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ABSTRACT 

 

Twin Rotor MIMO System (TRMS) is a dynamic model with high non-

linearity that resembles a helicopter with reduced degree-of-freedom (DOF). Besides, 

cross-coupling between main rotor and tail rotor contributes to the difficulty in 

controlling the system. Majority of the previous researches have not focused on 

continuous actual dynamic disturbance test. The objectives of this project are to model 

TRMS and control the system against major disturbance (wind effect) and set-point 

changes. The first phase of the project started with mathematical modelling of direct 

current (DC) motors, where the relationship between input voltage and angular 

velocity was captured. The next phase would be the modelling of the whole system 

and design of controller. During the second phase, the modelling would involve 

aerodynamics and other Physics laws. Once the complete model was formed, 

Proportional, Integral and Derivative (PID) and Linear Quadratic Regulator (LQR) 

controllers were designed to optimize the dynamic system. The system has been tested 

using wind variation as actual dynamic disturbance to validate the disturbance 

rejection performance. It was found that the best performance from combination of 

PID and LQR controllers gave 89% improvement in term of pitch overshoot and 33% 

improvement in term of yaw overshoot during disturbance rejection compared to PID-

only controller. 
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CHAPTER 1 

INTRODUCTION 

 

1. INTRODUCTION 

 

1.1. Background of Study 

 

A helicopter is a type of aircraft that uses propulsive forces created from 

rotating blades to travel [1]. The rotation of main rotor blades around vertical axis on 

high angular velocity forms a virtually horizontal disk which provides thrust to lift up 

the helicopter. In addition, there is a significant motion on the hinged blades as shown 

in Figure 1, which can alter the stress on the blades or momentum on the root by the 

means of angle of attack on the blades. Both collective pitch control and cyclic pitch 

control can be achieved through swash plate mechanism as shown in Figure 2 [2].  

Collective pitch control works by changing the pitch of all the rotor blades at the same 

time to cause a climb or descent while cyclic pitch control allows the helicopter to 

move in certain direction by changing the pitch angle of rotor blades at corresponding 

point of the rotation plane. The stability of helicopter in forward flight is achieved by 

the horizontal thrust produced by rotating tail rotor [3]. 

 

Application of the concept of Nonlinear Model Predictive Control (NMPC) on 

multi-input multi-output (MIMO) system can be studied through TRMS which is a 

dynamic model that resembles a helicopter [4]. However, the operation method in 

TRMS is slightly different from the real helicopter. There is no swash plate mechanism 

in TRMS and the only way to control the elevation is by changing the angular velocity 

of main rotor. The functionality of tail rotor for both helicopter and TRMS remains the 

same. TRMS was developed by Feedback Instruments for experimentation on 

modelling and control [5] and the mechanical structure was shown in Figure 3. Two 
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rotors are mounted perpendicular to each other. The pitch rotor, is responsible in 

producing vertical thrust while the yaw rotor produces horizontal thrust to the model. 

The rotors are connected to a beam and the beam is pivoted to a tower. With the beam 

pivoted to a tower, TRMS is reduced to 2 DOF. In order to bring equilibrium point to 

the model, there is a counterweight attached to the middle point of the beam. 

 

Figure 1: Schematic of an articulated rotor hub and root 

 

Figure 2: Schematic of the rotor swash plate 
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Pitch bearing 
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Rotor 
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Although it is a simplified model of a helicopter, non-linearity and cross-

coupling between subsystems in the model as shown in Figure 4 are still giving 

significant challenges in extracting the model. The two main subsystems here are the 

main rotor and tail rotor; the whole system reacts as the impact from these two rotors. 

In previous study done by Aldebrez et al., the modelling of the system started off with 

system identification which was said to be the most important stage for getting the 

model to solve problems [6]. Laws of physics such as electromagnetic and 

aerodynamics can be found on TRMS, hence the structure of the model can be captured 

through first principle modelling [7]. Missing parameters are to be found from 

experimentation and specification table provided by Feedback Instruments. 

Christensen et al. implemented linearization using Taylor series expansion to convert 

nonlinear parameters to linear form [8]. Controllers can be designed once the transfer 

functions of each component are found and linked to form the final model.  

 

Figure 3: TRMS unit used in this project [9] 

 

Figure 4: TRMS simplified system schematic 
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1.2. Problem Statement 

 

High degree of non-linearity and cross-coupling between variables are the 

factors that make the TRMS hard to be modelled and controlled. The cross-coupling 

mainly comes from the main rotor and tail rotor. In order to get the TRMS to operate 

under highly reliable performance, an appropriate control mechanism is required to be 

implemented to the system. More importantly, the controller must be capable of 

tackling the high non-linearity and cross-coupling within the system. 

 

Other than that, robustness is also a crucial aspect in TRMS. In this project, 

capability to reject disturbances such as wind and external forces is being concerned. 

The stability of TRMS is highly related to disturbance rejection as it defines the 

performance of TRMS under adverse condition. It was found that previous controller 

designs as stated in literature review are either involved complex computation or non-

robust.  

 

1.3. Objectives 

 

The objectives of carrying out this project are: 

1) To construct the mathematical model of TRMS. 

2) To control TRMS: 

 against major disturbance by testing against actual wind variation 

(disturbance rejection). 

 against set-point changes (set-point tracking). 

The scope of this project is limited to the TRMS structure used in the university. 

Manipulated variables in this system are the input voltage to pitch rotor and input 

voltage to yaw rotor while the controlled variables are the pitch angle and yaw angle. 

The system should be able to hover in the air and stand against disturbances like wind 

or external forces applied to the structure. When there is an unexpected force applied 

to it and changes its flying direction, it should be able to go back to the desired position.   
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CHAPTER 2 

LITERATURE REVIEW AND THEORY 

 

2. LITERATURE REVIEW AND THEORY 

 

2.1.  Previous Works 

 

 Recent study [10] had demonstrated the design of two fuzzy logic controllers 

to control the TRMS. The controllers were designed based on decent gradient 

algorithm. The advantage of using fuzzy logic is that it does not require the 

implementation of differential equation, which makes the design of controller much 

easier. In term of set-point tracking, the controller for main part performed better than 

that of tail part. Disturbance was introduced in real time to the system and it was found 

that the controller in main part showed better disturbance rejection. In neural network 

approach done in, black-box modelling did not show completely the relationship 

between variables involved in the process [11]. However, neural network gained a 

satisfying performance and outperformed the PID controller. 

