Structural Integrity Re-Use Assessment for Fixed Structures

By

Kyaw Thiha Hla Myint

17824

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Civil)

JANUARY 2016

Universiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Darul Ridzuan

SAMPLE OF CERTIFICATION OF APPROVAL

CERTIFICATION OF APPROVAL

Structural Integrity Re-Use Assessment for Fixed Structures

by

Kyaw Thiha Hla Myint 17824

A project dissertation submitted to the Civil Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENIGINEERING (Hons) (CIVIL)

Approved by,

⁽AP Dr. Dr. Noor Amila Wan Abdullah Zawawi)

ABSTRACT

In a time not far from now, there will be a significant increase in the decommissioning activities of fixed offshore platforms in Asia Pacific Region. The usual methods of decommissioning comprise the complete removal, partial removal, reefing or re-using of the offshore structure. The major challenges that encounter during the complete or partial removal decommissioning is the shortage of decommissioning yards for managing onshore disposal. Therefore, reefing or re-using of the structure has better aspect of sustainability rather than the complete removal and disposal method. Reusing of the old structure can be not only cost saving but also will much reduce the emission of carbon dioxide during the steel manufacturing process from iron ore. In this report, it will be focused on the jacket of the fixed offshore structure and there will be two parts to discuss; structural integrity assessment and structural analysis. Before the structure is being reused, a structure. Based on the integrity assessment, modifications and/ or refurbishing are made if there is any and structural analysis is carried out to assess the strength of the offshore structure for reuse purpose.

ACKNOWLEDGEMENTS

First and foremost, my utmost gratitude to my Supervisor, AP Dr. Dr. Noor Amila Wan Abdullah Zawawi whose sincerity and encouragement will never be forgotten. Besides her unselfish and unfailing support, she guided me the right way for my FYP. She had shared valuable insights in the relevance knowledge which is truly helped the progression and smoothness of this research.

Not to mention, my grateful thanks also go to my previous internship Host Company supervisor, Mr. Han Zaw Oo for assisting and sharing his experience on offshore structural integrity works. Furthermore, I would like to express my gratitude to Ir. Mohamed Mubarak bin Abdul Wahab and Dr Ng Cheng Yee from Civil and Environmental Engineering Department, UTP for kind advice and comment during the poster presentation.

My appreciation goes to Mr. Lee Hsiu Eik, Offshore Engineering Center, UTP for his technical advice on structural analysis.

Last but not least, I am also indebted to my beloved parents and family, for their love and endless motivation as well as giving support throughout my studies.

TABLE OF CONTENTS

SAMPLE OF CERTIFICATION OF APPROVALi			
ABSTRACTii			
ACKNOWLEDGEMENTSiii			
TABLE OF CONTENTSiv			
LIST OF FIGURES			
LIST OF TABLES			
CHAPTER 1: INTRODUCTION			
1.1 Background1			
1.2 Problem Statement1			
1.3 Objective			
1.4 Scope of Study2			
CHAPTER 2: LITERATURE REVIEW			
2.1 Decommissioning			
2.2 Structural Integrity Management			
2.3 Strength Degradation Mechanism			
2.3.1 Fatigue on welds			
2.3.2 Corrosion Mechanism in the Jacket Structure			
2.3.3 Scouring Effect in the Jacket Structure7			
2.4 Basic Structural Analysis for Integrity Assessment			
2.5 Structural Inspection			
CHAPTER 3: METHODOLOGY			
3.1 Project Work10			
3.2 Platform Specification			
3.3 Structural Inspection			
3.4 Structure Analysis			
3.4.1 Materials Properties14			
3.4.2 Design data14			

	3.4.2.1 Water depth	14
	3.4.2.2 Tides	14
	3.4.2.3 Design Water Depth	15
	3.4.2.4 Wind Data	15
	3.4.2.5 Wave Data	15
	3.4.2.6 Current Data	16
	3.4.2.7 Marine Growth	16
3	.4.3 Basic Load Cases (Operating Gravity Loads)	17
3.5	Project Key Milestones	19
3.6	Gantt Chart	20
3.7	Tools Required	21
CHAPTER 4: RE	ESULT AND DISCUSSION	
4.1	Structural Integrity Assessment (Underwater Structure	Inspection).
		22
4.1	.1 Underwater Inspection Result	22
4.1	.2 Underwater Inspection Discussion	24
4.2	Structural Integrity Analysis	27
4.2	.1 Structural Analysis Results	27
4	.2.1.1 Jacket and Topside Operating Loadings	27
4	.2.1.2 Basic Load Case	
4	.2.1.3 Combined load case summary	
4	.2.1.4 Member Group Unity Check Ratio	
4	.2.1.5 Joint Punching Shear Unity Check Ratio	
4	.2.1.6 Pile Foundation Summary	
4	.2.1.7 Maximum Lateral Deflection	
4.2	.2 Structural Analysis Discussion	
CHAPTER 5: CO	ONCLUSION AND RECOMMENDATION	
5.1	Conclusion	
5.2	Recommendation	
REFERENCES		
APPENDICES		
APPE	NDIX -1: Yetagun B Jacket in 3D Model View	

APPENDIX -2: Underwater Structure Inspection Report (2014) of	
Yetagun-B	38
APPENDIX -3: Detail Load Combination and Load Factor Applied	40
APPENDIX -4: Basic Load Case Summary	42
APPENDIX -5: Combine Load Case Summary	43
APPENDIX -6: Member Unity Check Summary	44
APPENDIX -7: Joint Punching Shear Unity Check Summary	45
APPENDIX- 8: Pile Maximum Unity Check Summary	47
APPENDIX -9: Pile Head Load Summary	54

LIST OF FIGURES

Figure 1. Decommissioning Process (Roslina Misman & Salamah Saad, 2004)3
Figure 2. Decommissioning Options (Beheshti, 2014)	4
Figure 3. SIM Process (API)	5
Figure 4. Crack growth stages and fracture in a tubular K-joint in a jacket pla	ıtform
(Dong, et al., 2014)	6
Figure 5 SACS 3D Model View - Yetagun B Jacket	37
Figure 6. Anomalies Detail Report (2014) 1 of 4	
Figure 7. Anomalies Detail Report (2014) 2 of 4	
Figure 8. Anomalies Detail Report (2014) 3 of 4	
Figure 9. Anomalies Detail Report (2014) 4 of 4	

LIST OF TABLES

Table 1. Platform Specification	11
Table 2: Material Properties	14
Table 3. Water Depth	14
Table 4. Tidal Levels	15
Table 5. Design Water Depth	15
Table 6. Wind Data 15Table 7. Wave Data 16	
Table 8. Current Data	16
Table 9. Marine Growth Data	16
Table 10: Basic Load Cases	17
Table 11. Anomaly Summary of Yetagun B	25
Table 12. Vertical Loads	27
Table 13. Members Group UC Ratio (> 0.80) Summary	28
Table 14. Joint UC Ratio (> 0.50) Summary	29
Table 15. Maximum Pile Loads Summary (Design Environmental Conditions wit appropriate production loads)	th 30
Table 16. Maximum Lateral Deflection	31

CHAPTER 1

INTRODUCTION

1.1 Background

As of 2010, it is estimated that there are 1645 fixed offshore structure installations in Asia pacific region (Twomey, 2010). Among them, 300 shallow water fixed offshore structures are in Malaysian waters and about 48% of these structures has exceeded their 25-year old design life as well as reaching to the end of their productive live (Carolin, 2014). According to Malaysia Decommissioning schedule which is derived from PETRONAS Abandonment Masterplan study (PAMS) in year 1997 and updated by Petroleum Management Unit (PMU) in year 2000, the number of offshore structures needed to be decommissioned in year 2020 will be around 74 structures which are operated by various operators in three regions: namely Peninsular Malaysia Operation (PMO), Sarawak Operation (SKO) and Sabah Operation (SBO).

Due to the Brent Spar incident in 1995, operators aware that abandoning the structure in a sea can cause a serious environmental catastrophe which can damage the image of operator in the oil and gas industry and, it is, therefore, 'sustainable' decommissioning should be practiced.

1.2 Problem Statement

Decommissioning is a very challenging work in nature due to its complex regulatory structure and process as well as the involvement of high cost. Form the many researches and studies, complete removal option in decommission requires not only much more budget but also more energy consumption than reusing option. Therefore, it can be said that reusing and refurbishing the steel structure can save energy and materials required for building a new one for such a use, in the absence of the reused materials. Not only would that, reusing eliminate tones of streel from the waste stream.

When the platform (substructure and/or topside structure) is considered for reuse purpose, structural assessment should be carried out to ensure that it is in (or can be returned to) an acceptable condition (API, 2000). As jackets are mainly made of steel, the reuse of decommissioned platforms' jackets is a conceptually viable possibility (Lun, Zawawi, & Liew, 2012). Steel is renowned for its strength, durability and functionality. The sturdy design of jackets and the relatively tranquil conditions of local waters are a boon to the reusing of these jackets as an opportunity to derive economic and/or scientific benefits. During the reusing process, the main concern that can be encountered is the welded steel connections such as between jacket leg and bracings, because welding connections are known to be susceptible to fatigue damage (Ayob, Kajuputra, Mukherjee, & Wong, 2014)

Therefore, this paper will mainly focus on the structural integrity assessment and analysis of the jacket legs of the decommissioned structure, where the jacket legs are modified and refurbished, if there are any anomalies present during structural assessment process, for reuse purpose.

1.3 Objective

The objective of this research is

- To establish the structural inspection on the existing structure for reuse purpose.
- To conduct structural analysis on the structure to ensure its structural integrity.

1.4 Scope of Study

This project focuses mainly on the reuse of the jacket legs of the decommissioned fixed offshore structure. Structural steel has been long recognized and acclaimed for its strength, durability, functionality and dry construction method whilst the welded steel connections are being susceptible to fatigue damage. In this study, the jacket legs are refurbished with new welding technology and bracing system and analyzed for reuse purpose.

CHAPTER 2

LITERATURE REVIEW

2.1 Decommissioning

Decommissioning is the process which the operator of an offshore oil or gas installation and pipeline goes through in order to plan, gain approval for and implement the removal, disposal or re-use of an offshore installation when it is no longer needed for its current purpose (Bemment, 2001).

The decommissioning process involves closing down operations at the end of field life including permanently abandoning wells, properly disposing of hydrocarbons and chemicals, making the platform safe, and removing some or all of the facilities and reusing or disposing of them as appropriate (API, 2014). PETRONAS "Guideline for Decommission of Oil and Gas Installation" had identified four main phases: field review, pre-decommissioning and implementation and post-decommissioning.

Figure 1. Decommissioning Process (Roslina Misman & Salamah Saad, 2004)

Decommissioning alternatives can be generally categorized into four categories: complete removal, partial removal, toppling (either as in-situ disposal of the structure

or as artificial reefs), and reusing. According to International Maritime Organization (IMO) Guideline (1989), all structure installations require total removal with the exception of partial removal for some cases. More than 97% of Malaysia Platforms require total removal (R. Misman & S. Saad, 2004)The options for decommissioning of the various components of the offshore structure is show in Figure 2.

Figure 2. Decommissioning Options (Beheshti, 2014)

2.2 Structural Integrity Management

Structural integrity is one of the main concerns for platforms where the major modification is made or fatigue in jacket member or aging one (Soom et al., 2015).Structural integrity assessment for reusing the structure will be based on the re-evaluating the modified structure based on the inspection of current structural condition.

American Petroleum Institute (API) has developed a Structural Integrity Management (SIM) which is a continuous monitoring process to demonstrate the fitness-forpurpose of an offshore structure. SIM provides not only knowledge and understanding on the effects of deterioration, damage, changes in loading, and accidental overloading but also framework for inspection planning, maintenance, and repair of an offshore structure. Therefore, SIM has been used to provide decision making support from installation till decommissioning of the platform, to ensure the integrity of the offshore structure. The SIM process consist of (4) main processes as shown in Figure 3.

Figure 3. SIM Process (API)

In offshore structure, degradation mechanisms will occur overtime and can affect the safety and reliability of the structures. A comprehensive methodology for the survey and inspection of the offshore structure is needed to develop and based on the results obtained from these survey and inspection the structure can then be determined whether it is fit for service or reuse (Nezamian & Clarke, 2014) (Ayob et al., 2014).

As per API RP2A-WSD (2005), an assessment of used structures for reuse purpose should begin with the reviewing of existing documentation from the original construction of the structure, together with results of any past in-service surveys. Hence, structural integrity assessment for reusing the structure will be based on the survey and inspection result of the re-evaluating of the current structure condition.

2.3 Strength Degradation Mechanism

2.3.1 Fatigue on welds

Fatigue is one of the mechanisms that contribute to the degradation of the offshore structure (Nezamian & Clarke, 2014). Fatigue is a very local phenomenon, influenced by local geometry, weld defects induced by the fabrication process and corrosion wastage. (Dong, Moan, & Gao, 2012). The presence of fatigue cracks introduces a compromise on the integrity of the structure or its components. Fatigue cracks grow

because of tensile stresses; corrosion of a metal is accelerated if the metal is subjected to tensile stress (El-Reedy, 2012). According to Dong, et al. (2012), crack growth normally starts from weld defects with a depth of say 0.1 mm and are driven by cyclic, tensile stresses. Cracks in jacket are confined to the tubular joints due to the large stress concentration in such joints (as show in Figure 4). It is noted that the crack size in a shell structure like the tubular joint, increases linearly with time. Hence, a significant reserve life remains when the crack has propagated through the thickness.

Figure 4. Crack growth stages and fracture in a tubular K-joint in a jacket platform (Dong, et al., 2014)

The critical components in an offshore steel platform are the steel tubular members and the associated joints, which are highly susceptible to fatigue, formed by welding the members (Rajasankar, Iyer, & Appa, 2003). Since fatigue load at weld tubular joints are the of high stress concentration, those locations should be estimated by evaluating the hot-spot stress range (HSSR) and using it as input into the appropriate S-N curve.

2.3.2 Corrosion Mechanism in the Jacket Structure

Another important strength degradation mechanism in offshore structure, especially on jacket legs, are the corrosion which is due to the effect of severe weather condition in the sea (Dong et al., 2012). Normally, the general corrosion rate for steel in sea water is approximately 0.1 mm/year. According to Moan, the corrosion rate may fluctuate between 0.04 to 1.2 mm/year, which exhibits a very large scatter depending upon location in the structure. Corrosion can be prevented by providing corrosion prevention coating for topside structure and cathodic protection system for underwater structure (Ayob et al., 2014). According to API RP2A WSD, corrosion protection should be designed in accordance with NACE RP-01-76 if it is not specified by the designer. Nominal stresses can be increased by corrosion wastage which causes the reduction of the cross-section's wall thickness, resulting in an earlier fatigue failure and also reducing the ultimate strength capacity of the structure (Dong et al., 2012).

2.3.3 Scouring Effect in the Jacket Structure

As per API RP2A-WSD, scouring is defined as the removal of seafloor soils caused by currents and waves. This phenomenon can either be due to the natural geological process or resulting from the interrupting the natural flow regime near the seafloor by the structural elements. Scouring can anticipate the problem of structural instability and therefore, it is essential to perform a scour protection to safeguard structure (Whitehouse, Harris, Sutherland, & Rees, 2011). In an offshore structure, both lateral and axial pile performance as well as pile capacity are affected by seabed scouring. According to Whitehouse et al. (2011), there is still high uncertainty on the potential scouring depth to the structure. But somehow, sediment transport studies can assist in defining scour to some extent and from industrial practice, ROV inspection is the best alternative to monitor the scouring (El-Reedy, 2012). Scour occurring around the offshores piles can be grouped into local and global scouring.

- General or global scour: In this case, the area of piles is affected by scouring and is usually twice of the area that is covered by the platform.
- Local scour: This type of scour can be found around the specific area of the structure, such as the piles.

