The newly developed 

method is advantageous as it will give indications on the scale of mismatch 

to be used to determine the significance of the MPM detected. 

The findings are summarized in the table below: 

 Transfer function based techniques Table 2:

Author Summary 

(Jiang, Li et al. 2007) Measure mismatch using  model deviation indices in 

discreet time space 

(Badwe, Patwardhan 

et al. 2010) 

Measure MPM using relative sensitivity, designed 

sensitivity and the variability ratio 

(Selvanathan and 

Tangirala 2010) 

Plant model ratio using the frequency response of both the 

plant and model 

(Wang, Xie et al. 

2012) 

Review of MPM measures 

(Wang, Song et al. 

2012) 

Utilize Markov parameters  for mismatch measure, similar 

to the discreet time space approach 

(Kaw, Tangirala et al. 

2014) 

Further developed plant model ratio, introduced optimal set 

point design method of only 2 frequencies 

(Vinnicombe 2000) in 

(Wang, Xie et al. 

2012) 

Measure MPM using the v-gap metric (not studied in terms 

of mismatch detection) 

(Wan and Huang 

2002) in (Wang, Xie 

et al. 2012) 

Closed-loop error transfer function (not studied in terms of 

mismatch detection) 

 

 Variable based and model based validation techniques Table 3:

Author Summary 
(Webber and Gupta 

2008) 
Correlation between a dithering signal and model residuals, 

use cross-correlation to isolate sub models 
(Badwe, Gudi et al. 

2009) 
Partial correlation between model residuals and controller 

action 
(Kano, Shigi et al. 

2010) 
Proposed stepwise statistical variable selection method for 

isolate sub models with mismatch 
(Ji, Zhang et al. 2012) Compares frequency  responses of real process and model 



 

 

15 

 

to detect and isolate mismatch 

(Kesavan and Lee 

1997) 
Model validation technique: Statistical chi-squared method 

between output errors and operational data 
(Kendra and Cinar 

1997) 
Model validation technique: Sensitivity functions 

(Huang 2001) Model validation technique: Two-model divergence 

algorithm in the frequency  domain 
(C. Kammer, 

Gorinevsky et al. 

2003) 

Model validation technique: Developing disturbance model 

and comparing it to white noise 

(Harrison and Qin 

2009) 
Differentiate between MPM and disturbance by monitoring 

the Kalman filter to  determine the order of autocorrelation 
 

2.5 Quantifying the Impact of MPC on MPM Performance 

 

Most of the current research literature measure MPC performance based on the 

MPM measures developed, as mentioned in the subtopic 2.4. They correlate the 

deviation of model parameters with the magnitude of MPM measure (which is 

formulated) that is produced. There is however, a lack research on the effect of 

model parameter deviation on the change in MPC performance measured based on 

elements of the objective function. These measures such as Integral absolute error 

(IAE), Integral squared error (ISE), Integral time multiplied by absolute error (ITAE), 

input variation and robustness. The relationship is important as it directly shows to 

what extend and scale MPM affects the controlled variables like product 

composition or quality.  

 

2.6 Process Re-identification 

 

MPM can be corrected by process re-identification. Process re-identification 

involves intrusive tests on individual plant equipment or unit operations in order to 

determine the new plant model, assuming that the model has changed due to physical 

changes in the plant. Any part of the plant which model has to be re-identified has to 

be stopped and isolated for experiments. A full plant process re-identification is 

expensive, time-consuming and causes production interruption for several weeks, 

resulting in huge losses. Therefore, for MPC controllers, deterioration in controller 
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performance needs to be supported with more information or studies before a 

process re-identification is done. This is because the performance deterioration of 

MPC may be caused by sustained disturbances or unknown feed variations, which 

may be mistaken as MPM. If this happens, re-identification will be redundant [2]. 

Detection of MPM accurately is thus critical. There is also a need to quantify 

the extend of impact MPM has on MPC performance and isolate parts of the plant 

that has MPM. This is because MPC performance deterioration is usually due to 

mismatch in only parts of the plant [12]. This would provide the necessary 

information to make decisions regarding the need for performance correcting efforts 

like process re-identification.  Isolating MPM to parts of the plant would also 

prevent the need to shut down the whole plant to carry out process re-identification 

on every plant unit, which will then significantly cut cost and operational down time. 

Conner and Seborg put forward a procedure that introduces a simple test for 

closed loop data in order to determine model validity. They propose a “simple test” 

using statistical methods such as PCA (Principle Components Analyis) similarity 

factor and ∆AIC (Akaike Information Criterion) statistic.  Faults found with these 

metrics readily points towards changes in the actual process model [2]. 

Olivier and Craig proposed a data driven method to derive a MPM 

representative transfer functions from routine operational data. The technique has the 

potential to enable the results to be utilized in the controller without the need for 

process re-identification. The method however, requires accurate data with known 

disturbance models [28].    
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   CHAPTER 3

METHODOLOGY 

 

3.1 Tools and Software 

 

 Tools and software Table 4:

Mathematical Process Model 2×2 I/O Distillation Column 

by Wood and Berry [29] 

Software MATLAB-Simulink 

 

Wood and Berry Mathematical Process Model: 

[
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]  
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Equation (6) represents the distillation mathematical model by Wood and Berry [29]. 

XD and XB refer to the distillate and bottoms composition while R, S and F refer to 

the reflux flow rate, steam flow rate and feed flow rate respectively. R and S are the 

manipulated variables while F is the disturbance variable. For this project, the 

measure disturbance F(s) is set to 0 to prevent it from affecting the plant 

performance. This will ensure any effects are due to MPM only. 