 

There was also an approach done using classical control, for instance, 

Proportional, Integral and Derivative (PID) control on TRMS was implemented in [12]. 

A simple PID controller together with a cross-coupled PID controller were designed 

and the performances of TRMS after implementation of controllers were evaluated. 

From the experimental results, it can be seen that set-point tracking is not performing 

well. The overall performance gave a high degree of error and it can be concluded that 

PID is not a suitable control method for TRMS with high non-linearity and cross-

coupling. 
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Disturbance rejection tests were done in [13] and [14] by using software 

implementation of disturbance. However, the results cannot represent the performance 

in real-time as the response in real system is affected by multiple unpredictable 

environmental variables. Actual implementation of disturbance at the yaw rotor was 

carried out in [15], but there is no experimental result for pitch rotor part.  

 

2.2.  Nonlinear Model Predictive Control (NMPC) 

 

2.2.1. General overview 

 

In general, a control system is designed to stabilize a feedback system while 

satisfying the constraints [16]. Most of the applications in real world are nonlinear, 

which means the output does not show a directly proportional behaviour towards the 

input. NMPC or some referred it as Nonlinear Moving Horizon Estimation (NMHE) 

can be an effective solution to control the nonlinear system [17]. Badgwell et al. has 

characterized the general NMPC calculation procedures as Figure 5. The working 

mechanism behind this control method is basically the estimation of behaviour of a 

system in the future and implementation of controller to optimize the system [18]. 

Besides, it has several advantages over other control methods in term of capability to 

work directly on important variables of a system, control the system in the sense of 

predicting the future response and cope within constraints. 

 

As superposition principle is no longer valid on nonlinear model [19], the 

derivation of dynamic model could not be done solely by ordinary system 

identification, data from measurements or experiments are required to fill the unknown 

parametric values. Validation step should be carried out on the model before it is being 

utilized for controller design. One systematic way of performing the validation is by 

running the model and justifies the feasibility of the model by analyzing the deviation 

found between measured output and predicted response. Upon getting the accurate 

dynamic model, the controller calculates for predicted future behaviour and identifies 

an optimum input to optimize the system. NMPC controller was commonly configured 

along with a state observer to ensure the stability of the system [20]. NMPC is 
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formulated to provide solution to optimal control problems repetitively and the 

optimization process occurs at each sampling instant [21]. All the advantages 

mentioned above showed that NMPC is a suitable mechanism to control TRMS in this 

project. 

 

Figure 5: General NMPC calculation procedures 

 

2.2.2. Algorithm 

 

NMPC as an extension from Model Predictive Control (MPC) runs on the same 

algorithm as the parent except that the application is now on nonlinear processes [22]. 

Figure 6 shows the principle of MPC in graphical form. 

 

Figure 6: Principle of MPC [23] 

Read variable (manipulated, disturbance, 
controlled) values from the process

Feedback
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A nonlinear system can be commonly presented in an equation where first 

derivative of 𝑥(𝑡) [�̇�(𝑡)]  is a function of input, 𝑢(𝑡)  and state,  𝑥(𝑡), with initial 

condition, 𝑥(0), as shown below: 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)), 𝑥(0) = 𝑥0      (1) 

subject to input and state constraints: 

 𝑢(𝑡) ∈ 𝑈,∀𝑡 ≥ 0        (2) 

 𝑥(𝑡) ∈ 𝑋, ∀𝑡 ≥ 0        (3) 

where U and X are normally bounded within different sets of real number, ℝ: 

 𝑈 ≔ 𝑢 ∈ ℝm|umin ≤ u < umax       (4) 

 𝑋 ≔ 𝑥 ∈ ℝ𝑛|𝑥𝑚𝑖𝑛 ≤ 𝑥 < 𝑥𝑚𝑎𝑥      (5) 

NMPC can be introduced into a finite horizon optimization problem in term of 

minimizing cost function. The cost function, J, can be expressed as: 

 𝐽(𝑥(𝑡), �̅�(∙)) ≔ ∫ 𝐹(�̅�(𝜏), �̅�(𝜏))𝑑𝜏
𝑡+𝑇𝑝

𝑡
     (6) 

where  

�̅� is the open loop input 

�̅� is the predicted state 

subject to: 

 �̇̅�(𝜏) = 𝑓(�̅�(𝜏), �̅�(𝜏)), �̅�(𝑡) = 𝑥(𝑡)      (7) 

 �̅�(𝜏) ∈ 𝑈, ∀𝜏 ∈ [𝑡, 𝑡 + 𝑇𝑐]       (8) 

 �̅�(𝜏) = �̅�(𝑡 + 𝑇𝑐), ∀𝜏 ∈ [𝑡 + 𝑇𝑐 , 𝑡 + 𝑇𝑝]     (9) 

 �̅�(𝜏) ∈ 𝑋, ∀𝜏 ∈ [𝑡, 𝑡 + 𝑇𝑝]                 (10) 

Tc denotes control horizon while Tp denotes prediction horizon with the condition of 

Tc ≤ Tp. The performance in term of cost can be reflected through stage cost function, 

F, which is commonly expressed in quadratic form: 

 𝐹(𝑥, 𝑢) = (𝑥 − 𝑥𝑠)
𝑇𝑄(𝑥 − 𝑥𝑠) + (𝑢 − 𝑢𝑠)

𝑇𝑅(𝑢 − 𝑢𝑠)             (11) 
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with xs and us denoting targeted values in state and input respectively. The weightage 

of deviation is presented in matrices Q and R with the condition Q>0, R>0. 

