TECHNICAL LOSSES EVALUATION ON UTP ELECTRICAL NETWORK

NOR ADIBA BINTI ZULKIFLI

ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITI TEKNOLOGI PETRONAS

MAY 2016

Technical Losses Evaluation on UTP Electrical Network

By

Nor Adiba binti Zulkifli

16078

A project Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical Electronic Engineering)

MAY 2016

Approved by,

(Puan Khairul Nisak Binti Md Hasan)

FYP Supervisor

Universiti Teknologi PETRONAS

Seri Iskandar

32610 Tronoh

Perak Darul Ridzuan

Malaysia

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this report, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been taken or done by unspecified sources or persons.

NOR ADIBA BINTI ZULKIFLI

ABSTRACT

This project represent the electrical losses analysis which conducted in Universiti Teknologi PETRONAS. The project was conducted on the 11 kV distribution system which consist of UTP Old Building and New Academic Complex. As discussed above, the system electrical losses can be divided into two sections which are technical losses and non-technical losses. One of the effects is decreasing economic growth of the country. Technical losses consist of internal losses such as transformer losses, copper losses, line losses and others while non-technical losses or known by external losses occurred due to the accounting mistake, metering and theft. The purpose of this project is to analyze the technical losses that occurred in the UTP network in focusing more on the line losses. This project is conducted to evaluate and analyze the performance of the current electrical network and preparing for future expansion of the network which includes the generation from renewable energy. In addition, the project is conducted to determine whether the current performance of the network is in optimum condition or otherwise. The analysis will be conducted by using Power world as the simulator of the project which using load flow and power flow analysis methods. The line losses mostly cause by resistance and inductance in the cable of the lines. The outcome of this project is the total losses of the whole system of UTP electrical network and also the line losses of the cables between the busses. Lastly, the author discussed about the methods to reduce the losses that occurred in the system. The objectives of the project are achieved.

ACKNOWLEDGEMENTS

Alhamdulillah, praise to the Allah for His Kindness and Merciful for giving the ability to do research and conduct experiments about the project which entitled 'Technical Losses Evaluation on UTP Electrical Network' which is conducted in Universiti Teknologi Petronas (UTP) for two semesters. Even though, I did have a lot of challenges and problems, I still able to complete the research which makes me felt really thankful to Allah for His Bless.

I would also like to express my gratitude to my supervisor Madam Khairul Nisak Bt Md Hassan and my co supervisor of the project Ir Dr Mohd Faris B Abdullah for helping me with the guides and information about the UTP electrical network. Both of them also give a lot of support for the author to complete the project throughout two semesters. I also would like to thank them for giving the opportunity to carry out the project.

Special thanks to the Mr Tarmizi from PMMD, Mr Zuraimi and Madam Norlyza, the lab technician of Advance Power system and Advance Electrical Machine which helps me to do the Data logging activities. I also want to thanks the dear friends Fazril Roslan and Hadam A.Rahman who did the data logging and simulation together.

Lastly, I would like to thanks my late father, Mr Zulkifli bin Jusoh and my mother Madam Zubaidah who always listen to my complaints and continuously give support and advice. I also want to thanks my dear family and other friends which I could not complete the project without all of them.

TABLE OF CONTENTS

Abstract	4
Chapter 1 : Int	roduction11
1.1 B	Background of the project11
1.2 P	Problem Statement11
1.3 C	Dbjectives11
1.4 S	cope of study12
Chapter 2: Lite	erature Review13
2.0 Lite	erature Review13
2.1 Defir	nition of technical losses13
2	.1.1 Permanent losses
2	.1.2 Non-permanent losses13
	e of losses
	.2.1 Transmission losses14
	.2.2 Distribution losses
	.2.3 Transformer losses
	hodology24
3.1 Flow	chart of research16
3.2 Test	System using Power World Simulator25
3.3 Para	meters to modeled UTP simulation28
3.4 Data	Logging Process
3.5 Gant	tt Chart

3.6 Key milestone	35
3.7 Tools needed	
Chapter 4: Results And Discussions	37
4.1 Three bus test simulation	37
4.2 Five bus test simulation	37
4.3 Data Logging Results	
4.4 UTP simulation data	52
4.4.1 Normal Off Point	52
4.4.2 Parallel Operation of UTP Network	
Chapter 5: Conclusion And Recommendation	62
5.1 Conclusion	62
5.2 Recommendation	62
References	63
Appendix	64.

LIST OF FIGURES

- Figure 1: diagram of a generation and a load
- Figure 2: Transformer components
- Figure 3: Transformer core
- Figure 4: Project Flow Chart
- Figure 5: The information box of the Bus
- Figure 6: The information box of the Transmission line
- Figure 7: The Three bus simulation
- Figure 8: The 5 bus simulation system
- Figure 9: The UTP electrical system simulation
- Figure 10: The connection of Logger to the board
- Figure 11: Fluke Data Logger
- Figure 12: The result of three bus simulation
- Figure 13: The result of 5 bus system simulation
- Figure 14: Active Power of MSB 5
- Figure 15: Reactive power of MSB 5
- Figure 16: Active power of MSB 3
- Figure 17: Reactive Power of MSB 3
- Figure 18: Active Power of MSB 4
- Figure 19: Reactive power of MSB 4
- Figure 20: Active power of MPH
- Figure 21: Reactive power of MPH
- Figure 22: Active power of MSB S5B1
- Figure 23: Reactive power of MSB S5B1
- Figure 24: Active power of MSB S5B2

- Figure 25: Reactive power of MSB S5B2
- Figure 26: Active power of MSB SB1
- Figure 27: Reactive power of MSB SB1
- Figure 28: Active power of MSB SB2
- Figure 29: Reactive power of MSB SB2
- Figure 30: Active power of Pocket C1
- Figure 31: Reactive power of Pocket C1
- Figure 32: Active power of Pocket C2
- Figure 33: Reactive power of Pocket C2
- Figure 34: Active power of Pocket D1
- Figure 35: Reactive power of Pocket D1
- Figure 36: UTP Electrical Drawings

LIST OF TABLES

Table 1: Standard Transformer Loss Table

- Table 2: Compilation of Research Paper
- Table 3: Compilation of system elements and blocks in Power World Simulation
- Table 4: The details of transformer in UTP
- Table 5: XLPE Insulated Power Cable Parameter (Copper Conduction
- Table 6: Converted values of Resistance and Inductance to per unit
- Table 7: Data Logging Schedule
- Table 8: The average active and reactive power at MSB 5
- Table 9: The average active and reactive power at MSB 3
- Table 10: The average active and reactive power at MSB 4
- Table 11: The average active and reactive power at MPH
- Table 12: The average active and reactive power at MSB S5B1
- Table 13: The average active and reactive power at MSB S5B2
- Table 14: The average active and reactive power at MSB SB1
- Table 15: The average active and reactive power at MSB SB2
- Table 16: The average active and reactive power at Pocket C1
- Table 17: The average active and reactive power at Pocket C2
- Table 18: The average active and reactive power at Pocket D1
- Table 19: Losses of the Normal Off Point operation
- Table 20: The total Loss after changing the Normal Off Point
- Table 21: Losses of the Parallel operation of the Network operation
- Table 22: The Loses after the cable size is increased
- Table 25: Key Milestone for FYP2
- Table 24: Key Milestone for FYP1
- Table 23: Gantt Chart for FYP 2
- Table 23: Gantt Chart for FYP 1

CHAPTER 1: INTRODUCTION

This chapter will briefly introduce the background of the project, objectives, problem statement and also the scope of the project.

1.1 Background of the project

Electrical network divides into three parts which are generation, transmission, and distribution. The electrical losses are classified into two sections which is technical losses and non-technical losses. Non-technical losses or commercial losses classified as the losses occurred due to the electricity theft, non-payment by consumers and human errors such as calculation errors. However, in this project only technical losses will be discussed. Commonly, the technical losses occurred during the transportation of electricity which also related to the equipment used and supply demand. [1] The losses occurred in UTP network are the wasteful energy which caused by internal and external factors. [2] The details of the losses will be discusses in the literature review chapter.

1.2 Problem Statement

This project is carried out mainly to evaluate and analyses the losses that occurred in UTP electrical network since the technical losses could increase the cost of operating electricity throughout UTP. Hence to find the optimum solution to reduce the losses, this project is conducted.

1.3 Objectives

The objectives of the project are listed below:

1. To evaluate and analyses the losses which focus more on the line losses throughout the network for current operation.

2. To propose solution to improve the performance by minimizing line losses.

1.4 Scope of study

UTP electrical network divided into old building and new building. The buildings that included in the old building section are lecture hall 1, lecture hall 2, lecture hall 3, village 1, village 2, block I, J, K, N and others. Meanwhile, the new building consist of Chancellor Hall, Pocket C, pocket D, block 1 - 23, and others.