In terms of the phrases used in the results, Gain11, Tau11 and Delay11 will 

refer to the parameters in the first transfer function and so forth for the other transfer 

functions. In this case the Gain11 values correspond to 12.8 from equation 6. 
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3.2 Description of Methodology 

3.2.1 Single Parameter mismatch 

The steps arranged in a flow chart in figure 4. First, a closed loop control 

simulation model is built in MATLAB-Simulink containing the process inputs, a 

model predictive controller, process model, predictive model and process outputs. 

Then, a matrix of model-plant mismatches is determined based on positive of 

negative deviations of transfer functions parameters on all sub models of the model. 

Applying these deviations to the simulation model, the closed loop response data of 

the process is generated and analyzed. Performance measures such as Integral 

absolute error (IAE), Integral squared error (ISE) and Integral time multiplied by 

absolute error (ITAE) is calculated. These values are then analyzed in conjunction 

with the MPM applied by plotting the performance measure against mismatch graph 

to study the correlation between them. Lastly, the thresholds are determined based 

on previous analysis. 

 

Figure 4: Process Flow 

Step 1: Simulink model design 

Figure 5 shows the Simulink model block flow diagram design. Model plant 

mismatch will be introduced by changing the parameters in the plant, as that will 

7. Determine threshold of mismatch for each transfer function parameter 

6. Analyze relationship between model-plant mismatch and model predictive 
controller performance 

5. Plot controller performance measure against mismatch 

4. Quantify controller performance by calculating performace measure parameters 

3. Simulate the closed loop response 

2. Introduce mismatch to the column 

1. Build a MPC based, closed loop system in MATLAB-simulink including a 
distillaiton column model 
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signify physical changes. Due to the difference in models, the outputs XD and XB 

will differ from that of the model. There will thus be a difference e that can be 

simulated by taking the difference in signals. Values of e will then be used to 

calculate the performance measure and tabulated. 

White noise is added to the plant output to simulate measurement noise. A 

disturbance model will also be fed to the model according to the Wood and Berry 

model. The inputs will be simulated with a dithering signal. Figure 11 shows the 

block diagram in Simulink. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Simulink model block flow diagram 
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Step 1a: Simulation settings 

These settings are optimized based on the plant response to a step change in input at 

0% mismatch. 

 Simulation settings Table 5:

Simulation time 100 

Solver Step size Variable step 

Solver ode45 

Relative tolerance 1E-03 

Input Step size 1 

Input Step time 10 

MPC control interval 1 

Prediction horizon 100 

Control horizon 10 

Constraints None 

Overall weight tuning (robust to speed) 0.8 

Input rate weight 0.1 

Output weight 1 

Overall estimator gain 0.5 

Measurement noise White (Magnitude = 1E-05) 

 

Step 2: Introduce mismatch 

Model with MPM structure: 

  (        )  
(    )

(    )   
  (    )                                    ( ) 

Equation (7) shows the representation of the distillation column after 

mismatch has been introduced.   ,    and    will represent the deviation of gain, 

time constant and time delay of the column to the controller model respectively. 

Parametric mismatch are used in this study. The mismatch values are set based on 

percentages, where the range of percentages used is -40% to +40%, with a step size 

of 5%. The table below shows an example of the corresponding model parameters 

after application of mismatch. 

 Sample of mismatch matrix Table 6:

Mismatch                

-40% -40%(12.8) 12.8-40%(12.8) 

-20% -20%(12.8) 12.8-20%(12.8) 

0% 0 12.8 

+20% +20%(12.8) 12.8+20%(12.8) 

+40% +40%(12.8) 12.8+40%(12.8) 
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Step 4: Calculating performance measures 

The performance of the plant is calculated based on deterministic measures, where 

the difference between the response and the intended output is quantified. 

Deterministic performance measures are used in this study, the formulas can be 

referenced from Jämsä-Jounela et. al. [9]. 

 Integral absolute error: 

     ∫ |   ( )     ( )|  
  
 

                                     (8) 

• Integral squared error:  

     ∫ |   ( )     ( )|
 
  

  
 

                                    (9) 

• Integral time weighted absolute error:   

      ∫  |   ( )     ( )|  
  
 

                                (10) 

These performance measures give different results in different situations. For 

example, when compare to IAE, ISE would magnify large errors in comparison to 

small errors. ITAE on the other hand, would give larger weightage to sustained 

errors. These differences are critical in this study in order to study all aspects of 

performance for MPC.  

 Each value of performance measure will correspond to a mismatch value, and 

thus a plot can be generated to observe the relationship. 

 

Step 7: Determine the threshold of mismatch 

After analysing the results for single parameter mismatch, it is determined that a 

percentage increase of the base IAE at 0% mismatch should be used as the criteria to 

determine the threshold of mismatch. An example can be seen below. 
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Figure 6: Threshold determination example 

 

3.2.2 Double parameter mismatch 

To study the interactions between different mismatch parameters on the plant 

performance when they are present at the same time, the steps from single parameter 

mismatch are repeated while varying two parameters at the same time. Surface plots 

are then generated from the IAE and the square vector of mismatches.  