Even though scouring does not have a problem for cohesive soil, scouring should be considered for cohesionless soil because during the scouring process, the later soil support is reduced and causing to increase in pile maximum bending stress (El-Reedy, 2012).

2.4 Basic Structural Analysis for Integrity Assessment

Structural assessment involved the evaluation of the platform using analytical methods, either performing a linear or nonlinear structural analysis, that compare the estimated performance of the platform against acceptance criterion (Salleh, 2014) . According to El-Reedy (2012), non-linear structural analysis, in-place analysis, is very important for defining the condition of the structure. Both linear and nonlinear structure analysis have been developed within the framework of two main categories, which are, the force (or flexibility) method and the displacement (or direct stiffness) method (Przemieniecki, 1985; Triantafyllou & Koumousis, 2014). From the study of El-Reedy (2012), in offshore structure, both the piles and joint of the structures are not comply with the code. Hence, survey should be concentrated on these connections with close visual inspection. El-Reedy (2012) also stated that determination of which of the main members and joints could affect structural reliability (e.g., a cantilever with a very high unity check ratio) can be sufficiently determined by in-place analysis.

2.5 Structural Inspection

In API RP2A_WSD (2007), it is stated that when the platform is considered to be reused, current structure condition is required to be inspected to ensure to be in an acceptable condition. Inspection of offshore structure has to be conducted to maintain the adequacy of corrosion protection system and evaluate the condition of platform to ensure it can ensure that structural integrity is maintained, safeguard human life and property, protect the environment and prevent from loss of natural resources (May, 2009).

For the PETRONAS operating platforms, there is a specific guidance for inspection plan, such as PETRONAS Carigali Inspection and Maintenance Guidelines (CIMG). The risk-based strategy optimized the future inspection requirements and focus valuable resources on the platforms "most at risk". Such platforms will be inspected more frequently and using more detailed inspection surveys, whereas low risk ranking platform will have less frequent and less stringent inspections.

Inspection plan defines the frequency and scope of the inspection, the tools/techniques to be used and the deployment methods (API, 2014). It is also developed for the operated platforms and shall cover a number of years. This plan can be periodically

updated throughout the platform's service life following receipt and evaluation of relevant SIM data (e.g. inspection data, results of platform assessments, etc.).

In recent years, risk based approaches to optimizing inspection requirements for offshore platforms has become more widespread, with companies such as Exxon-Mobil, BP and Shell pioneering the approaches that are now beginning to be documented and made available to the public. Using risk-based principles offshore oil and gas operators are able to optimize their inspection resources to be more cost effective and to reduce the operating cost (PCSB, 2014). To-date, implementation of a risk-based inspection program has been at the discretion of the oil and gas operator, with little industry guidance in the form of recommended practice or regulations available to the engineers.

By implementing Risked Based Underwater Structure Inspection (RBUI) for an offshore structure, minimized the risk, and cost for inspection can be minimized when compare with traditional underwater inspection plan. From RBUI, the risk of each platform can be identified and an appropriate inspection program can be designed to manage the risk so that it doesn't fail (Potty & Akram, 2011). The RBI process consists of performing risk assessment of structure; determine inspection frequency and scope of work. The risk assessment is done to determine the current and anticipated condition of the platform. The main results expected from risk based inspections are as follow (Nezamian & Clarke, 2014):

- 1. Identification of the areas or components where critical damages may occur;
- 2. Inspection campaign for each asset of the unit;
- 3. Specification of the inspection methods to be used;
- 4. Intervals during the operating life;
- 5. Methodology to review, update and optimize the program.

CHAPTER 3

METHODOLOGY

3.1 Project Work

3.2 Platform Specification

The platform to be used in this project is the Yetagun-B, a production platform operated by PC Myanmar (Hong Kong) limited, located in Yetagun gas/condensate field of Adman Sea in Myanmar Water. The detail specification is as follow:

Particulars	Unit	Yetagun B
Design Safety Category		Manned
Installed		1999
Water Depth	m	103.63
Jacket Height	m	119.63
Air Gap	m	1.524
Deck Elevation	m	26.52
Long Framing		X
Tran Framing		Х
No. of Legs		8
No. of Vertical Bay		6
Jacket Weight	MT	7300
Deck Weight	MT	11632
No. of Deck		4
No. of Cassions		8
No. of Riser		1
Base Length	m	67.616
Base Width	m	40.427
Manned		Yes
Cathodic Protection		Sacrificial Anode
Design Life Years		25
Main Pile		None
Skirt Pile		12nos, (Dia. 84"), three skirt piles at each
		jacket corner legs

Table 1. Platform Specification

3.3 Structural Inspection

As per API RP2 SIM, structure inspection should be carried out to monitor known defects, damage, local corrosion, scour, or other conditions that could potentially affect the fitness-for-purpose of the platform structure, risers and J-tubes, conductors, or various appurtenances which is the key feature of selection of appropriate tools/techniques, work scope to define the objective. As discussed earlier, jacket leg,

which are made of steel is renowned for its strength, durability and functionality, whilst welded steel connections between jacket leg and bracings, which are known to be susceptible to fatigue damage(Lun et al., 2012). Therefore, underwater structural inspection is conducted to assess the current condition of the structure. As per API RP2A, underwater structure inspection can be categorized into four levels as follow.

1. Level I

In this level, the inspection consists of verification the performance of cathodic protection system as Underwater Structural Inspection and Visual Inspection of topside structure to find anomalies such as coating damage, corrosion on structure, and bent, missing, or damaged members. If the damage on topside structure is present, nondestructive testing (NDT) should be use when visual inspection cannot fully determine the extent of damage. When there is an indication of damage in Underwater Structural, Level II inspection should be conducted as soon as possible.

2. Level II

Level II inspection is a general Underwater Structural visual inspection by means of the divers or remotely operated underwater vehicle (ROV) to find the presence of the following;

- 1. Excessive Corrosion
- 2. Accidental or environmental overloading.
- 3. Scour seafloor instability, etc.
- 4. Fatigue damage detectable in a visual swim-around survey.
- 5. Design or construction deficiencies.
- 6. Presence of debris.
- 7. Excessive marine growth.

Inspection on the measurement of cathodic potentials of pre-selected critical areas using the divers or ROV is also included. Any detection of structural damages during Level II inspection becomes the basis for initiation of Level III Inspection.

3. Level III

This level consists of Underwater Structural visual inspection on preselected area or based on the results of the Level II Inspection, known anomalies. Such area of known anomalies should be clean of marine growth to permit thorough inspection. Flooded Member Detection (FMD) is an acceptable alternative to close visual inspection (Level II) of preselected or selected areas.

4. Level IV

It consists of underwater nondestructive testing on preselected locations or based on Level III inspection. A Level III and/or Level IV survey of fatiguesensitive joints and/or locations susceptible to cracking could be used to detect early stage fatigue cracking. If crack indications are reliably reported, they should be assessed by a competent engineer. Suspected false alarms may be resolved by a second inspection using a different method or by shallow surface grinding.

Since underwater structure inspection can cost a huge sum of budget, it is, therefore, 2014 underwater structure inspection result of Yetagun-B platform is used to conduct structural integrity assessment. The result is then compared with the Yetagun-B Design Data to check whether the current condition is complying with the design criteria.

If the structure condition meets the design criteria, a structural analysis can be directly carried out. Otherwise, a modification or refurbishing of the structure has to be made to ensure its integrity before the structural analysis.

3.4 Structure Analysis

Basic structure analysis, linear analysis with pile, is performed to strength of the current member. Through this analysis, main members and joints effect on structural reliability can be determined. Push-over analysis, to determine the reserved strength ratio (RSR), can be computed based on the in-place analysis. RSR provides the ultimate strength of the structure over 100 year environmental loading (Ayob et al., 2014).

In this structure analysis, since the type of reuse purpose is not known here and due to several constraints such as time, it is assumed that the topside loading is same as the loading before decommissioning. Based on the structure analysis results, structure can be determined whether there is potential for reuse purpose. If the analysis prove that the structure has sufficient strength, it can be considered for reuse otherwise refurbishing or modification is made and analysis has to be performed again on refurbished/modified structure.

3.4.1 Materials Properties

The material properties used in the analysis are as follows:

PROPERTY	VALUE
Modulus of elasticity	200,000 N/mm ²
Shear modulus	76,900 N/mm ²
Poisson's ratio	0.3
Steel density	7850 kg/m^3
Seawater density	1020 kg/m^3
Marine growth density	1300 kg/m^3

Table 2: Material Properties

3.4.2 Design data

The following arte the specific design data used for the structural analysis.

3.4.2.1 Water depth

Water depth relative at the Yetagun B platform location is as given in Table 3.

Platform	Water Depth w.r.t. Mean Sea Level (MSL) (m)
Yetagun B	103.63

Table 3. Water Depth

3.4.2.2 Tides

Tidal levels relative to MSL are given as given in Table 4.

Tide	Level (m)	
Lowest Astronomical Tide (LAT)		- 2.0
Highest Astronomical Tide	2.0	
Maximum Storm Surge	1 Year	± 0.4
(SS)	100 Years	± 0.6

Table	4.	Tidal	Levels

3.4.2.3 Design Water Depth

The design still water depth used for in place analysis is given in Table 5.

Item	MSL (m)
1 Year Minimum Water Depth	101.23
1 Year Maximum Water Depth	106.03
100 Years Minimum Water Depth	101.03
100 Years Maximum Water Depth	106.23

Table 5. Design W	ater Depth
-------------------	------------

3.4.2.4 Wind Data

The wind force is assumed to act simultaneously and collinearly with wave and current forces. The wind speeds given in Table 6 are considered for the In place analysis.

Table 6	5. Wind	Data
---------	---------	------

	Omni Directional						
Description	1 Year Operating Storm	100 Years Storm					
1 Minute Mean Wind Speed (m/s) at 10m MSL	21	31					

3.4.2.5 Wave Data

•

Stokes' fifth order theory shall be used for in-place analysis using the wave height and associated apparent period listed in Table 7.

	Omni Directional						
Description	1 Year	100 Years					
	Operating Storm	Extreme Storm					
Maximum Wave Height (m)	8.8	11.8					
Associated Period (s)	8.9	10.8					

Table 7. Wave Data

3.4.2.6 Current Data

The maximum current speeds (m/s) that can occur simultaneously with the maximum wave are as given in Table 8.

	Omni Directional								
Current	1 Year	100 Years							
	Operating Storm	Extreme Storm							
L ₀ (103.63 m)	1.0	1.2							
L _{25%} (77.72 m)	0.9	1.0							
L _{MD} (51.82 m)	0.7	0.8							
L75% (24.91 m)	0.6	0.7							
L _{1m} (1 m)	0.4	0.4							

3.4.2.7 Marine Growth

For the purpose of calculating wave loading, the marine growth thickness given in Table 9 will be applied on the radius of all structural members and appurtenances below MSL.

Table 9. Marine Growth Data

Elevation (m)	Marine Growth Thickness (mm)
Surface to (-) 53.0	25
(-) 53.0 to (-) 85.0	50
(-) 85.0 to Mudline	25

3.4.3 Basic Load Cases (Operating Gravity Loads)

Even though this analysis is for the reuse of decommissioned jacket structure, the following basic load case before decommissioned condition is applied for the analysis as the new purpose of the use of structure is unknown. Therefore, an assumption is made that there is no difference in loading cases.

Load Case	Description	Load Case	Description
1	Computer Generated Structural Dead Load	33	10 Year Operating Wave + Current @ 0 Deg.
2	Non-Simulated Structural Dead Load	34	10 Year Operating Wave + Current @ 57 Deg.
3	Equipment Weights - Dry	35	10 Year Operating Wave + Current @ 60 Deg.
4	Equipment Weights - Operating	36	10 Year Operating Wave + Current @ 90 Deg.
5	Equipment Weights - Hydrotest	37	10 Year Operating Wave + Current @ 117 Deg.
6	Piping / Cabling Bulks	38	10 Year Operating Wave + Current @ 120 Deg.
7	Open Area Load – Sub-Cellar Deck (150PSF)	39	10 Year Operating Wave + Current @ 123 Deg.
8	Open Area Load – Cellar Deck (150 PSF)	40	10 Year Operating Wave + Current @ 180 Deg.
9	Open Area Load – Main Deck (150 PSF)	41	10 Year Operating Wave + Current @ 237 Deg.
10	Upper Deck Blanket Load (600 PSF)	42	10 Year Operating Wave + Current @ 243 Deg.
11	Spare Load Case	43	10 Year Operating Wave + Current @ 270 Deg.
12	Spare Load Case	44	10 Year Operating Wave + Current @ 300 Deg.
13	Spare Load Case	45	10 Year Operating Wave + Current @ 303 Deg.
14	LQ/HD Misc/Arch/Equip/Piping etc.	46	100 Year Monsoon Wave + Current @ 0 Deg.
15	LQ/HD Live Load	47	100 Year Monsoon Wave + Current @ 57 Deg.
16	LQ/HD Laydown Load / Roof Load	48	100 Year Monsoon Wave + Current @ 60 Deg.
17	Piping Load on Bridge (2300 Kg/m)	49	100 Year Monsoon Wave + Current @ 90 Deg.
18	Walkway Live Load Bridge (150 PSF)	50	100 Year Monsoon Wave + Current @ 117 Deg.

10	Flare Pip. Walkway Dead Load	51	100 Year Monsoon Wave
19	(Present)	51	+ Current @ 120 Deg.
20	Flare Walkway Live Load	50	100 Year Monsoon Wave
20	(Present)	52	+ Current @ 123 Deg.
21	Spore Load Cose	52	100 Year Monsoon Wave
Δ1	Spare Load Case	55	+ Current @ 180 Deg.
22	Spore Load Case	54	100 Year Monsoon Wave
	Spare Load Case	54	+ Current @ 237 Deg.
23	Crane Moment 0 Deg	55	100 Year Monsoon Wave
23	Crane Moment – 0 Deg.	55	+ Current @ 243 Deg.
24	Crane Moment 00 Deg	56	100 Year Monsoon Wave
24	erane Woment 70 Deg.	50	+ Current @ 270 Deg.
25	10 Vear Wind Load 0 Deg	57	100 Year Monsoon Wave
23	10 Teal wind Load - 0 Deg.	57	+ Current @ 300 Deg.
26	10 Vear Wind Load 90 Deg	58	100 Year Monsoon Wave
20	10 Tear White Load - 90 Deg.	50	+ Current @ 303 Deg.
27	10 Year Wind Load - 180 Deg	50	Jacket Appurtenances
27	10 Tear White Load - 100 Deg.	57	Weight
28	10 Year Wind Load - 270 Deg.	60	Boat Landing live Load
20	100 Vear Wind Load - 0 Deg	61	CG Shift Reaction
2)	100 Tear White Load - 0 Deg.	01	Towards Row B
30	100 Year Wind Load - 90 Deg.	62	Spare Load Case
31	100 Year Wind Load - 180 Deg.		
32	100 Year Wind Load - 270 Deg.		

3.5 **Project Key Milestones**

Project activities		Week												
		2	3	4	5	6	7	8	9	10	11	12	13	14
Analyzing the underwater structure inspection result.														
Submission of Progress Report														
Conducting in-place analysis using SACS software														
Pre-Sedex														
Submission of Final Report														
Submission of Technical Report														
Final Viva & Submission of Hardbound Thesis														

3.6 Gantt Chart

Project activities		Week													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Data findings															
Analyzing the underwater structure															
inspection result.															
Submission of Progress Report															
Conducting push over analysis using SACS															
software															
Finalizing the project															
Submission of Final Report															
Submission of Technical Report															
Preparing for Viva															
Final Viva															

3.7 Tools Required

SACS V 5.7

It is used to perform in-place analysis of the offshore structures

Volo View 3/ AutoCAD

This tool is used to view the structural drawing files of Offshore Structure.