CHAPTER 2: LITERATURE REVIEW

2.1 Definition of technical losses

Technical losses can be defined as losses occurred during the transmission and distribution of electricity. The major losses are usually observed in primary and secondary distribution which is detected in transmission line, transformer, and distribution line. In addition, there are two kinds of technical losses which are permanent technical losses and non-permanent technical losses.[1]

2.1.1 Permanent losses

The permanent loss is the loss that is not varies with the current. This loss could be from the form of heat or noise as long the transformer is working. The loss example is listed below:

- a) Leakage current
- b) Dielectric current
- c) Open-circuit losses
- d) Others

2.1.2 Non-permanent losses

A non-permanent loss is the loss that is varies with the value of electricity. The examples of this loss are impedance loss and the loss occurs during the resistance interaction. For the losses involving resistance it can be lowered by lowering the current, resistance and impedance. It also can be minimize by reducing the voltages.[1]

2.2 Type of losses

Losses that occurred in UTP electrical network can be define in many methods. One of the losses occurred in the resistive materials and magnetized energy in the transformer, motors and the line cables. The losses above can be reduced by decreasing the current, resistance and impedance and also the voltages.[1]

The method used to calculate the electrical power loss is listed below:

- a) Transmission losses
- b) Differential power loss method
- c) Computing line flows and line losses
- d) System parameters analysis
- e) Load Flow

2.2.1 Transmission losses

Below, the transmission line efficiency calculation formula is stated by the author,

$$\eta = \frac{PR}{PS} = \frac{PR}{PR + PLoss}$$

Where PR = power deliver at receiving ends

PLoss = power receiving in the transmission line

PS = power sent from sending ends

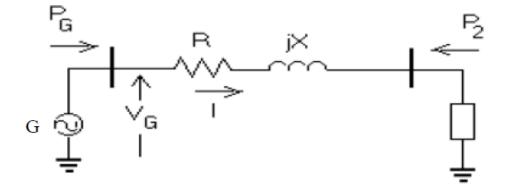


Figure 1: diagram of a generation and a load

The line loss equation is I²R where I represent current and R represent resistor.

For three-phase equation:

$$PLoss = 3I^2R$$

PG= Power Generated

VG= Voltage generated

G=Generator

jX=Reactance

P2=Power Load

2.2.2 Distribution losses

The core losses can be considering the main power loss in the distribution lines because it affect the system more compare the other loses. The equation of loses will be stated below.[4]

$$P = I^2 R$$

P=power

I=current

R=resistance

In addition, the other factor that affect the system is S which is the representative of real and reactive power. The higher the voltage line, the lower the current of the voltage line and vice versa.[4]

$$S = VI$$

Therefore, for a given power level, the higher voltage line will have lower copper losses. The line resistance depends on many factors, such as the length of the line, the effective cross-sectional area, and the resistivity of the metal of which the line is made. The resistance is inversely proportional to the cross-sectional area and directly proportional to both the length and resistivity.[4]

$$R = \rho \frac{L}{A}$$

R= resistance

L=length of line

A= effective cross-sectional area.

 ρ = resistivity

Hence, long line will have a higher resistance and larger losses than a short line with the same current flow. Meanwhile, compared to the wider size of a conductor, the smaller conductor causes the higher resistance and bigger losses.[4]

The author have decided to focus on line losses as the technical losses that chosen among of others losses. This is because line losses greatly affect the performance of the electrical system.

2.2.3 Transformer losses

Transformer uses the lagging power factor since it is inductive in nature. However to determine the transformer loss is the load which define the power factor and energy used [4].

Transformer has two main components that drive the losses which are the core and the coils. The core which made by laminated steel is magnetized by magnetic field to produce the energy.[5]

Transformer losses can be categorized as:

i. No load(Wi)

- Placed at iron/core including the hysteresis losses and eddy current losses in the core.[5][6]

ii. Winding losses/ Load losses

- This losses occur in the winding system. I²R losses and stray losses are from the function of load current. Eddy current which produced the electromagnetic flux in the winding and core has caused the stray losses to occur.[4][6]

iii. Other losses (W other)

- The other losses that occurs in the transformer such as dielectric losses, oil leakage, joint and cable problem and improper maintenance and connections.[4][6]

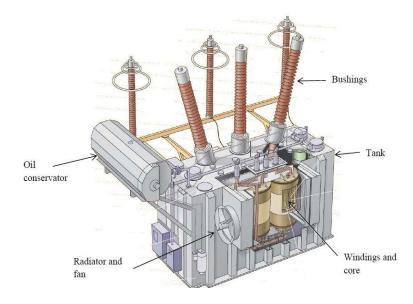
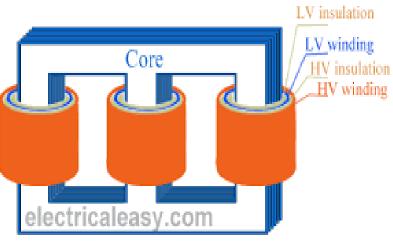



Figure 2: Transformer components

Figure 2 above shows the component of the transformer which are oil conservator, bushings, tank, windings and core, radiator and also fan.

Core type three phase transformer

Figure 3: Transformer core

Figure 3 shows the three phase transformer core which divided into two insulations and two winding. For insulation, it consists of LV and HV insulation and also the same for winding.

SI.NO	Transformer Rating	Wi (W)	Wc (W)
	KVA		
1	100	350	2500
2	200	570	3300
3	250	748	3163
4	315	800	4600
5	500	1030	6860
6	1000	1800	11000
7	2000	3000	20000

Table 1: Standard Transformer Loss Table[6]

The equation below is the equation of the winding or copper loss determined from the winding resistance,

$$P = RI^2 rms$$

The core loss is a transformer is expressed in terms of hysteresis and eddy currents

$$Pcore \propto f.B^{1.6-2.0}$$

B= flux intensity of the core material

f=frequency

$$E = \oint dWm = \oint H.\,dB$$

The current induced from magnetism caused the I~R loss, this loss is called eddy current loss.[4]

Meanwhile, harmonics distortion also causes the transformer losses to occur in the electrical network. The increasing harmonic voltage cause losses in the magnetic core while increasing current cause losses to occur in the winding and the structure of transformer. In conclusion, the harmonic losses that occur causes the heat dissipation increased in winding and give impact on the transformer itself as it will reduce the life performance of the transformer.[7]

PT = PNL + PLL

Where,

PT = total loss, watt,

PNL = no load loss, watt,

PLL = load loss, watt

Table 2 below shows the reference that the author refers before starting the project. Basically, the research papers below show different methods based on the authors of the paper preference. Mostly, the authors define that the technical losses occurred due to the line losses and transformer losses.

Title/Author	Abstract/Introduction	Methods/Analysis	Results/Con	
			clusion	
Title:	- Network Losses	Method to Reduce	This research	
Minimasatio	contribute to carbon	Losses :	is being done	
n of	emission.	-Network	to create	
Distribution	-The United Kindom	reconfiguration(Optimal	losses	
Network	electricity have	the network)	minimization	
Real Power	increased	-Distribution	algorithm to	
Losses Using	-The smart grid used to	Generation(Increase	determine a	
Smart Grid	provide accurate real	and decrease the output)	suitable	
Active	time data in power	-Transformer Tap	reconfigurati	
Network	demand.	levels(increase or	on to be	
Mnagement		decrease transformer	implemented.	
Sytem		position)		
Authors:				
Lynn				
McDonnald				
Dr Ivana				
Kackar				
Alan Kane				
Euon				
Davidson				

Table 2: Review of Research Paper

Year: 2010			
Publisher:			
IEEE			
Title:	This paper focus on the	Technical losses which	-Line loss
The Effect of	effects of technical and	also called physical	-joint loss
Technical	non-technical losses	losses consist of	-transformer
and Non-	and more radical	Transformers,	loss
Technical	measures than current	distribution and	-cables loss
losses in	measures that being	transmission)	-high
Power	used to reduce losses.	Non-Technical losses	impedance
Outages in	-Nigerian Network is	(theft, error in meter,	To improve:
Nigeria	weak and unreliable	error in keeping	-Power
	which have lot of	recording)	system
Authors:	system losses.		network must
Hachimenum	-It affect negatively to		properly
N.Amadi,	the country.		design.
Ephraim			-
N.C. Okafor			Maintenance
			and monitor
Year: 2015			the
			transmission
Publisher:			and
International			distribution
Journal of			lines.
Scientific &			
Engineering			
Research			

Title: New	8 Different segments	Technical losses =	Energy meter
Method for	1.energy meters	supplied energy	-Iron loss in
computation	2.Customer	Non-Technical losses =	voltage coils
of technical	connections to network	billed losses	-losses in
losses in	3.Low voltage network	This project conducted	customer
electrical	4.Distribution	using PERTEC	connections
power	transformers	software.	-length and
distribution	5. Medium voltage		electric
systems.	network.		reistance.
Author:	6.Distribution		
C.C.B	substations		
Oliveira	7.Subtransmission		
N.Kagen	system		
A.Meffe	8. ETC		
S.Jonathan	-Capacitor		
S.Capporoz	-voltage regulators		
J.L Cavaretti	-connectors		
Year: 2001	-insulators		
Publisher:			
IET			
Title:	-Electric demand	Electrical power loss is	Minimize
Analysis of	increase because of	wasteful energy caused	total I ² R
technical	superiority of electric	by internal and external	losses is
losses in	energy and expansion	factors technology.	maintain a
electrical	of power generation	-resistance, atmospheric	balanced set
power	and transmission is	conditions, theft,	of voltages
system	limited due to limited	miscalculations	Mutual
(Nigerian	resources.	System losses increase	coupling
330KV	-This paper focus on	operating cost of	cause voltage

network as	math analysis of losses.	electric utilities, hence	induce cause
case study)		increase cost of	unbalance
		electricity.	phase cause
Author:		Losses incurred in	line not share
M.C		resistance materials can	same current.
Anumaka		be reduced by:	I²R
		-decrease current	frequently
Year: 2012		-decrease resistance and	used to
		impedance	determine
Publisher:IJ		-decrease voltage.	power loss
RRAS			B-loss
			coefficient an
			Dapezo
			methguod

3.1 Flow chart of research

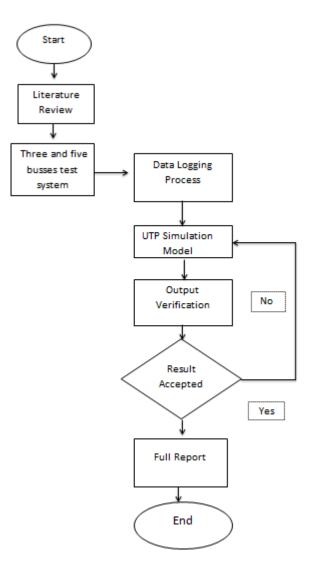


Figure 4: Project Flow Chart

The flow chart above shows the steps for the author to complete the FYP. After the confirmation of the title with supervisor of UTP, the author did a lot of research to understand more about the project and the simulator that suitable to be used in the project. The author then does the simulation example of 3 buses and 5 buses. After the

completion of simulation examples, the author starts to gather the data for UTP technical losses and do the simulation to get the output.