IAE Limit 

+ve Threshold -ve Threshold 
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3.3 Key Milestones 

 

 

Figure 7: Key Milestones for May 2015 Semester 

 

 

Figure 8: Key Milestones for September 2015 Semester 
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3.4 Gantt Chart 

 

FYP I Gantt chart 

Task 
Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Title Selection               

Collection of relevant 

literature 

              

Review of relevant 

MPC and MPM theory 

              

Review of literature               

Formulation of 

problem, objectives 

and methodology 

              

Preparation of extended 

proposal 

              

Proposal defense               

Advanced review and 

analysis of critical 

literature 

              

Make improvements to 

research methodology 

              

Study simulation 

techniques and 

detection algorithm  

              

Build simulation 

system for part 1 

              

Preparation of the 

interim report 

              

Submission of interim 

report 

              

Figure 9: Gantt chart (FYP I) 
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FYP II Gantt chart 

Task 
Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Part 1: Single variable 

mismatch simulation 

              

Part 1 results analysis               

Part 2: Double variable 

mismatch simulation 

              

Part 2 analysis               

Preparation of progress 

report 

              

Pre-sedex               

Preparation of 

dissertation 

              

Sedex               

VIVA               

Preparation of final 

dissertation 

              

Figure 10: Gantt chart (FYP II)  
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        CHAPTER 4

RESULTS AND DISCUSSION 

 

4.1 Single Parameter Mismatch 

Analysis of IAE, ITAE and ISE 

There are three types of single parameter mismatch studied, the gain, time 

constant and time delay of the 1
st
 order with time delay transfer functions. Figure 11 

shows the IAE, ITAE and ISE for Gain11 mismatch while figure 12 shows the IAE, 

ITAE and ISE for Gain22. Deterministic measures such as IAE is more indicative of 

the plant performance during set point change excitation [9]. 

From figure 11 and figure 12, the shape of IAE and ITAE graphs are similar, 

despite the calculation of ITAE giving more weight to errors that occur later in time. 

This shows that the higher the absolute error (IAE), the longer the error sustains 

(ITAE). The IAE and ITAE will show different shapes only if similar IAE values 

correspond to different durations of sustained error. Since this trend is present 

throughout the entire study, the duration of sustained error can be inferred from the 

IAE. 

  Comparing ISE with ITAE and IAE, we see that the slopes of the ISE graphs 

are quite small. This shows that the size of error does not change much across the 

mismatch matrix. Thus, it is not a good measure to study the effect of model-plant 

mismatch. When there are significant differences of ISE between the positive and 

negative mismatch, such as in figure 12, the same trend is seen in IAE. Thus, the 

trend of ISE can also be inferred from the IAE since the larger the IAE, the higher 

the ISE. In physical terms, this can be explained by the higher the absolute error 

(IAE) corresponds to higher error sizes (ISE). 
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Therefore, IAE is chosen as the performance measure to analyze the effect of 

model-plant mismatch in this study as it can be used to infer both ITAE and ISE in 

addition to having clear slopes. The nature of the responses in this study show that a 

larger IAE will only correspond to larger error sizes and longer sustainment of the 

error. Figure 13 shows the output response for no mismatch, to be used for 

comparisons later. 

 

Figure 11: Gain11 mismatch IAE, ITAE and ISE 
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Figure 12: Gain22 mismatch IAE, ITAE and ISE. 

 

Common trends 

There are two common trends that persist across the results for single gain, 

time constant and time delay mismatch. The first trend is that an increase in 

mismatch (regardless of sign) will generally always increase the IAE, ITAE and ISE. 

The results support the general consensus that increased MPM will deteriorate plant 

performance [30]. This cause the shape of the IAE graphs is V shaped, with the 

minimum at 0% mismatch and high values at the high mismatches. The only 

exceptions are during certain high time delay mismatches where the maximum IAE 

is not at the extreme mismatch percentages and during gain and time constant 

mismatches where very small mismatches sometimes have lower IAE than 0% 

mismatch. The reasons for these exceptions are explained in the relevant parts 

respectively. 
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The second trend is that the mismatch of parameters of a transfer function 

only significantly affects the output directly dependent on it, the other output is only 

affected when the IAE is very large. This effect however, is still minor compared to 

the effect on the mismatch on the main output. For example, a -40% mismatch in 

Gain11 only contributes to a +12% increase in IAE for xB, when compared to a 

+77.5% increase in IAE for xD. This trend can be seen in the relatively flat shapes of 

xB in figure 11 and xD in figure 12. Thus, for mismatches in transfer function 11 and 

transfer function 12, only the effect on xD is observed while for mismatches in 

transfer function 21 and transfer function 22, only the effect on xB is observed. 

 

Figure 13: Plant response for 0% mismatch 

 

4.1.1 Single gain mismatch 

The full results are included in the appendix. The relationship between the 

IAE and mismatch are approximately linear in nature for the outputs affected by the 

mismatch for Gain11 (Figure 11), Gain12 and Gain21. However, the result for 

Gain22 (Figure 12) shows a curved slope for negative percentage mismatch. The 

plant output responses for the relevant mismatches show that the responses contain 
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an offset that slowly reduces with time. Therefore, a curved slope is an indication of 

a semi-permanent offset while a near linear relation signifies that the system is still 

stable across the mismatch. 

Comparing the overall xD IAE between Gain11 with Gain12 and xB IAE 

between Gain21 and Gain22, it is found that the higher the magnitude of the gain, 

the higher the effect of percentage mismatch on the plant performance. This is 

expected as a higher gain magnitude translates to a higher actual mismatch 

magnitude for a similar percentage mismatch.  

There are in general only small differences in IAE between mismatches of 

opposite signs. The differences are can be linked to condition number trends as seen 

in figure 14 [1]. 