 

2.3. Linear Quadratic Regulator (LQR) 

 

LQR runs on the principle of optimal control at minimized quadratic cost 

function [24]. It was chosen as the controller to implement NMPC on TRMS because 

the operation of LQR matches the working principle of NMPC, specifically prediction 

of states and minimization of cost function. LQR uses the control strategy that offers 

optimal and stable response in the output of the system [25]. The computation of state 

feedback gain matrix K is depending on the state weighting matrix Q and the control 

weighting matrix R [26]. The state feedback gain matrix K can be determined using 

the following equation: 

𝐾 = 𝑅−1𝐵𝑇𝑃                                        (12) 

provided that matrix P was obtained by solving Riccati equation [27]: 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0                          (13) 

 

 

Figure 7: Block diagram of Linear Quadratic Regulator 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

3. RESEARCH METHODOLOGY 

 

3.1. Methodology 

 

TRMS is being used in this project to study the behaviour of a nonlinear system 

with reduced degree of freedom. The angular velocity of the blades is depending on 

the voltage applied to the rotor, hence the modelling should start from the relationship 

between supply voltage and the rotor. Basic mathematical equations related to 

electromagnetic theory can be used as reference here. In the next stage, a series of 

experiments were carried out to obtain the relationship between the input voltage and 

resultant angular displacement for both pitch rotor and yaw rotor. The 4th run of this 

experiment was meant to be aggressive and it was carried out with random input signal 

having higher variance compared to the other runs. From the relationship between 

respective input voltage and angular displacement, transfer function for main pitch 

path, cross pitch path, main yaw path and cross yaw path were estimated through 

simulation. Each of the models obtained from system identification were then 

validated against respective actual output from the 4 runs of experiment. In the end of 

modelling stage, a full model of TRMS was formed and ready to be used for controller 

design. 

 

In controller design stage, PID controller was designed using Ziegler-Nichols 

closed-loop tuning method. Parameters of the gains (Kp, Ki, Kd) were determined and 

fine-tuned through this method. Besides, LQR was being designed to work together 

with PID controller and the overall block diagram of the complete system can be 

referred from Figure 8. LQR is an optimal controller which provides the smallest 

possible error to its input. Even for a multivariable system, LQR is still 

straightforward to use; the design procedure is essentially the same as for single-input-
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single-output systems. However, LQR is only applicable if the system is state 

controllable. The steps in designing LQR can be outlined as below: 

1) Choose for the values of Q and R. 

2) Find the value P by solving Equation (13). 

3) Compute for the value K by using Equation (12). 

4) Implement 𝑢 = −𝐾𝑥 in the feedback system. 

5) Simulate the initial response of �̇� = (𝐴 − 𝐵𝐾)𝑥 for different initial conditions. 

6) If the transient response specifications and/or the magnitude constraints are not 

met, go back to step 1 and fine-tune Q and/or R. 

 

 

Figure 8: Block diagram of complete system 

 

The final stage of this project was the field test. PID and LQR controllers were 

implemented on TRMS to verify that the performance of the system meets the 

requirements. Depending on the result obtained, the controllers were further fine-tuned 

for better improvement. The overall project flow can be studied from Figure 11. 

 

3.2. Experiment – Relationship between input voltage and angular velocity 

 

Experiments were done on main rotor and tail rotor to get the data regarding 

relationship between input voltage and angular velocity. Data of angular velocity were 

collected through both digital tachometer and DC tachometer. After the experiment 

was completed, the data from digital tachometer were used to verify the reliability of 

data from DC tachometer. The procedures of experiment for main rotor were outlined 

in Part A while the procedures of experiment for tail rotor were outline in Part B. 
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Part A: Main Rotor 

1) Through Advantech Device Manager, the computer produces analog output 

signal ranging from 0V to 5V (in signed value, it is from -2.5V to 2.5V). 

2) The signal is then amplified to a value ranging from -20V to 20V, which is the 

voltage for main rotor to run. 

3) The rotational speed of main rotor was measured using a digital tachometer 

and dc tachometer. 

4) The results were tabulated in Table A - 1 and analysed. 

 

Part B: Tail Rotor 

1) Through Advantech Device Manager, the computer produces analog output 

signal ranging from 0V to 5V (in signed value, it is from -2.5V to 2.5V). 

2) The signal is then amplified to a value ranging from -15V to 15V, which is the 

voltage for tail rotor to run. 

3) The rotational speed of tail rotor was measured using a digital tachometer and 

dc tachometer. 

4) The results were tabulated in Table A - 2 and analysed. 

 

Figure 9 shows the experiment setup for measurement of rotational speed 

using a digital tachometer. When taking readings of rotational speed, the digital 

tachometer should be pointed perpendicular to the rotating disc. The DC tachometer is 

attached next to the DC motor and can be found on both main rotor and tail rotor. The 

output of DC tachometer can be obtained from connector labelled PL2 at the interface 

circuit as shown in Figure 10. 

Notes: 

1) Output measured between pin 1 & 2 is the DC tachometer output for tail rotor. 

2) Output measured between pin 3 & 4 is the DC tachometer output for main rotor. 

3) Specification of DC tachometer: 0.52V per 1000 RPM. 
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Figure 9: Experiment setup for measurement using digital tachometer 

 

Note:  Data obtained from digital tachometer were divided by 2 as there were 2 blades 

 rotating together. 

 

 

 

 

Figure 10: Experiment setup for measurement using dc tachometer 

Digital 

tachometer 
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Figure 11: Overall project flow 

 

  



15 
 

3.3. Experiment – Disturbance rejection 

 

Wind source from a table fan was used to simulate the disturbance to the TRMS 

in real-time. The disturbance rejection experiment started after both the pitch angle 

and yaw angle reached the desired setpoints, where in this case the setpoint of pitch 

angle is at 0.45 rad while the setpoint of yaw angle is at 0.4 rad. There is a total of 4 

parts throughout the experiment, each with different direction of the wind, which are: 

1) from x1 to x2 (Figure 12) 

2) from z1 to z2 (Figure 13) 

3) from x3 to x4 (Figure 14) 

4) from z3 to z4 (Figure 15) 

In part 1, the wind from a table fan was applied towards the side of pitch rotor at 30th 

second and elapsed for 20 seconds before being removed. After the first part was done, 

the experiment was continued with the next part until all 4 parts were completed. The 

responses from the real-time experiment were collected and plotted in graphs. 