3.2 Test System using Power World Simulator

There are several steps taken to design the model. The first step is to select the 'Draw' button and select the component needed which is 'Bus'. Then, filled the information box as shown in the Figure 5 below

Bus Options	×							
This will insert a r	This will insert a new bus in the power system data model							
Bus Number	Find By Number Find							
Bus Name	1 Find By Name							
Nominal Voltage	138.00 kV							
Labels								
Area Cha	Number Name							
Balancing	nge 1 1 1 nge 1 1 1							
Autionity								
Substation Cha	nge							
Bus Information	Display Attached Devices Geography Custom							
Orientation © Right © Up © Left © Down	Shape Size 5.00 + Scale Ellipse Width 0.200 + Size							
🗸 ок	Save X Cancel							

Figure 5: The information box of the Bus

Secondly, the same 'Draw' button is selected and 'Transmission line' is chosen, the drag the mouse to the destination for the transmission line. Next, fill the information box as shown in Figure 6.

_					-	2000 200 20 20 20 20 20 20 20 20 20 20 2						-		
elines	Tools	Options A	dd Ons	Branch Opti	ons									×
work	å⇒0 Aggregation Indi	ABCD Background	Field - Pies/Ga Indicati	Number Name Area Name Nominal kV Labels	Fro 1 1 (1) 138.0)	To I	Bus			Find By Numbers Find By Names Find From End Meteree It Owner (Same as Fi)	
					meters	Transformer Control		0	F. 11 F. C.					
	_	1		Status Open Closed Branch Device Allow Cons Length Calculat Impedanc Convert	Type olidation 0.00 + es > Line to 1	Per Unit Impedance Series Reastance (Shunt Charging (8) Shunt Conductance Has Line Shunts Fransformer	e Paran (R) X) e (G)	neters 0.000000 0.000000 Une Sh		MVA Lin Lin Lin Lin Lin Lin	int j 0 0.000 it A 0.000 0.000 it C 0.000 0.000 it C 0.000 0.000 it C 0.000 0.000 it C 0.000 0.000 it F 0.000 0.000 it F 0.000 0.000 it F 0.000 0.000		<u>en</u>	
				🗸 ок		Save			X C	ance	ы ў Н	lp		

Figure 6: The information box of the Transmission line

The others system and component needed in the simulation are listed below in the Table 3. The same steps above are repeated while choosing the different component.

Table 3: Compilation of system elements and blocks in Power World Simulation

No	System Element	Block Model
1	Bus	1
2	Transmission line -consist of inductor, resistor and capacitance. But in the simulation, only inductance and resistance parameter is chosen.	Equivalent circuit for a real inductor

3	Generator -supply the power to the lines and load at each busses.	100 MW 0 Mvar
4	Load -The load represent the user electricity used per day.	100 MW 0 Mvar
5	Transformer -the model used in the system can be observed on the right. -the transformer use to step down and step up the power.	Transformer Parameters metioner Base Notes Transformer Parameters metrore Base Notes Transformer Parameters Toren Base From Base Stde Grand Base Max Tap Step Base Max Tap Step JBmae

In this chapter, the author runs several simulations using Power World simulation to get familiar with the software before using the real data for the UTP network simulation. The simulation consist of three bus and five bus system as the author wants to do simulation with the less busses before modeling for whole UTP network. Figure 4 shows the three bus simulation and figure 5 shows the result based on the running simulation. In Figure 7, the MW losses and MVAR losses can be observe at the right of the bus.

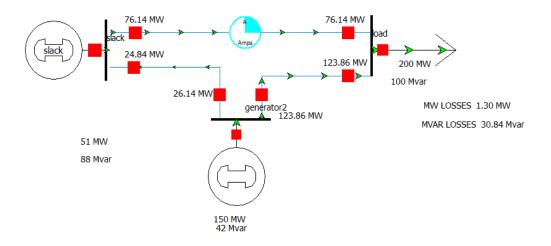


Figure 7: The Three bus simulation

Below shows the figure 8 which represent the 5bus system simulation and result. The line losses can be detect from one point to the another point of line bus which the difference between the power supplied and the power gained.

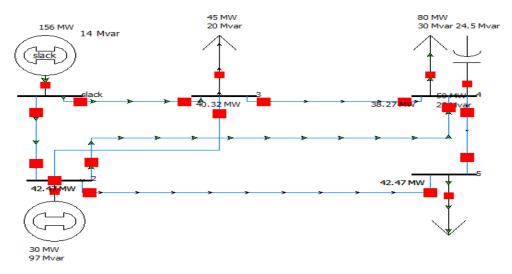


Figure 8: The 5 bus simulation system

3.3 Parameters to modeled UTP simulation

The table 4 below shows the total transformer which is used in UTP electrical network and the rating is included in the simulation in Figure 9 below

No	Substation	Rated	Tx Brand	Year		Oil liter
1	Compact	750	EWT	1996	2012	4291
	Substation					
2	Mph	1000	EWT	1996	2012	4901
	Substation					
3	Substation 1	1000	EB	1998	2014	7941
4	Substation 5	1000	SGB	2001		6441
5	Substation 5A	1000	SGB	2004		6591
6	Substation 5B	1000	SGB	2004		6591
		1000	SGB	2004		6591
7	Substation ETS	1000	SGB	2005		
8	Substation	1000	LG	2003		
	DS1A					
9	Substation	1000	LG	2003		
	DS1B					
10	Substation DS2	1600	EWT	2000		8291
11	Substation 4	1000	MTM	1994	2014	5281
12	Substation 3	1500	EB	1988	2012	9531
		1500	EB	1988	2012	9531
13	Substation	1000	EB	1988	2014	7941
	Desajaya					
14	3A substation	3000/4200	LG	2002		
		3000/4200	LG	2002		
15	Undercroft	1000/1400	LG	2007		
16	Building 5	2000/2800	LG	2001		

Table 4: The details of transformer in UTP

	substation				
		2000/2800	LG	2001	
17	Pocket C substation	1250/1750	LG	2004	
		1250/1750	LG	2004	
18	Pocket D substation	2000/2800	LG	2004	
		2000/2800	LG	2004	
19	MIS 11kV substation	500	EWT	2000	2751
20	Building RND Substation	1500	Scheneider Electric	2013	
		1500	Scheneider Electric	2013	
		1500	Scheneider Electric	2013	
		1500	Scheneider Electric	2013	

Table 4 above shows the total unit of transformer placed in the UTP and its location. The data gained from Mr Tarmizi, the technician in charge for the UTP maintenance. Meanwhile Table 5 indicates the details of the cable that being used in UTP electrical network system. After the author familiar with the simulation tools, the real simulation and data analysis of the UTP network is still in the progression. Power World simulation is used to simulate the power flow and load analysis.

Type of Cable	Cable size (mm ²)	Resistance per kilometer (ohm/km)	Inductance per kilometer (mH/km)	Capacitance per kilometer (uF/km)
	70	0.32440	0.33740	0.300
Three-	185	0.12800	0.29285	0.430
Core	240	0.09840	0.28330	0.480
	300	0.07970	0.27375	0.530
Single- Core	400	0.06106	0.38000	0.468

Table 5: XLPE Insulated Power Cable Parameter (Copper Conduction)

Based on the Table 5 above, the author converted the values of resistance and inductance to the per unit as the simulation required per unit values in the system. The calculated values is represents in the Table 6 below.