Condition number and plant controllability 

Contrary to the common trend, at small gain mismatches (<5%), the IAE of 

the overall system may improve from 0% mismatch. It is noted that the local 

minimum for the IAE are not at 0% gain mismatch. For Gain11 and Gain22, the 

minimum error occurs at +5% gain mismatch while for Gain12 and Gain21, the 

minimum error occurs at -5% gain mismatch. This can be seen in figure 11 and 

figure 12. This indicates that a slight gain change in the plant towards a certain 

direction makes the control performance of the plant better. The reason is that the 

plant becomes easier to control due to the changes in the plant, resulting in overall 

better plant performance despite the presence of mismatch. The results agree with 

the trend of condition numbers of the system as seen in figure 14. The local 

minimum will tend towards the direction of mismatch where there are smaller 

conditional numbers, indicating that the system becomes easier to control.  

This phenomenon however, is not significant for gain mismatches higher 

than 5%, the negative effect of model residuals on the controller performance is 

much higher than any positive effect the mismatch may have on the controllability of 

the plant. The local minimum can however indicate the direction of decreasing 

condition number and show the direction of mismatch that makes the plant easier to 

control.  



 

 

31 

 

 

Figure 14: Condition numbers for gain mismatch 

 

Plant step response analysis 

Figure 15 shows the plant response for a +40% Gain11 mismatch while 

figure 16 shows the plant response for a -40% Gain11 mismatch.  Comparing the 

response of the plant output with figure 13 (no mismatch), it is found that the plant 

response becomes more oscillatory, vigorous; with higher overshoot when the 

percentage gain mismatch is positive. On the other hand, the plant response becomes 

more sluggish with less overshoot but have small sustained errors when the 

percentage gain mismatch is negative.  

This is because a positive percentage gain mismatch will increase the 

magnitude of the plant gain and thus cause the plant output to be higher than the 

predicted output. Since the MPC constantly under predicts the magnitude of output 

change, the controller action would be more vigorous than needed. The reverse 

occurs during negative percentage gain mismatch, where the magnitude of the plant 

gain will decrease. The MPC constantly over predicts the magnitude of change, 

causing the controller action to be lower than needed, resulting in a sluggish 

response. The same trend is observed for Gain12, Gain21 and Gain22.  
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Figure 15: Plant response for +40% Gain11 mismatch 

 

Figure 16: Plant response for -40% Gain11 mismatch 

  



 

 

33 

 

4.1.2 Single time constant mismatch 

 Figure 17 shows the overall IAE trend for Tau11. The overall IAE shape for 

all four time constants are similar and are included in the appendix. 

 

Figure 17: Tau11 mismatch IAE  

 

There are significant differences between positive and negative percentage 

mismatch. The IAE slope for increasing positive mismatch is low and approximately 

linear. Increasing magnitude of negative mismatch however results in a much higher 

slope with a more exponential like curve, as seen in figure 17. This trend is 

consistent for all four time constants and would be further explained in the plant step 

response analysis part. 

For time constant mismatch, there is no correlation between the original 

magnitudes of time constant with the magnitude of the resulting IAE, unlike gain. 

Tau11 has a higher impact compared to Tau12 while Tau22 has a higher impact 

compared to Tau21. 
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Plant controllability with small mismatch 

The local IAE minimums for all time constant IAE graphs are not at 0% 

mismatch but at ±5%, which varies with each time constant. Tau11 and Tau22 have 

local minimums at -5% while Tau12 and Tau21 have local minimums at +5%. At 

first glance, it seems that this result does not support the plant controllability theory 

that systems with lower time constants are easier to control [31]. However, 

comparing it with the local minimums during gain mismatch, they are completely 

opposite for each transfer function. It can be then inferred that the local minimums 

may be dependent more on gain than time constant. When increasing the gain for a 

transfer function decreases the condition number, decreasing the time constant of 

that transfer function makes the plant easier to control. This is due to a faster 

attainment of the gain. 

Plant step response analysis 

 Figure 18 shows the step response for -40% Tau11 mismatch while figure 19 

shows the response for +40% Tau11 mismatch. These figures can be compared with 

figure 3 (0% mismatch). 

Comparing the responses, it can be seen that negative time constant 

mismatch cause a vigorous and oscillatory response with higher overshoot while 

positive time constant mismatch cause a more sluggish and slow response with lower 

overshoot. Taking into account the IAE trend from figure 17, it can be concluded 

that the higher IAE is due to a vigorous and oscillatory response. The sluggish 

response on the other hand, do not cause as much overshoot and stays within set 

point despite having the same magnitude of mismatch. 

 The responses can be explained by the nature of controller output in the 

presence of mismatch. Negative time constant mismatch makes the actual plant 

respond much faster than the controller predictions, thus, the controller is 

underestimating the response during transient conditions. The controller output will 

thus be more vigorous than needed and this will cause a vigorous response in the 

actual plant. 
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Figure 18: Plant response for -40% Tau11 mismatch 

 

Figure 19: Plant response for +40% Tau11 mismatch 
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On the other hand, the controller overestimates the plant response in the 

presence of positive time constant mismatch during transient conditions. The plant 

responds more slowly compared to the model. The controller output would then be 

less vigorous than ideal and cause a sluggish response. However, the effect of 

mismatch is much less significant because response does not oscillate vigorously. 

These trends are consistent for all four transfer functions. 

 

4.1.3 Single time delay mismatch 

Figure 20 shows the overall IAE trend for Delay11. Compared to gain and 

time constant, the overall IAE shape for time delay is less smooth. This is due to 

severe instability that will be explained with the step response analysis. Time delay 

is also noted to affect the IAE more in general than time constant and gain. 