Abode Acrobat 6.0

This software is used to review digital documents and references such as manual, report and standards.

CHAPTER 4

RESULT AND DISCUSSION

4.1 Structural Integrity Assessment (Underwater Structure Inspection)

Underwater structure inspection 2014 report is studied to assess the current condition of the structure. From the report, anomalies are found and compared with the acceptance criteria as per design data book.

4.1.1 Underwater Inspection Result

The inspection findings result and acceptance criteria for each inspection are discussed in detail as below.

1. Flooded Member Detection (FMD)

Inspection result: A Flooded Member Detection survey was performed on 58 members and leg sections. No members or leg sections were found to be flooded.

Acceptance Criteria: All horizontal and vertical diagonal structural members have to be non-flooded.

2. Cathodic Protection (CP)

Inspection result: Contact CP readings acquired during survey ranged from good to low with seven (7) anomalous readings reported. CP potentials acquired from the platform structure ranged from -881mV to -1011mV ref Ag/AgCl. The seven (7) anomalous potentials ranged from -623mV to -773mV ref Ag/AgCl. The anomalous CP potentials were acquired on B1/2 Skirt Pile and Catcher Plate and on B4/5 Skirt Pile. Two (2) areas of corrosion staining were reported on Skirt Piles B1/2 and B4/5. No corrosion pitting was observed.

Acceptance Criteria: CP standard reading range with Ag/AgCl Reference Probe is -800mV to -1050mV.

3. Anodes Inspection

Inspection result: Most anodes observed on the platform were considered to be in good condition, securely attached. One (1) anode wastage anomaly was reported on Level 10 EL (-) 101.860m on member HD-A1L10-D5L10, where the anode appears to be 75% depleted. Ninety-seven (97) anodes were reported with depletions ranging from 0%-25%; One hundred and ninety-two (192) were reported with depletions ranging from 25%-50%; Sixty-four (64) anodes were reported with depletions ranging from 50%-75% with thirty-four (34) anodes reported obscured by marine growth.

Acceptance Criteria: Anode with wastage > 75%.

4. Debris Survey

Inspection result: Fifty-three (53) debris items were reported on or around the platform. None appeared to have caused any structural damage to the platform. Thirty-one (31) debris items were reported as anomalous; with metallic debris accounting for sixteen (16) anomalies.

Acceptance Criteria: - Debris related to other anomalies.

- Debris that constitutes a safety hazard for the underwater operations and cannot be removed immediately.

5. Marine Growth

Inspection result: Light marine growth coverage was reported from EL (-) 20m to the seabed elevation. Marine growth measurements were taken on Leg B1 at the 12 o'clock position of the node at each plan elevation and at the midpoint between each elevation from EL (-) 20m to seabed.

Average Marine growth coverage EL (-) 20.0m to EL (-) 65.0m:

Hard: Average 92% cover overall, 38mm in thickness.

Soft: Average 95% cover overall, 75mm in thickness

Average Marine growth summary EL (-) 65.0m to EL (-) 103.0m:

Hard: Average 21% cover overall, 9mm in thickness.

Soft: Average 88% cover overall, 11mm in thickness.

Acceptance Criteria: Marine Growth Allowance (Hard) as per design specification is

- 0-60 m is 10.1 cm
- 60-103 m is 5.2 cm

6. Damage

Inspection result: Six (6) areas of damage were reported on the structure. All six (6) areas of damage were reported as dents on the edge of Skirt Pile Catcher Plates A4/4, A4/5, A4/6, B4/4 and A1/1. One (1) Lack of Integrity anomaly was reported in relation to a disconnected grout pipe on Leg A2 at EL (-) 65m.

Acceptance Criteria: Exposed surface and structural steelwork exhibiting protective coating deterioration, corrosion pitting, or Physical Damage

7. Scour

Inspection result: Fourteen (14) scour measurements were taken along the mudline members and around the base of Legs and Skirt Piles. Ten (10) anomalous scour measurements were reported for scour around the base of Legs A1, A4, B1, B2, B3 & B4 and Skirt Piles A1/3, A4/4.

Acceptance Criteria: - Greater than 3.5 meter below the mudline members. - Exposed piles.

4.1.2 Underwater Inspection Discussion

Based on the comparison between inspection report and design data, it has been found out that there are total of sixty-one (61) anomalies were recorded from Yetagun-B. Thirty-one (31) Debris anomalies were observed on or around the structure. Among them, sixteen (16) were metallic debris items, and none of them appeared to have caused any damage to the structure. Six (6) Lack of Integrity anomalies were observed; Two (2) were reported in relation to corrosion staining on Skirt Piles B1/2 and B4/5; Three (3) were reported in regards to slipped liners on Skirt Piles A1/2, B1/3 & B4/4; One (1) was reported in relation to a disconnected grout pipe on Leg A2 at EL (-)65m. Six (6) Damage anomalies were reported; all six (6) anomalies were reported in relation to dents on the top of Skirt Pile Catcher Plates A4/4, A4/5, A4/6, B4/4 and A1/1. Ten (10) Scour anomalies were reported around the base of Legs A1, A4, B1, B2, B3 & B4 and Skirt Piles A1/3, A4/4. Seven (7) Cathodic Protection anomalies were reported for contact CP potentials acquired which fall outside the accepted range -800mV to -1050mV Ref Ag/AgCl. The anomalous CP potentials were acquired on B1/2 Skirt Pile and Catcher Plate and on B4/5 Skirt Pile ranged from -623mV to -773mV ref Ag/AgCl. One (1) Anode Wastage anomaly was reported on Level 10 EL (-) 101.860m on member HD-A1L10-D5L10.

Anomaly Code	Description	Number
AW	Anode Wastage	1
СР	Cathodic Potential	7
SC	Scour measurement	10
LI	Lack of Integrity	6
DB	Debris	31
PD	Damage	6
Total		61

Table 11. Anomaly Summary of Yetagun B

Based on the inspection findings, the anomalies present are mostly on a corrosion protection system such as cathodic protection (CP). There is no sever structure damage in the jacket. Other than CP and anode anomalies, all of the anomalies are within acceptance criteria.

For cathodic protection anomalies, it is found out that Yetagun B was receiving adequate cathodic protection; except for Skirt Piles B2 & B5 which are believed to be isolated case. There are two potential causes of this anomalies. The first one is, during the survey with ROV (remotely operated vehicle), it has been found out that skirt pile B2 and B5 are exposed above the sea bed, which is approximately about 1m. As per the cathodic protection design of Yetagun B, the cathodic protection for skirt piles are believed to be designed for sharing with jacket legs. It is, therefore, the cathodic protection current is shared by means of eelectrical continuity between the skirt piles

and jacket legs, relying on the yoke plates which are welded between jacket legs and skirt sleeves.

Even though the corrosion protection anomalies are not abundant, it should not be less cared because the probability of corrosion on the structure can be increased with time when it is exposed to the sea without full protect. Redesigning the current sacrificial anode or using another type of cathodic protection such as hybrid, to achieve its acceptance criteria is the one of the option to rectify the anomalies. The another option is to provide the electrical continuity between the skirt sleeve or jacket leg to the skirt piles by means of welding or fusion bond or mechanically by clamp.

Therefore, other than few CP anomalies, the structure can be said to be in good integrity and reliability. A structural analysis, in place analysis, will be carried out to determine the strength of the structure for reuse purpose.

4.2 Structural Integrity Analysis

4.2.1 Structural Analysis Results

4.2.1.1 Jacket and Topside Operating Loadings

The total vertical load including dead load of the structure, operating loads of the equipments, piping and cable bulk load, bridge loads, jacket appurtenances and live loads is **172772.3 kN** based on SACS model. The vertical loads on the platform is shown in Table 12.

	Load including
Description	Contingency
	(kN)
Computer Generated Structural Dead	59479.2
Non-Simulated Structural Dead Load	12109.6
Equipment Weights - Operating	46493.3
Piping/Cabling Bulks	13180.8
Open Area Load - Sub-Celllar Deck	467.9
Open Area Load - Cellar Deck	3835.7
Open Area Load - Main Deck	5379.4
Upper Deck Blanket Load	8288.5
Hook-up Piping Operating Load on New Deck Extension	89.9
Living Quarter / Heli Deck Miscellaneous / Equipment / Piping	3435.1
Living Quarter / Heli Deck Live Load	1528.8
Living Quarter / Heli Deck Laydown Load / Roof Load	4301.2
Piping Load On Bridge (2300 kg/m)	1838.5
Flare Walkway Dead Load	1334.6
Live Load On New Extension	222.8
New Piping Load On Existing Bridge	210.0
Jacket Appurtenances Weight	7417.8
Boat Landing Live Load	23.9
Crane Boom Rest Load	80.5
Yetagun C Bridge Loads	3055.0
Total Load	172772.3

4.2.1.2 Basic Load Case

The loads generated by the computer program for all the basic load cases are listed in Appendix-4.

4.2.1.3 Combined load case summary

The loads generated by the computer program for all the combined load cases are listed in Appendix-5.

4.2.1.4 Member Group Unity Check Ratio

The jacket structure is analyzed for the various load cases and load combinations. The members are checked for the combined axial and bending stresses against the AISC / API permissible stresses. The detail of Unity Check ration summary is described in Appendix-6.

Mombor	Group ID	Load	UC	Domonka
Member		Comb		Remarks
685-621	D12	75	0.86	O.K
785-621	D41	68	0.90	O.K
605- 621	D42	68	1.02	Marginally Overstressed. *
785-689	DA1	78	0.92	O.K
691-595	DA2	78	0.91	O.K
495-449	DA3	78	0.89	O.K
591-514	DB3	78	0.95	O.K
485-448	DD3	74	0.84	O.K
705-751	H04	66	0.80	O.K
606-717	H16	74	0.89	O.K
689- 691	H22	77	0.82	O.K
589- 591	H37	77	0.80	O.K
509-511	H49	68	0.82	O.K
189-107	H86	76	0.82	O.K
285-384	LG3	75	0.86	O.K
385-485	LG4	75	0.86	O.K
485-585	LG5	75	0.88	O.K
664- 670	LGG	74	0.82	O.K
670-99AG	LGL	74	0.81	O.K

Table 13. Members Group UC Ratio (> 0.80) Summary

295-396	LGR	77	0.92	O.K
384- 385	LGS	75	0.86	O.K

4.2.1.5 Joint Punching Shear Unity Check Ratio

The joint punching shear for all the tubular joints is checked based on API RP-2A. Joint punching shear for joints with UC > 0.50 are summarized in Table 14. The complete set of result is given in Appendix -7.

	Memb	er Size	Yield	Lood	Strongth		
Joint	Diameter	Thickness	Stress	UC	UC	Remarks	
	(cm)	(cm)	(N/mm^2)				
189	222.5	8.5	325.0	0.674	0.317	O.K	
751	61.0	2.5	345.0	0.603	0.263	O.K	
109	222.5	8.5	325.0	0.601	0.317	O.K	
591	220.5	7.5	325.0	0.560	0.338	O.K	
409	219.5	7.0	325.0	0.457	0.546	O.K	
411	219.5	7.0	325.0	0.451	0.546	O.K	
489	219.5	7.0	325.0	0.497	0.546	O.K	
491	219.5	7.0	325.0	0.495	0.546	O.K	
191	222.5	8.5	325.0	0.546	0.317	O.K	
111	222.5	8.5	325.0	0.507	0.317	O.K	
495	219.5	7.0	325.0	0.506	0.307	O.K	
511	220.5	7.5	325.0	0.504	0.338	O.K	

Table 14. Joint UC Ratio (> 0.50) Summary

4.2.1.6 Pile Foundation Summary

The piles are checked for the various load cases and load combinations and the UC ratios are within the allowable limit. The pile maximum UC summary is given in Appendix -8.

The foundation / pile loads obtained from SACS for Yetagun B jacket platform are given in Table 15 and the SACS output for maximum axial capacity summary is provided in Appendix-9.

Joint	Pile Group	OD (mm)	Self-Weight of Pile (kN) *	Penetr- ation (m) *	Pile Capacity (kN) *	Pile Head Load (kN)	Total Load (kN)	Load Case	Safety Factor
181	PS1	2134	2922.5	100.5	51725	25033.0	27955.5	274	1.85
183	PS1	2134	2922.5	100.5	51725	27014.5	29937.0	275	1.73
148	PS1	2134	2922.5	100.5	51725	26400.4	29322.9	275	1.76
103	PS1	2134	2922.5	100.5	51725	24374.0	27296.5	270	1.89
101	PS1	2134	2922.5	100.5	51725	22306.7	25229.2	272	2.05
146	PS1	2134	2922.5	100.5	51725	23369.8	26292.3	270	1.97
199	PS2	2134	2638.1	93.5	48824	21291.3	23929.4	278	2.04
197	PS2	2134	2638.1	93.5	48824	23138.7	25776.8	277	1.89
149	PS2	2134	2638.1	93.5	48824	22187.8	24825.9	277	1.97
119	PS2	2134	2638.1	93.5	48824	19168.1	21806.2	267	2.24
117	PS2	2134	2638.1	93.5	48824	21138.0	23776.1	268	2.05
147	PS2	2134	2638.1	93.5	48824	19987.2	22625.3	268	2.16

Table 15. Maximum Pile Loads Summary (Design Environmental Conditions with appropriate production loads)

4.2.1.7 Maximum Lateral Deflection

The maximum lateral deflections at the top of jacket leg EL (+) 7.620 m and mudline level EL (-) 103.63 m are given in **Error! Reference source not found.**. he detail output on maximum joint displacements is described in Appendix - 8.

Top of Jacket	Lateral I (c)	Deflection m)	Mudlin e	udlin e Lateral Deflection (cm)			ctive ection m)
Node	Global X	Global Y	Node	Global X	Global Y	ΔΧ	ΔΥ
905	-9.70	-20.88	104	-4.16	-3.35	5.54	17.53
909	-9.82	-20.18	10	-3.65	-4.67	6.17	15.51
911	-9.87	-19.47	12	-2.91	-4.53	6.96	14.94
915	-9.95	-18.71	116	-1.87	-3.17	8.08	15.54
985	-9.53	-20.52	184	-4.26	-4.54	5.27	15.98
989	-9.68	-19.97	90	-3.66	-4.28	6.02	15.69
991	-9.80	-19.38	92	-2.91	-4.24	6.89	15.14
995	-9.93	-18.63	196	-1.79	-4.11	8.14	14.52

Table 16. Maximum Lateral Deflection

4.2.2 Structural Analysis Discussion

The basic structural analysis for Yetagun B jacket has been performed and the results are summarized in Table 13,14,15 and 16.

The jacket structure is analyzed for the various load cases and load combinations. The members are checked for the combined axial and bending stresses against the AISC / API permissible stresses. From the

Table 13, the analysis shows that the stresses in members of jacket structure are within permissible limit of UC <1 and except one member is marginally overstressed (UC is 1.02). Since the member having UC>1.02 is a secondary member, it is still acceptable. Therefore, it can be said that all the steel members are found out to be in satisfactory for in-service condition.

The joint punching shear for all the tubular joints is checked based on API RP-2A. Based on the results of the analysis, as in Table.14 and Appendix 7, show that all the joints have sufficient strength.

As per API RP2-A, Section 6.3.4, the factor of safety is 1.5 for Design Environmental Conditions with appropriate production loads. The factor of safety for all pile heads, as shown in Table 15 are greater than the factor of 1.5. Hence, it is meeting the requirement of the API RP2A.

Based on the result from Table 16, maximum lateral deflections at the top of jacket at EL (+) 7.620 m are 8.14 cm in global X direction and 17.53 cm in global Y direction.