uctance per km per uni	Inductance per km I	Inductance (Ohm)	sistance per km per unit	Resistance per km R	Resistance(ohm)	Cable Size mm2	Type of core	ength(km)
0.08102479	0.09804	0.086	0.075089256	0.090858	0.0797	300	3	1.14
0.12357024	0.14952	0.089	0.136621488	0.165312	0.0984	240	3	1.68
0.04975206	0.0602	0.086	0.046107438	0.05579	0.0797	300	3	0.7
0.04467768	0.05406	0.106	0.136730579	0.165444	0.3244	70	3	0.51
0.03909090	0.0473	0.086	0.036227273	0.043835	0.0797	300	3	0.55
0.04264462	0.0516	0.086	0.039520661	0.04782	0.0797	300	3	0.6
0.0842231	0.10191	0.086	0.078053306	0.0944445	0.0797	300	3	1.185
0.03331983	0.040317	0.089	0.036839008	0.0445752	0.0984	240	3	0.453
0.01728512	0.020915	0.089	0.019110744	0.023124	0.0984	240	3	0.235
0.05038429	0.060965	0.089	0.055705785	0.067404	0.0984	240	3	0.685
0.02547107	0.03082	0.092	0.035438017	0.04288	0.128	185	3	0.335
0.05869752	0.071024	0.092	0.081666116	0.098816	0.128	185	3	0.772
0.10885950	0.13172	0.089	0.120357025	0.145632	0.0984	240	3	1.48
0.06355041	0.076896	0.089	0.070262479	0.0850176	0.0984	240	3	0.864
0.04045454	0.04895	0.089	0.044727273	0.05412	0.0984	240	3	0.55
0.04016033	0.048594	0.089	0.044401983	0.0537264	0.0984	240	3	0.546
0.06325619	0.07654	0.089	0.06993719	0.084624	0.0984	240	3	0.86
0.03127272	0.03784	0.086	0.028981818	0.035068	0.0797	300	3	0.44
0.07474049	0.090436	0.092	0.103986777	0.125824	0.128	185	3	0.983
0.05231074	0.063296	0.092	0.072780165	0.088064	0.128	185	3	0.688
0.00106446	0.001288	0.092	0.001480992	0.001792	0.128	185	3	0.014
0.02592727	0.031372	0.092	0.036072727	0.043648	0.128	185	3	0.341
0.02577520	0.031188	0.092	0.035861157	0.043392	0.128	185	3	0.339
0.05117024	0.061916	0.092	0.035861157	0.086144	0.128	185	3	0.673
0.02752396	0.033304	0.092	0.038294215	0.046336	0.128	185	3	0.362
0.00091239	0.001104	0.092	0.001269421	0.001536	0.128	185	3	0.012

Table 6: Converted values of Resistance and Inductance to per unit

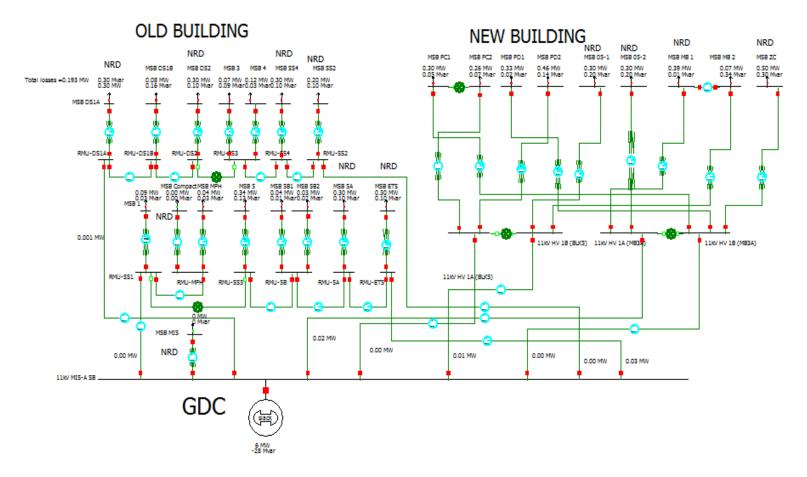


Figure 9: The UTP electrical system simulation

3.4 Data Logging Process

In order to complete the simulation of UTP electrical network using real parameters, data logging process have been conducted based on the schedule on Table 7 below. The process is conducted for one week at certain busses to get the real data of active and reactive power. The equipment used are Fluke 434 1 series, 435 series1 and 2, fluke 1750 and Power Log Classic logger. Figure 10 below shows the connection between the logger to the board of the certain bus at the substation.

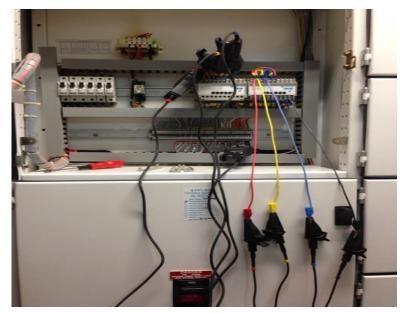


Figure 10: The connection of Logger to the board

Week	Start day	End day	Place	Details	Remark	Time in	Time out	Number of Logger
6				MSB PC1	435 Series I	10.00 AM	2.30 PM	
	24 Feb	2 Mac		MSB PC2	1750 Series	10.00 AM	2.30 PM	4
	(Wed)	(Wed)		MSB PD1	434 Series I	10.30 AM	2.45 PM	4
				MSB PD2	435 Series II	10.30 AM	2.45 PM	
				MSB 05-1	435 Series I	3.00 PM	3.00 PM	
7	9 Mac	16 Mac		MSB 05-2	1750 Series	3.00 PM	3.00 PM	4
/	(Wed)	(Wed)		MSB MB-1	434 Series I	3.30 PM	3.30 PM	4
				MSB MB-2	435 Series II	3.30 PM	3.30 PM	
8	2 Mac	9 Mac		MSB 5	435 Series I	4.00 PM	4.00 PM	2
0	(Wed)	(Wed)		MSB 5A	1750 Series	4.00 PM	4.00 PM	
9	16 Mac	23 Mac		MSB DS1A	435 Series I	4.30 PM	4.30 PM	2
9	(Wed)	(Wed)		MSB DS1B	1750 Series	4.30 PM	4.30 PM	Δ
				MSB MPH	435 Series I	4.45 PM	4.45 PM	
10	23 Mac	30 Mac		MSB MIS	1750 Series	4.45 PM	4.45 PM	4
10	(Wed)	(Wed)		MSB 5B1	434 Series I	4.45 PM	4.45 PM	4
				MSB 5B2	435 Series II	4.45 PM	4.45 PM	
11	30 Mac	6 April				Off day		
11	(Wed)	(Wed)				•		
				MSB DS2	435 Series I	10.00 AM	10.00 AM	4
12	6 April	13 April		MSB SS4	1750 Series	10.00 AM	10.00 AM	
12	(Wed)	(Wed)		MSB SS2	434 Series I	10.30 AM	10.30 AM	
				MSB ETS	435 Series II	10.30 AM	10.30 AM	
				MSB 3	435 Series I	11.30 AM	11.30 AM	2
13	14 April	21 April		MSB 4	1750 Series	11.30 AM	11.30 AM	
15	(Thu)	(Thu)		MSB 1	434 Series I	11.30 AM	11.30 AM	
				MSB Compact	435 Series II	11.30 AM	11.30 AM	
14	21 April	28 April	Undercr	MSB-ZC	1750 Series	2.00 PM	2.00 PM	
	(Thu)	(Thu)	oft	Study + Exam				1
	(1110)			Week				
	Total Number of logger							25

Table 7: Data Logging Schedule

3.5 Gantt Chart

The table in appendixes section below shows the Gantt chart of the project for the author to complete it within the time frame.

3.6 Key milestone

The table in appendixes section below shows the completion week for the specific task as tabled.

3.7 Tools needed

a) Power World Simulator

Power World simulator is a tool that designed to stimulate and analyses the high voltage power system operation. Hence, the author uses this tool to observe and analyses the UTP electrical network technical losses.

b) Personal computer

The author use this tool to do research and report paper.

c) Google Chrome

The author able to review research papers related to the losses of electricity involving technical and also non-technical losses by using this tool

d) Microsoft Office

The author recorded the data observe from UTP electrical network and research paper using this tools.

e) Power Log Classic

The author use the software to generate the tables of data that being measured at the substations in UTP.

f) Fluke 434 1 series, 435 series1 and 2, fluke 1750

These devices are used in the data logger operation to collect the data from the substation. Figure 11 below shows the equipment used.

Figure 11: Fluke Data Logger.

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Three bus test simulation

This three busses system consists of generator, load, transmission lines and 3 busses. The Losses recorded are 1.30MW for the active power and 30.84Mvar for active power. The Figure 12 below shows the details of losses at each bus.

From Numbe	r From Name	To Number	To Name	Circuit		Branch Device Type	Xfrmr	MW From	Mvar From	MVA From	Lim MVA	% of MVA Limit (Max)	MW Loss	Mvar Loss
1	1 slack	2	load	1	Closed	Line	NO	76.1	62.2	98.3	400.0	24.6	0.00	9.67
2	1 slack	3	generator2	1	Closed	Line	NO	-24.8	26.1	36.1	0.0	0.0	1.30	1.30
3	3 generator2	2	load	1	Closed	Line	NO	123,9	67.3	141.0	0.0	0.0	0.00	19.87

Figure 12: The result of three bus simulation

4.2 Five bus test simulation

The five busses test system consists of slack bus, generator, load, transmission lines and switched shunt. Figure 13 shows the active and reactive power losses that occurred at each line. At bus 1, the MW loss is 8.64 while the Mvar loss is 17.29.