 

Figure 20: Delay11 mismatch IAE 

 

There are significant differences between positive and negative percentage 

mismatch. Delay11 gives lower IAE for negative percentage mismatch while 

Delay12 and Delay22 gives lower IAE for positive percentage mismatch. Delay21 
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shows no significant differences. There seems to be no apparent inclination for these 

differences at the current mismatch range. This proves that due to interactions, an 

increase in time delay may be less detrimental than a decrease, unlike normal 

conventions [31]. 

For time delay mismatch, there is no correlation between the original 

magnitudes of time delay with the magnitude of the resulting overall IAE, unlike 

gain. However, the magnitudes of overall IAE correspond to the original magnitudes 

of gain, signifying that the higher the gain, the larger the effect of time delay 

mismatch on the plant performance. Gain magnitude is found to be the major factor 

contributing to the increase IAE during time delay mismatch. 

Plant controllability 

Unlike for gain and time constant, the local minimum for all time delay 

results are at 0%.  From control theory, the plant should be easier to control with 

lower time delays, but the local minimum does not reflect that here, signifying that 

the model residuals have a far greater effect on the plant performance for time delay 

mismatch.  

Plant step response analysis 

 The step responses show that the oscillation of the plant output increases as 

time delay mismatch increases. Both negative and positive mismatch produces an 

oscillatory and vigorous response. 

It can be observed from figure 20, there are 2 local peaks at about +35% 

mismatch and -35% mismatch. This shows that a certain amount of time delay 

mismatch there effects would resonate cause high IAE due to vigorous oscillations. 

The result from Ali et al. also point towards the presence of several stable and 

unstable regions within a time delay plane [32]. An example of the response can be 

seen in figure 21, which shows the output for -35% Delay22 mismatch. These 

oscillations are more vigorous than in the output for -40% Delay22 mismatch, as 

shown in figure 22. This vigorous oscillatory behavior is the reason the IAE graphs 

of time delay mismatch are not smooth. 
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Figure 21: Output response for -35% Delay22 mismatch 

 

Figure 22: Output response for -40% Delay22 mismatch 
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4.1.4 bSingle parameter mismatch threshold 

 

 

Figure 23: Mismatch thresholds 

 

Single gain mismatch 

It is noted that xB generally has a higher IAE when compared to xD in all 

trials. From figure 11, it can be seen that the IAE for xB, though unchanging is still 

almost always higher than the IAE for xD. This observation makes using a fixed IAE, 

ITAE or ISE threshold to determine the threshold of mismatch unreliable. Therefore, 

a percentage increase in output error should be employed as a significance threshold, 

taking into account the nature of the responses. 

Observing the shape of the graphs, it is determined that the IAE is most 

suited for determining the mismatch threshold as it shows a clear trend between error 

and mismatch. Instability of permanent error issues can be detected when the error 

increases exponentially with mismatch.  
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The mismatch threshold can thus be set by identifying the corresponding 

mismatch when the IAE increases by a certain percentage. This is because the IAE 

directly corresponds to deviations of the output from the set point. In this situation, 

the percentage is set to 40%. This percentage is more than sufficient to exclude 

mismatches that cause permanent offset or instability for gain, time constant and 

time delay. During significant permanent offset, the IAE increases by at least 96% 

(calculated from the data at -25% Gain22 mismatch). Based on the above criteria, the 

mismatch threshold can be inferred from the error graphs.  

 Gain mismatch threshold Table 7:

Gain + Threshold (%) - Threshold (%) 

11 27 22 

12 19 22 

21 40 38 

22 31 16 

 

The threshold values for Gain11, Gain12 and Gain22 conforms to the trend of 

condition numbers, where the threshold is larger in the direction of decreasing 

condition numbers. Gain21 is an exception, probably due to having only a small 

change in condition number across the mismatch scale. However, this discrepancy 

proves that although the condition number gives a good indication on the direction in 

which the threshold would lean, it is not the only factor affecting the plant 

performance. 

Single time constant mismatch 

Similar to gain, the mismatch threshold will be determined by limiting the 

increase in IAE to 40%. Since all responses of time delay mismatch are stable and 

return to the set point within the simulation duration, instability issues are not of 

concern. 

 Time constant mismatch threshold Table 8:

Time constant + Threshold (%) - Threshold (%) 

11 27 20 

12 40 20 

21 40 31 

22 32 20 
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It can be seen from the threshold values that the positive threshold is always 

larger than then the negative threshold; this is due to higher IAE when the response 

oscillates during negative percentage time constant mismatch. 

These threshold span are also quite similar to gain threshold, thus it can be 

inferred that mismatches in gain and time constant have similar degrees of impact on 

the plant performance. 

Single time delay mismatch  

The time delay mismatch threshold will be determined by limiting the 

increase in IAE to 40%. This criterion will avoid all unstable oscillatory responses as 

those would result in at least a 300% increase in IAE. 

 Time delay mismatch threshold Table 9:

Time delay + Threshold (%) - Threshold (%) 

11 21 40 

12 9 10 

21 6 6 

22 14 11 

  

Comparing the threshold values with those of gain and time constant, it can be 

seen that the threshold are much tighter. This indicates that time delay has a much 

greater effect on plant performance and thus can only tolerate small mismatches. 
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4.2 Double Parameter Mismatch 

Double parameter mismatch refers to having two transfer function 

components, either gain, time constant or time delay mismatched at the same time. 