 

3.4. Project Timeline and Key Milestones 

 

Final year project was secured during the first week with the title of “Nonlinear 

Model Predictive Control (NMPC) for Twin Rotor MIMO System (TRMS)”. The first 

phase of the project was started with background study on the topic through in-depth 

literature review. The study was emphasized around the application of NMPC on 

TRMS and it was done for about 6 weeks long. LQR as the proposed method was 

studied along to understand the principle and algorithm. An extended proposal 

containing details on the project was prepared and submitted on Week 6. After that, 

the modelling of DC motors was started. An experiment setup was proposed to obtain 

data for system representation purpose and it was done for both main rotor and tail 

rotor. Upon getting the required data, the data was used to create models for both main 

rotor and tail rotor in the form of transfer function and state-space. The responses given 

by the models were then further verified with the data obtained. The first phase of the 

project ended with final models for both main rotor and tail rotor. An interim report 
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containing the works done and results during first phase of project was submitted 

before the semester ended. 

 

In the second phase of project, the modelling work continues for whole TRMS 

structure. Physics laws and cross-coupling are taking place in the model, making the 

modelling process harder than phase 1. The final model was formed by the end of 

Week 7. Once the model of TRMS is formed, PID controller and LQR controller were 

designed to control the system for better performance. The controllers were then 

implemented to the system and tested for both setpoint tracking and disturbance 

rejection. Towards the end of Week 11 during FYP2, the combination of PID 

controller and LQR controller was found to be giving reliable performance to the 

TRMS. Eventually, the project was ended with a complete TRMS model together with 

functional controllers. By the end of FYP2, all the documentations were organized and 

a dissertation was submitted to examiners. 

 

Figure 12: Wind source applied from x1 

to x2 

 

Figure 13: Table fan at top of pitch 

rotor 

 

Figure 14: Table fan at side of yaw rotor 

 

Figure 15: Table fan at top of yaw rotor 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4. RESULTS AND DISCUSSION 

 

4.1.  System representation of TRMS 

 

Experiments were carried out by applying multisinusoidal signal to excite the 

TRMS model. The responses in term of pitch angle and yaw angle were collected in 

the form of vectors and used for estimation of model. 

 

4.1.1. Main pitch model 

 

By referring to the relationships between input voltage to the main rotor and 

pitch angle shown in Figure 16, the best transfer function that can represent the system 

well was found. By calculating for average best fit scores, the transfer function that 

can represent the main pitch section is tf7, which is in the form of: 

0.1719𝑠6+1.515𝑠5+2.417𝑠4+5.198𝑠3+4.523𝑠2+0.5371𝑠+0.01648

 𝑠7+ 1.134𝑠6+ 7.446𝑠5+6.78𝑠4+ 14.02𝑠3+9.203𝑠2+1.231𝑠+0.0408
              (14) 
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4.1.2. Cross pitch model 

 

The transfer function that can represent cross pitch model was found from the 

result shown in Figure 17 by calculating the average best fit scores. It was found that 

the transfer function that best represent the cross pitch section is tf8, which is in the 

form of: 

−0.09933𝑠7+0.6608𝑠6+0.003581𝑠5+0.2009𝑠4+0.006373𝑠3+0.0111𝑠2+0.0004691𝑠+9.821𝑒−07

 𝑠8+0.8412𝑠7+ 0.8136𝑠6+ 0.2882𝑠5+0.1634𝑠4+ 0.02336𝑠3+0.007168𝑠2+0.0005429𝑠+1.396𝑒−07
         (15) 

 

4.1.3. Main yaw model 

 

Based on the result shown in Figure 18, it was found that tf8 is having the 

highest average best fit scores. Thus, tf8 is the transfer function that can represent main 

yaw section and it is in the form of: 

0.2956𝑠7−0.04341𝑠6+1.889𝑠5+0.1563𝑠4+0.6762𝑠3+0.03422𝑠2+0.01223𝑠+8.886𝑒−05

 𝑠8+4.745𝑠7+2.185𝑠6+3.1𝑠5+0.6928𝑠4+0.5212𝑠3+0.03725𝑠2+0.00793𝑠+9.146𝑒−05
             (16) 

 

4.1.4. Cross yaw model 

 

By referring to the measured and simulated model outputs shown in Figure 19, 

the best transfer function that can represent the system well was found by calculating 

for average best fit scores. It was found that cross yaw section can be represented by 

tf7, which scored the highest in average best fit scores. The transfer function model of 

cross yaw section can be written as: 

0.1648𝑠6+0.03416𝑠5+0.7467𝑠4+0.1508𝑠3+0.2388𝑠2−0.02808𝑠−0.00046

 𝑠7+ 0.6482𝑠6+ 8.889𝑠5+4.815𝑠4+ 19.94𝑠3+8.704𝑠2+0.9414𝑠+0.0126
             (17) 
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Figure 16: Measured and simulated model output for main pitch model 
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Figure 17: Measured and simulated model output for cross pitch model 
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Figure 18: Measured and simulated model output for main yaw model 
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Figure 19: Measured and simulated model output for cross yaw model 
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4.1.5. Complete TRMS model 

 

After inserting all the transfer functions found into respective sections, the 

complete TRMS model was formed as shown in Figure 20. The inputs to the system 

are input voltage to pitch rotor and input voltage to yaw rotor, while the outputs are 

pitch angle and yaw angle. 

 

 

Figure 20: Complete TRMS model 

 

4.2. Controller design 

 

Once the complete model of TRMS was found, it was then used for design of 

PID controller and LQR controller. The controllers were first tested through simulation 

to observe the performance of the controllers on the system before implemented on 

real time system. 

 

4.2.1. PID tuning 

 

Ultimate gain that causes the system to oscillate upon a step response could not 

be achieved. Since Ziegler-Nichols closed-loop tuning was not applicable in TRMS, 

thus the PID gain parameters can only be determined through trial and error. All the 
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gain parameters (Kp, Ki, Kd) were started from 0 and increased slowly until a satisfying 

performance was achieved. In the end of trial and error, the parameters for pitch PID 

controller were found to be Kp=3, Ki=3, Kd=6 while the parameters for yaw PID 

controller were found to be Kp=3, Ki=2, Kd=6. 