	From Number From Na	me To Number	To Name	Circuit	Status	Branch Device Type	Xfrmr	MW From	Mvar From	MVA From	Lim MVA	% of MVA Limit (Max)	MW Loss	Mvar Loss
1	1 slack	2	2	1	Closed	Line	NO	63.1	6.0	63.4	0.0	0.0	0.00	12.04
2	1 slack	3	3	1	Closed	Line	NO	92.6	8.0	93.0	0.0	0.0	8.64	17.29
3	3 3	2	2	1	Closed	Line	NO	-1.3	-20.7	20.8	0.0	0.0	0.00	2.09
4	4 4	2	2	1	Closed	Line	NO	-49.3	-24.9	55.2	0.0	0.0	0.00	11.18
5	2 2	5	5	1	Closed	Line	NO	42.5	31.9	53.1	0.0	0.0	0.00	11.29
6	3 3	4	4	1	Closed	Line	NO	40.3	-8.6	41.2	0.0	0.0	2.06	6.17
7	4 4	5	5	1	Closed	Line	NO	7.5	4.7	8.9	0.0	0.0	0.00	0.29

Figure 13: The result of 5 bus system simulation

According to the figure 13, the MW loss occurred at slack bus and also buses 3 while the MVAR loss highest at the slack bus.

4.3 Data Logging Results

The figure 9 shows the connection of UTP electrical network which consist of old building, new academic building and GDC as the generator. The simulation still in progress as the real data still in the analysis stage before can be used in the real simulation.

Figure 14 to figure 35 shows the result of Data logging at UTP substations. The graph shows the power used in each substation according to the time during one week the result being recorded. The highest usage of electricity during the day showed by the peak of the graphs recorded. The peak time is recorded around 11 a.m. to 2 p.m.

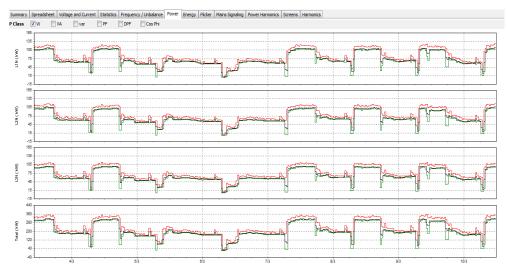
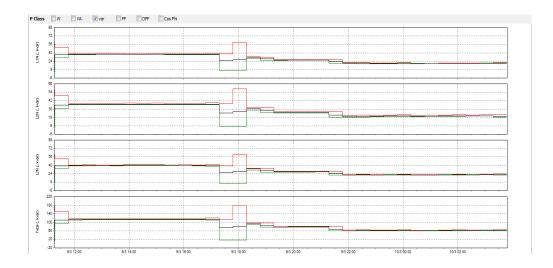



Figure 14: Active Power of MSB 5

Figure 15: Reactive power of MSB 5

Day	Active Power (W)	Reactive Power (var)
Monday	25790	14070
Tuesday	33040	26550
Wednesday	20790	11950
Thursday	23260	12690
Friday	31470	16840
Saturday	18010	14710
Sunday	21100	17100

Table 8: The active and reactive power at MSB 5

The Table 8 above shows the values of active and reactive power for the whole week at the peak time which is 2 p.m. Moreover, the author decides to choose the peak active and reactive value on Monday to be included in the simulation. The day chosen is fixed for the values of other days also.

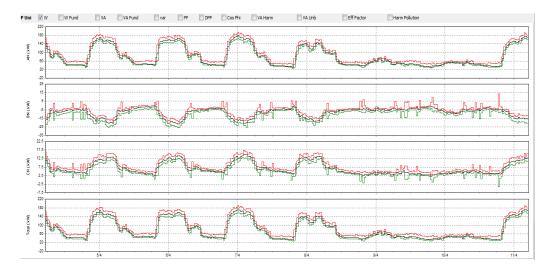


Figure 16: Active power of MSB 3

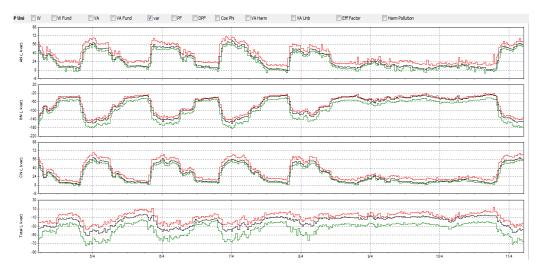


Figure 17: Reactive Power of MSB 3

Figure 16 and Figure 17 shows the recorded graph of active and reactive power at MSB 3 for one week. The real values can be seen at Table 9 below. The peak of the graph shows the highest value of the load being used by the user.

Day	Active Power (W)	Reactive Power (var)
Monday	70600	94000
Tuesday	67500	92500
Wednesday	66700	93400
Thursday	59900	85100
Friday	65400	91900
Saturday	76000	100300
Sunday	56000	88900

Table 9: The active and reactive power at MSB 3

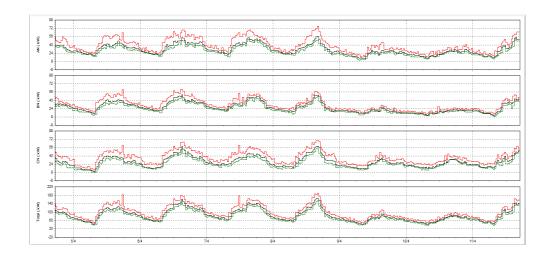


Figure 18: Active Power of MSB 4

Figure 19: Reactive power of MSB 4

Figure 18 and Figure 19 shows the recorded graph of active and reactive power at MSB 4 for one week. The real values can be seen at Table 10 below. The peak of the graph shows the highest value of the load being used by the user. The table below shows the highest active and reactive power recorded at each day which is 2 p.m.

Table 10:	The active a	nd reactive	power at MSB 4
-----------	--------------	-------------	----------------

Day	Active Power (W)	Reactive Power (var)
Monday	124500	33300
Tuesday	139200	46800
Wednesday	154800	45000
Thursday	131700	47400
Friday	170400	57000
Saturday	84000	13200
Sunday	85200	17400

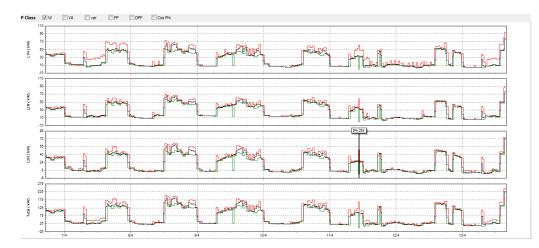


Figure 20: Active power of MPH

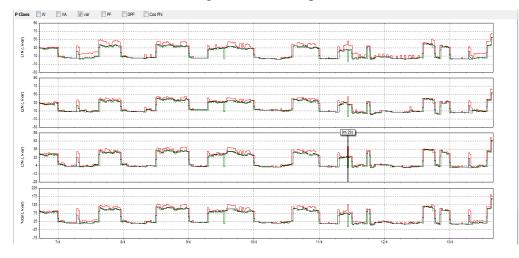


Figure 21: Reactive power of MPH

Figure 20 and Figure 21 shows the recorded graph of active and reactive power at MPH for a week. The peak of the graph shows the highest value of the load being used by the user. Meanwhile, Table 11 shows the recorded power at 2 p.m. of each day.

Day	Active Power (W)	Reactive Power (var)
Monday	44960	26133.332
Tuesday	155200	116160
Wednesday	157493.328	112586.664
Thursday	63840	36106.664
Friday	139413.328	102133.328
Saturday	148533.328	105546.664
Sunday	151573.328	112906.664

Table 11: The active and reactive power at MPH

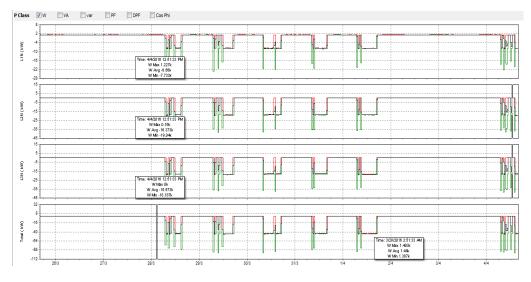


Figure 22: Active power of MSB S5B1



Figure 23: Reactive power of MSB S5B1

Figure 22 and Figure 23 shows the recorded graph of active and reactive power at MSB S5B1 for one week. The real values can be seen at Table 12 below. The peak of the graph shows the highest value of the load being used by the user.

Day	Active Power (W)	Reactive Power (var)
Monday	44693.332	12533.333
Tuesday	45386.664	12480

Table 12: The active and reactive power at MSB S5B1

Wednesday	91626.664	35626.664	
Thursday	45546.664	13760	
Friday	45173.332	12693.333	
Saturday	-1333.333	-3786.667	
Sunday	-1440	-3840	

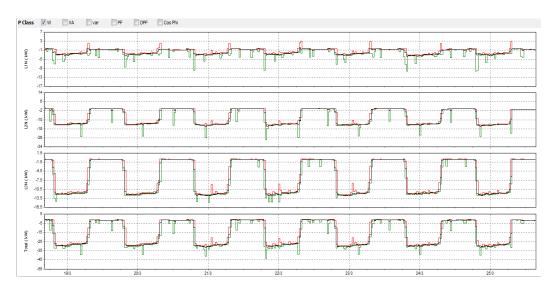


Figure 24: Active power of MSB S5B2

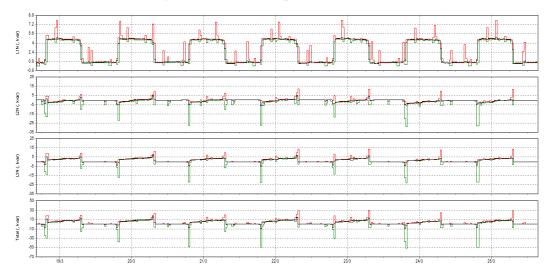


Figure 25: Reactive power of MSB S5B2

Figure 24 and Figure 25 shows the recorded graph of active and reactive power at MSB S5B2 for one week. The real values can be seen at Table 13 below. The peak of the graph shows the highest value of the load being used by the user which at 2 p.m.

