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ABSTRACT 
 

 

 

 

The emission of greenhouse gas which is mainly from carbon dioxide (CO2) 

have cause phenomena of global warming and climate changes. Thus, this issues has 

become main focus in worldwide nowadays. CO2 removal process also is an essential 

step in many industrial processing especially in natural gas processing. Absorption 

based on alkanolamines like diethanolamine (DEA) have been widely applied in 

carbon capture plant. CO2 solubility has become an important parameter in the 

absorption process for proper process control in plant operation. Measurement of CO2 

solubility in 10%, 20% and 30% DEA using Raman spectroscopy is the main focus in 

this research. Raman shift and intensity of different DEA concentration with respect 

to CO2 loading (mol CO2 / mol amine) are obtained by using Raman spectroscopy. 

Partial Least Square (PLS) regression approach will be utilized to develop a calibration 

model that relate the Raman spectroscopy data to CO2 solubility in different 

concentration of DEA. From the result obtained, 10%, 20% and 30% model have 

shown great performance and demonstrate good prediction of CO2 solubility. In 

addition, a combined concentration model and combined modified model is developed 

to predict CO2 solubility at different DEA concentration. From the study, with the 

inverse of 900 – 1100 cm-1 are added to predicting matrix, the validation R2 have been 

increased from 0.9004 to 0.9136. Combination of analytical instrument and 

multivariate calibration tools will aid the process of online monitoring CO2 solubility 

in DEA in process plant operation. 
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           INTRODUCTION 

1.1  Background Study 

Phenomenon of global warming and climate change has been recognized as a 

significant environmental problem by the worldwide scientific community [1]. In 

recent years, world energy supply is mainly dependent on fossil fuels combustion, 

accounting 80% of total energy consumed in all over the world. Due to global 

population growth, the world energy demand was expected to be increased and fossil 

fuels combustion is responsible for large amounts of CO2 and other greenhouse gases 

[2]. According to the Climate Change 2014 synthesis report, since the pre-industrial 

era have started due to economic and population growth , greenhouse gas emissions 

have increased year by year and from 2000 to 2010 was reported to be the highest in 

history. The period from 1983 to 2012 was the warmest of 30-year period of the last 

800 years and caused the risen of sea level as well as diminished of snow and ice [3]. 

Thus, great attention have been focus on the reduction of CO2 emissions in the 

atmosphere. 

 

Besides known as greenhouse gas, CO2 also is an unwanted by-products in 

natural gas processing industries due to its properties as an acid gas. When CO2 react 

with water, it will form carbonic acid that tend to cause corrosion and give major 

effects and damage to the oil field equipment and gas pipelines. Formation of carbonic 

acid and moisture will decrease pipeline flow capacities, even resulting in blockages, 

and potential harm to valves, filters and compressors that are being used throughout 

the process. Thus, CO2 removal is essential process in order to increase heating value 

of natural gas and optimize pipeline capacity [4] 

.
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 Various technologies have been developed to remove CO2 from natural gas for 

instance absorption by chemical and physical solvents, cryogenic separation and 

membrane separation [5]. However, most attention have been focus on absorption and 

membrane separation due to its existing and maturity level in the process. Comparison 

of the technologies available for CO2 capture have been done and conclude that 

absorption with aqueous amine solution is most favoured one. 

 

Packed column are commonly used for gas absorption in gas processing 

industry. The efficiency of contact between gases and liquid can be increased due to 

high mass transfer efficiency and low pressure drop. Various research have been 

carried out in order to further investigate on efficiency of packed column in CO2 

removal. There are a lot of factors that affect the efficiency of packed column for 

instance CO2 solubility in solution. CO2 solubility give the strong influence to the mass 

transfer coefficient [6]. When the CO2 loading in the lean solution was high, the 

driving force of mass transfer from gas to solution became small and the decrease in 

CO2 removal efficiency could not be compensated even with the increase of solution 

flow rate [6]. The construction cost of entire process could also be reduced if the 

absorbent has high CO2 capacity [1]. Increases of CO2 loading in solvent will 

significantly lowered the availability of active absorbent concentration in the solution. 

Therefore, the solubility of CO2 in aqueous amine solution has become one of the 

important parameter for the CO2 absorption process. 

  

Several amine solvents which are monoethanolamine (MEA), diethanolmine 

(DEA) and methyldiethanolamine (MDEA) have been mostly investigated and 

studied by the various researcher to determine CO2 solubility at various conditions. 

Thermodynamics model such as Kent-Eisenberg model, modified Kent-Eisenberg 

(M-KE) [7] was developed based on vapor-liquid equilibrium (VLE). However, this 

model have some limitations on the accuracy and only suitable for certain amine 

solutions. Thus, empirical modelling technique was introduced to further investigated 

CO2 solubility in amine solvent. Time is significantly reduced as well as it less 

complex compared to mathematic approach. Among the empirical models is based 

on partial least square (PLS) regression approach. PLS regression is one of the 
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powerful tools to predict dependent variable from a very large dataset of independent 

variable [8]. 

 

1.2 Problem Statement 

During the absorption process, CO2 loading measurement is a vital action for a 

proper process control. The earliest method to measure CO2 loading in alkanolamines 

is titration. However, this method is quite tedious as the sample need to be prepared 

and the analysis cannot be done during the process [4]. It is not practical to perform 

experiments for each specific temperature, pressure and concentration and obtain CO2 

loading in aqueous solution. Besides that, it required a long time, hence it is not 

appropriate for process control.  

 

Many studies have been conducted in order to find most suitable and efficient tools 

to measure CO2 loading instantaneously. Infrared, NMR and Raman spectroscopy are 

some of the spectroscopic technique that have been used for instantaneous 

measurement of gas-liquid concentration. Raman spectroscopy is a powerful technique 

to be used for monitoring CO2 loading in aqueous solution. It is a non-invasive, non-

destructive and direct measurement method efficient for quantitative analysis for 

concentration as low as 0.1 up to 100%. It is relatively fast, suitable for measurements 

in aqueous system because of the weak Raman scattering of water molecules and 

application [4] 

 

Raman spectroscopy are widely used in pharmaceutical and cosmetics industry as 

Raman has the ability to carry direct measurement on solids. The ability to identify 

raw material, determine active substances in different formulations and can support 

polymorphic screenings give advantages to pharmaceutical analysis. In this project, 

measurement of CO2 loading in DEA using Raman spectroscopy is the main focus. To 

achieve this focus, Partial Least Square Regression (PLSR) approach will be utilized 

to develop a calibration model that relate the Raman spectroscopy to CO2 loading. 

PLSR method have been successfully applied in many areas including multivariate 

statistics, analytical chemistry, medicine, face recognition etc.   
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1.3  Objective and Scope of Study 

1) To obtain the CO2 solubility data in DEA with their respective Raman 

spectrum. 