Based on the discussion above, the members, joints and piles have sufficient strength and no modification is required. Hence, this structure has a potential for reuse purpose.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Out of several alternatives, reusing of the jacket leg is one of the options for decommissioning. Based on the researches, it has been proved that steel has been long recognized and acclaimed for its strength, durability, functionality and dry construction method. Rather than disposing the steel into metal scrap yards, or constructing the new offshore with new steel, the reuse of the disposed offshore steel can greatly reduce the amount of carbon emission during steel manufacturing process as well as cost. It can be said that reusing purpose has a significant effect on the sustainability aspect of decommissioning.

Based on the inspection findings, the anomalies present are mostly on a corrosion protection system such as cathodic protection (CP). There is no sever structure damage in the jacket. Even though the corrosion protection anomalies are not severe, it should not be less cared because the probability of corrosion on the structure can be increased with time when it is exposed to the sea without full protect. Therefore, redesigning the current sacrificial anode or using another type of cathodic protection such as hybrid, to achieve its acceptance criteria. Other than CP anomalies, all of the anomalies are within acceptance criteria. Therefore, the structure has good integrity and reliability. Since there is no structure modification is needed to be made based on the structural inspection result, a basic structural analysis is then performed. A basic structural analysis (in-place analysis) is carried out to define the condition of the structure (El-Reedy, 2012).

During the in-place analysis, all the members checked for the combined axial and bending stresses against the AISC / API permissible stresses, tubular joints are checked for punching shear and pile heads are checked for UC and maximum axial capacity. Based on the result, it can be concluded that all these members, joints and

piles are within their limits and hence, it can be said that that they have sufficient strength and in satisfactory conditions.

Therefore, based on the assessment of current structure condition and basic analysis, the jacket leg has a potential for reuse purpose and objective of the research is achieved.

5.2 Recommendation

In this research, due to the constraints and unknowns, assumptions are made such as assuming the same top side loading for decommissioning case. To have a more precise results, the purpose of the reuse should be known so that the topside loading conditions can be figured out. Since the platform used in this research does not have structure damage based on under water inspection report and based on the analysis result, no modification of the structure is to be done here. Since only the basic structure analysis is performed here, further analysis such as ultimate strength analysis should be perform to ensure its structure integrity and reliability.

REFERENCES

- API. (2000). Recommended Practice for Planning, Designing, and Constructing Fixed
 Offshore Platforms—Working Stress Design (21st ed.).
- API. (2014). API Recommended Practice 2SIM Structural Integrity Management of Fixed Offshore Structures.
- Ayob, M. S., Kajuputra, A. E., Mukherjee, K., & Wong, B. S. (2014). Global Ultimate Strength Assessment of Existing Offshore Jacket Structures. Paper presented at the Offshore Technology Conference-Asia.

Beheshti, M. (2014). Decommissioning Practices for Malaysia's Upstream Facilities.

- Bemment, R. (2001). Decommissioning topic strategy: HSE Books.
- Carolin, G. (2014). Comparative Assessment of Environmental Impacts Associated with the Decommissioning of Fixed Offshore Platforms.
- Dong, W., Moan, T., & Gao, Z. (2012). Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection. *Reliability Engineering & System Safety, 106*, 11-27. doi: <u>http://dx.doi.org/10.1016/j.ress.2012.06.011</u>
- El-Reedy, M. A. (2012). *Offshore structures: design, construction and maintenance:* Gulf Professional Publishing.
- Lun, N. K., Zawawi, N. A. W. A., & Liew, M. S. (2012). Conceptual framework: Semi-PSS for sustainable decommissioning of offshore platforms in Malaysia. Paper presented at the 2012 International Conference on Statistics in Science, Business, and Engineering (ICSSBE).
- May, P. (2009). Structural integrity management framework for fixed jacket structures (1st ed.): Health and Safety Executive.
- Misman, R., & Saad, S. (2004, 24-26 March 2004). *Decommissioning of Oil and Gas Installation*. Paper presented at the PCSB 2004 Technical Forum.
- Misman, R., & Saad, S. (2004). *Decommissioning of Oil and Gas Installation*. Paper presented at the PCSB 2004 Technical Forum.
- Moan, T. (2005). Reliability-based management of inspection, maintenance and repair of offshore structures. *Structure and Infrastructure Engineering*, 1(1), 33-62. doi: 10.1080/15732470412331289314

- Nezamian, A., & Clarke, E. (2014). *Optimised Fatigue and Reliability RBI Program* for Requalification, Life Extension and Integrity Management of Offshore Structure.
- PCSB. (2014). Risked Based Underwater Inspection Guideline for Fixed Offshore Structures.
- Potty, N. S., & Akram, M. K. M. (2011). Development of a risk based underwater inspection (RBUI) methodology for Malaysia fixed offshore structure. Paper presented at the National Postgraduate Conference (NPC), 2011.
- Przemieniecki, J. S. (1985). Theory of matrix structural analysis: Courier Corporation.
- Rajasankar, J., Iyer, N. R., & Appa, R. T. V. S. R. (2003). Structural integrity assessment of offshore tubular joints based on reliability analysis. *International Journal of Fatigue*, 25(7), 609-619. doi: <u>http://dx.doi.org/10.1016/S0142-1123(03)00021-5</u>
- Salleh, F. M. (2014). Basis of Assessment (BOA) For Global Ultimate Strength Analysis (GUSA) (G. T. Solutions, Trans.): PETRONAS
- Soom, E. M., Husain, M. K. A., Zaki, N. I. M., Nor, M. N. K. M., Ayob, M. S., & Najafian, G. (2015). Global Ultimate Strength Assessment (GUSA) for Lifetime Extension of Ageing Offshore Structures.
- Triantafyllou, S., & Koumousis, V. (2014). Hysteretic finite elements for the nonlinear static and dynamic analysis of structures. *Journal of Engineering Mechanics*, 140(6), 04014025.
- Twomey, B. (2010). Study assesses Asia-Pacific offshore decommissioning costs. *Oil and Gas Journal*(15).
- Whitehouse, R. J. S., Harris, J. M., Sutherland, J., & Rees, J. (2011). The nature of scour development and scour protection at offshore windfarm foundations. *Marine Pollution Bulletin*, 62(1), 73-88. doi: http://dx.doi.org/10.1016/j.marpolbul.2010.09.007

APPENDICES

APPENDIX -1: Yetagun B Jacket in 3D Model View

Figure 5 SACS 3D Model View - Yetagun B Jacket

APPENDIX -2: Underwater Structure Inspection Report (2014) of Yetagun-B

۲		Animaly Details Report						
inghate Name: 1989 Imported	-	Event .	feet Description	-				
and it is the firm	CarringCarr		(Instrum					
*** 01000R3*	Armin Assessment These Average	*	ennes Aussaurient - Passa Aussign- Jon CP Strengt - CP Value Dev		-			
-	County For	hest	perier stuffeling feier ungen 1 kei verde 1 zum 1 weget 1 zum Genne hen fluoring- usualen 12 disektersante en zumrisch antweiser, 12 was bezweite destandet	100	Not color			
NE 18722011127	Della Letter	1818	1920 – JOŘ Falje – Jergie IXI s mole 1271 s keyle 1211 – Denn Her Faunde – James I 275228 fabrier In CONTACT REF HER LE REJERIER HERVE IST ONNIE JEDENNES	. 140	Ne (1914)			
NA 1810303342	Codes Codesary Proc	INC	zacita - routholing mile - Lengte una vivite 2001 a regist 2001 - cooke her trucking - Loudium - Crawertaduale De incoment Accelerent to live to contact in contact introverse - 400/0, no conservat cesteriyed	-	1012752			
NA PROPERTY OF IT	Dept	1818	Delini - 307 Maja - Length Tri x Hazhi Libbi k Hegyi 1231 - Delini Ber Yuzmig - Luzbick 12 trakamaani CALINY Hetulko Aviola Libbi thuk Mulartaki in Warte (columni incicivati Hebrit		NO CRUE			
ent lightablichten	Date No.	DARVE	Solve Inee Large Carls Mem 2004 straigh 2014 Solve Rev Source Lawlow (Clines Mean) 104-04 Anno 5011 St Solve Rev Internet	196	iter Selas			
	Dates SUT Pale	3834	Delma - Net Teas - Langet: Ser a Under Scher Linger Scher, Denne Ben Tearring - Lauster 19 (Teastroneen An 20x17x17 (HTH-5-Delma - K) DAALER URDRIVED.		101 (1014			
Ph Included that	Dens contrary him	ante	Toles - Radiolog Nax, Lange 10 a Walk 1224 a Hegit 1224 - Talen Toleng, Landson 12 Tolehomen In Control Technic data in Advanced To Availating 1211 val deserte 1818/001	***	the lotus			
rte incustra anale	Search Table Train	1894	Dense lider figer Lange Liter vices 2000 2000 o negati 2000 Coose fee fourier customs 10 Cooseboare LPTHE STROP IN CONTRACT RETAINING LITER IN DARIUS (BEDRYCE)	786	101 (1014)			
81 1212001011	Dates	1814	Sense instrumptions using a trial state time integri (ann - Gant Ann Thorong - Languer 13 Domainment An obstruct remned part of up of a statebol to weak up and to be avail to be avail to be avail to be avail.	190	NY COLUMN			
64 10100010010	Look Look Look	1811	Done - Suffering Nee - Length Shr Wellt, Sim a regist, Sen - Search Hammy - Length 1: Shraek Satter an USAN ALT WITH HE SHR FOT LENGTH 42 (AUXIN TO HAMP), SO \$127, NO SAWARE SECTIONES	790	101210.0			
er 115201.036	Ceres	1814	Server-Seaffrang Pour-Longit to a week Submankey Submankey for Transmission (Submankey) In control of the Administration of the Subman Subman (Subman)		ne letta			
PL LONGER		1.1.1		100-00				
on installed least	Cere: Cere	2007	Salary - George - Langto the X Math. 2014 International framework - Landon And Constrained International Address - Address - Adventional Constraint Constraint Constraints - Constraints - Constraints - Co	-	ne lota			
De lingent with	Contract of the	2811	odan dultum yiki kuji ili mutatati kwiji tatili oda teh tuday kulur tatililariya Materialari yana kuji tatiliya	146	101078-2			
FLUGALOUT								
ni tatamiirie	Death Set free	haster	Delinis - toof Aque - uwight 24 is wordt. 21 is a weight, 21 is - dearts den Tructurg - uwights, 13 Characterisati In 12 YeFACT WITH HIGH AUX	100	witha			
ALL COMPANY IN	Las. Pringfly Decriminar	08	Las of the phy-became experience for a 100 million classes in Social Instance - Review - Anna - Anna - Anna	740	100 (2014)			
T1.109.000			A 2 CONTRACT DESCRIPTION OF THE DESCRIPTION OF THE DESCRIPTION OF THE					
ar victoria ens	2003	20040	Decisi - Keco-Leegit, Con Lateria I (er vegit, C 10+ - Seco, Sen Traurog - Lateria: 10 croadinated) 10+ 51 y6-60 Cela IIIC Depend celativelia:	740	ine colux			

Figure 6. Anomalies Detail Report (2014) 1 of 4

Figure 7. Anomalies Detail Report (2014) 2 of 4

۲			Animaly Details Report			
Backer Server, 14	44.3					
	And in the line	Direction in the local distribution of the l	East Description	(managed)	Constitution of the	
2.6. 10000		-				
-	2 Detaile	-	Dest. Belgi, Langt C.H. Linds S. Dr. Hings C. Hu. Date for Tauting Laster (Charles and Dest Balance (Carport Schulz and Schule) (ROPAR)		M-DRA	
	Derro Lot Ages	-	plane - Set New Longer 1 to a New 2014 a negative - Sets and Training Lowers: 1 thread-balance and sets of an endance units of balance of planets	~	-	
45, 1110201-101	Loss Street	100	Same Safitya Lange Concerning Linna mage Linn. Same an Evaning Londer: Concerning the Incompletion in education of the decimation in result course. No control results on Service 2002/1021	14	10.044	
-	Den Nar	200	Dates Weither Longh Linn Metri 2019 mapt 1224 Jack Am Torrey, Loader 10 Constraints (After Stellar excepted Tathe Add Sector Sciences 19 63653 to Sector 1995)	~	-	
ALL COMMENTS AND A	1		the second se	-	10000	
The residence in a	lange lange	240	General Der Langt 10m dem 10m Dem Sten Beater Pro-Lander 12m ADdeut Die anscholen Nurd	76	10.064	
Statement Page	ě.					
107 H-12214 813	Data Printing		UNET Page - Dipel UNE- LOB (LOB (LOB) DE - LUNET D'Imministration - Switter - Switt UNET 10% Plane understate de LUNET VOIE AARt	~	NO. OR A	
10.00	10 m m m					
N. YORKON	Set New	1004	Come - DA Tope - Gegit Se a relation of the relation of the Second environment of the second environment and header for the analysis of the analysis of personal adjusts, which needed and head of the Second environment.	~	44-144	
The owners of the owner of						
	lan .	940	Denge Den Langt Up vielde 100 vielde 100 vielden 200 vielden 200 Lander i Frenklinkens Kolon af Geloen kunt 100 v	-	-	
AL MANTING AL	A			1.1.4		
	Damps Terr	36	Sanage - Sel - Gegit 129 i milit 1201 i Septi 1211 - Selatol - 4221 - Gamori 12 Malendadari Balat de Centrale Aluma	~	94154	
Charlen III, Aug.						
2 PERIOR	Same	26	Competition - Segle 1 de comme 1 des Lines 1 des - Donies - des - Landes 1 des Milliones dans la précision europ	-	No. of Concession, Name	
AL INDERF PLAY	and the state of the state	1.1			100	
HER VEHICLES	27 Date	093	Units Price Ramp (File) (File) (File) (En Units - En Un	~	49-140	
	Street President Roading ST (Text	-	Constit Poster Netty - 21 tile - 31 tile a 12 try - Swatt - 31 (yr Swit 74,2 St = 451 x 2555) - (Swither Toron)	-	**1***	
** 1012213-141	Colors Provide Heading OF Dec	199	Callular Provide Husing- Of Call - Of Call Health - Bacillar Hale Callular Nexts Onto the Puters		wone	
** 2020100	Collabor Monicol Heading 07-Date	090	Called Public Name - Chair - Chair Anno - Success and China Anna - Chair - Chair - Chair - Success - Chair - Success - Chair -		No. Calif.	
10.02010-02	Call of the later	2-0	List of ProgRey Common Starry - List is the - Listen in the - Listen in the Network - Several Inter Inter Inter Starry International Access of the International Access		10.000	