 

4.2.2. LQR tuning 

 

As LQR only works with state-space model, state-space model of main pitch 

and main yaw were formed prior to design of LQR controller. By using the general 

equation for state-space model: 

𝑑𝑥

𝑑𝑡
 = A x(t) + B u(t)                             (18) 

       

 y(t) = C x(t) + D u(t)                             (19) 

 

The matrices of A,B,C and D for main pitch state-space model were found to be: 

𝐴 =

[
 
 
 
 
 
 

0.0549 −1.9496 0.1216 0.0761 0.4212 0.3368 0.1657
2.0063 −0.131 0.0445 −0.0744 0.1171 0.0563 −0.05
−0.12 0.1511 −0.0855 5.1𝑒 − 4 −0.258 −0.0999 −0.2899
0.0165 0.4327 −0.3402 −0.0145 2.2527 0.4981 −1.5312

−0.2851 −0.0032 −0.2512 −1.8968 −0.9634 −1.3883 −1.1619
0.0395 −0.2326 0.0984 0.2304 0.0062 −1.0687 −0.7015
0.0638 −0.0808 0.0054 0.7786 0.5206 1.0897 −1.0138]

 
 
 
 
 
 

 

𝐵 =

[
 
 
 
 
 
 
−0.5163
−0.5322
0.2132
1.3387
1.3509

−1.2631
0.5782 ]

 
 
 
 
 
 

 

𝐶 = [0.8071 −0.9136 −9.336𝑒 − 4 −0.0755 −0.0369 −0.0148 −0.0202] 

𝐷 = [0] 

The matrices of A,B,C and D for main yaw state-space model were found to be: 

𝐴 =

[
 
 
 
 
−0.0308 0.4427 −0.0034 −0.0089 0.0153
−0.6069 −0.0781 −0.0694 −0.0295 −0.0919
−0.077 0.1362 −0.7998 −1.0871 −0.8408
−0.0422 −0.0424 0.9924 0.2261 1.3201
−0.0202 −0.0139 0.0523 −1.4574 0.3355 ]
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𝐵 =

[
 
 
 
 
−0.0163
0.1228

−0.5058
0.1801
0.3846 ]

 
 
 
 

 

𝐶 = [4.8761 0.7394 −0.1535 −0.0393 0.0066] 

𝐷 = [0] 

Matrix R was set as [1] while matrix Q was started with an identity matrix and 

further fine-tuned through trial and error. The final matrix Q and the resultant gain K 

for main pitch LQR controller were found to be: 

𝑄 =

[
 
 
 
 
 
 
100 0 0 0 0 0 0
0 20 0 0 0 0 0
0 0 0.01 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0.01 0
0 0 0 0 0 0 0.01]

 
 
 
 
 
 

 

𝐾 = [−1.6726 −10.3326 0.2461 −0.0179 0.5945 0.2637 0.2626] 

while the final matrix Q and the resultant gain K for main pitch LQR controller were 

found to be: 

𝑄 =

[
 
 
 
 
10 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

 

𝐾 = [1.6814 1.4736 −0.7545 0.0877 0.5908] 

 

4.2.3. Simulation 

 

The pitch PID controller corrects the error in term of differences between 

desired pitch angle and the exact pitch angle. At the yaw side, the yaw PID controller 

corrects the error in term of differences between desired yaw angle and the exact yaw 

angle. The ‘TRMS model’ block contains the complete TRMS model shown in Figure 

20. Both setpoint and output for pitch angle and yaw angle were recorded in the scope 

for observation and analysis. In the simulation, the setpoint for pitch angle was set at 

0.45 rad while the setpoint of yaw angle was set at 0.4 rad. The gain parameters found 

for PID were used for simulation and the calculated gain matrix, K, for LQR was 



26 
 

implemented into the LQR controller to work with PID controller in controlling the 

system. It can be seen that the output response of PID+LQR controller is better than 

that of PID-only controller. The performance of pitch rotor is considered as reliable, 

however, the yaw rotor is performing relatively poor. One possible reason for yaw 

rotor to take a longer time to reach steady state is due to the cross coupling effect from 

the pitch rotor. 

 

 

Figure 21: Setpoint tracking in simulation (PID) 

 

 

Figure 22: Setpoint tracking in simulation (PID+LQR) 
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4.3. Field test 

 

A combination of PID controller and LQR controller were applied to TRMS in 

real-time and the results were recorded through the scope. The desired pitch angle was 

set at 0.45 rad while the desired yaw angle was set at 0.4 rad. In term of setpoint 

tracking, the overall performance in real-time is better than that in simulation. For pitch 

angle, the settling time is at around 8 seconds and the maximum overshoot is 30%. For 

yaw angle, the settling time is at around 9 seconds and the maximum overshoot is 

92.5%. The high percentage overshoot is probably due to the cross-coupling effect 

from pitch rotor during step change from 0 to 0.45. For disturbance rejection, it was 

found that the overall performance of pitch rotor is satisfying while the yaw rotor is 

rejecting the disturbance slightly slower. 

 

4.3.1. Setpoint tracking 

 

Setpoint for pitch rotor was fixed at 0.45 rad while the setpoint for yaw rotor 

was fixed at 0.4 rad. Both of the setpoints were triggered by step inputs at 5th second. 

Based on the results obtained, it can be seen that the settling time for both cases are 

the same, just that PID-only controller is giving a smoother response. Thus, in term of 

setpoint tracking, PID-only controller is a better choice compared to PID+LQR 

controller. 

 

Figure 23: Setpoint tracking in real-time (PID) 
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Figure 24: Setpoint tracking in real-time (PID+LQR) 

 

4.3.2. Disturbance rejection part 1: wind source from x1 to x2 

 

In this part of experiment, step inputs were applied to both pitch rotor and yaw 

rotor at 5th second. Wind from table fan was applied towards the side of pitch rotor at 

30th second and it was elapsed for 20 seconds before the table fan was removed. Thus, 

the disturbance rejection response can be observed starting from 30th second. Based 

on the result, it was found that there is 25% improvement in term of overshoot during 

disturbance rejection in yaw PID+LQR controller compared to PID-only controller. 

By referring to the output response curve between 30th second and 60th second, we can 

say that PID+LQR controller gives a faster response in providing corrective action 

against the disturbance when compared to PID-only controller. 