This section puts emphasis on their interactions and consequent effect on IAE as 

well as how those interactions affect the mismatch thresholds that are determined 

previously. Surface plots are generated where the x and y axis represents mismatch 

in two transfer function parameters and the z axis represents the IAE. 

 

Common trends 

Two trends are universal throughout the results. The 1
st
 deals with the 

cumulative nature of the mismatch. This causes the surface plots to be bowl shaped, 

where high IAE is found at the vertices and edges and the lowest IAE is found near 

the center. Usually, there would be a direction where the IAE is magnified and this 

forms a local peak. This peak varies for each trial and always occurs at one of the 

vertices, where the mismatch is the highest. An example can be seen in figure 24. 

However, there are instances during high time delays mismatch that yields local 

peaks not at the vertex of the surface plots, caused by resonance of the. This 

irregularity however, it not present within the threshold limits determined in section 

4.1.4.  

The second inclination is similar to the trend found in the single mismatch 

section, where mismatch of a transfer function that affects one output has 

insignificant effect on the other output. This type of response can be seen in figure 

25. It is observed that xD is significantly affected by Gain11 only, as seen by the 

shape that is raised at the extremes of Gain11 mismatch. The same trend is seen for 

xB with Gain21. Interaction effects are only significant in the direction of increasing 

condition number that is -40% Gain11 and +40% Gain21, where the IAE is 

magnified.  

In the following parts of this section, the interactions discussed would always 

involve parameters of transfer function that affect the same output. The ones which 

affect different outputs have the same trends and thus been generalized above. 
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4.2.1  Double gain mismatch 

 

Figure 24: Gain11 and Gain12 mismatch IAE 

For double gain mismatch, the interactions are only significant when the 

gains contribute to a single output, such as in figure 25, where Gain11 and Gain21 

are varied. 

For xD the IAE is the highest for -40% Gain11 mismatch and +40% Gain12 

mismatch, this point corresponds to the trend of condition numbers. Decreasing 

Gain11 and increasing Gain12 makes the plant more difficult to control. Thus, it is 

established that the mismatch effects are magnified in the direction of increasing 

condition numbers for the respective gains.  
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Figure 25: Gain11 and Gain21 mismatch IAE 

  

It is interesting to note that at the opposite vertex of the surface, where the 

plant is supposedly easy to control, there is also a peak in IAE. This peak however, 

is not as high as the peak where the plant becomes the hardest to control. This trend 

is also observed for the combination of Gain21 and Gain22. Thus, it can be inferred 

that when the magnitude gains are increased or decreased in tandem, the IAE is 

small. The reason for magnification and nullification is further explained in section 

4.2.3. 
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4.2.2 Double time constant mismatch 

 

Figure 26: Tau11 and Tau12 mismatch IAE 

 

Similar to double gain mismatch, the interaction effect is only significant 

when the time constants varied contribute to the same output, as in figure 26 (Tau11 

and Tau12). For xD the IAE is the highest for -40% Tau11 mismatch and +40% 

Tau12 mismatch, this does not match the criteria set in the previous part where 

negative time constant mismatch yield higher IAE. It is interesting to note that the 

IAE is comparatively low at -40% Tau11 and -40% Tau12 mismatch, suggesting 

some nullification of effects. Since the results for the combination of Tau12 and 

Tau22 exhibits the same trend, it can be inferred that the increase or decrease of the 

time constants in tandem will yield less IAE than if they are displaced in the 
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opposite direction. The highest peak however, always happens at -40% of the time 

constant with the larger impact, as determined in section 4.1.4.  

 

4.2.3 Double time delay mismatch 

 

Figure 27: Delay11 and Delay12 mismatch IAE 

 

Significant interaction can also only be observed for time delay mismatches 

that contribute to the same output, as shown in figure 27 (Delay11 and Delay12). At 

high mismatch values, there are some resonant spots with higher IAE than at the 

edges, where the IAE shoots up drastically. For xD the IAE is the highest for +40% 

Delay11 mismatch and -40% Delay12 mismatch, this does not correspond to the 

determined degree of impact for the time constants as can be seen in section 4.1.4.  



 

 

47 

 

Similar to gain and time constant, it is found that the increase or decrease of 

the time delays in tandem will yield less IAE than if they are displaced in the 

opposite direction.  

The phenomena where nullification effects are present when either double 

gain, double time constant and double time delay is increased or decreased in tandem 

can be explained if we study the effect the mismatch has on the transfer functions 

involved. An increase in gain, decrease in time constant or decrease in time delay 

increases the effect of a transfer function and vice versa. Thus, increasing both gains 

of the two transfer functions will increase the effect of both transfer functions 

together. They relative difference would be small and thus the IAE is small. On the 

other hand, increasing one gain and decreasing the other will increase their relative 

difference and cause high IAE. The same holds true for time constant and time 

delays. This effect will be referred to as the imbalance between two transfer 

functions. 

This inference is further strengthened when the direction that will supposedly 

give high IAE based on the directions of severe effect as determined in the single 

parameter section, gives low IAE instead. One good example is -40% Tau11 and -40% 

Tau12 as seen in figure 26, which gives low IAE despite both being the direction 

with the lower threshold. 
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4.2.4 Gain and time constant mismatch interaction 

 

Figure 28: Gain11 and Tau11 mismatch IAE 

 

From this section onwards, the mismatch matrix is defined from only -20% 

to +20% because high interactions prevent the trend to be clearly seen with a larger 

matrix.  

For gain and time constant, there are generally two types of combinations. 