2) To develop an accurate multivariate calibration model based on PLSR to 

predict CO2 solubility in aqueous solution of DEA using Raman spectroscopy 

for fixed DEA concentration.  

3) To extend the calibration model to predict CO2 solubility for different 

concentration of DEA.  

 

The first phase of the research is focus on obtaining the CO2 solubility data in DEA 

aqueous solution using Raman spectroscopy. Different concentration of DEA will be 

tested out to observe the CO2 solubility. Then, the next phase is to focus on the 

development of calibration model based on PLSR in MATLAB software. This model 

will be used to predict CO2 solubility in a fix DEA aqueous solution. In addition, the 

calibration model will be extended for different concentration of DEA. 
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LITERATURE REVIEW 

2.1 Carbon Dioxide 

Carbon dioxide (CO2) is a chemical molecule consist of one carbon atom 

covalently bonded with two oxygen atoms. It is a colourless, odourless, non-toxic gas 

and heavier than air. It is soluble in water, ethanol and acetone. The combustion of 

coal or hydrocarbon will produced CO2. Besides that, CO2 is produced by the 

fermentation of liquids and the breathing of humans and animals. Found in small 

proportions in the atmosphere, it is assimilated by plants which in turn to produce 

oxygen. 

 

Figure 2.1 shows the phase diagram of carbon dioxide. CO2 will not exist in liquid 

state at atmospheric pressure at any temperature. The liquid CO2 exists only after 

56.6oC and have the lowest pressure is at 5.11 atm. The triple point is where liquid, 

gas and solid exist simultaneously in thermodynamic equilibrium. At the sublimation 

point, CO2 able to change from solid state directly into a gas.  Physically, this boundary 

implies that the gas and solid can co-exist and transform back and forth without the 

presence of liquid as an intermediate phase at -78.5 oC. CO2 freezes at -78.5oC to form 

carbon dioxide snow or dry ice. Above the critical point (73.8 atm and 31.1°C), the 

liquid and gas phases cannot exist as separate phases, and liquid phase CO2 develops 

supercritical properties, where it has some characteristics of a gas and others of a 

liquid.  
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Figure 2.1 Pressure-Temperature Phase Diagram 

 

CO2 is widely used in many industries such as chemical, pharmaceutical, food and 

beverages industry. CO2 is commercially used as in fire extinguishers, carbonate 

beverages and as a refrigerant [9]. Large quantities of solid carbon dioxide which in 

the form of dry ice are used in processes requiring large scale refrigeration. Besides 

that, CO2 is used for environment protection. For instance, CO2 is used for red fume 

suppression during scrap and carbon charging. It is also commonly used as the 

compressed gases for pneumatic (pressurized gas) systems in portable pressure tools.  

 

Regardless of its wide applications, CO2 is widely recognized as a major 

component of greenhouse gas contributing to global warming. It also known as acid 

gas that need to be removed from natural gas to avoid corrosion, blockages to the 

pipeline due to the formation of CO2 in the low temperature system as well as to 

maintain the heating value of natural gas.  
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2.2   Carbon Dioxide Removal Technique 

Removal of acid gas is a common unit process used in refineries, petrochemical 

plants, and also other industries to remove the contaminant in natural gas. The process 

of removing CO2 and H2S from acid gas is called sweetening process as it removes the 

sour odour of the gas due to the presence of H2S. Chemical absorption by a solvent is 

the technique most commonly used to remove acid gas in natural gas flow. Absorption 

allows acidic gases to be dissolve in a solvent and will be released by regeneration. 

  

 

Figure 2.2 Typical Process Flow Diagram (PFD) of CO2 Removing Process 

 

A typical amine gas treating process consists of an absorber unit, a stripper unit 

and accessory equipment. In the absorber, flue gas CO2 entered the bottom of absorber 

column and the ‘lean’ amine solution will absorbed the flue gas counter-currently to 

produce sweet gas as a product [10] Sweetened gas leaving the top of the absorber 

passes through an outlet separator and then flows to a dehydration unit (and 

compression unit, if necessary) before being considered ready for sale. Now, the ‘rich’ 

amine solution contains the absorbed acid gases is further heated in regeneration 

column. Steam and acid gases separated from the rich amine are condensed and 

cooled.  
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2.3  Alkanolamines used as solvent in absorption 

Alkanolamines are widely used in many application. They are versatile, 

polyfunctional molecule that combine the characteristics of amines and alcohols. Each 

alkanolamine has at least one hydroxyl group and one amino group. The hydroxyl 

group reduces the vapour pressure and increases the water solubility, while the amino 

group increases the pH of the solution which causes reaction with acidic gases such as 

CO2 and H2S. 

 

Alkanolamines can be classified as primary, secondary, or tertiary depending on 

the number of alkyl groups attached to the nitrogen atom. In primary amines, one 

hydrogen atom on the nitrogen is replaced with a functional group while in secondary 

amines two hydrogen atoms are replaced followed by all three atoms are replaced in 

tertiary amines.  

 

Figure 2.3 Structural Formula of alkanolamines used in gas treating 

 

Different types of amines will have different properties when react with CO2. 

Most of the amines exist in liquid state in room temperature. In term of solubility, they 

are soluble in water. Their solubility will decrease as the hydrogen chain attached to 

the molecule getting longer. Both primary and secondary amines exhibit low CO2 

loading but they have high rate of absorption. However, tertiary amines showed 
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opposite behaviour. The selection of amine in CO2 removal system not only depend 

on the absorption rate and maximum loadings achieved, but other factors such as 

regeneration energy, corrosion tendency and cost of solvent also are considered [7]  

 

Figure 2.4 CO2 loading vs rate of absorbent 

 

2.4  Diethanolamine (DEA) mechanism 

Diethanolamine (DEA) is an organic compound with the molecular formula 

NH(CH2CH2OH)2. This colorless liquid is a secondary amine where two of the 

hydrogen group will be replaced by an alkyl group (C2H4OH). Aqueous solutions of 

diethanolamine (DEA) have been used for many years in gas treatment at oil refinery.  