 

 

Figure 25: Disturbance rejection part 1 (PID) 
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Figure 26: Disturbance rejection part 1 (PID+LQR) 

 

4.3.3. Disturbance rejection part 2: wind source from z1 to z2 

 

Step inputs were applied to both pitch rotor and yaw rotor at 5th second. Wind 

from table fan was applied towards the top of pitch rotor at 30th second and it was 

elapsed for 20 seconds before the table fan was removed. Through the observation on 

output response curve starting from 30th second, it was found that PID+LQR pitch 

controller is giving a 89% improvement in term of overshoot during disturbance 

rejection compared to PID-only controller. For yaw part, there is 33% improvement 

on PID+LQR controller compared to PID-only controller. Other than that, significant 

cross-coupling effect was observed at the yaw angle when the controller on pitch rotor 

was working to reject the disturbance. 

 

 

Figure 27: Disturbance rejection part 2 (PID) 
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Figure 28: Disturbance rejection part 2 (PID+LQR) 

 

4.3.4. Disturbance rejection part 3: wind source from x3 to x4 

 

After step inputs were applied to both of the rotors at 5th second and the rotors 

were stabilized, wind from a table fan was applied towards the side of yaw rotor at 30th 

second and elapsed for 20 seconds before it was taken away from the TRMS. From 

the output response during disturbance rejection period, which is starting from 30th 

second, it can be seen that the output response from PID+LQR controller during 

disturbance rejection period is smoother than that of PID-only controller. This is 

probably because PID+LQR controller is using both states and output, thus giving a 

faster and continuous corrective action. 

 

Figure 29: Disturbance rejection part 3 (PID) 
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Figure 30: Disturbance rejection part 3 (PID+LQR) 

 

4.3.5. Disturbance rejection part 4: wind source from z3 to z4 

 

Step inputs were applied to both pitch rotor and yaw rotor at 5th second. Wind 

from table fan was applied towards the top of yaw rotor at 30th second and it was 

elapsed for 20 seconds before the table fan was removed. From the results obtained, it 

can be seen that there is not much effect on either pitch angle or yaw angle when the 

wind was introduced as a disturbance to the system. Thus, we can say that wind applied 

towards the top of yaw rotor is not creating much disturbance to the system. 

 

 

Figure 31: Disturbance rejection part 4 (PID) 
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Figure 32: Disturbance rejection part 4 (PID+LQR)  
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CHAPTER 5 

CONCLUSION 

 

5. CONCLUSION 

 

5.1. Conclusion 

 

Complete TRMS model was formed through a series of experimentations. 

After the relationship curves between output voltage to the rotors and displacement 

angles were collected, the overall best transfer functions that can represent each 

subsystem were found and inserted to respective blocks to form the complete model. 

PID controller was designed based on the completed model while state-space models 

of pitch rotor and yaw rotor were further estimated for the design of LQR controller. 

Once the gain parameters of controllers were obtained, they were tested through 

simulation before implemented to the real-time system. From the results shown, it can 

be concluded that the controllers were giving reliable performance in term of setpoint 

tracking and disturbance rejection. 

 

A sequence of methodology was proposed to design PID and LQR controllers 

to control TRMS against disturbance and set-point changes. It was found that the 

advantage of combining PID and LQR controllers is that the system is: 

• stable – reach steady state in short period 

• robust – able to reject disturbance in short period 

Besides, PID and LQR are both easier to design compared to other techniques such as 

neural networks and fuzzy logic. With the resources available, the project was 

completed within given time frame. In the end of this project, the combination of PID 

and LQR controller was able to give optimal performance against disturbances and 

track given setpoint within short period. 
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5.2. Recommendations 

 

As the overshoot in yaw rotor was found to be quite high, thus the yaw 

controllers can still be tuned to get better performance. Besides, the response from the 

model obtained seems to deviate from the actual system. This might be the drawback 

from the way of modelling through experimentation. The alternative to this is to model 

through derivations of mathematical expressions and physics laws. This project only 

covered disturbance rejection tests from x-axis and z-axis, it can still be extended to 

include y-axis or multiple axes at the same time. For better accuracy in the disturbance 

rejection test, wind tunnel can be used to provide a better simulation of wind effect on 

TRMS. Last but not least, the outcome of this project is not limited to implementation 

on TRMS, the methodology can be applied on other nonlinear MIMO systems with 

certain level of fine-tuning for optimization purpose. 
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APPENDICES 
 

A.1. Project timeline and key milestones 

 

 

Figure A - 1: Project Timeline and Key Milestones  
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A.2. Data collected from main rotor 

 

Table A - 1 shows the data obtained after applying increasing step input from 

0V to 5V with 0.2V step to the main rotor. From Figure A - 2, it can be seen that there 

is not much variation between the output given from digital tachometer and DC 

tachometer. By taking the sign in count, the magnitudes of angular velocity of main 

rotor is proportional to the input voltages. 

 

Table A - 1: Data collected from main rotor experiment 

   Digital tachometer DC tachometer 

Output 

signal 

from 
PC 

(Volt) 

Signed 

signal 

from 
PC 

(Volt) 

Input 

voltage 

to rotor 

(Volt) 

Rotational 

speed 
(RPM) 

Angular 

velocity 
(rad/s) 

Output 

voltage 
(Volt) 

Rotational 

speed 
(RPM) 

Angular 

velocity 
(rad/s) 