Day	Active Power (W)	Reactive Power (var)
Monday	1440	640
Tuesday	3786.667	693.333
Wednesday	1386.667	640
Thursday	1600	533.333
Friday	1866.667	373.333
Saturday	1706.667	533.333
Sunday	1813.333	586.667

Table 13: The active and reactive power at MSB S5B2

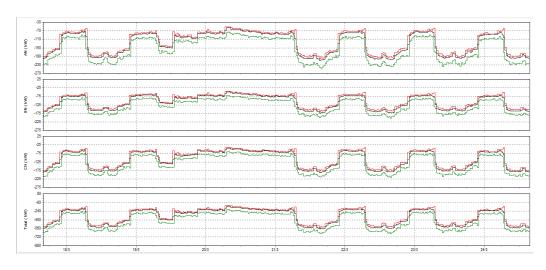


Figure 26: Active power of MSB SB1

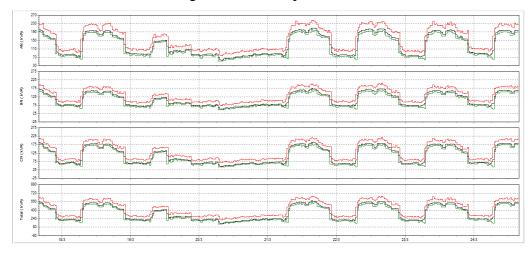
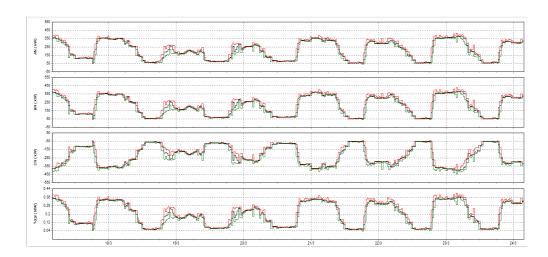


Figure 27: Reactive power of MSB SB1

Figure 26 and Figure 27 shows graph of active and reactive power at MSB SB1 for one week Monday to Sunday at 2 p.m. The real values can be seen at Table 14 below. The peak of the graph shows the highest value recorded at each day.

Day	Active Power (W)	Reactive Power (var)
Monday	609900	72900
Tuesday	625500	64200
Wednesday	603600	57900
Thursday	613200	68400
Friday	586200	62400
Saturday	337800	71100
Sunday	259200	63300

Table 14: The active and reactive power at MSB SB1



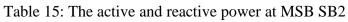

Figure 28: Active power of MSB SB2

Figure 29: Reactive power of MSB SB2

Figure 28 and Figure 29 shows graph of active and reactive power at MSB SB2 for one week at 2 p.m. The values recorded during data logging can be seen at Table 15 below.

Day	Active Power (W)	Reactive Power (var)
Monday	171100	62400
Tuesday	170600	65200
Wednesday	169700	58300
Thursday	352700	201200
Friday	189900	61800
Saturday	221400	73600
Sunday	235300	78400

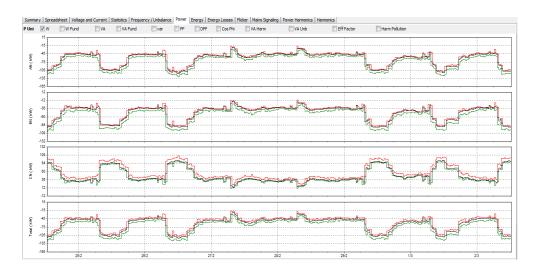
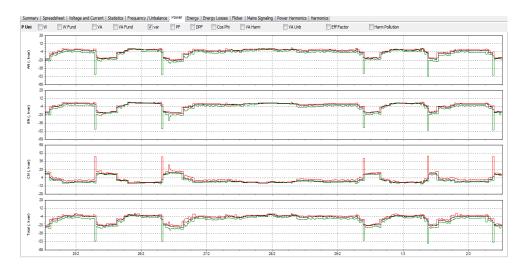
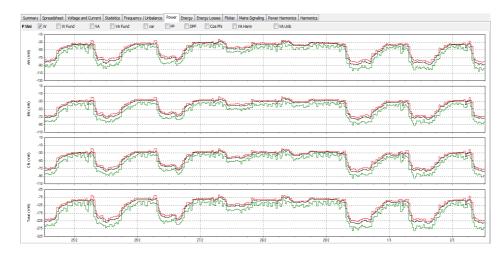


Figure 30: Active power of Pocket C1

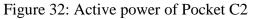

Figure 31: Reactive power of Pocket C1

Figure 30 and Figure 31 shows graph of active and reactive power at Pocket C1 substation for one week at 2 p.m. The data recorded by the data logging equipment can be seen at Table 16 below. The power recorded below is the peak loads at Pocket C1 of every single day.

Day	Active Power (W)	Reactive Power (var)
Monday	299300	49100
Tuesday	251500	21900
Wednesday	309700	57700
Thursday	309200	46200
Friday	306900	60200
Saturday	172300	-2000
Sunday	146400	10400

Table 16: The active and reactive power at Pocket C1

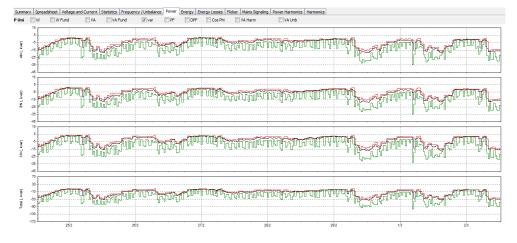


Figure 33: Reactive power of Pocket C2

Figure 32 and Figure 33 represent the graph of active and reactive power at Pocket C2 for one week Monday to Sunday at 2 p.m. The real data can be observed at Table 17 below. The peak of the graph shows the highest value recorded at each day

Day	Active Power (W)	Reactive Power (var)
Monday	262200	71100
Tuesday	272100	79500
Wednesday	256500	42300
Thursday	247500	63900
Friday	213900	31800
Saturday	149400	17100
Sunday	126300	9000

Table 17: The active and reactive power at Pocket C2



Figure 34: Active power of Pocket D1

Figure 35: Reactive power of Pocket D1

Figure 34 and Figure 35 shows graph of active and reactive power at Pocket D1 for one week Monday to Sunday at 2 p.m. The data of each day can be seen at Table 18 below which record the highest value.

Day	Active Power (W)	Reactive Power (var)
Monday	331200	24666.666
Tuesday	335600	19466.666
Wednesday	345200	34266.664
Thursday	331733.313	21066.666
Friday	313866.656	21333.332
Saturday	102400	-4400
Sunday	102799.992	-8000

Table 18: The active and reactive power at Pocket D1

4.4 UTP simulation data

4.4.1 Normal Off Point

After several simulations being done, the results are showed in the tables below. There are two results for the simulation which Table 19 shows the result of Losses for every line in the Normal Off point operation. Normal Off Point usually located in midway between substations. Off point in networks allow the continued supply of electric to customer during faults as the feeder is separated into two sections, between two substations. For this operation, the total loss recorded is 0.192 MW.

Branch					
From	From Name	То	To Name	MW Loss	Mvar Loss
Number		Number			
7	RMU-5A	8	RMU-ETS	0.077	0.084
6	RMU-5B	7	RMU-5A	0.04	0.043
8	RMU-ETS	1	11kV MIS-A	0.028	0.031
			SB		
1	11kV MIS-	32	11kV HV 1A	0.017	0.015
	A SB		(MB3A)		
1	11kV MIS-	31	11kV HV 1B	0.009	0.008
	A SB		(BLK5)		
31	11kV HV	41	MSB MB 2	0.008	0.006
	1B (BLK5)				
6	RMU-5B	13	MSB 5B1	0.005	-10.316
2	MSB MIS	1	11kV MIS-A	0.005	-10.02
			SB		
17	RMU-	1	11kV MIS-A	0.001	0.001
	DS1A		SB		
1	11kV MIS-	33	11kV HV 1B	0.001	0.001

Table 19: Losses of the Normal Off Point operation

	A SB		(MB3A)		
22	RMU-SS2	1	11kV MIS-A SB	0.001	0.001
32	11kV HV 1A (MB3A)	40	MSB MB 1	0	0
1	11kV MIS- A SB	30	11kV HV 1A (BLK5)	0	0
21	RMU-SS4	22	RMU-SS2	0	0
30	11kV HV 1A (BLK5)	37	MSB PD2	0	0
30	11kV HV 1A (BLK5)	35	MSB PC2	0	0
17	RMU- DS1A	18	RMU-DS1B	0	0
32	11kV HV 1A (MB3A)	39	MSB 05-2	0	0
36	MSB PD1	33	11kV HV 1B (MB3A)	0	0
5	RMU-SS5	6	RMU-5B	0	0
33	11kV HV 1B (MB3A)	34	MSB PC1	0	0
20	RMU-SS3	21	RMU-SS4	0	0
18	RMU- DS1B	19	RMU-DS2	0	0
3	RMU-SS1	1	11kV MIS-A SB	0	0
33	11kV HV 1B (MB3A)	42	MSB ZC	0	0
3	RMU-SS1	4	RMU-MPH	0	0
31	11kV HV 1B (BLK5)	38	MSB 05-1	0	0
40	MSB MB 1	41	MSB MB 2	0	-10.054
17	RMU- DS1A	23	MSB DS1A	0	0
5	RMU-SS5	12	MSB 5	0	0
19	RMU-DS2	25	MSB DS2	0	0
21	RMU-SS4	28	MSB SS4	0	0
8	RMU-ETS	16	MSB ETS	0	0
7	RMU-5A	15	MSB 5A	0	0
22	RMU-SS2	29	MSB SS2	0	0
18	RMU- DS1B	24	MSB DS1B	0	0