 

Figure 2.5 Chemical Structure of DEA 

 

During the absorption of CO2 in the DEA, carbonate (CO3
2-), bicarbonate (HCO3

-) and 

carbamate (R1R2NCOO- ) will formed as the final product along the reaction. The 

equation of chemical reaction that take place can be written as below [11], [12] 

Water ionization: 

 2H2O ⇌ H3O++OH-              (1) 
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Dissociation of Carbon Dioxide: 

CO2+2H2O ⇌H3O++HCO3
-         (2) 

Dissociation of Bicarbonate: 

HCO3
- +H2O ⇌H3O++CO3

2-        (3) 

Carbamate Formation: 

R1R2NH + HCO3
-   ⇌R1R2NCOO-+H2O       (4) 

Overall Equation: 

2R1R2NH+CO2⇌R1R2NH2
++R1R2NCOO-                             (5) 

 

All the reaction occur in this process is reversible. When CO2 react with water, 

bicarbonate will be formed in the equation (2). Then in equation (3), bicarbonate react 

with water and formed carbonate. The reaction of DEA with bicarbonate will form 

carbamate as the final product. Equation (5) shows the overall reaction occurred in the 

process of absorption CO2. All absorbed CO2 react with DEA to form carbamate. The 

formation of the carbamate is more stable compared to bicarbonate. Therefore, 

absorbents that formed carbamate required larger quantities of heat [1]. 

 

It has an advantage over a similar amine ethanolamine in that a higher concentration 

may be used for the same corrosion potential. It is less reactive than primary amines 

and make the reaction product less corrosive. This allows refiners to scrub acid gas at 

a lower circulating amine rate with less overall energy usage. The low vapour pressure 

of diethanolamine makes it suitable for low-pressure operations as vaporization losses 

are quite negligible [13]. Besides that, DEA has high reactivity and fast absorption 

rate.  

 

The solvent apply (DEA) is considered to be chemically stable; DEA can be heated 

to its normal boiling point (269 oC at 760mmHg) before decomposition. Therefore 

reduce the solvent degradation during stripping and reduce solvent loss and 
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accumulation in the units. The heat of reaction of DEA with CO2 is low compared to 

other amines hence the heat generated in the absorber during CO2 absorption process 

is low which increases the solvent loading capacity in the absorber as solubility or 

loading of CO2 increases at low temperature. It react rapidly with CO2 to form 

carbamate with a stoichiometric loading of 0.5 mol of CO2 per mole of amine [13] 

 

Table 2.1 Physical Properties of DEA 

Molecular formula C4H11NO2 

Molecular Weight 105.14 g/mol 

Boiling Point 268.8 oC 

Melting Point 28 oC 

Flash Point 152 oC (306 oF) open cup 

Vapor Density 3.65 (air = 1) 

Density/Specific Gravity 1.09664 at 20/4 oC (water = 1) 

Vapor Pressure 2.8 x 10-4 mm Hg at 25 oC 

Log Octanol/Water Partition Coefficient -1.43 

Henry's Law Constant 5.35 x 10-14 atm-m3/mole at 25 oC 

Conversion Factor 1 ppm = 4.3 mg/m3 

 

 

2.5  Spectroscopic Technique for online measurement 

Spectroscopy is a technique that use the interaction of energy with a sample to 

perform analysis. The data that obtained from spectroscopy is called a spectrum. A 

spectrum is a plot of the intensity of energy detected versus the wavelength, amplitude, 

frequency, etc. Information about atomic, molecular energy levels, interaction of 

molecules and other related process can be obtained via spectrum. It also can be used 

to identify the components of a sample (qualitative analysis) and measured the amount 

of material in a sample (quantitative analysis).  
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There are several instruments that are used to perform a spectroscopic analysis. As 

spectroscopy requires an energy source, laser, ion source or radiation source could be 

used. A spectrophotometer or interferometer are usually used as a device to measure 

the change in the energy source after it have been interacted with the sample. Several 

type of spectroscopy that are commonly used for analysis of material and chemicals 

such as X-Ray photoelectron spectroscopy (XPS), Ultraviolet and visible absorption 

spectroscopy (UV-VIS), Infrared absorption spectroscopy (IRS), Nuclear magnetic 

resonance spectroscopy (NMR) and Raman spectroscopy.  

 

Infrared absorption spectroscopy is frequently used to identify materials and to 

measure the number of absorbing molecules.  Recently, NIR- spectroscopy and Raman 

spectroscopy has been used for bioprocess monitoring. Both techniques is based on 

vibrational effects and suitable for measurement of small molecule in a chemical 

compounds. In addition, fluorescence spectroscopy also have been applied for 

monitoring several of biological processes. It was used to predict biomass, product, 

process and media characterization in biotechnology field especially in pharmaceutical 

and food process engineering [14].  

 

2.6  Raman Spectroscopy 

Raman spectroscopy is a one of the spectroscopic technique that are available 

for analysis of material and chemicals. It also used to study the chemical components 

in gas, liquid or solid state phases through the vibration or rotation of a molecule. 

Raman spectroscopy is commonly used to characterize chemical components by 

providing a fingerprint by which the molecule can be identified.  

 

It was based on Raman scattering of light by a material, where the light is 

scattered inelastically as opposed to the more prominent elastic Rayleigh scattering. 

Inelastic scattering means that the frequency of photons in monochromatic light 

changes upon interaction with a sample. This inelastic scattering causes shifts in 

wavelength, which can be used to figure out information about the material. Properties 
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of the material can be determined by analysis of the spectrum, or compared with a 

library of known spectra to identify a substance. 

  

Raman spectroscopy is a non-destructive process [4], and can be used to monitor 

industrial processes. The speed of analysis means that it can give almost real-time 

information. Another advantage is that the light to be monitored can be sent down 

fibre-optics, so that the Raman equipment can be located some distance away from the 

actual processing. Raman spectroscopy is now an extremely powerful technique with 

many applications since the discovery of Raman scattering in the 1920s.  

 

Raman spectroscopy was widely used in the pharmaceutical analysis. The ability 

of Raman spectroscopy to carry out direct measurement on solids give benefit to 

pharmaceutical and polymer industry [15]. Besides that, it also have been used in 

protein structural characterization especially in determining the changes in the 

secondary and primary structure of protein in different matrices [16] 

 

2.7  Raman Scattering 

Scattered light in Raman consists of two types which are Rayleigh scattering and 

Raman scattering (stokes shift). Rayleigh scattering is an elastic effect, which means 

that the light does not gain or lose energy during the scattering. The amount of 

scattering is strongly dependent on the wavelength, being proportional to λ-4. A photon 

interacts with a molecule, polarising the electron cloud and raising it to a “virtual” 

energy state and drops back down to its ground state, releasing a photon. Since the 

molecule is dropping back to the same state it started in, the energy released in the 

photon must be the same as the energy from the initial photon. Therefore the scattered 

light has the same wavelength. 

 

Raman scattering is different in that it is inelastic. The light photons lose or gain 

energy during the scattering process, and therefore increase or decrease in wavelength 

respectively. If the molecule is promoted from a ground to a virtual state and then 
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drops back down to a vibrational state then the scattered photon has less energy than 

the incident photon, and therefore a longer wavelength. This is also called Stokes 

scattering. Anti-Stokes scattering occur when molecule is in a vibrational state and 

after scattering is in its ground state then the scattered photon has more energy, and 

therefore it has a shorter wavelength.  