0 -2.5 20.21 -2528 -264.73 -1.5 -2884.62 -302.08 

0.2 -2.3 19.17 -2464 -258.03 -1.45 -2788.46 -292.01 

0.4 -2.1 17.71 -2370 -248.19 -1.39 -2673.08 -279.92 

0.6 -1.9 16.18 -2244 -234.99 -1.33 -2557.69 -267.84 

0.8 -1.7 14.66 -2107 -220.64 -1.25 -2403.85 -251.73 

1 -1.5 13.13 -1987 -208.08 -1.18 -2269.23 -237.63 

1.2 -1.3 11.6 -1849 -193.63 -1.1 -2115.38 -221.52 

1.4 -1.1 10.08 -1702 -178.23 -1.01 -1942.31 -203.40 

1.6 -0.9 8.55 -1536 -160.85 -0.92 -1769.23 -185.27 

1.8 -0.7 7 -1410 -147.65 -0.83 -1596.15 -167.15 

2 -0.5 5.43 -1173 -122.84 -0.7 -1346.15 -140.97 

2.2 -0.3 3.8 -909 -95.19 -0.54 -1038.46 -108.75 

2.4 -0.1 1.79 -496 -51.94 -0.3 -576.92 -60.42 

2.6 0.1 -1.17 330 34.56 0.196 376.92 39.47 

2.8 0.3 -3.36 812 85.03 0.48 923.08 96.66 

3 0.5 -5.02 1104 115.61 0.655 1259.62 131.91 

3.2 0.7 -6.58 1333 139.59 0.786 1511.54 158.29 

3.4 0.9 -8.12 1537 160.95 0.91 1750.00 183.26 

3.6 1.1 -9.67 1702 178.23 1.008 1938.46 203.00 

3.8 1.3 -11.19 1856 194.36 1.097 2109.62 220.92 

4 1.5 -12.68 2009 210.38 1.18 2269.23 237.63 

4.2 1.7 -14.19 2164 226.61 1.267 2436.54 255.15 

4.4 1.9 -15.73 2287 239.49 1.345 2586.54 270.86 

4.6 2.1 -17.31 2387 249.97 1.397 2686.54 281.33 

4.8 2.3 -18.89 2458 257.40 1.456 2800.00 293.22 

5 2.5 -20.07 2543 266.30 1.49 2865.38 300.06 
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Figure A - 2: Comparison of measured angular velocity between digital tachometer 

and DC tachometer 

 

A.3. Data collected from tail rotor 

 

Table A - 2 shows the data obtained after applying increasing step input from 

0V to 5V with 0.2V step to the tail rotor. From Figure A - 3, it can be seen that there 

is not much variation between the output given from digital tachometer and DC 

tachometer. By taking the sign in count, the magnitudes of angular velocity of tail rotor 

is proportional to the input voltages. 

 

 

Figure A - 3: Comparison of measured angular velocity between digital tachometer 

and DC tachometer 

 

-400.00

-200.00

0.00

200.00

400.00

-2
.5

-2
.3

-2
.1

-1
.9

-1
.7

-1
.5

-1
.3

-1
.1

-0
.9

-0
.7

-0
.5

-0
.3

-0
.1 0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

A
n

gu
la

r 
ve

lo
ci

ty
 (r

ad
/s

)

Signed signal from PC (Volt)

Comparison of measured angular velocity between 
digital tachometer and DC tachometer

Digital tachometer DC tachometer

-1000.00

-500.00

0.00

500.00

1000.00

-2
.5

-2
.3

-2
.1

-1
.9

-1
.7

-1
.5

-1
.3

-1
.1

-0
.9

-0
.7

-0
.5

-0
.3

-0
.1 0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

A
n

gu
la

r 
ve

lo
ci

ty
 (r

ad
/s

)

Signed signal from PC (Volt)

Comparison of measured angular velocity between 
digital tachometer and DC tachometer

Digital tachometer DC tachometer



40 
 

Table A - 2: Data collected from main rotor experiment 

   Digital tachometer DC tachometer 

Output 

signal 

from 
PC 

(Volt) 

Signed 

signal 

from 
PC 

(Volt) 

Input 
voltage 

to rotor 

(Volt) 

Rotational 

speed 
(RPM) 

Angular 

velocity 
(rad/s) 

Output 

voltage 
(Volt) 

Rotational 

speed 
(RPM) 

Angular 

velocity 
(rad/s) 

0 -2.5 -15.37 -4699 -492.08 -2.89 -5557.69 -582.00 

0.2 -2.3 -14.26 -4488 -469.98 -2.736 -5261.54 -550.99 

0.4 -2.1 -13.17 -4184 -438.15 -2.565 -4932.69 -516.55 

0.6 -1.9 -12.09 -3938 -412.39 -2.394 -4603.85 -482.11 

0.8 -1.7 -11.01 -3645 -381.70 -2.21 -4250.00 -445.06 

1 -1.5 -9.91 -3361 -351.96 -2.042 -3926.92 -411.23 

1.2 -1.3 -8.81 -3064 -320.86 -1.862 -3580.77 -374.98 

1.4 -1.1 -7.71 -2701 -282.85 -1.647 -3167.31 -331.68 

1.6 -0.9 -6.582 -2327 -243.68 -1.427 -2744.23 -287.38 

1.8 -0.7 -5.438 -1955 -204.73 -1.192 -2292.31 -240.05 

2 -0.5 -4.254 -1527 -159.91 -0.945 -1817.31 -190.31 

2.2 -0.3 -2.983 -1077 -112.78 -0.655 -1259.62 -131.91 

2.4 -0.1 -1.304 -423 -44.30 -0.255 -490.38 -51.35 

2.6 0.1 0.775 214 22.41 0.132 253.85 26.58 

2.8 0.3 2.604 886 92.78 0.559 1075.00 112.57 

3 0.5 3.937 1392 145.77 0.85 1634.62 171.18 

3.2 0.7 5.132 1830 191.64 1.115 2144.23 224.54 

3.4 0.9 6.284 2227 233.21 1.366 2626.92 275.09 

3.6 1.1 7.41 2622 274.58 1.585 3048.08 319.19 

3.8 1.3 8.53 2963.5 310.34 1.813 3486.54 365.11 

4 1.5 9.63 3317.5 347.41 2.02 3884.62 406.80 

4.2 1.7 10.72 3635 380.66 2.215 4259.62 446.07 

4.4 1.9 11.82 3937.5 412.33 2.385 4586.54 480.30 

4.6 2.1 12.88 4222.5 442.18 2.566 4934.62 516.75 

4.8 2.3 13.96 4511 472.39 2.742 5273.08 552.20 

5 2.5 15.02 4765.5 499.04 2.916 5607.69 587.24 

 

 

A.4. Model identification of rotors 

 

Based on the data collected, transfer function model and state-space model 

were formed to represent the rotors. The reasons for choosing both transfer function 

and state-space are as follows: 

 they are the most commonly used models 

 they are compatible to each other 

 they are user-friendly for implementation in Simulink 
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A.4.1. Transfer function model of main rotor 

 

Mathematical model of a DC motor is a first order transfer function and it is in  

the form of: 

Ω(𝑠)

𝑈(𝑠)
=

𝐾𝑡

𝐽𝑅𝑠+𝑅(2𝐷�̅�𝑎+𝐵)+𝐾𝑏𝐾𝑡
               (20) 

 

In reference to the mathematical model, 5 variants of first order transfer function 

models were estimated based on the data obtained from experiment. First order transfer 

function models were formed by setting the number of zeros always less than number 

of poles by 1. From the best fits scores shown in Figure A - 4, it can be seen that tf4 

with 4 poles and 3 zeros is the best representation of main rotor. 