	Dest. < Nyette (h	dunify passing and	121 19	Of the Min (21)		-	Inde. Nor Del.1
Answer Here: Hold State 1 Answer Method State 1 Answer Method State 1 Answer Method State 1 Composition 1 Function 2	۲			Anomaly Details Report			
importMarketMark	inature Name: 140	er.3					
Carton Jone Fact (register) View Instrument View Strument Loss Francy Loss	(mp)met	2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Event	Even Sverigten	Jahoren,	Cheeffunder	
No. 2012/1000000000000000000000000000000000	WHITE DATE THE	Every time trent	1,000	(unset	_		
CLAD CLAD <th< td=""><td>HU. 10122211 H.M</td><td>The substance.</td><td>時期</td><td>Lank mitmäytty- täpper umor 4. mitmä julim allukiim ruooteon 19 oliseen luutearaji- banattoo viisem Lankiin toma misja usobittabbi on useettä vaihti on elektiin soota on Seatti Puty do</td><td>14</td><td>NUMBER</td><td></td></th<>	HU. 10122211 H.M	The substance.	時期	Lank mitmäytty- täpper umor 4. mitmä julim allukiim ruooteon 19 oliseen luutearaji- banattoo viisem Lankiin toma misja usobittabbi on useettä vaihti on elektiin soota on Seatti Puty do	14	NUMBER	
Piter P	10,00	1000	121-1		1	112-62	
LADI Control Data Data <thdata< th=""> Data Data <</thdata<>	m - empirican	Serie Set Pape	2824	Tables - Kuf Rape - Length 2014 a Kuffe II 2014 e reger I 2014 - Secon line Tauning - Laader - 11 if vinakristikak Hi Contract with Andobe Labella Ruhaland Alahda Leo ba To Hactor Rapit - Ravisland - Adobe - Ka Samada - Balanda	. ****	ter 1 Bal	
No. State S	10,00						
Rest Description Description Description Provide the state is a finite for the state for the	144 10100010 (210	Said freew	100	Tomme Soft Name Lange, Tex a sealer, State regar, 2014. Search and Townley, Lowanni, 12 Transformation In Contract With Lange, 12 Manhood, Authora Lange and Instrumental Indicates, Manhood Manhood, National Research	1	101034	
11 11 122 2000000000000000000000000000000000000	ALMANNY, PAR. 8	المحاج والمتكاول والم	the second		inch.	112-bear	
21 Status 1 and a landate frage (C) fair (C)	275 - 612/2011 2010	California Promotica Panaling 127 State	696	Calendari Penersian Raading - Ch State - Ch Valae - 77 Mini - Becchain - Nami Taleh BALCAN TUP-Ch Scient Paul Bal	. Past	tori 2 Mast	
21 VILLED LINE Laboration instants frage () (species instants frage () (species instants () (sp	212 9122011200	Calledo Friendan Roading (27 See)	194	Calmana, Provident Reading: CP State: 127 Linka: Charter Desarturi. 1819 DVIRT PLUE BE CLARABOVE SATSHER FLASH	744	man Critical	
No. 1000 12.00 mm Samper-test regin print regin 1000	m equility	Calcula Armenten Haward CP kaw	-	Caboliti Prelaction Reading - CP (Bear - CP Venille - Charange - UK Ken Unit Saletti Muse del LENA Abolite technical	744	No. 1409	
Abs VICED 00.001 Samphing Abs Samphing, Last-regin 0.000 release 1.000 release 1.0000 release 1.000 release 1.000 release 1.0000 release 1.0000	NF \$1205122.0	Carriesi Sect	045	Daniga Just Jarge Commender Elder (Danie Edror, Davider, edro Josefor, d'Orace Commen Balas de La Cardenda e Ant	744	war 1 mag	
International Control Internationed Control International Control International	DA WIEBURN	Damage David	948	Damage Tant Langth CODE or Wells, EDITE David STOR - Device:	144	-	
UNIT VICTOR 11 11 (and model) Loss of company interview inte		Lock of integray Inspect Liver	12-51	Las or regits, based une - time i for e bare - copior i previoalizere - bearing - ph for unes time regit unaphology or upper vice many on part of parts as a	(New)	Adv Duttered	
Image: Series Image: S	134 9100010.018	Last of triaging	68.63	Lan d'Unighy Denais Taming (2014) 13 http://www.claster.it/Denai/Salaan Review 10161	794	NOI DISH	
All District and All and State and All	1200.1						
ALL Description Descrin <thdescrin< th=""> Descrin<td>442 H10000.0048</td><td>Deets bot fige</td><td>1004</td><td>Depts - Diff Rage - Length Dir & Holds 3 An a reaget 3 EV - Devia from Taxating - Length C 2 Cross-Colosani IN CONTRCT WITH ANDER ATTAX THE ALEXTING IN WRITER COLLARS, REVER WASHING, NO GRANDE GEORYTES</td><td>744</td><td>Bon Dilling</td><td></td></thdescrin<>	442 H10000.0048	Deets bot fige	1004	Depts - Diff Rage - Length Dir & Holds 3 An a reaget 3 EV - Devia from Taxating - Length C 2 Cross-Colosani IN CONTRCT WITH ANDER ATTAX THE ALEXTING IN WRITER COLLARS, REVER WASHING, NO GRANDE GEORYTES	744	Bon Dilling	
DBLA DBLA <thdbla< th=""> DBLA DBLA <thd< td=""><td>AM 10 (1993) (1 20.0)</td><td>Status Manhala Natif</td><td>284-5</td><td>Same and enter Annue. (Same) Same (Same Segis Timo Same Segis 1 Sec. And in Annue Same Annue Timo Same Same Same Same Same Same Same Same</td><td>. 744</td><td>ter Dilat</td><td></td></thd<></thdbla<>	AM 10 (1993) (1 20.0)	Status Manhala Natif	284-5	Same and enter Annue. (Same) Same (Same Segis Timo Same Segis 1 Sec. And in Annue Same Annue Timo Same Same Same Same Same Same Same Same	. 744	ter Dilat	
Mill Fritzber (UM) Jackson Differ Dealers Judy frege (International State (International State))) Text State (International State)))) Tex State (International St	28.J	2525	-		10.01	diation.	
Mill Desting Desting <thdesting< th=""> <thdesting< th=""> <thdest< td=""><td>M HOUSE IN</td><td>Same</td><td>inter a</td><td>Desire - Sudfastry Rok - Lange II for a tester I Lann a tester II Jan - Datak ien Teoring - Losatar II Drosstowan Die VE-BELG-ALA AGADINE TO ANDRE NDV ENTHEINE TO ANDLA INI DAMAGE (SIGENVE)</td><td>Test</td><td>Alter Deltast</td><td></td></thdest<></thdesting<></thdesting<>	M HOUSE IN	Same	inter a	Desire - Sudfastry Rok - Lange II for a tester I Lann a tester II Jan - Datak ien Teoring - Losatar II Drosstowan Die VE-BELG-ALA AGADINE TO ANDRE NDV ENTHEINE TO ANDLA INI DAMAGE (SIGENVE)	Test	Alter Deltast	
DBLA DBLA <thdbla< th=""> DBLA DBLA <thd< td=""><td>HT. ++1988+11 HAV</td><td>1000</td><td>DEAL OF</td><td>Deale - Refrig. Larger to a little for a regar 1 (in: Dock for Twanig: Lauris; 1) (Contribution) (In ECCUP, NOVENER HARR) NO DEBLACE DOCENTS)</td><td>794</td><td>Non (Official</td><td></td></thd<></thdbla<>	HT. ++1988+11 HAV	1000	DEAL OF	Deale - Refrig. Larger to a little for a regar 1 (in: Dock for Twanig: Lauris; 1) (Contribution) (In ECCUP, NOVENER HARR) NO DEBLACE DOCENTS)	794	Non (Official	
Mile Description Description Description Description Mile	1.90	0.040	-		-	- 14	
EI HILEETITEE SANS 1004 Seek - SAMA- Legit In HILEETITE AND ELEMAN AND ELEMAN AND ELEMAN AND ELEMAN AND ELEMAN AND ELEMAN AND AND AND AND AND AND AND AND AND A	*** **********	Detro Grang		Decks - Scong - Gergin 1, the article Liber or recept 2007 - Select den Teutrog - Golden, 10 Interestation IN CONTACT VETWIN DBUG WE DAMAGE GESETVES	THE	101108	
	#1.1100011030	Sales (of free	1014	Deele - Sof Nga- Largh this most Actin a wegit 2 cth - Dece ten Yuahing - Locetti 10 (Trislamban) In Confact with Health Royalinghi Addata no Decello Secondo	746	ANY CREAT	
	COLUMN STATE				_		

Figure 8. Anomalies Detail Report (2014) 3 of 4

Figure 9. Anomalies Detail Report (2014) 4 of 4

۲		Assembly Details Report					
Instant Name: 110	***	100	Event lineargular		construint		
HALL BO LOOK TIME	Exercise Crem		1000 C				
ALT	The Passanet	-	And Management (1998) (1998) (1998) (1998) (1998) (1998) (1999) (1999) (1998) (1999) (1998) (-140	Inter College		
ar continue	Date Measurers Vers	-	The Manhor (San Card San Age to San Age to San Age to San Age to Age and Age to Age (San Age)	-144	1011052		
. A.M.	2012/08/2				176175		
	Date:	1817	means - memoja - sergen Ari a enale is de a regel is en roever kan Tysering - sander Arthonaltadeant 'ne contract vette scalara, eductivat estando lati issueste catanteren.	748	last citizen		
786 1-120511-04-1	Total Biological (-	have been relied. Association of the study time leads to the basis of the basis of the study of the study of the basis of the study of	144	Table 1 (Print)		
701	Treat Property of	38.1	Source Measurement, Annuel 1 (Source) (Source angle Nov. Source Sayle 1 (Sov. Madies Samuel Source) (Sol. 76), possible 1 (Source Magner) Samuel Source (Sol. 76) and Samuel Source (Sol. 76)	141	Mark College		
121	Doop Republicant Vision	10.1	The dependence (many) (may) one only to loss high 1 in many factor factor (in , cannot i reactional again) (and) (in a	-	ine l'effent		
1.1							
411 10-100210-00-0	Drives.	1818	Takes, the Apple cauge time reade to be proget to be changed and fouriers causes to transitional an operation with reading to Apple to the other advances in the second second second second second second second		Intel 20844		
Hel	Lant Page	1014	Dates, Self-Nam, Longe 1911 (1968) 2011 (1969) 2011 Santa Santa Santa Santa 10 Distancia Santa 10 Distancia Santa Sa	140	THE COLUMN		
IN STREET, I'de	Detro Detvin Toulinary Fee	1810	Deven turnes - charboling rises - sanget ton routet per respective - chalance (in - cusation 12 investmentscharb researcher - cusating) an elser rises rises discussion for carboling respective.	144	NAME AND ADDRESS OF		
116 INTERET 16-0	Titled thematement Taken	-	Since Management, Foreir 1 Since 2 State angle 10%. Since Dept. 1 St. Matter Service Davables, 42 St. Landon C Constrained, Adapted Ranked Dept. 201 St. 201 Aug. 201 Aug. 201 Aug. 201 St. 201 Aug. 201 Aug. 2	745	Part College		
an writer we	Trans Management of	-	New Waterwest, Street, Chine State Auge 100, Star Single 120, State Street Street, St. 20, State of State Street, State States State State States States	-	1011054		
An an internation	Veral Veral	-	Mode Reserved. Askes (loss) from angle the loss bags (b). Many losses forome of the country's constrained Agency Reserved reserved.		And Comp		
NY DOUBLY IS N	Data measurement rand	-	Sour Muserment, Jones, Linner, Sour-Jean angle ren- sour legit 2 de Halles server Reader, rit de Louise e renermane especie Source Danie - Source	141	Here College		

Terroral Color An

Load Case No.	Description	Contingency Factor
1	Computer Generated Structural Dead Weight	1.10
2	Non-simulated Structural Dead Load	1.15
3	Equipment Weights - Dry	-
4	Equipment Weights - Operating	1.00
5	Equipment Weights - Hydro Test	1.15
6	Piping / Cabling Bulks	1.00
7	Open Area Load - Sub-cellar Deck	0.75
8	Open Area Load - Cellar Deck	0.75
9	Open Area Load - Main Deck	0.75
10	Upper Deck Blanket Load	0.75
11	Hook-up Piping Operating Load on New Deck Extension	1.10
14	Living Quarter / Heli Deck Misc. / Arch. / Equipment / Piping etc.	1.15
15	Living Quarter / Heli Deck Live Load	0.40
16	Living Quarter / Heli Deck Laydown Load / Roof Load	0.75
17	Piping Load on Existing Bridge (2300 kg/m)	1.00
18	Walkway Live Load on Existing Bridge	1.00
19	Flare Piping / Walkway Dead Load	1.15
20	Flare Piping / Walkway Live Load	1.00
21	Live Load on New Deck Extension	1.00
22	Piping Operating Load on Existing Bridge	1.00
23	Crane Moment @ 0 Deg.	1.00
24	Crane Moment @ 90 Deg.	1.00
25	1 Year Wind Load @ 0 Deg.	1.00
26	1 Year Wind Load @ 90 Deg.	1.00
27	1 Year Wind Load @ 180 Deg.	1.00
28	1 Year Wind Load @ 270 Deg.	1.00
29	100 Years Wind Load @ 0 Deg.	1.00
30	100 Years Wind Load @ 90 Deg.	1.00
31	100 Years Wind Load @ 180 Deg.	1.00
32	100 Years Wind Load @ 270 Deg.	1.00

APPENDIX -3: Detail Load Combination and Load Factor Applied

Load Case No.	Description	Contingency Factor
33	1 Year Wave + Current @ 0 Deg.	1.00
34	1 Year Wave + Current @ 57 Deg.	1.00
35	1 Year Wave + Current @ 60 Deg.	1.00
36	1 Year Wave + Current @ 90 Deg.	1.00
37	1 Year Wave + Current @ 117 Deg.	1.00
38	1 Year Wave + Current @ 120 Deg.	1.00
39	1 Year Wave + Current @ 123 Deg.	1.00
40	1 Year Wave + Current @ 180 Deg.	1.00
41	1 Year Wave + Current @ 237 Deg.	1.00
42	1 Year Wave + Current @ 243 Deg.	1.00
43	1 Year Wave + Current @ 270 Deg.	1.00
44	1 Year Wave + Current @ 300 Deg.	1.00
45	1 Year Wave + Current @ 303 Deg.	1.00
46	100 Years Wave + Current @ 0 Deg.	1.00
47	100 Years Wave + Current @ 57 Deg	1.00
48	100 Years Wave + Current @ 60 Deg.	1.00
49	100 Years Wave + Current @ 90 Deg.	1.00
50	100 Years Wave + Current @ 117 Deg.	1.00
51	100 Years Wave + Current @ 120 Deg.	1.00
52	100 Years Wave + Current @ 123 Deg.	1.00
53	100 Years Wave + Current @ 180 Deg.	1.00
54	100 Years Wave + Current @ 237 Deg.	1.00
55	100 Years Wave + Current @ 243 Deg.	1.00
56	100 Years Wave + Current @ 270 Deg.	1.00
57	100 Years Wave + Current @ 300 Deg.	1.00
58	100 Years Wave + Current @ 303 Deg.	1.00
59	Jacket Appurtenances Weight	1.10
60	Boat Landing Live Load	1.00
98	Crane Boom Rest Load	1.00
99X	Existing Yetagun A Bridge Friction Loads in X- Direction	1.00
99Y	New Yetagun B-C Bridge Friction Loads in Y- Direction	1.00
99Z	New Yetagun B-C Bridge Vertical Loads in Z- Direction	1.00