 

Figure 2.6 3 Different Forms of Scattering 

 

Rayleigh scattering is about 105 times stronger than Raman scattering. Only about 1 in 

107 photons undergo Stokes Raman scattering and so this is usually swamped by the 

far more prominent Rayleigh scattering. The amount of anti-Stokes scattering is even 

less than this. Raman scattering cross section is 2 x 10-14 cm2 per molecule.  

 

2.8  Multivariate Calibration 

Calibration is the process of finding appropriate model parameters that lead from 

the spectrum to the desired information on the composition of the material. Nowadays, 

chemical problems and applications of chemometrics are involved with calibration. 

Chemometrics is the application in which mathematical and statistical method was 

used to analyse enormous amount of chemical data. Multivariate calibration methods 
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is more preferable to use in chemometrics compared to traditional method as it can be 

applied when more than one sample is acquired for each sample.   

 Multivariate calibration techniques such as partial-least squares regression, or 

principal component regression (and near countless other methods) are then used to 

construct a mathematical model that relates the multivariate response (spectrum) to the 

concentration of the analyte of interest, and such a model can be used to efficiently 

predict the concentrations of new samples.  

The main advantages of the use of multivariate calibration techniques is it fast, 

cheap, and non-destructive analytical measurements as well as can be used to estimate 

sample properties which would otherwise require time-consuming, expensive or 

destructive testing. Multivariate calibration allows for accurate quantitative analysis in 

the presence of heavy interference by other analytes. The selectivity of the analytical 

method is provided as much by the mathematical calibration, as the analytical 

measurement modalities. For example infrared spectra, which are extremely broad and 

non-selective compared to other analytical techniques can often be used successfully 

in conjunction with carefully developed multivariate calibration methods to predict 

concentrations of analyte in very complex matrices. 

 

2.8.1  Multi Linear Regression (MLR) 

MLR is known as the best method from statistical point of view. It based on the 

simple linear regression based on the relationship between dependent variable y and 

the independent variable x. According to the multiple linear regression model the 

dependent variable is related to two or more independent variables [17].  

𝑦𝑖 =  𝛽𝑜 +  𝛽𝑖𝑥𝑖 + 𝑒𝑖            𝑖 = 1,2,3, … … 𝑛      (1) 

It based on simple selection of variables for instance some variables are rather 

selective for the compounds or characteristics being determine. When we want to 

model one or several dependent variables, X with responses of Y, MLR are useful and 

can works well as long as X-variables are fairly uncorrelated. In addition, in modern 

measuring instrumentation including spectrometers, chromatographs and sensor 

batteries, the X-variables tend to be many and also strongly correlated [18]. MLR 
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attempts to model the relationship of X and Y by fitting a linear equation to observed 

data. This can be defined as 

 E (Y|X) = α + β1X1 + β2X2  · · · + βpXp,  

Where α is called intercepts and β1 are coefficient or slope.  

2.8.2  Principle Component Analysis (PCA) 

Due to disadvantages of MLR which required all the component must be known, 

PCA was introduced since it does not require details of all components. PCA is a way 

to describe multivariate data by maximizing variances. It is powerful tool that are 

abundantly used in all forms of analysis for data compression and information 

extraction. This technique reduce the dimensionality of the variables data, by forming 

a new set of orthogonal variables called principal components (PCs), which are a linear 

combination of the original measured variables and which explain the maximal amount 

of variability in the data. 

It is a way of identifying patterns in data, and expressing the data in such a way 

as to highlight their similarities and differences. Since patterns in data can be hard to 

find in data of high dimension, where the luxury of graphical representation is not 

available, PCA is a powerful tool for analysing data. PCA decomposes an X matrix 

into two smaller matrices, one of scores (T) and the other of loadings (P) as follows: 

X = T * P 

 

Figure 2.7 Illustration of principle component analysis (PCA) 
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2.9  Partial Least Square (PLS) Regression 

Partial least-square (PLS) regression is technique used analyse the relationship 

between two data matrices, X and Y (predictor variable). This technique constructs 

new predictor variables, known as components, as linear combinations of the original 

predictor variables. PLS constructs the component by considering the observed 

response value. PLS has been used in analytical chemistry since 1980s and increased 

steadily since then. It was first developed by Herman Wold in late 1960s for economic 

purpose and after that it was introduced as tool to analyse data from chemical 

applications [19].  

 

This technique actually is an extension of multiple linear regression (MLR) 

analysis where the effect of linear combinations of several predictors on multiple 

response variable are analysed [19]. It also quite similar with PCA but it works in one 

step only. PCA works by finding the combination of the predictor with large variance 

and reducing correlations but neglect the response values. However, PLS works by 

finding the combination of the predictors that have large covariance as well as response 

values.  In addition, PLS have the ability to analyse the data with many, noise, collinear 

and even incomplete variable in both X and Y. Hence, complex problem can be 

investigate and available data can be analyse in a more realistic way with PLS.  

 

2.9.1  PLSR model 

Linear model Y=XB+E will be build using PLS regression from training set of 

X and Y. Y is a data matrix of n samples by m variable response, X is a data matrix of 

n samples by p variable and B is p by m regression coefficient matrix. E will be error 

or noise that have same dimensions as Y. The predictions for new observations data 

are made based on X. The result from PLS regression will gives score matrix of X and 

Y, loading of X and Y, weight (W) and beta (B). The result of X-scores are predictors 

of Y and model of X in orthogonal way [18]. Score matrix computed based on T=XW, 

and from regression model Y=TQ+E, loading Q for T can be known.  

 

Once the loadings Q is computed, the regression model will be Y=XB+E where 

B=WQ. PLS regression produces the weight matrix W based on the covariance 

structure between the predictor and response variables.  To complete PLSR model 
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procedures is the p by c factor loading matrix P which gives a factor model X=TP+F, 

where F is the unexplained part of the X scores. To conclude that, PLS regression will 

decomposes both of X and Y as a product of a common set of orthogonal factors and 

a set of specific loadings [8]. To carry out PLS regression model in MATLAB, we will 

be used plsregress as the function. There are few function can be used in modelling as 

stated in Statistical Toolbox. 

 

Table 2.2 PLS function in MATLAB [20] 

Function Description  

[XL,YL] = plsregress 

(X,Y,ncomp)  

Computes PLS regression of Y on X, 

using ncomp PLS components, and returns 

the predictor and response loadings 

in XL and YL, respectively. X is an n-by-

p matrix of predictor variables, with rows 

corresponding to observations and 

columns to variables. Y is an n-by-

m response matrix. XL is a p-by-

ncomp matrix of predictor loadings, where 

each row contains coefficients that define 

a linear combination of PLS components 

that approximate the original predictor 

variables. YL is an m-by-ncomp matrix of 

response loadings, where each row 

contains coefficients that define a linear 

combination of PLS components that 

approximate the original response 

variables. 