For the first type, the gain and time constant from the same transfer function are 

varied (Gain11 and Tau11). The results can be seen in figure 28, where the highest 

peak occur at +20% Gain11, -20% Tau11. For the second type, the gain and time 

constant from different transfer functions but affecting the same output are varied 
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(Gain11 and Tau12).  The result is shown in figure 29. The highest peak is found in -

20% Gain11 and -20%Tau12. 

The trends can be explained using the balance between transfer functions. 

For the first combination, increasing the gain and decreasing the time constant for 

transfer function 11 will increase its relative difference with transfer function 12, 

which will then cause high IAE. For the second combination, increasing or 

decreasing the parameters in tandem will increase the relative difference. 

 

Figure 29: Gain11 and Tau12 mismatch IAE 

 

4.2.5  Gain and time delay mismatch interaction 

For the interaction between gain and delay that affect the same output, the 

trend is the same regardless if it is from the same transfer function (Gain11 and 
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Delay11) or different (Gain11 and Delay12). From figure 30, it can be observed that 

the IAE depends more on time delay mismatch, which is more dominant in this 

system. The surface curves more along the time delay axis. In the direction of 

adverse time delay mismatch, the highest peak is always towards positive gain 

mismatch. This may be because an increase in gain mismatch makes the response 

more oscillatory, which magnifies the effect of time delay mismatch. 

 

Figure 30: Gain21 and Delay22 mismatch IAE 

 

4.2.6 Time constant and time delay mismatch interaction 

For the interaction between time constant and delay that affect the same 

output, the trend is the same regardless if it is from the same transfer function 

(Tau11 and Delay11) or different (Tau11 and Delay12).. From figure 31, it can be 
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observed that the IAE depends more on time delay mismatch, which is more 

dominant in this system. In the direction of adverse time delay mismatch, the highest 

peak is always towards negative time constant mismatch. This is because negative 

time constant mismatch yields higher IAE due to the more oscillatory response, as 

seen in the results in single time constant mismatch. 

 

Figure 31: Tau21 and Delay22 mismatch IAE 
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4.2.7 Double parameter mismatch threshold considerations 

When there are two mismatched gains, time constant or time delay the 

threshold as determined in the single variable part are not be applicable because of 

the interaction effects. Here, the threshold is tested in the direction of the highest 

IAE peak where the directions cause an imbalance between the transfer functions 

involved, as defined in section 4.2.3. For double gain, this occurs where the 

condition numbers increases for both gains since the other directions will yield lower 

IAE. For double time constant and double time delay, this occurs when the time 

constants or time delays are displaced in the opposite directions. 

For one gain and one time constant mismatch, the peak also occurs when the 

direction causes an imbalance. For interactions involving time delay and the other 

parameter being gain or time constant, the IAE is generally higher in the direction of 

adverse time constant mismatch, accompanied by positive gain or negative time 

delay mismatch. 

For mismatched parameters that contribute to the same output, the 

interactions are cumulative and large, thus, maintaining the threshold will not 

guarantee the IAE increase of less than +40% as needed. From the results, it is found 

that the positive threshold for Gain12 and negative threshold for Gain11 must be 

halved in order ensure that the IAE is within limits for a combination of Gain11 and 

Gain12 mismatch. This technique of halving thresholds is found to be sufficient to 

ensure the IAE is within limits for all other dual parameter mismatches of the same 

nature. 

For mismatched parameters that contribute to different outputs, the interactions 

are not large. Maintaining the thresholds is sufficient to prevent IAE from exceeding 

the limit. Thus, for the second type, the thresholds can be maintained, assuming 

slight over limits of IAE increase can be tolerated. 
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4.3 Results Summary 

4.3.1 Single parameter mismatch 

As a summary, gain and time constant have comparable effects on the IAE of 

this system while time delay has a much more severe impact. The direction of 

mismatch that yields higher IAE depends on plant condition number for gain but is 

constantly negative for time constant. This trend can be clear seen from the 

mismatch thresholds found. For time delay, the pattern is not apparent and the 

threshold is much smaller. 

Observing the magnitude of the original gains will show which mismatch in 

gain or time delay will generally yield higher IAE. For time constant, there is no 

trend. The shape of the graph for gain and time constant will also provide 

information on the plant response. An sharp increase usually points towards 

instability or high IAE, while a smaller slope points towards lower IAE levels. For 

time delay, since the effect is so severe, the shape is irregular due to high oscillations. 

4.3.2 Double parameter mismatch 

Interactions between the mismatches are high when the parameters mismatch 

coincides with the transfer functions that contribute to the same output. For 

example, mismatch in transfer function 11 and 12 or transfer function 21 and 22. 

Interactions are low when the mismatch coincides with transfer functions that 

affect different outputs. For example, transfer function 11 and 21 or 11 and 22. 

High interactions mandates the threshold determined in section 4.1.4 to be half 

while low interactions permits the threshold to remain. 

If the relative difference between the transfer functions increases due to a 

combination of mismatch direction, the IAE will magnify. On the other hand, there 

will be nullification effects when the combination retains their relative difference. 

This trend is true for double gain, double time constant, double time delay and gain 

with time delay. 

For combinations of time delay with gain or time delay with time constant, 

there are no nullification effects. The shape curves with time delay mismatch, with 

the highest peak occurring at negative time constant and positive gain respectively.  
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        CHAPTER 5

CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

 

The relationship between model-plant mismatch and plant performance is 

quantified from -40% to +40% of parametric mismatch. All gain mismatch 

directions have IAE that increases steadily with mismatch for the distillation model 

studied except for negative Gain22 mismatch, which shows a sharp increase. For 

time constant mismatch, the IAE slope is steeper for negative mismatch. The trend 

for time delay is irregular but maintains generally an increase, increase relationship. 