APPENDIX -4: Basic Load Case Summary

SACS VBI SELECTSEMIES 4 (V5.7) KK IDATE 23-MAR-2016 TIME 20:05:33 SEA PAGE 958

YETAGUN PHASE 4 DEVELOPMENT PROJECT: YETAGUN B JACKET INPLACE ANALYSIS

******	SEASTATE	BASIC	LOAD	CASE	SUMMARY	******

				RELATIVE TO I	ODETHE STEAM	12011			
LOAD	LOAD	FX	FY	FZ	PDK	HY	MZ	DEAD LOAD	BUOYANCY
		(KH)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)	(KII)	(KN)
1	1	0.00	0.00	-56646.86	12474.8	-182683.1	0.0	114458.96	57812.00
2	2	0.00	0.00	-11212.59	48269.1	-50601.3	0.0	0.00	0.00
3	3	0.00	0.00	-31968.14	121810.2	-297464.1	0.0	0.00	0.00
4	4	0.00	0.00	-42266.63	176115.7	-344233.2	0.0	0.00	0.00
5	5	0.00	0.00	-38348.77	161648.5	-344873.3	0.0	0.00	0.00
6	6	0.00	0.00	-17574.36	18538.1	-150570.4	0.0	0.00	0.00
7	7	0.00	0.00	-623.81	-4795.8	2062.5	0.0	0.00	0.00
8	8	0.00	0.00	-6392.77	9061.1	20618.0	0.0	0.00	0.00
9	9	0.00	0.00	-8965.60	61941.0	-107401.5	0.0	0.00	0.00
10	10	0.00	0.00	-11051.28	-18302.0	94485.8	0.0	0.00	0.00
11	11	9.58	7.28	-74.90	557.9	-1889.9	-106.2	0.00	0.00
12	12	0.00	0.00	0.00	0.0	0.0	0.0	0.00	0.00
13	13	0.00	0.00	0.00	0.0	0.0	0.0	0.00	0.00
14	14	0.00	0.00	-3122.81	1305.3	73579.2	0.0	0.00	0.00
15	15	0.00	0.00	-3822.09	3919.8	85147.4	0.0	0.00	0.00
16	16	0.00	0.00	-5734.92	-3444.3	137304.3	0.0	0.00	0.00
17	17	-544.00	-196.00	-1532.12	5284.8	-148122.5	17469.0	0.00	0.00
18	18	0.00	0.00	-363.00	-4441.5	-18999.8	0.0	0.00	0.00
19	19	0.00	0.00	-1112.13	-37591.1	-17000.6	0.0	0.00	0.00
20	28	0.00	0.00	-173.87	-8459.4	-2679.9	0.0	0.00	0.00
21	21	0.00	0.00	-222.81	4314.5	-8144.7	0.0	0.00	0.00
22	22	-21.00	-63.00	-210.00	5302.1	-14059.3	3687.6	0.00	0.00
23	23	0.00	0.00	0.00	0.0	7940.0	0.0	0.00	0.00
24	24	0.00	0.00	0.00	-7940.0	0.0	0.0	0.00	0.00
25	25	1087.42	0.00	-574.68	5257.6	155124.9	-4599.9	0.00	0.00
26	26	0.00	1520.90	0.00	-202730.7	0.0	-23339.0	0.00	0.00
27	27	-892.53	0.00	0.00	0.0	-124315.7	5871.8	0.00	0.00
28	28	0.00	-1393.73	0.00	184574.7	0.0	19518.6	0.00	0.00
29	29	2973.48	0.00	0.00	0.0	412151.0	-14906.9	0.00	0.00
38	38	0.00	4239.47	0.00	-564698.8	0.0	-64925.9	0.00	0.00
31	31	-2486.91	0.00	0.00	0.0	-335090.3	18700.6	0.00	0.00
32	32	0.00	-3882.70	0.00	513762.5	0.0	54209.1	0.00	0.00
33	33	6214.23	-1.76	-58.64	-2406.3	508831.7	731.5	0.00	0.00
34	34	4427.84	6672.79	-302.57	-583400.8	371017.7	21279.4	0.00	0.00
35	35	4884.98	6941.13	-300.46	-688883.2	343576.0	21658.4	0.00	0.00
36	36	-9.05	8006.15	-121.60	-700549.4	199.0	19962.9	0.00	0.00
37	37	-3764.83	7233.66	-126.31	-628467.5	-313608.0	16633.1	0.00	0.00
38	38	-4133.72	6978.34	-135.74	-685778.3	-344486.2	16340.8	0.00	0.00
39	39	-4482.90	6688.07	-146.12	-579711.2	-373387.2	15925.1	0.00	0.00
48	48	-7017.83	2.34	136.13	177.4	-591216.6	-5144.3	0.00	0.00
41	41	-4388.54	-6739.83	-158.14	588891.4	-371444.4	-18984.0	0.00	0.00
42	42	-3687.97	-7251.17	-120.06	633838.8	-313668.6	-19362.5	0.00	0.00
43	43	19.63	-7944.57	-396.44	786974.9	-303.1	-18665.3	0.00	0.00
44	44	3847.41	-6601.54	-229.01	571858.7	319925.5	-13986.6	0.00	0.00
45	45	4153.26	-6322.00	-244.30	546492.9	344421.2	-13733.6	0.00	0.00

SACS V81 SELECTSeries 4 (v5.7) KK ID= ********** SACS IV SEASTATE PROGRAM ********* DATE 23-MAR-2016 TIME 20:05:33 SEA PAGE 959

YETAGUN PHASE 4 DEVELOPMENT PROJECT: YETAGUN B JACKET INPLACE ANALYSIS

****** SEASTATE BASIC LOAD CASE SUMMARY ****** RELATIVE TO MUDLINE ELEVATION

LOAD	LOAD	FX	FY	FZ	MX	МҮ	MZ	DEAD LOAD	MARINE METHOD BUOYANCY
CASE	LABEL	(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)	(KN)	(KN)
46	46	11334.48	-7.76	-62.56	-1662.9	897871.2	2410.4	0.00	0.00
47	47	/348.68 6751.91	10945.21	-139.26	-914/60.9	58/305.6	30/0/.8	0.00	0.00
49	49	-12.37	13134.50	93.26	-1101755.4	-228.4	28297.5	0.00	0.00
50 51	50 51	-6196.35 -6821.68	11849.87 11448.73	102.15	-987597.1 -953372.7	-493570.9 -543516.1	21149.1 20154.8	0.00	0.00
52	52	-7425.95	11021.43	79.64	-917092.5	-591696.1	19043.5	0.00	0.00
53	53	-11947.70	4.35	295.21	147.8	-955548.9	-5516.7	0.00	0.00
55	55	-6099.10	-11812.37	322.37	983191.2	-490944.8	-26876.3	0.00	0.00
56	56	6.56	-12916.53	63.69	1083013.1	-2485.6	-25661.7	0.00	0.00
57	57	6534.76 7113.44	-11114.54	58.91	922016.4	518382.3	-21499.0	0.00	0.00
59	59	0.00	0.00	-6868.35	-10909.2	860.5	0.0	0.00	0.00
60 61	60 61	0.00	0.00	-47.70	601.1 42181 5	684.4 -681.2	0.0 0.0	0.00 0.00	0.00
62	98	0.00	0.00	-80.50	1350.0	-3313.4	0.0	0.00	0.00
63	ML	990.82	0.00	0.00	0.0	108718.7	0.0	0.00	0.00
65	99Y	430.00	895.00	0.00	-125461.1	0.0	-32743.6	0.00	0.00
66	99Z	0.00	0.00	-3055.00	67271.1	-111550.5	0.0	0.00	0.00

APPENDIX -5: Combine Load Case Summary

SACS VB1 SELECTS#FLEE 4 (v5.7) (X ID-SACS VB1 SELECTS#FLEE 4 (v5.7) (V5.7) (V5.7) (V5.7) (V5.7

YETABUN PHASE 4 DEVELOPMENT PROJECT: YETABUN 8 JACKET INPLACE ANALYSIS

*****	SEASTATE	COMPINED	LOAD	CASE	SUPPLIEV	
	RELATI	IVE TO HU	DLINE	ELEV	ATION	

LOAD	LOAD	PX		F2	FOC	MY	102
		(1043	(100)	(KNI)	(101-10)	(104-21)	(10)(+713
67	63	528.42	-289.56	-172772.25	318576.6	-727132.9	24523.0
68	64	-662.40	-289.56	-172748.41	318276.1	-#38193.9	24523.0
69	66	8880.07	683.68	-173397.48	238148.3	-1759.6	-17575.3
70	67	6388.67	8753.50	-173695.39	-574504.1	-130095.0	-20034.3
73	4.8	5942.11	9672.03	+173642.72	+606215.0	-171545.1	-20020.7
72	69	769.37	10132.48	-172893.86	-707224.5	~872776.0	-17083.1
73	78	-4689.60	0405.63	-172898,56	-637090.1	-1210387.9	-4855.6
74	71	-5140,89	9109.24	-172908.00	+609117.6	-1252988.4	-3077.4
75	22	-5568,41	8002.32	-172918.38	-562392.8	-1299200,4	-1472.6
76	73	-8031.94	607.78	-172636.12	235474,4	-1505444.5	-2006.5
77	74	-5474.85	+9276.31	-172930.39	1247488.4	-1292004.9	69043.6
78	75	-4694.94	-9871.27	-172892.31	1303095.4	-1222566.8	69319-5
79	76	798,05	-10522.05	·175168.69	1349828.8	-672959.3	\$2633.5
0.0	77	\$704.55	-9184.01	-173571.25	1241545.9	-195870.8	52807.7
81	78	0106.09	+8858.48	-173637.11	1210766.1	-157372.8	52011.0
82	79	14095.56	597.68	-172810.97	233333.6	\$35245.1	-26203.5
83	80	10347.64	11550.65	-203889.00	-597128.4	-33820.0	901.3
84	81	9489.21	16233.86	+172890.75	-1318157.1	170830.5	-62283.3
85	82	-224.77	17979.41	+172655.14	-1465699.2	+782264,4	+58335.4
86	-85	-9474,97	16821.97	-172646, 25	-1369347.4	-1689108.9	-31628,2
87	84	-10321.73	16306.36	-172658.64	-1320074.6	-1770247.6	-29149.1
28	85	-11137,82	15739.16	·172668.77	-1265373.8	-1848272,8	-26472.1
89	86	-15467.01	649.79	-172455.20	235144.2	-2189612.5	10449.0
9.0	87	-11048.82	-15966.68	·172468.38	1003855.4	-1847086.4	109158.5
91	5.0	-9599.10	-16996.11	-172426.05	1991210.4	-1717992.2	110263.1
92	89	-205,84	-17983.79	-172684.72	2074754.4	-785282.8	80327.6
93	1949	9272.06	-16193.45	-172689.48	1916362.9	148489.0	49865.3
94	91	10112.40	-15043.02	-172696.42	1863756.4	230895.7	67558.6

APPENDIX -6: Member Unity Check Summary

КК

SACS V8i SELECTseries 4 (v5.7) VETAGUN PLATFORM INPLACE ANALYSIS

ID= DATE 23-MAR-2016 TIME 00:38:21 PST PAGE 13014

SACS-IV	MEMBER UNITY CHECK	RANGE SUMMARY	
GROUP II - U	NITY CHECKS GREATER	THAN 0.80 AND LESS THAN	1.00

MEMBER GROUP ID	MAXIMUM LOAD COMBINED COND UNITY CK NO.	DIST FROM END	AXIAL STRESS N/MM2	BENDING Y N/MM2	STRESS Z N/MM2	SHEAR FY KN	FORCE FZ KN	KLY/RY	KLZ/RZ	SECOND-H UNITY CHECK	LOAD COND	THIRD-H UNITY CHECK	IGHEST LOAD COND
685- 621 D12	0.862 75	15.0	-84.48	34.03	-12.87	-4.99	48.32	45.2	45.2	0.849	74	0.823	88
785- 621 D41	0.904 68	2.7	-97.43	6.74	-16.66	28.59	5.43	54.1	54.1	0,903	67	0.862	81
785- 689 DA1	0.920 78	3.3	-93.58	17.10	-10.36	45.85	-40.93	56.1	56.1	0.914	77	0.817	80
691- 595 DA2	0.915 78	0.0	-86.00	23.98	-3.35	26.82	-68.73	65.8	65.8	0.908	77	0.818	66
495- 449 DA3	0.890 78	17.8	-105.50	14.96	-2.77	0.67	55.36	42.2	42.2	0.889	77	0.842	76
591- 449 DA3	0.848 78	0.0	-105.30	7.79	-0.24	6.83	-30,91	42.2	42.2	0.846	77	0.801	76
591- 514 DB3	0.946 78	0.0	-109.38	10.02	9.61	-13.24	-17.58	48.9	48.9	0,938	77	0.834	91
689- 514 DB3	0.932 78	0.0	-109.69	5.55	-9.81	21.42	-16.24	48.9	48.9	0.927	77	0.826	80
485- 448 DD3	0.838 74	0.0	-93.97	-22.25	0.19	8.56	49.79	42.1	42.1	0.836	75	0.785	76
606- 717 H16	0.895 74	1.5	-2.47	157.85	12.69	8.64	32.18	32.8	32.8	0.890	73	0.825	86
689- 691 H22	0.820 77	0.0	-80.58	20.90	-6.20	10.25	-16.16	57.7	57.7	0.818	78	0.799	76
509- 511 H49	0.820 68	0.0	-89.15	10.23	-0.20	-1.46	-7.41	58.0	58.0	0.820	67	0.789	69
189- 107 H86	0.824 76	2.1	143.37	33.37	5.49	-8.01	-55.80	38.1	76.2	0.810	77	0.807	75
285- 384 LG3	0.862 75	5.5	-123,99	-64.21	-4.66	-178.30-	2106.20	1.4	1.4	0.860	74	0.812	76
385- 485 LG4	0.859 75	2.9	-131.66	33.41	-9.85	135.06	-354.21	35.0	35.0	0.857	74	0.822	76
485- 585 LG5	0.875 75	22.8	-154.79	4.81	-6.05	-98.82	103.40	33.9	33.9	0.875	74	0.840	76
664- 670 LGG	0.821 74	6.6	-144.77	3.27	-10.84	-168.00	100.28	28.8	28.8	0.821	75	0.796	76
670-99AG LGL	0.806 74	0.8	-144.53	4.07	-12.03	-170.46	118.48	23.3	23.3	0.806	75	0.782	76
215- 313 LGR	0.822 68	5.5	-111.59	-66.05	-6.09	-196.93-	1691.83	1.3	1.3	0.821	67	0.768	69
295- 396 LGR	0.923 77	5.5	-127.40	-71.59	8.57	277.00-	1815.47	1.3	1.3	0.922	78	0.882	76

SACS V8i SELECTseries 4 (v5.7) VETAGUN PLATFORM INPLACE ANALYSIS

ID= DATE 23-MAR-2016 TIME 00:38:21 PST PAGE 13015

SACS-IV MEMBER UNITY CHECK RANGE SUMMARY

KK

GROUP III - UNITY CHECKS GREATER THAN 1.00 AND LESS THAN 999.00

MEMBER	GROUP ID	MAXIMUM COMBINED UNITY CK	LOAD COND NO.	DIST FROM END	AXIAL STRESS N/MM2	BENDING Y N/MM2	STRESS Z N/MM2	SHEAR FY KN	FORCE FZ KN	KLY/RY	KLZ/RZ	SECOND-H UNITY CHECK	LOAD COND	THIRD-HI UNITY CHECK	LOAD COND
605- 621	1 D42	1.025	68	15.6	-119.04	10.81	-12.66	3.39	23.13	45.2	45.2	1.023	69	1.022	67