[XL,YL,XS] = 

plsregress(X,Y,ncomp)  

Returns the predictor scores XS, that is, the 

PLS components that are linear 

combinations of the variables in X. XS is 

an n-by-ncomp orthonormal matrix with 
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rows corresponding to observations and 

columns to components. 

 

[XL,YL,XS,YS] = 

plsregress(X,Y,ncomp)  

Returns the response scores YS, that is, the 

linear combinations of the responses with 

which the PLS components XS have 

maximum covariance. YS is an n-by-

ncomp matrix with rows corresponding to 

observations and columns to 

components. YS is neither orthogonal nor 

normalized. 

[XL,YL,XS,YS,BETA,PCTVAR] = 

plsregress(X,Y,ncomp)  

Returns a 2-by-ncomp matrix PCTVAR 

containing the percentage of variance 

explained by the model. The first row 

of PCTVAR contains the percentage of 

variance explained in X by each PLS 

component, and the second row contains 

the percentage of variance explained in Y. 

[XL,YL,XS,YS,BETA,PCTVAR,MSE] = 

plsregress(X,Y,ncomp)  

Contain matrix MSE, estimated mean-

squared errors for PLS models 

with ncomp components. The first row 

of MSE contains mean-squared errors for 

the predictor variables in X, and the second 

row contains mean-squared errors for the 

response variable(s) in Y. 
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2.9.2  Model Evaluation 

Any model needs to be evaluated first before it is used for predicting. Cross validation 

(CV) is one of the effective way for model validation as it can stimulate how well the 

model can predicts new data. The best validation of a model is that it able to predicts 

the Y-values of observations with new X-values precisely. Differences between actual 

and predicted Y-values are calculated and the sum of squares of these differences is 

computed to form the predictive residual sum of squares, PRESS, which estimates the 

predictive ability of the model. PRESS also often re-expressed as Q2 or R2.  

The formula to evaluate the R2  

  

  

Where  

n # samples 

p # input variables 

Bj Regression  Coefficient for feature j 

Yi Vector of multidimensional output values for sample i 

xij Input value for feature j in sample I 

Y Sample mean of output data 

q # Components 
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METHODOLOGY 

3.1  Project Methodology 

This project is mainly to develop a calibration model to analyse the solubility of 

CO2 in the DEA solution using Raman spectroscopy. The development of the model 

is using PLS regression approach and was done in MATLAB. The first step was doing 

some study and literature review on every component related to the project such as 

carbon dioxide, absorption process, alkanolamines especially DEA and multivariate 

calibration. 

   

Then, next phase is to obtain CO2 solubility data in DEA using CO2 absorption 

cell. CO2 with purity of 99.8% was purchased from Air Product Malaysia Sdn. Bhd 

while DEA was purchased from the Merck Sdn. Bhd with purity of 99%. Distilled 

water was used for the preparation of solution. 10%, 20%, 30% of DEA aqueous 

solution was prepared and feed into the absorption vessel. CO2 from feed tank will 

disperse into absorption vessel and was absorbed by DEA. CO2 loading was measured 

by using pressure drop method.  

  

 

 



22 

 

 

Figure 3.1 CO2 Absorption Cell 

 

The portable Raman spectrometer was used to project the laser source to the 

sample. The laser source had wavelength of 785 nm and power of 500 mW. The 

spectrometer had resolution of 4cm-1 and signal to noise ratio of 1000:1 [21]. To 

capture the spectra, the software SpectraWiz was used. The optical fiber probe of 

Raman spectrometer was connected with the CO2 absorption cell.  

 

After that, pre-processing of Raman spectra need to be done in order to get a good 

spectra. In the other typical measurement techniques, noise can cover the information 

hidden in a spectrum. Besides that, the information might contained in the high 

intensity and low intensity spectra. Hence, pre-processing is recommended to remove 

the noise effect and maximize the data obtained in spectrum. The Raman spectra were 

reduced by using Savitzky-Galoy filter.  

 

Then, the last phase is started to do modelling in the MATLAB. Modelling 

approaches must be applied in order to convert the data contained in Raman spectra. 

The data will be divided into two types of data set, calibration and validation data. 

Calibration data set will be used to develop few models using PLS regression while 

validation data set is to test the performance of calibration model. The calibration and 

validation data set comprise Raman Intensities with respective Raman shift as X 

variable and CO2 loading as Y variable. 
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Data matrix of X and Y need to be normalized first before do PLS regression in 

order to get accurate result. It will scaled up and centred the dataset and give mean 

equal to 0 and standard deviation equal to 1. This step only been done to calibration 

dataset. For validation data set, X and Y data matrix will be scaled up using mean and 

standard deviation obtained from calibration model.  

 

Then, PLS regression is applied to the calibration dataset. It will generate XL, YL, 

XS, YS and Beta. XL is a predictor loading consist of coefficient between PLS 

components and original predictor variable. YL refer to response loading where each 

row consists of coefficients of PLS components that approximate the original response 

variables. XS and YS is refer to score of X and Y. Beta is coefficient which will be 

used in modelling.  

 

After finish modelling calibration dataset, a new dataset which is validation 

dataset will be tested. When a process model is used for the prediction of process 

variables, the quality of that prediction must be judged. The prediction of calibration 

and validation has been evaluated by using coefficient of determination (R2) and mean 

square error (MSE). R-squared will be used to see how well the regression line 

approximated the data.  

 

3.2 Process Flow Chart 

For this study, the methodology is divided into three main parts. The first part is 

obtaining CO2 solubility data in DEA. Second part is developing a calibration model 

using PLS regression approach in MATLAB and lastly to evaluate the performance of 

model. This is the process flow for this project that will be carried out throughout this 

project so that the objective of the study can be successfully achieved.  
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Figure 3.2 Process Flow Chart 

 

 

 

 

Preliminary research on the existing studies related to the topic

Collecting the CO2 solubility data in DEA from the experiment 
and discuss the findings.

Pre-processing of Raman spectrum by removing noise

Develop individual models and combined concentration model 
using PLS regression approach in MATLAB

Evaluate the performance of the model

All the findings in this report will be documented and reported.
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3.3 Key Milestones 

 

 

 

1. Obtained CO2 solubility data using 
Raman Spectroscopy

2. Developed individual 
models based on 10%, 20%, 
and 30% DEA concentration

3. Developed combined 
concentration model to predict 

CO2 loading at different 
concentration.