20	RMU-SS3	27	MSB 4	0	0
20	RMU-SS3	26	MSB 3	0	0
3	RMU-SS1	9	MSB 1	0	0
4	RMU-MPH	11	MSB MPH	0	0
6	RMU-5B	14	MSB 5B2	0	0
19	RMU-DS2	20	RMU-SS3	0	0
4	RMU-MPH	10	MSB	0	0
			Compact		
34	MSB PC1	35	MSB PC2	0	0
3	RMU-SS1	5	RMU-SS5	0	0
32	11kV HV	33	11kV HV 1B	0	0
	1A		(MB3A)		
	(MB3A)				
30	11kV HV	31	11kV HV 1B	0	0
	1A (BLK5)		(BLK5)		

To reduce the loss in the normal off point operation, author suggest to change the point of the normal point from RMU SS5 to the RMU MPH. Table 20 shows the result of the total loss after the normal off point being changed.

Branch						
From	From Name	То	To Name	Circuit	MW	Mvar
Number		Number			Loss	Loss
7	RMU-5A	8	RMU-ETS	1	0.02	0.02
1	11kV MIS-A	32	11kV HV 1A	1	0.02	0.02
	SB		(MB3A)			
3	RMU-SS1	1	11kV MIS-A	1	0.02	0.02
			SB			
6	RMU-5B	7	RMU-5A	1	0.01	0.01
3	RMU-SS1	5	RMU-SS5	1	0.01	0.01
1	11kV MIS-A	31	11kV HV 1B	1	0.01	0.01
	SB		(BLK5)			
5	RMU-SS5	6	RMU-5B	1	0.01	0.01
31	11kV HV 1B	41	MSB MB 2	1	0.01	0.01
	(BLK5)					
8	RMU-ETS	1	11kV MIS-A	1	0.01	0.01
			SB			
6	RMU-5B	13	MSB 5B1	1	0.01	-10.17
2	MSB MIS	1	11kV MIS-A	1	0.01	-10.02
			SB			

Table 20: The total Loss after changing the Normal Off Point.

17	RMU-DS1A	1	11kV MIS-A SB	1	0	0
1	11kV MIS-A SB	33	11kV HV 1B (MB3A)	1	0	0
22	RMU-SS2	1	11kV MIS-A SB	1	0	0
32	11kV HV 1A (MB3A)	40	MSB MB 1	1	0	0
1	11kV MIS-A SB	30	11kV HV 1A (BLK5)	1	0	0
21	RMU-SS4	22	RMU-SS2	1	0	0
30	11kV HV 1A (BLK5)	37	MSB PD2	1	0	0
30	11kV HV 1A (BLK5)	35	MSB PC2	1	0	0
17	RMU-DS1A	18	RMU-DS1B	1	0	0
32	11kV HV 1A (MB3A)	39	MSB 05-2	1	0	0
36	MSB PD1	33	11kV HV 1B (MB3A)	1	0	0
33	11kV HV 1B (MB3A)	34	MSB PC1	1	0	0
20	RMU-SS3	21	RMU-SS4	1	0	0
18	RMU-DS1B	19	RMU-DS2	1	0	0
33	11kV HV 1B (MB3A)	42	MSB ZC	1	0	0
31	11kV HV 1B (BLK5)	38	MSB 05-1	1	0	0
40	MSB MB 1	41	MSB MB 2	1	0	-10.05
17	RMU-DS1A	23	MSB DS1A	1	0	0
5	RMU-SS5	12	MSB 5	1	0	0
19	RMU-DS2	25	MSB DS2	1	0	0
21	RMU-SS4	28	MSB SS4	1	0	0
8	RMU-ETS	16	MSB ETS	1	0	0
7	RMU-5A	15	MSB 5A	1	0	0
22	RMU-SS2	29	MSB SS2	1	0	0
18	RMU-DS1B	24	MSB DS1B	1	0	0
20	RMU-SS3	27	MSB 4	1	0	0
20	RMU-SS3	26	MSB 3	1	0	0
3	RMU-SS1	9	MSB 1	1	0	0
6	RMU-5B	14	MSB 5B2	1	0	0
4	RMU-MPH	11	MSB MPH	1	0	0
19	RMU-DS2	20	RMU-SS3	1	0	0
4	RMU-MPH	10	MSB Compact	1	0	0

34	MSB PC1	35	MSB PC2	1	0	0
32	11kV HV 1A	33	11kV HV 1B	1	0	0
	(MB3A)		(MB3A)			
3	RMU-SS1	4	RMU-MPH	1	0	0
30	11kV HV 1A	31	11kV HV 1B	1	0	0
	(BLK5)		(BLK5)			

The total loss recorded is 0.14MW compared to the previous result which is 0.192 MW. The loss reduced 0.052MW.

4.4.2 Parallel Operation of UTP Network

The parallel operation, the normal off point in the simulation is closed to indicate that the generators operating in parallel with the utility supply network. Tables 21 showed the losses recorded during parallel operation which concluded that the total loss is 0.35MW.

Branch					
From	From Name	То	To Name	MW	Mvar
Number		Number		Loss	Loss
1	11kV MIS-A	33	11kV HV 1B	0.07	0.06
	SB		(MB3A)		
1	11kV MIS-A	32	11kV HV 1A	0.06	0.06
	SB		(MB3A)		
1	11kV MIS-A	31	11kV HV 1B	0.05	0.04
	SB		(BLK5)		
1	11kV MIS-A	30	11kV HV 1A	0.04	0.04
	SB		(BLK5)		
30	11kV HV 1A	35	MSB PC2	0.03	0.02
	(BLK5)				
7	RMU-5A	8	RMU-ETS	0.02	0.02

Table 21: Losses of the Parallel operation of the Network operation

3	RMU-SS1	1	11kV MIS-A	0.02	0.02
		-	SB	0.02	0.02
6	RMU-5B	7	RMU-5A	0.01	0.01
3	RMU-SS1	5	RMU-SS5	0.01	0.01
31	11kV HV 1B	41	MSB MB 2	0.01	0.01
	(BLK5)				
33	11kV HV 1B	34	MSB PC1	0.01	0.01
	(MB3A)				
5	RMU-SS5	6	RMU-5B	0.01	0.01
8	RMU-ETS	1	11kV MIS-A	0.01	0.01
			SB		
6	RMU-5B	13	MSB 5B1	0.01	-10.17
2	MSB MIS	1	11kV MIS-A	0.01	-10.02
			SB		
17	RMU-DS1A	1	11kV MIS-A	0	0
			SB		
22	RMU-SS2	1	11kV MIS-A	0	0
			SB		
32	11kV HV 1A	40	MSB MB 1	0	0
	(MB3A)				
21	RMU-SS4	22	RMU-SS2	0	0
30	11kV HV 1A	37	MSB PD2	0	0
	(BLK5)				
40	MSB MB 1	41	MSB MB 2	0	-10.1
17	RMU-DS1A	18	RMU-DS1B	0	0
32	11kV HV 1A	39	MSB 05-2	0	0
	(MB3A)				
36	MSB PD1	33	11kV HV 1B	0	0
			(MB3A)		
32	11kV HV 1A	33	11kV HV 1B	0	-10.11

	(MB3A)		(MB3A)		
34	MSB PC1	35	MSB PC2	0	-10.15
20	RMU-SS3	21	RMU-SS4	0	0
18	RMU-DS1B	19	RMU-DS2	0	0
33	11kV HV 1B	42	MSB ZC	0	0
	(MB3A)				
3	RMU-SS1	4	RMU-MPH	0	0
30	11kV HV 1A	31	11kV HV 1B	0	-10.08
	(BLK5)		(BLK5)		
31	11kV HV 1B	38	MSB 05-1	0	0
	(BLK5)				
19	RMU-DS2	20	RMU-SS3	0	0
17	RMU-DS1A	23	MSB DS1A	0	0
5	RMU-SS5	12	MSB 5	0	0
19	RMU-DS2	25	MSB DS2	0	0
21	RMU-SS4	28	MSB SS4	0	0
8	RMU-ETS	16	MSB ETS	0	0
7	RMU-5A	15	MSB 5A	0	0
22	RMU-SS2	29	MSB SS2	0	0
18	RMU-DS1B	24	MSB DS1B	0	0
20	RMU-SS3	27	MSB 4	0	0
20	RMU-SS3	26	MSB 3	0	0
3	RMU-SS1	9	MSB 1	0	0
4	RMU-MPH	11	MSB MPH	0	0
6	RMU-5B	14	MSB 5B2	0	0
4	RMU-MPH	10	MSB Compact	0	0

To reduce the losses that occurred in the parallel operation, author suggests a solution by increasing the size of the cables. Increasing the size of the cables indicates that reducing the values of the inductance and resistance in the cables. The values of inductances and resistances are decreased by 50%. Hence, the results is recorded in the Table 22 below