APPENDIX -7: Joint Punching Shear Unity Check Summary

КК

SACS V8i SELECTSeries 4 (v5.7) VETAGUN PLATFORM INPLACE ANALYSIS

ID= DATE 23-MAR-2016 TIME 00:38:33 JCN PAGE 1122

					* * 2 0	тит си	AN SUM	MARY	+				
						UNITY CH	ECK ORDER)						
	*******	OR	IGINAL ***	******	*******	*******	**** LOAD D	ESIGN ****	******	*******	* STRENGTH	DESIGN ***	******
				LOAD	STRN				LOAD				STRN
JOINI	(CM)	(CM)	(N/MM2)	UC	UC	(CM)	(CM)	(N/MM2)	UC	(CM)	(CM)	(N/HH2)	UC
189	222.500	8.500	325.000	0.674	0.317	222.500	8.500	325.000	0.674	222.500	8.500	325.000	0.317
751	61.000	2.500	345.000	0.603	0.263	61.000	2.500	345.000	0.603	61.000	2.500	345.000	0.263
109	222.500	8.500	325.000	0.601	0.317	222.500	8.500	325.000	0.601	222.500	8.500	325.000	0.317
591	228.588	7.500	325.000	0.560	0.338	220.500	7.500	325.000	0.560	228.500	7.500	325.000	0.338
191	222.500	3.500	325.000	0.546	0.51/	222.500	2.500	325.000	0.546	222.500	2,500	325.000	0.31/
411	219,500	7.000	325,000	0.451	0.546	219.500	7,000	325,000	0.451	219,500	7,000	325,000	0.546
489	219.500	7.000	325.000	0.497	0.546	219.500	7.000	325.000	0.497	219.500	7.000	325.000	0.546
491	219.500	7.000	325.000	0.495	0.546	219.500	7.000	325.000	0.495	219.500	7.000	325.000	0.546
111	222.500	8.500	325.000	0.507	0.317	222.500	8.500	325.000	0.507	222.500	8.500	325.000	0.317
495	219.500	7.000	325.000	0.506	0.307	219.500	7.000	325.000	0.506	219.500	7.000	325.000	0.307
511	220.500	7.500	325.000	0.504	0.338	220.500	7.500	325.000	0.504	220.500	7.500	325.000	0.338
385	219.500	7.000	325.000	0.478	0.386	219.500	7.000	325.000	0.478	219.500	7.000	325.000	0.386
405	75.000	3.500	345.000	0.100	0.4/4	79.000	3.500	345.000	0.100	75.000	3.500	345.000	0.4/4
	229,500	7.666	325,000	0.470	0.307	229.500	7.500	325.000	0.470	228 588	7.688	325.000	0.307
691	219,500	7.000	325.000	0.440	0.309	219.500	7.000	325.000	0.440	219.500	7.000	325.000	0.309
415	219.500	7.000	325.000	0.439	0.307	219.500	7.000	325.000	0.439	219.500	7.000	325.000	0.307
395	219.500	7.000	325.000	0.437	0.386	219.500	7.000	325.000	0.437	219.500	7.000	325.000	0.386
509	220.500	7.500	325.000	0.425	0.338	220.500	7.500	325.000	0.425	220.500	7.500	325.000	0.338
385	219.500	7.000	325.000	0.417	0.386	219.500	7.000	325.000	0.417	219.500	7.000	325.000	0.386
588	79.000	4.000	345.000	0.074	0.416	79.000	4.000	345.000	0.074	79.000	4.000	345.000	0.416
405	219.500	7.000	325.000	0.414	0.307	219.500	7.000	325.000	0.414	219.500	7.000	325.000	0.307
200	219.500	7.000	325.000	0.405	0.305	219.500	7.000	325.000	0.405	219.500	7.000	325.000	0.305
611	219.500	7.000	325,000	0.356	0.300	219.500	7.000	325.000	0.355	219.500	7.000	325.000	0.300
391	219,500	7.000	325,000	0.391	0.386	219.500	7,000	325,000	0.391	219.500	7.000	325,000	0.386
389	219.500	7.000	325.000	0.374	0.386	219.500	7.000	325.000	0.374	219.500	7.000	325.000	0.386
311	219.500	7.000	325.000	0.359	0.386	219.500	7.000	325.000	0.359	219.500	7.000	325.000	0.386
315	219.500	7.000	325.000	0.385	0.386	219.500	7.000	325.000	0.385	219.500	7.000	325.000	0.386
595	218.500	6.500	325.000	0.385	0.275	218.500	6.500	325.000	0.385	218.500	6.500	325.000	0.275
488	79.000	4.000	345.000	0.053	0.377	79.000	4.000	345.000	0.053	79.000	4.000	345.000	0.377
689	219.500	7.000	325.000	0.374	0.309	219.500	7.000	325.000	0.3/4	219.500	7.000	325.000	0.309
413	80.000	4.000	345,000	0.156	0.371	80.000	4,000	345.000	0.156	80.000	4,000	345,000	0.371
354	80.000	4.000	345,000	0.094	0.366	88.888	4,000	345,000	0.094	88.888	4,000	345,000	0.366
355	80.000	4.000	345.000	0.121	0.366	80.000	4.000	345.000	0.121	80.000	4.000	345.000	0.366
144	88.888	4.000	345.000	0.215	0.364	80.000	4.000	345.000	0.215	80.000	4.000	345.000	0.364
145	80.000	4.000	345.000	0.230	0.364	80.000	4.000	345.000	0.230	88.888	4.000	345.000	0.364
687	79.000	3.500	345.000	0.214	0.356	79.000	3.500	345.000	0.214	79.000	3.500	345.000	0.356
613	79.000	3.500	345.000	0.155	0.356	79.000	3.500	345.000	0.155	79.000	3.500	345.000	0.356
515	218.500	6.500	525.000	0.342	0.275	218.500	6.500	325.000	0.342	218.500	6.500	525.000	0.275
595	218 500	2.500	345.000	0.304	0.263	218 500	5.500	345.000	0.584	218 500	2.500	345.000	0.265
785	219.500	7.000	325,000	0.297	0.165	219.500	7.000	325,000	0.297	219,500	7,000	325.000	0.165
185	222.500	8.500	325.000	0.293	0.268	222.500	8.500	325.000	0.293	222.500	8.500	325.000	0.268
505	218.500	6.500	325.000	0.288	0.275	218.500	6.500	325.000	0.288	218.500	6.500	325.000	0.275
107	84.000	4.580	345.000	0.287	0.222	84.000	4.500	345.000	0.287	84.000	4.500	345.000	0.222
108	84.000	4.500	345.000	0.282	0.222	84.000	4.500	345.000	0.282	84.000	4.500	345.000	0.222
321	77.000	3.000	345.000	0.180	0.274	77.000	3.000	345.000	0.180	77.000	3.000	345.000	0.274

SACS YETA	VBİ SELECT GUN PLATFO	Tseries 4 (DRM INPLACE	v5.7) ANALYSIS		KK				DATE 23-	MAR-2016	TIME 00:38:	33 DCN F	ID= PAGE 1123
					* * 3 0 :	тит си		MARY	• •				
						(UNITY CHE	CK ORDER)						
	********	OR	IGINAL ***	******	*******	`********	**** LOAD D	ESIGN ****	*******	*******	* STRENGTH	DESIGN ***	*******
				LOAD	STRN				LOAD				STRN
JOINT	DIAMETER	THICKNESS	YLD STRS	UC	UC	DIAMETER	THICKNESS	YLD STRS	UC	DIAMETER	THICKNESS	YLD STRS	UC
	(CM)	(CM)	(N/MM2)			(CH)	(CH)	(N/MM2)		(CM)	(CH)	(N/MM2)	
324	77.000	3.000	345.000	0.166	0.274	77.000	3.000	345.000	0.166	77.000	3.000	345.000	0.274
105	222.500	8.500	325.000	0.271	0.268	222.500	8.500	325.000	0.271	222.500	8.500	325.000	0.268
705	219.500	7.000	325.000	0.271	0.165	219.500	7.000	325.000	0.271	219.500	7.000	325.000	0.165
587	80.000	4.000	345.000	0.194	0.271	88.080	4.000	345.000	0.194	80.000	4.000	345.000	0.271
513	80.000	4.000	345.000	0.135	0.271	80.000	4.000	345.000	0.135	80.000	4.000	345.000	0.271
115	222.500	8.500	325.000	0.208	0.268	222.500	8.500	325.000	0.208	222.500	8.500	325.000	0.268
195	222.500	8.500	325.000	0.219	0.268	222.500	8.500	325.000	0.219	222.500	8.500	325.000	0.268
113	84.000	4.500	345.000	0.268	0.222	84.000	4.500	345.000	0.268	84.000	4.500	345.000	0.222
114	\$4.000	4.500	345.000	0.259	0.222	84.000	4.500	345.000	0.259	84.000	4.500	345.000	0.222
1063	182.900	6.000	345.000	0.246	0.191	182.980	6.000	345.000	0.246	182.900	6.000	345.000	0.191
752	61.000	2.500	345.000	0.084	0.242	61.000	2.500	345.000	0.084	61.000	2.500	345.000	0.242
753	61.000	2.500	345.000	0.059	0.242	61.000	2.500	345.000	0.059	61.000	2.500	345.000	0.242
1067	182.900	6.000	345.000	0.242	0.191	182.980	6.000	345.000	0.242	182.900	6.000	345.000	0.191
685	219.500	7.000	325.000	0.242	0.221	219.500	7.000	325.000	0.242	219.500	7.000	325.000	0.221
1068	50.800	2.850	345.000	0.120	0.237	50.800	2.850	345.000	0.120	50.800	2.850	345.000	0.237
1071	50.800	2.850	345.000	0.124	0.237	50.800	2.850	345.000	0.124	50.800	2.850	345.000	0.237
1072	50.800	2.850	345.000	0.099	0.237	50.800	2.850	345.000	0.099	50.800	2.850	345.000	0.237
1073	50.800	2.850	345.000	0.124	0.237	50.800	2.850	345.000	0.124	50.800	2.850	345.000	0.237
789	219.500	7.000	325.000	0.237	0.167	219.500	7.000	325.000	0.237	219.500	7.000	325.000	0.167
/8/	61.000	3.000	345.000	0.093	0.236	61.000	3.000	345.000	0.093	61.000	3.000	345.000	0.236
713	61.000	3.000	345.000	0.091	0.236	61.000	3.000	345.000	0.091	61.000	3.000	345.000	0.236
788	61.000	3.000	345.000	0.115	0.256	61.000	5.000	345.000	0.115	61.000	3.000	545.000	0.256
615	219.500	7.000	325.000	0.129	0.221	219.500	7.000	325.000	0.129	219.500	7.000	325.000	0.221
000	215.500	7.000	525.000	0.150	0.221	215.500	7.000	325.000	0.150	215.500	7.000	325.000	0.221
1053	219.500	7.000	325.000	0.150	0.221	102 000	7.000	325.000	0.150	219.500	6.000	325.000	0.221
2002	102.500	2,000	345.000	0.205	0.151	102.500	2.000	345.000	0.205	102.500	2,000	345.000	0.151
/51	215.500	7.000	525.000	0.205	0.107	215.500	7.000	525.000	0.200	215.500	7.000	525.000	0.10/
/95	219.500	7.000	325.000	0.207	0.165	219.500	7.000	325.000	0.207	219.500	7.000	325.000	0.165
522	78.000	5.500	345.000	0.030	0.204	78.000	5.500	345.000	0.030	78.000	5.500	345.000	0.204
525	78.000	5.500	345.000	0.054	0.204	78.000	5.500	345.000	0.034	78.000	5.500	345.000	0.204
525	102.500	0.000	545.000	0.155	0.151	182.900	0.000	345.000	0.155	102.500	0.000	345.000	0.151
1054	102 000	6 000	245.000	0.100	0.107	102 000	6 000	245.000	0.104	101 000	6 000	245,000	0.107
1004	102.000	5.000	245,000	0.100	0 101	102.000	6.000	245,000	0.100	102.000	6.000	245 000	0 101
1005	192,900	5.000	245,000	0.135	0.191	192.900	5 000	345.000	0.155	192.900	5,000	245,000	0.101
1005	102.000	6.000	245 000	0 000	0 101	102.000	6.000	245.000	0.000	102.000	6.000	245,000	0 101
2070	219 500	7 888	325 888	0.355	0.151	219 500	7 888	325 000	0.355	219 500	7 888	325 000	0.151
700	219 500	7 888	325 888	0 111	0 167	219 500	7 888	325 000	0 112	219 500	7 888	225 000	0 167
124	80.000	4.000	345,000	0.023	0.159	80.000	4,000	345,000	0.023	80.000	4,000	345,000	0.159

APPENDIX- 8: Pile Maximum Unity Check Summary

KK

SACS VBi SELECTSeries 4 (v5.7) VETAGUN PLATFORM INPLACE ANALYSIS

ID= DATE 23-MAR-2016 TIME 00:37:48 PSI PAGE 298

YETAGUN PLATFORM INPLACE ANALYSIS

*** PILE MAXIMUM UNITY CHECK SUMMARY	• • •
--------------------------------------	-------

PILE	GRUP	LOAD	•••••	PILEHEAD FORG	ES ******	* PILEH	EAD DISP	LACEMENTS *	******	**** STR	ESSES AT	MAX. UNI	TY CHEC	к *****	
эт.		CASE	AXIAL	LATERAL	MOMENT	AXIAL	LATERAL	ROTATION	DEPTH	AXIAL	FBY	FBZ	SHEAR	COMB.	UNITY
			KN	KN	KN-M	CM	CM	RAD	M			N/MM2			CHECK
181	PS1	66	-15133.85	253.65	3255.8	1.52	0.36	0.000599	4.0	-38.95	8.36	9.12	1.19	-51.32	0.237
		67	-13880.24	436.55	2531.9	1.48	1.34	0.001129	16.1	-38.08	11.52	-0.11	0.86	-49.61	0.230
		68	-13962.34	470.58	2790.2	1.41	1.39	0.001140	16.1	-38.30	11.85	-0.08	0.87	-50.16	0.233
		69	-15530.88	827.90	5886.7	1.56	1.73	0.001093	16.1	-42.53	14.28	0.29	0.87	-56.81	0.263
		70	-17420.23	1213.95	8831.4	1.76	2.29	0.001001	0.0	-41.23	33.27	25.04	5.80	-82.87	0.386
		71	-17603.63	1245.44	9888.0	1.78	2 34	0.000982	0.0	-41.67	35.07	24.62	5.95	-84.52	0.312
		72	-17810.59	1273.60	9333.1	1.81	2.37	0.000951	0.0	-42.16	36.91	23.96	6.88	-86.17	0.318
		73	-19986.07	1528.98	11364 8	2.89	2 78	0.000642	0.0	-47.32	52 95	8.22	7.30	-100.91	0.371
		74	-21720.56	1718.43	12038.4	2.33	3.45	0.001052	0.0	-51.41	55.50	-11.89	8.25	-108.17	0.398
		75	-21635 76	1701.87	11852 3	2 32	3 44	0.001079	16 1	-58.93	-27.68	0.70	0.63	-86 54	0.395
		76	-20185 03	1423.95	9744 9	2 11	2.86	0 000984	16.1		-22.95	0.98	0.57	-78 03	0.359
		77	-18338.98	1126.51	7539.9	1.87	2.23	0.000879	16.1	-50.10	-18.02	0.93	0.54	-68.15	0.314
		78	-19141 69	1090 99	7388 4	1 95	2 15	0 000959	16.1	-49 57	-17 37	0.90	0.52	-66 97	0 200
		79	-13167 88	572.36	2656.7	1.34	1.53	0.001045	16.1	-36.17	12.86	0.13	0.66	-49.84	0.170
		80	-16257 67	692 31	1597 0	1 63	2 17	0 001540	16.1	-44 49	19 43	-0.26	1.06	-62 02	0 217
		81	-11292 24	1066.85	3830.2	1.16	3.25	0.002009	16.1	-31 15	27 03	-0.44	0.95	-58 18	0 194
			-14550 02	1000.05	7455 6	1 46	2 24	0.001000	16.1	. 20 00	27 57	-0.00	1 02	-57 46	0.007
		83	-17816 22	1789.07	12083 1	1 81	3 97	0 001788	16.1	-48 78	32 22	-0.04	1.07	-88 92	0 273
		0.0	-10151 20	1022.20	10406 0	1 00	4 92	0 001750	0.0	-42.96	50 50	20.22	0 00	-101 00	0.270
			-19477 64	1972 94	12995 0	1 00	4 87	0.001729	0.0	-42 72	52 98	29.97	0.00	-104 52	0.275
			-22165 02	2070.04	15447 2	2 20	4 22	0 001100	0.0	-52.45	72 27	0 10	10.00	-105 20	0.200
		07	-75022 57	2411 44	16636 0	2.35	5 50	0 001052	16.1	-60 00	-44 94	0 51	0.02	-112 04	0.342
			-24070 07	0000.00	16076 3	0.70		0.001001	16.1	- 67 50	44.65	0.02	0.00	110.04	0.001
			-246/5.6/	1064.06	10270.5	2.75	4 52	0.001351	16.1	-60 40		0.00	0.75	-07.00	0.5/5
			-10030 30	1504.00	0000 0	1.04		0.001/00	10.1		- 20.04	0.00	0.00	- 07.00	0.020
		50	-10050.15	1000.40	5551.6	1.54	5.67	0.00101/	10.1	-51.42	-25.54	0.04	0.45	-01.5/	0.276
		91	-18419.95	1518./1	9055.6	1.88	5.5/	0.001583	16.1	-50.32	-29.08	0.81	0.48	-79.41	0.270
183	PS1	66	-13340.49	352.96	4191.8	1.35	0.27	0.000601	4.0	-34.36	7.01	12.84	1.66	-48.99	0.224
		67	-9633.45	393.06	1284.6	1.01	1.36	0.001123	16.1	-26.71	11.67	-0.14	0.80	-38.38	0.176
		68	-9609.29	414.44	1419.5	1.01	1.40	0.001140	16.1	-26.65	12.00	-0.11	0.81	-38.65	0.177
		69	-10764.21	629.76	3691.9	1.12	1.65	0.001198	16.1	-29.73	13.86	0.22	0.85	-43.59	0.199
		78	-13038.99	980.12	6672.1	1.33	2.10	0.001227	16.1	-35.83	-17.28	-0.26	0.90	-53.11	0.242
		71	-13340.20	1016.45	6997.7	1.35	2.14	0.001217	16.1	-36.64	-17.57	-0.24	0.91	-54.21	0.247
		72	-13722.08	1054.27	7363.6	1.39	2.17	0.001195	16.1	-37.66	-17.78	-0.21	0.91	-55.44	0.253
		73	-18269.78	1516.02	11501.0	1.87	2.72	0.000822	0.0	-43.26	50.59	19.53	7.23	-97.49	0.356
		74	-22493.69	1955.37	14772.5	2.44	3.63	0.000759	0.0	-53.24	69.45	-5.33	9.35	-122.89	0.448
		75	-22549.43	1951.18	14719.3	2.45	3.63	0.000778	0.0	-53.37	69.02	-7.23	9.33	-122.77	0.448
		76	-21289.68	1684.89	12717.9	2.27	3.05	0.000735	0.0	-50.39	58.00	-15.22	8.05	-110.35	0.484
		77	-19348.75	1343.32	10145.1	2.00	2.36	0.000751	0.0	-45.80	42.91	-21.14	6.41	-93.63	0.345
		78	-19888.45	1300.00	9832.4	1.97	2.27	0.000743	0.0	-45.18	41.10	-21.45	6.28	-91.54	0.338
		79	-11411 29	463.58	2343 2	1.18	1.31	0.001021	16.1	-31.47	11.16	0.13	0.74	-42.63	0.148
		80	-10856.36	649.34	968.1	1.12	2.21	0.001573	16.1	-29.98	18.63	-0.27	0.92	-48.61	0.165
		81	-4687.51	1195.90	4833 4	0.56	3.36	0.001886	16.1	-13.57	27.65	-0.27	0.69	-41.23	0.132
		82	-7189.48	1127.05	4399.0	0.79	3.29	0.001972	16.1	-20.21	27.31	0.10	0.88	-47.52	0.155
		83	-11014 69	1389.69	7531 8	1.14	3.67	0.002073	16.1	-30.40	30.26	0.16	1.03	-68.67	0.201
		84	-11574.87	1427.48	7996.2	1.19	3.70	0.002063	16.1	-31,98	30.49	0.12	1.04	-62.40	0.207