4. Evaluated the performance of the 
individual models and combined 

concentration model
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3.4  Gantt chart 

 
Activities/Plan 

Final Year Project II (FYPII) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Develop individual PLS models for each DEA 

concentration. 

              

Develop combined concentration models to predict CO2    

loading of different concentration 

              

 Evaluate the performance of the models               

 Compile all data together 
              

Identify appropriate solution and recommendation 

for improving the result of the models 

              

Finalize all data and result 
              

 
Key Milestones 

Final Year Project II (FYPII) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Submission of the progress report               

Pre-SEDEX               

Submission of Technical Paper               

Submission of Dissertation (soft bound)               

Final Year Project Oral Presentation (Viva)               
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RESULT AND DISCUSSION 

 

4.1  Qualitative Analysis of Raman 

 

 

Figure 4.1 Raman Spectrum of DEA 

Figure 4.1 shows the Raman spectrum of DEA at 10%, 20% and 30% 

concentration. It can be seen that the intensity of 30% concentration is higher at 

spectral region 1200cm-1 to 1500cm-1. It might be because of formation carbamate 

when there is higher concentration of amine. The formation of carbonate and 

bicarbonate is identified between spectral regions of 1000 cm-1 to 1080 cm-1  it has 

been observed that peak intensities at that range is increasing during CO2 absorption. 

Then, the peaks declined due to the consumption of amine during absorption process. 
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4.2 Partial Least Square Regression 

Calibration model of 10%, 20% and 30% of DEA concentration have been 

developed in the first stage of the project which named D10, D20 and D30. The data 

set used to load in MATLAB will be divided into calibration set and validation set. In 

the calibration set, each model consists of 45 samples of CO2 loading ranging from 

0.055 to 1.322 at 860 wavelengths whereby in validation set comprise of 25 samples. 

All the model were developed using PLS approach with 10 numbers of component. 

 

4.2.1 Model for 10% of DEA (D10) 

 

Figure 4.2 Graph of actual and predicted CO2 loading in calibration model 
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Figure 4.3 Graph of actual and predicted CO2 loading in validation model 

 

As we can see in Figure 4.1, D10 model give good prediction of CO2 loading with 

excellent linearity while in Figure 4.2, the linearity of prediction CO2 loading is quite 

low compared to Figure 4.1. The performance of the model will be evaluated by R2 

and MSE value in the table below 

Table 4.1 Calibration and Validation Results in D10 

 Calibration Model Validation Model 

Coefficient of Determination (R2) 0.9995 0.9346 

Mean Square Error (MSE) 0.00048943 0.0802 

 

Based on the figure above, we can see that using PLS regression approach give the 

good prediction with best linearity in the calibration and validation graph. The 

performances of models are determine based on the coefficient of determination (R2) 

and mean square error (MSE). Calibration model give R2 = 0.9995 which is almost 

near to 1. Validation model give R2=0.9346 which is slightly low compared to 

calibration model as expected. However, the value is remain to be considered good.  
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4.2.2 Model for 20% of DEA (D20) 

 

Figure.4.4 Graph of actual and predicted CO2 loading in calibration model  

 

Figure 4.5  Graph of actual and predicted CO2 loading in validation model 
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In D20, calibration model also shows good prediction of CO2 loading with the good 

linearity. The performance of the model will be evaluated by R2 and MSE value in 

table below. 

Table 4.2 Calibration and Validation Results in D20 

 Calibration Model Validation Model 

Coefficient of Determination (R2) 1.0000 0.9375 

Mean Square Error (MSE) 0.0000064189 0.0680 

 

The evaluation of the fit of D20 was done by correlate the actual values of CO2 loading 

and predicted CO2 loading values calculated by PLS. In the calibration model, it give 

the excellent result which is R2=1.0000 while in validation model give R2=0.9375. The 

mean square error of calibration model is very low that are approximate to 0. 

Calibration model of D20 shows the best performance with the highest R2 value. 

 

4.2.3 Model for 30% of DEA (D30) 

 

Figure 4.6 Graph of actual and predicted CO2 loading in calibration model 
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Figure 4.7 Graph of actual and predicted CO2 loading in validation model 

 

Table 4.3 Calibration and Validation Results in D30 

 Calibration Model Validation Model 

Coefficient of Determination (R2) 0.9999 0.9644 

Mean Square Error (MSE) 0.000096595 0.0329 

 

The performance of D30 also quite good which give R2 = 0.9999 and MSE = 

0.000097. D30 model has the highest value of R2 in the validation model compared to 

other two model which is R2 = 0.9644. It might be due to high formation of carbamate 

when there is high concentration of DEA 

  

4.2.4 Combined Concentration Model - DC1 

To fulfil the 3rd objective of this project which is to develop a model that able to predict 

CO2 solubility at different concentration aqueous DEA, combined concentration 

modified model (DC1) is introduced in next phase. DC1 consist of combination dataset 

CO2 loading and Raman intensities from D10, D20 and D30 
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Figure 4.8 Graph of actual and predicted CO2 loading in calibration model  

 

Figure 4.9 Graph of actual and predicted CO2 loading in validation model 
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Table 4.4 Calibration and Validation Results in DC1 

 Calibration Model Validation Model 

Coefficient of Determination (R2) 0.9780 0.9004 

Mean Square Error (MSE) 0.0218 0.1143 

 

By combining CO2 loading and Raman intensities of 10%, 20% and 30% of 

DEA into 1 dataset, DC1 still give quite good prediction of CO2 loading with good 

linearity in calibration model. However, in validation model, the linearity is not so 

good compared to calibration model. Calibration model in DC1 give R2=0.9780, 

slightly low compared to D10, D20 and D30 which give excellent result while in the 

validation model, the R2 value is 0.9004 only. The error obtained also quite huge in 

validation model. Thus, few modified combined model will be introduced in order to 

further improve the model especially value of R2 and MSE in validation. 

 

4.2.5 Modified Combined Concentration Model – DC2 

DC2 model was developed to investigate the effect of concentration column in the 

prediction performances. In this case, additional column consists of the amine 

concentration is added to the X data matrix (observed variable). 

 

(
10
20
30

) + (

𝑥11 𝑥21 𝑥31

𝑥12 𝑥22 𝑥32

𝑥13 𝑥23 𝑥33

) 

 

X data matrix which is refer to Raman 

intensities 

Amine concentration  
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Figure 4.10 Graph of actual and predicted CO2 loading in calibration model 

 

Figure 4.11 Graph of actual and predicted CO2 loading in validation model 
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Table 4.5 Calibration and Validation Results in DC2 

 Calibration Model Validation Model 

Coefficient of Determination (R2) 0.9775 0.9035 

Mean Square Error (MSE) 0.0224 0.1107 

 

The result of R2 after add additional column consists of amine concentration is 

still not satisfying enough especially in the validation model. The difference of R2 in 

calibration and validation model is quite huge about 0.074. The error obtained in DC2 

does not have much difference from DC1 model. Further study need to be done in 

order to improve validation model of DC1 and DC2. The information in DC1 and DC2 

will act as a basis in the next modified combined model. Its means that the performance 

of next modified combined model must be greater than DC1 and DC2. 