 

 

Figure A - 4: Transfer function models of main rotor 

 

𝑡𝑓1 =
790.4

𝑠+5.389
                    (21) 

 

𝑡𝑓2 =
138.9𝑠−3.581

𝑠2+0.8943𝑠+2.409𝑒−11
                  (22) 

 

𝑡𝑓3 =
−374.4𝑠2−8.266𝑠−43.85

𝑠3+3.363𝑠2+0.1009𝑠+0.3393
                 (23) 

 

𝑡𝑓4 =
257.6𝑠3+12.98𝑠2+52.71𝑠−2.011

𝑠4+1.945𝑠3+0.4033𝑠2+0.3402𝑠+7.088𝑒−8
                (24) 

 

𝑡𝑓5 =
−30.63𝑠4+22.85𝑠3−13.65𝑠2+10.27𝑠+3.684

𝑠5+1.622𝑠4+0.7089𝑠3+1.089𝑠2+0.08701𝑠+0.1077
               (25) 
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A.4.2. State-space model for main rotor 

 

4 variants of state-space models in the form of Equation (18) and Equation (19) 

were estimated based on the data obtained from experiment. The state-space model 

was formed with 1st order (ss1) and continued for higher orders (ss2, ss3 and ss4). It 

was found that 3rd order and 4th order state-space models (ss3 and ss4) are giving 

deteriorated responses, while second order state-space model (ss2) is the best 

representation of main rotor. 

 

 

Figure A - 5: State-space models of main rotor (ss1 & ss2) 

 

 

Figure A - 6: State-space models of main rotor (ss1, ss2, ss3 & ss4) 

 

The values for matrices A, B, C and D were shown below- 

ss1: 

𝐴 = [−0.2061] 

𝐵 = [0.153] 

𝐶 = [189.2] 

𝐷 = [0] 
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ss2: 

𝐴 = [−0.1305 −0.4846
0.264 0.03235

] 

𝐵 = [−0.06725
0.2024

] 

𝐶 = [−177.6 40.85] 

𝐷 = [0] 

 

ss3: 

𝐴 = [
−0.157 0.1843 0.5556
−0.5019 0.2298 −0.2001
0.1074 −0.131 0.387

] 

𝐵 = [
3.416𝑒 + 10

−9.843𝑒 + 10
7.943𝑒 + 10

] 

𝐶 = [133.9 66.24 3.349] 

𝐷 = [0] 

 

ss4: 

𝐴 = [

−0.07826 −0.2118 −0.04416 −0.8143
0.3492 −0.006005 −0.6944 0.5755
0.3133 0.8049 2.178 0.957
0.5237 0.5048 2.331 −0.4661

] 

𝐵 = [

−1679
2268
71.81
−2697

] 

𝐶 = [90.21 −103.2 21.18 − 24.13] 

𝐷 = [0] 

 

A.4.3. Transfer function model for tail rotor 

 

By matching the first order mathematical model shown in Equation (20), 5 

variants of first order transfer function models were estimated based on the data 

obtained from experiment. First order transfer function models were formed by setting 

the number of zeros always less than number of poles by 1. From the best fits scores 

shown in Figure A - 7, it can be seen that tf4 with 4 poles and 3 zeros is the best 

representation of tail rotor. 
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Figure A - 7: Transfer function models of tail rotor 

 

𝑡𝑓1 =
1957

𝑠+7.608
                    (26) 

 

𝑡𝑓2 =
−189.3𝑠−377

𝑠2+3.024𝑠+1.903
                   (27) 

 

𝑡𝑓3 =
−1343𝑠2−56.28𝑠−95.18

𝑠3+10.19𝑠2+0.2697𝑠+0.7629
                 (28) 

 

𝑡𝑓4 =
−11.94𝑠3+61.56𝑠2+3.301𝑠+2.21

𝑠4+0.08493𝑠3+0.3583𝑠2+0.01358𝑠+0.01225
                (29) 

 

𝑡𝑓5 =
−305.2𝑠4+136.6𝑠3+41.97𝑠2+15.96𝑠+8.364

𝑠5+1.155𝑠4+0.6834𝑠3+0.6076𝑠2+0.06527𝑠+0.05452
               (30) 

 

 

A.4.4. State-space model for tail rotor 

 

3 variants of state-space models were estimated based on the data obtained 

from experiment. The state-space model was formed with 1st order (ss5) and continued 

for higher orders (ss6 and ss7). It was found that 1st order state-space model is giving 

a deteriorated response and second order state-space model (ss6) is the best 

representation of main rotor. 
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Figure A - 8: State-space models of tail rotor 

 

By using the Equation (18) and Equation (19), the values for matrices A, B, C and D 

were shown below- 

 

ss5: 

𝐴 = [−0.1672] 

𝐵 = [0.256] 

𝐶 = [162.5] 

𝐷 = [0] 

 

ss6: 

𝐴 = [−0.07132 −0.4595
0.3135 0.004896

] 

𝐵 = [
−0.1017
0.5207

] 

𝐶 = [−151 35.63] 

𝐷 = [0] 

 

ss7: 

𝐴 = [
−0.06635 −0.4722 −0.6746
0.2601 0.144 −0.05827
0.3492 −0.01879 −1.14

] 

𝐵 = [
−0.4493
−0.4336
−1.01

] 

𝐶 = [89.29 −56.34 −9.481] 

𝐷 = [0] 