The threshold of mismatch is determined by limiting the IAE increase by 40% 

of the base IAE at 0% mismatch. The thresholds for gain are larger in the direction 

of decreasing plant condition number. For time constant, positive mismatch has 

higher thresholds. The thresholds for time delay are generally much smaller than 

time constant and gain but do not show preferences for either direction. 

Mismatch parameters interact when they are present in transfer functions 

directly contributing to one output. For double gain, double time constant, double 

time delay and gain with time constant, the performance drop is magnified when the 

combination of mismatch increase the relative difference between the transfer 

functions involved. Time delay dominates the interaction when present with either 

time constant or gain. 

In the presence of dual mismatch, the threshold determined from single 

parameter mismatch should be halved. This will ensure the IAE does not increase 

beyond 40% in the direction of highest magnification due to interactions. 
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5.2 Recommendations 

 

Further expansion of the research should include a study of other multiple 

input multiple output systems to ensure validity of the trends in other models. The 

threshold determined should also be tested with a case study of a model utilizing 

available mismatch estimation techniques to determine the effectiveness of the value. 

To further understand intections with more than two mismatches, simulation 

studies can be done. Critical mismatch directions as determined in section 4.2 of this 

report can be tested. The effect of those interactions on the threshold should also be 

studied.The parameters used in the study is fixed, therefore the effect of those 

parameters on the final graphs and threshold values are unclear. 
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APPENDICES 

  



Appendix 1 

 

 

 

Matlab code: Single parameter mismatch 

function [ ] = FYPSimulator( ~ ) 
 

load_system('FYP12'); 

  
gain11dev_p = [-40:5:40]; 
gain12dev_p = [-40:5:40]; 
gain21dev_p = [-40:5:40]; 
gain22dev_p = [-40:5:40]; 

  
hws = get_param('FYP12','modelworkspace');   
hws.DataSource = 'MAT-File';   
hws.FileName = 'params';   

  
IAEoutputset1 = zeros(1,length(gain11dev_p)); 
ISEoutputset1 = zeros(1,length(gain11dev_p)); 
ITAEoutputset1 = zeros(1,length(gain11dev_p)); 
IAEoutputset2 = zeros(1,length(gain11dev_p)); 
ISEoutputset2 = zeros(1,length(gain11dev_p)); 
ITAEoutputset2 = zeros(1,length(gain11dev_p)); 

 
for i = 1:length(gain11dev_p)   
    hws.assignin('Tau22', gain11dev_p(i)); 
    hws.saveToSource; 

     

    
    paramNameValStruct.SaveOutput     = 'on'; 
    paramNameValStruct.OutputSaveName = 'youtNew'; 
    simOut = sim('FYP12',paramNameValStruct); 
    simOut 
    IAEoutput = simOut.get('IAEoutput'); 
    ISEoutput = simOut.get('ISEoutput'); 
    ITAEoutput = simOut.get('ITAEoutput'); 

         
    IAEoutputset1(i) = IAEoutput(1); 
    ISEoutputset1(i) = ISEoutput(1); 
    ITAEoutputset1(i) = ITAEoutput(1); 
    IAEoutputset2(i) = IAEoutput(2); 
    ISEoutputset2(i) = ISEoutput(2); 
    ITAEoutputset2(i) = ITAEoutput(2); 
end 

  
hws.assignin('Gain11', 0); 
hws.assignin('Gain12', 0); 
hws.assignin('Gain21', 0); 
hws.assignin('Gain22', 0); 
hws.assignin('Tau11', 0); 
hws.assignin('Tau12', 0); 
hws.assignin('Tau21', 0); 
hws.assignin('Tau22', 0); 
hws.assignin('Dly11', 0); 
hws.assignin('Dly12', 0); 
hws.assignin('Dly21', 0); 
hws.assignin('Dly22', 0); 

  
hws.saveToSource; 

 
figure 



Appendix 2 

 

 

 

subplot (2,2,1) 
plot(gain11dev_p, IAEoutputset1,gain11dev_p, IAEoutputset2) 
xlabel('Deviation(%)')  
ylabel('IAE')  
legend('xD','xB') 
hold 
subplot (2,2,2) 
plot(gain11dev_p, ISEoutputset1,gain11dev_p, ISEoutputset2) 
xlabel('Deviation(%)')  
ylabel('ISE')  
legend('xD','xB') 

  
subplot (2,2,3) 
plot(gain11dev_p, ITAEoutputset1,gain11dev_p, ITAEoutputset2) 
xlabel('Deviation(%)')  
ylabel('ITAE')  
legend('xD','xB') 

  
end 
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Simulink block diagram 

 

Plant block diagram 

 

  



Appendix 4 

 

 

 

IAE, ISE and ITAE for Tau11 
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IAE, ISE and ITAE for Delay11 
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Results for single gain mismatch 
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Results for single time constant mismatch 
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Results for single time delay mismatch 
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Results for Tau11 and Tau21 interaction (transfer function affecting different outputs) 
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Results for Delay11 and Delay21 interaction (transfer function affecting different 

outputs) 
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Results for Gain11 and Tau21 interaction (transfer function affecting different 

outputs) 
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Results for Gain11 and Delay21 interaction (transfer function affecting different 

outputs) 

 