 

4.2.6 Modified Combined Concentration Model - DC3 

Another model, DC3 model is introduced to see the effect of formation carbonate, 

bicarbonate and carbamate in the DEA reaction with CO2. According to the past 

research, the formation of carbonate, bicarbonate and carbamate is between Raman 

shifts 900 – 1100 cm-1. The subsequent study is to investigate how this range can be 

further exploited. The diagram below is to show how actually DC3 is developed 

.  

 

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000 2500 3000

In
te

n
si

ty

Raman Shift (cm^-1 )

Raman Shift vs Intensity

Range 900 – 1100 cm-1 



37 

 

 

DC3 model is introduced to increase the validation R2 values. There are 3 sub models 

of DC3 which are DC3-A, DC3-B and DC3-C in developed to further improve the R2 

value.  

Models Details 

DC3-A 
To see the influence of this range, we are duplicating by add 

additional column in X data matrix.  

DC3-B In DC3-B, the additional column will be squared.  

DC3-C In DC3-C, the additional column from DC3-B will be 

inversed. It will be 
1

𝑟𝑎𝑛𝑔𝑒2
 

  

Table 4.6 Calibration and Validation Result in DC3 

Model 
Coefficient of Determination (R2) Mean Square Error (MSE) 

Calibration Validation Calibration Validation 

DC3 - A 0.9802 0.8943 0.0204 0.1188 

DC3 - B 0.9756 0.8994 0.0242 0.1153 

DC3 - C 0.9751 0.9136 0.0247 0.0991 

 

The table below shows the result obtained after do PLS regression. We can see that 

calibration R2 values is kept decreasing but still in the good range while validation R2 

values is kept increasing. DC3-C shows the highest validation R2 values compared to 

DC1, DC2, DC3-A and DC3-B which is 0.9136.  
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Figure 4.12 Graph of actual and predicted CO2 loading in calibration model 

 

Figure 4.13 Graph of actual and predicted CO2 loading in validation model 
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    CONCLUSION 

This project is basically to establish a calibration model to predict CO2 solubility in 

different concentration of aqueous DEA by using Raman spectroscopy for proper 

process control at CO2 removing process plant. Based on the result obtained, it can 

conclude that individual models have shown good performance and great ability to 

predict CO2 solubility at 10%, 20% and 30% concentration of DEA. This can be shown 

by the calibration R2 values of this 3 models is nearly to unity and the validation R2 

values are more than 0.9. Besides that, combined concentration model, DC1 also have 

been developed in order to predict CO2 solubility at different concentration DEA. 

Result shows that calibration R2 value in DC1 is in the range of 0.97 while validation 

R2 value is 0.90 only. Additional column consist of concentration DEA is introduced 

in combined concentration modified model, DC2 in order to enhance the validation 

set. However from the result obtained, concentration column did not have significant 

effect in increasing validation R2 value. The final model which is DC3-C shows some 

improvement and has the highest validation R2 value compared to DC1 and DC2. This 

model demonstrate great ability to predict CO2 solubility. In conclusion, multivariate 

PLS regression has been successfully used to predict CO2 solubility in different 

concentration of aqueous amine using Raman spectroscopy. 
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APPENDICES 

APPENDIX I 

%CO2 loading calibration model in 10% DEA 

%by Nuralia Syairah Osman (15669) 

% input: 

% X     data matrix of raman intensity 

% y     data matrix of CO2 loading  

load dea10calibration 

y = dea10calibration(:,1); 

X = dea10calibration(:,2:861); 

%center and scale X and Y 

[Xn,meanX,stdX]=zscore(X); 

[yn,meany,stdy]=zscore(y); 

% Outputs: 

% XL     loading matrix of X 

% YL     loading matrix of y 

% XS     score matrix of X 

% YS     score matrix of y 

% beta   matrix of regression coefficient 

% PCTVAR weight matrix of X 

% STATS consists of Weight, T2, Xresidual and Yresidual 

[XL,YL,XS,YS,beta,PCTVAR,MSE,STATS] = plsregress(Xn,yn,10); 

[XL,YL,XS,YS,beta,PCTVAR,MSE,STATS] = plsregress(Xn,yn,10); 
plot(1:10,cumsum(100*PCTVAR(2,:)),'-bo'); 
xlabel('Number of PLS components'); 
ylabel('Percent Variance Explained in y'); 
%obtained predicted CO2 Loading 

ypredicted=Xn*beta(2:end,:); 

%test the model performance 

TSS=sum((yn-mean(yn)).^2); 

RSS=sum((yn-ypredicted).^2); 

Rsquared=1 - RSS/TSS; 

MSEcal=RSS/45; 

%Plot the Calibration Graph 

figure() 

plot(yn,ypredicted,'o'); 

xlabel('Actual CO_2 loading'); 

ylabel('Predicted CO_2 loading'); 

axis([-2 3 -2 3]); 

lsline 

%validation 

load dea10validation 

yval=dea10validation(:,1); 

Xval=dea10validation(:,2:861); 

%scale the validation data using mean and std 

ynval=(yval-meany)/stdy; 

Xnvalcenter=bsxfun(@minus,Xval,meanX); 

Xnval=bsxfun(@rdivide,Xnvalcenter,stdX); 

XSval=Xnval*STATS.W; 

%obtained predicted CO2 Loading 

yvalpredicted=Xnval*beta(2:end,:); 

%test the model performance using validation data 
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TSSval=sum((ynval-mean(ynval)).^2); 

RSSval=sum((ynval-yvalpredicted).^2); 

Rsquaredval= 1 - RSSval/TSSval; 

MSEval=RSSval/25; 

%Plot the Validation Graph 

figure() 

plot(ynval,yvalpredicted,'o'); 

xlabel('Actual CO_2 loading'); 

ylabel('Predicted CO_2 loading'); 

lsline 

 

APPENDIX 2 

%CO2 loading calibration model in 20% DEA 

load dea20calib 

y = dea20calib(:,1); 

X = dea20calib(:,2:861); 

%center and scale X and Y 

[Xn,meanX,stdX]=zscore(X); 

[yn,meany,stdy]=zscore(y); 

% Outputs: 