Branch					
From	From	То	To Name	MW Loss	Mvar
Number	Name	Number			Loss
1	11kV	33	11kV HV	0.03	0.03
	MIS-A		1B		
	SB		(MB3A)		
1	11kV	32	11kV HV	0.03	0.03
	MIS-A		1A		
	SB		(MB3A)		
1	11kV	31	11kV HV	0.02	0.02
	MIS-A		1B		
	SB		(BLK5)		
1	11kV	30	11kV HV	0.02	0.02
	MIS-A		1A		
	SB		(BLK5)		
30	11kV HV	35	MSB PC2	0.01	0.01
	1A				
	(BLK5)				
7	RMU-5A	8	RMU-	0.01	0.01
-			ETS		
3	RMU-SS1	1	11kV	0.01	0.01
			MIS-A		
			SB	0.01	0.01
6	RMU-5B	7	RMU-5A	0.01	0.01
3	RMU-SS1	5	RMU-	0.01	0.01
		1.0	SS5	0.01	10.1
6	RMU-5B	13	MSB 5B1	0.01	-10.1
2	MSB MIS	1	11kV	0.01	-10.02
			MIS-A		
			SB		
31	11kV HV	41	MSB MB	0	0
	1B		2		
	(BLK5)			-	
33	11kV HV	34	MSB PC1	0	0.01
	1B				
	(MB3A)				~
5	RMU-SS5	6	RMU-5B	0	0
8	RMU-	1	11kV	0	0
	ETS		MIS-A		
			SB		
17	RMU-	1	11kV	0	0

Table 22: The Loses after the cable size is increased

	DS1A		MIS-A		
	DBIM		SB		
22	RMU-SS2	1	11kV	0	0
		1	MIS-A	Ũ	0
			SB		
32	11kV HV	40	MSB MB	0	0
	1A		1		
	(MB3A)				
21	RMU-SS4	22	RMU-	0	0
			SS2		
30	11kV HV	37	MSB PD2	0	0
	1A				
	(BLK5)				
40	MSB MB	41	MSB MB	0	-10.05
	1		2		
17	RMU-	18	RMU-	0	0
	DS1A		DS1B		
32	11kV HV	39	MSB 05-2	0	0
	1A				
	(MB3A)				
36	MSB PD1	33	11kV HV	0	0
			1B		
			(MB3A)		
32	11kV HV	33	11kV HV	0	-10.05
	1A		1B		
	(MB3A)		(MB3A)		
34	MSB PC1	35	MSB PC2	0	-10.08
20	RMU-SS3	21	RMU-	0	0
-			SS4		
18	RMU-	19	RMU-	0	0
	DS1B		DS2		
33	11kV HV	42	MSB ZC	0	0
	1B				
	(MB3A)				
3	RMU-SS1	4	RMU-	0	0
		•	MPH		
31	11kV HV	38	MSB 05-1	0	0
	1B				
10	(BLK5)	20		0	
19	RMU-	20	RMU-	0	0
20	DS2	01	SS3	0	10.04
30	11kV HV	31	11kV HV	0	-10.04
	1A		1B (DL <i>K5</i>)		
17	(BLK5)	~~~	(BLK5)	0	
17	RMU-	23	MSB DS14	0	0
	DS1A		DS1A		

5	RMU-SS5	12	MSB 5	0	0
19	RMU-	25	MSB DS2	0	0
	DS2				
21	RMU-SS4	28	MSB SS4	0	0
8	RMU-	16	MSB ETS	0	0
	ETS				
7	RMU-5A	15	MSB 5A	0	0
22	RMU-SS2	29	MSB SS2	0	0
18	RMU-	24	MSB	0	0
	DS1B		DS1B		
20	RMU-SS3	27	MSB 4	0	0
20	RMU-SS3	26	MSB 3	0	0
3	RMU-SS1	9	MSB 1	0	0
4	RMU-	11	MSB	0	0
	MPH		MPH		
6	RMU-5B	14	MSB 5B2	0	0
4	RMU-	10	MSB	0	0
	MPH		Compact		

The total losses of the system decreased from 0.35MW to 0.18MW. However, the budget to change the size of the cables is really high and it is not worth by reducing only 0.17MW. Hence the author suggests more reliable way by changing the point of the normal point.

CHAPTER 5: CONCLUSION AND RECOMMENDATION

This chapter will summarize the content of this progress report of the technical losses evaluation on UTP electrical network project paper.

5.1 Conclusion

In a nutshell, the project is a research about the technical losses that occur in UTP electrical network. Since the author focuses more on the line losses, it is affected by the resistance and the inductance in the cables. The lower the resistance and the inductance the lower the losses at the line. The technical losses occurs could increase the operating cost of the electricity and could lead to the economic losses to the Tenaga Nasional Berhad, Malaysia since the losses will not be compensated by the UTP.

5.2 Recommendation

For the author to complete the project, time management is the most important factor. Since the author also involve in other project such as ISDP, there will be a time to focus on one project instead of two to ensure the quality of the project. Hence, the author will give the same focus to the different project without affecting the project results.

REFERENCES

- [1] Anumaka, M. C. (2012). Analysis of technical losses in electrical power system (Nigerian 330kV network as a case study). Department Of Electrical Electronic Engineering, Faculty of Engineering, Imo State University, Owerri, Imo State, Nigeria Email: engranumakamc@ yahoo. com.
- [2] Navani, J. P., Sharma, N. K., & Sapra, S. (2012). Technical and non-technical losses in power system and its economic consequence in Indian economy. *International Journal of Electronics and Computer Science Engineering*, 1(2), 757-761.
- [3] Benedict, E., Collins, T., Gotham, D., Hoffman, S., Karipides, D., Pekarek, S., & Ramabhadran, R. (1992). Losses in electric power systems.
- [4] Shirmohammadi, D., & Hong, H. W. (1989). Reconfiguration of electric distribution networks for resistive line losses reduction. IEEE Transactions on Power Delivery, 4(2), 1492-1498.
- [5] Ling, P. J., & Eng, P. (2001). Transformers and Associated Losses-The Opportunity for Savings. White paper, Powersmiths International Corps.
- [6] AR, T. P. A. R. A. (2014). ANALYSIS OF DISTIRIBUTION TRANSFORMER LOSSES IN FEEDER CIRCUIT.
- [7] Dalila, M. S., Khalid, M. N., & Md Shah, M. (2009, September). Distribution transformer losses evaluation under non-linear load. In Power Engineering Conference, 2009. AUPEC 2009. Australasian Universities (pp. 1-6). IEEE.

APENDICES

Gantt chart

FYP 1

	Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
No.	Tasks															
1	Literature Review															
2	Familirizing with the simulation tools															
3	Modelling the simulation of UTP netowk															
4	Model various type of losses															
5	Simulation with the experimental data															
6	Verifying the output of the simulation															

Table 23: Gantt Chart for FYP 1

FYP 2

Table 23: Gantt Chart for FYP 2

N	Week Tasks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
INO.	Lasks															
1	Data logging activity															
2	Familirizing with the simulation tools															
3	Completing the construction of UTP network model															
4	Preparation for Progress Report															
5	Simulation with the experimental data															
6	Analysing data obtained															
7	Preparation for pre-sedex															
8	Preparation for draf final report															
9	Preparation for Final Report and Technical paper															
10	Preparation for Viva															
11	Preparation for Final Report (hardbound)															

Key milestone

FYP 1

Table 24: Key Milestone for FYP1

	Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
No.	Tasks															
1	Literature review completion															
2	UTP simulation completed															
3	Simulation with filter is carried out															
4	Output verification															
5	Result achieved															
6	Full report completion															

FYP 2

Table 25: Key Milestone for FYP2

	Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
No.	Tasks																
1	Progress																
1	Report																
2	Pre-sedex																
3	Draft Final																
2	Report																
	Final Report																
	& Technical																
	Paner																
5	Viva																
6	Final Report																
							Due	e dat	e								
							Pro	cess									

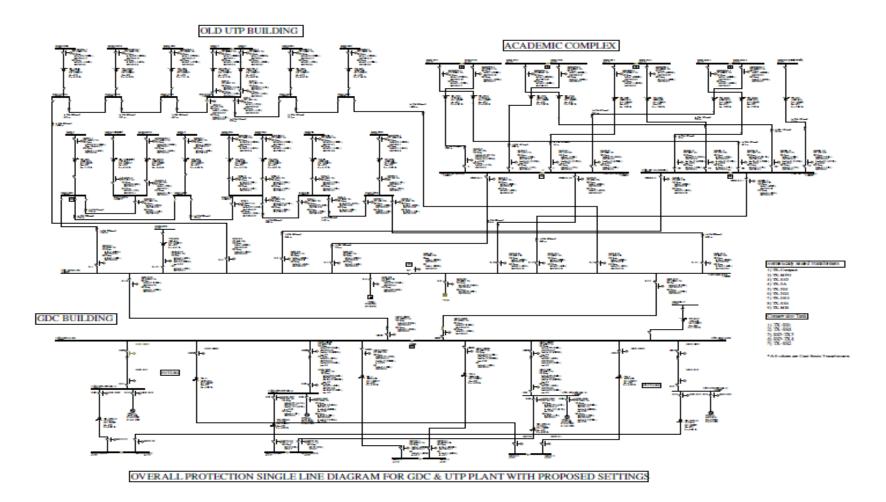


Figure 36: UTP Electrical Drawings