% XL     loading matrix of X 

% YL     loading matrix of y 

% XS     score matrix of X 

% YS     score matrix of y 

% beta   matrix of regression coefficient 

% PCTVAR weight matrix of X 

% STATS consists of Weight, T2, Xresidual and Yresidual 

[XL,YL,XS,YS,beta,PCTVAR,MSE,STATS] = plsregress(Xn,yn,10); 

plot(1:10,cumsum(100*PCTVAR(2,:)),'-bo'); 

xlabel('Number of PLS components'); 

ylabel('Percent Variance Explained in y'); 

%obtained predicted CO2 Loading 

ypredicted=Xn*beta(2:end,:); 

%test the model performance 

TSS=sum((yn-mean(yn)).^2); 

RSS=sum((yn-ypredicted).^2); 

Rsquared=1 - RSS/TSS; 

MSEcal=RSS/45; 

%Plot the Calibration Graph 

figure() 

plot(yn,ypredicted,'o'); 

xlabel('Actual CO_2 loading'); 

ylabel('Predicted CO_2 loading'); 

axis([-2 3 -2 3]); 

lsline 

%validation 

load dea20valid 

yval=dea20valid(:,1); 

Xval=dea20valid(:,2:861); 

%scale the validation data using mean and std 

ynval=(yval-meany)/stdy; 

Xnvalcenter=bsxfun(@minus,Xval,meanX); 
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Xnval=bsxfun(@rdivide,Xnvalcenter,stdX); 

XSval=Xnval*STATS.W; 

%obtained predicted CO2 Loading 

yvalpredicted=Xnval*beta(2:end,:); 

%test the model performance using validation data 

TSSval=sum((ynval-mean(ynval)).^2); 

RSSval=sum((ynval-yvalpredicted).^2); 

Rsquaredval= 1 - RSSval/TSSval; 

MSEval=RSSval/25; 

%Plot the Validation Graph 

figure() 

plot(ynval,yvalpredicted,'o'); 

xlabel('Actual CO_2 loading'); 

ylabel('Predicted CO_2 loading'); 

axis([-2 2.5 -2 2.5]); 

lsline 

 

 

APPENDIX 3 

%CO2 loading calibration model in 30% DEA 

load dea30calib 

y = dea30calib(:,1); 

X = dea30calib(:,2:861); 

%center and scale X and Y 

[Xn,meanX,stdX]=zscore(X); 

[yn,meany,stdy]=zscore(y); 

% Outputs: 

% XL     loading matrix of X 

% YL     loading matrix of y 

% XS     score matrix of X 

% YS     score matrix of y 

% beta   matrix of regression coefficient 

% PCTVAR weight matrix of X 

% STATS consists of Weight, T2, Xresidual and Yresidual 

[XL,YL,XS,YS,beta,PCTVAR,MSE,STATS] = plsregress(Xn,yn,10); 

plot(1:10,cumsum(100*PCTVAR(2,:)),'-bo'); 

xlabel('Number of PLS components'); 

ylabel('Percent Variance Explained in y'); 

%obtained predicted CO2 Loading 

ypredicted=Xn*beta(2:end,:); 

%test the model performance 

TSS=sum((yn-mean(yn)).^2); 

RSS=sum((yn-ypredicted).^2); 

Rsquared=1 - RSS/TSS; 

MSEcal=RSS/45; 

%Plot the Calibration Graph 

figure() 

plot(yn,ypredicted,'o'); 

xlabel('Actual CO_2 loading'); 

ylabel('Predicted CO_2 loading'); 

axis([-2 3 -2 3]); 

lsline 

%validation 
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load dea30valid 

yval=dea30valid(:,1); 

Xval=dea30valid(:,2:861); 

%scale the validation data using mean and std 

ynval=(yval-meany)/stdy; 

Xnvalcenter=bsxfun(@minus,Xval,meanX); 

Xnval=bsxfun(@rdivide,Xnvalcenter,stdX); 

XSval=Xnval*STATS.W; 

%obtained predicted CO2 Loading 

yvalpredicted=Xnval*beta(2:end,:); 

%test the model performance using validation data 

TSSval=sum((ynval-mean(ynval)).^2); 

RSSval=sum((ynval-yvalpredicted).^2); 

Rsquaredval= 1 - RSSval/TSSval; 

MSEval=RSSval/25; 

%Plot the Validation Graph 

figure() 

plot(ynval,yvalpredicted,'o'); 

xlabel('Actual CO_2 loading'); 

ylabel('Predicted CO_2 loading'); 

axis([-2 2.5 -2 2.5]); 

lsline 
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APPENDIX 4 

%combined modified model DC3 

% y....data matrix CO2 loading 

% xa...concentration DEA 

% xa1..data matrix Raman Intensity 

% xb...range carbonate, bicarbonate and carbamate 

load calibconc 

y=data(:,1); 

xa=data(:,2); 

xa1=data(:,3:862); 

xb=data(:,231:263).^2; 

xb1=1./xb; 

X=[xa,xa1,xb1]; 

%center and scale X and Y 

[Xn,meanX,stdX]=zscore(X); 

[yn,meany,stdy]=zscore(y); 

[XL,YL,XS,YS,beta,PCTVAR,MSE,STATS] = plsregress(Xn,yn,10); 

%obtained predicted of Carbon Dioxide loading 

ypredicted=Xn*beta(2:end,:); 

%test the model performance 

TSS=sum((yn-mean(yn)).^2); 

RSS=sum((yn-ypredicted).^2); 

Rsquared=1 - RSS/TSS; 

MSEcal=RSS/135; 

%Plot the Calibration Graph 

figure() 

plot(yn,ypredicted,'o'); 

xlabel('Actual CO_2 loading'); 

ylabel('Predicted CO_2 loading'); 

lsline 

%validation 

load validconc 

yval = validconc(:,1); 

xaval=validconc(:,2); 

xaval1=validconc(:,3:862); 

xbval=validconc(:,231:263); 

xbval1=1./xbval; 

Xval=[xaval,xaval1,xbval1]; 

%scale the validation data using mean and std 

ynval=(yval-meany)/stdy; 

Xnvalcenter=bsxfun(@minus,Xval,meanX); 

Xnval=bsxfun(@rdivide,Xnvalcenter,stdX); 

%obtained yval predicted 

yvalpredicted=Xnval*beta(2:end,:); 

%test the model performance using validation data 

TSSval=sum((ynval-mean(ynval)).^2); 

RSSval=sum((ynval-yvalpredicted).^2); 

Rsquaredval= 1 - RSSval/TSSval; 

MSEval=RSSval/75; 

%Plot the Validation Graph 

plot(ynval,yvalpredicted,'o'); 

xlabel('Actual CO_2 loading'); 

ylabel('Predicted CO_2 loading'); 

lsline 