*** PILE	MAXIMUM	UNITY CHECK	SUMMARY ***
----------	---------	-------------	-------------

	LOAD				*		ACEMENTS +			ECCEC AT	MAX UNT	TV CHEC		
17	CASE	αχται	LATERAL	NONENT	AXTAL	LATERAL	ROTATION	DEPTH	ΔΧΤΔΙ	EBV	ER7	SHEAR	CONB	UNITTY
		201	2012002	KIL-M			840	M			11/1012	2012/00/		CHECK
		6.0	NH	NH-H	- Ch	C.	N-10				- ny rinz			CHECK
	85	-12152.8	5 1468.42	8481.2	1.24	3.74	0.002051	16.1	-33.45	-30.74	-0.08	1.05	-64.20	0.214
	86	-20448.8	2073.76	15184.7	2.15	4.19	0.001375	0.0	-48.40	67.68	23.35	9,94	-120.00	0.327
	87	-26952.3	2690.38	20382.8	3.12	5.84	0.001522	0.0	-63.79	95.77	-7.98	12.96	-159.90	0.435
	88	-27014.7	7 2679.02	20238.5	3.13	5.82	0.001553	0.0	-63.94	94,82	-10.70	12.90	-159.36	0.434
	89	-24878.60	2294.41	16829.4	2.79	4.78	0.001458	0.0	-58.89	76.58	-28.88	11.03	-138.24	0.378
	90	-21475.73	1782.53	12436.6	2.30	3.76	0.001514	16.1	-58.50	-30.43	-0.10	0.98	-88.93	0.303
	91	-20997.73	1712.75	11876.2	2.23	3.63	0.001504	16.1	-57.22	-29.38	-0.12	0.97	-86.61	0.296
148 PS1	66	-16434.73	422.13	4111.0	1.65	0.38	0.000477	4.0	-42.28	-1.34	12.97	1.91	-55.31	0.256
	67	-12585.21	410.34	1246.5	1.28	1.39	0.001124	16.1	-34.61	11.94	-0.09	8.79	-46.55	0.215
	68	-12449.99	444.24	1454.0	1.27	1.45	0.001139	16.1	-34.25	12.40	-0.07	0.78	-46.65	0.215
	69	-12236.04	736.42	3947.7	1.25	1.82	0.001131	16.1	-33.68	15.17	0.18	0.68	-48.85	0.223
	70	-12002 01	1025 16	6242 4	1 22	2 27	0 001002	16.1	. 20 . 00	10 50	0.22	0.57	-54 45	0 249
		-13268 21	1057 51	6539 3	1 35	2 30	0.001081	16.1	-36 42	-18 72	-0.33	0.56	- 55 15	0.251
		-12526 01	1075 35	6703 6	1 27	2.30	0.001050	16.1	-27.14	-10 00	-0.22	0.50	-55 04	0.055
		-17512 21	12075.25	0722.0	1.37	2.51	0.000000	16.1	-17 00	- 23 . 62	0.52	0.00		0.200
	7.5	-22455 51	1602.27	11000 7	2.44	2.02	0.000000	16.1	-61 12	- 20 25	0.00	0.45	-00.35	0.510
		-22450.5	1002.71	11000.7	2.44	3.52	0.001145	16.1	-61.12	- 28.55	0.90	0.42	-89.49	0.405
		-22049.94	1051.55	10011	2.40	3.34	0.000047	10.1	-01.04	- 20.51	0.52	0.42	- 50.17	0.412
	/6	-22339.10	0 1533.92	10511.5	2.42	3.10	0.000947	16.1	-68.81	-24.86	0.95	0.46	-85.69	0.395
		-21558.50	5 1520.50	5251.0	2.20	2.54	0.000/55	10.1	- 50.15	-20.52	0.00	0.52	-/0.52	0.505
	/8	-21191.50	5 1294.98	9101.0	2.26	2.46	0.000/11	16.1	-5/./4	-19.64	0.65	0.55	-77.40	0.358
	/9	-16184.5	656.85	4582.8	1.62	1.36	0.000924	16.1	-44.08	11.55	0.25	0.75	-55.41	0.194
	88	-15319.4	5 681.38	471.5	1.54	2.18	0.001627	16.1	-41.96	18.56	0.24	1.01	-60.52	0.208
	81	-8541.20	5 1156.30	4295.5	8.91	3.41	0.002010	18.1	-25.81	28.22	-0.34	8.84	-52.03	0.171
	82	-8505.31	3 1382.76	6939.9	0.91	3.64	0.001922	16.1	-23.71	29.85	0.03	0.71	-53.56	0.176
	83	-9850.63	3 1700.29	9941.0	1.03	4.08	0.001854	16.1	-27.29	33.18	0.32	0.57	-60.47	0.199
	84	-10174.28	8 1719.79	10160.1	1.06	4.10	0.001833	16.1	-28.15	33.29	0.33	0.55	-61.44	0.202
	85	-10521.68	8 1738.56	10370.5	1.09	4.11	0.001812	16.1	-29.08	33.39	0.34	0.54	-62.47	0.206
	86	-18259.73	3 1830.32	11881.2	1.86	4.05	0.001479	16.1	-49.89	-32.69	0.28	0.39	-82.58	0.279
	87	-26083.6	2367.68	15805.3	2.97	5.68	0.002058	16.1	-70.80	-45.71	0.84	0.53	-116.52	0.394
	88	-26400.41	7 2374.83	15874.6	3.02	5.71	0.002066	16.1	-71.65	-45.98	0.84	0.54	-117.56	0.398
	89	-25709.57	7 2143.98	14330.7	2.92	4.89	0.001728	16.1	-69.88	-39.46	0.74	0.48	-109.27	0.372
	90	-24111.93	2 1897.23	12762.5	2.67	4.13	0.001443	16.1	-65.54	-33.35	0.13	0.54	-98.89	0.338
	91	-23795.00	5 1856.17	12497.9	2.63	4.01	0.001402	16.1	-64.69	-32.40	0.06	0.55	-97.10	0.332
103 PS1	66	-11683.10	5 553.17	4440.4	1.20	0.79	0.000592	4.0	-30.12	-0.70	-13.13	2.47	-43.27	0.198
	67	-16325.13	1 1249.56	9121.6	1.64	2.28	0.000804	0.0	-38.64	-37.98	-20.18	5.96	-81.65	0.300
	68	-16608.1	1292.26	9443.4	1.67	2.36	0.000810	0.0	-39.31	-39.83	-19.91	6.16	-83.83	0.308
	69	-18480.68	8 1614.83	11954.8	1.89	2.98	0.000773	0.0	-43.75	-54.58	-14.09	7.71	-100.12	0.366
	70	-19691.33	3 1867.34	13898.5	2.05	3.49	0.000778	0.0	-46.61	-65.36	-4.75	8.93	-112.14	0.488
	71	-19685.29	1873.57	13954.5	2.05	3.50	0.000772	0.0	-46.59	-65.69	-3.68	8.95	-112.39	0.489
	72	-19586.43	3 1868.40	13929.4	2.04	3.48	0.000758	0.0	-46.37	-65.63	-2.38	8.93	-112.04	0.407
	73	-16569.24	4 1519.10	11430.5	1.67	2.69	0.000657	0.0	-39.22	51.99	-14.19	7.24	-93.12	0.339
	74	-10672.77	7 1008.27	6539.8	1.11	2.20	0.001233	16.1	-29.49	-18.06	0.70	0.83	-47.56	0.215
	75	-10140.83	949.03	5974.3	1.06	2.14	0.001253	16.1	-28.06	-17.65	0.68	0.82	-45.73	0.206
	76	-7988.6	593.24	2982.4	0.86	1.61	0.001154	16.1	-22.34	-13.57	0.33	0.77	-35.91	0.162
	77	-7826.97	423.53	946.0	0.77	1.38	0.001069	16.1	-19.78	-11.71	-0.25	0.72	-31.50	0.142

*** PILE MAXIMUM UNITY CHECK SUMMARY ***

PILE GRUP	LOAD	*******	PILEHEAD FORCE	5 *******	* PILEH	EAD DISPL	ACEMENTS *	******	**** STR	ESSES AT	MAX. UND	TY CHEC	к ******	*****
эт.	CASE	AXIAL	LATERAL	MOMENT	AXIAL	LATERAL	ROTATION	DEPTH	AXIAL	FBY	FBZ	SHEAR	COMB.	UNITY
		KN	KN	KN-M	CM	CM	RAD	м			N/MM2			CHECK
	78	-7059.09	484.68	801.2	0.78	1.33	0.001050	16.1	-19.87	-11.36	-0.29	0.71	-31.24	0.142
	79	-9857.17	688.84	3454.9	1.03	1.73	0.001083	16.1	-27.31	14.39	0.32	0.63	-41.70	0.142
	80	-18678.79	1487.65	10531.1	1.92	3.02	0.001259	0.0	-44.21	-42.49	-25.70	7.12	-93.86	0.259
	81	-19076.14	1798.18	12103.9	1.97	3.95	0.001649	16.1	-52.08	31,96	-0.10	0.91	-84.04	0.285
	82	-22343.42	2268.27	16330.9	2.42	4.81	0.001542	0.0	-52.88	-74.34	-20.08	10.90	-129.88	0.354
	83	-24370.61	2620.49	19529.8	2.71	5.67	0.001544	0.0	-57.68	-91.70	-8.37	12.60	-149.77	0.406
	84	-24375.12	2632.20	19653.7	2.71	5.70	0.001533	0.0	-57.69	-92.42	-6.80	12.66	-150.36	0.488
	85	-24348.74	2640.69	19746.7	2.71	5.71	0.001523	0.0	-57.63	-92.96	-5.19	12.70	-150.74	0.489
	86	-18729.36	2081.89	15145.3	1.92	4.18	0.001286	0.0	-44.33	68.46	-20.30	9.97	-115.74	0.314
	87	-9253.00	1491.81	8143.0	0.98	3.87	0.002110	16.1	-25.70	-31.82	0.44	0.98	-57.53	0.189
	88	-8281.46	1428.96	7360.3	0.89	3.82	0.002129	16.1	-23.12	-31.45	0.44	0.96	-54.57	0.178
	89	-4702.35	1101.20	4196.6	0.56	3.18	0.001882	16.1	-13.61	-26.33	0.13	0.80	-39.94	0.128
	98	-2341 62	1190 19	5064 7	0.35	3 23	0 001768	16.1	-7 34	-26.58	-0.45	0 60	-33 92	0 106
	91	-2331.74	1188.42	5120.1	0.34	3.21	0.001742	16.1	-7.31	-26.35	-0.48	0.58	-33.66	0.106
101 PS1	66	-12365.81	498.13	3384.1	1.26	0.87	0.000579	16.1	-34.02	7.24	0.25	0.51	-41.27	0.193
	67	-14921.13	1064.83	6778.6	1.50	2.19	0.000891	16.1	-40.88	17.72	0.56	0.42	-58.62	0.269
	68	-15150.14	1097.18	7006.3	1.52	2.26	0.000910	16.1	-41.50	18.30	0.58	0.43	-59.80	0.274
	69	-17071.48	1362.77	9053.4	1.72	2.80	0.001002	16.1	-46.70	22.52	0.49	0.48	-69.23	0.316
	70	-18717.47	1628.45	11174.1	1.92	3.31	0.001057	0.0	-44.38	-51.75	-9.90	7.81	-96.99	0.355
	71	-18791.01	1641.32	11300.5	1.93	3,33	0.001048	0.0	-44,48	-52.45	-9.40	7.87	-97.76	0.358
	72	-18803.47	1645.32	11377.0	1.93	3.32	0.001025	0.0	-44.52	-52.93	-8.73	7.89	-98.16	0.360
	73	-17656.08	1473.36	10708.0	1.79	2.71	0.000628	0.0	-41.80	50.34	-3.83	7.04	-92.28	0.338
	74	-15174.65	1252.52	8855.6	1.52	2.41	0.001005	0.0	-35.92	34.38	-23.70	5.98	-77.67	0.285
	75	-14814.10	1199.13	8484.5	1.49	2 34	0.001041	0.0	-35.06	31.40	-24.18	5.73	-74.69	0.274
	76	-12623.94	768.85	5066.7	1.29	1.68	0.001067	16.1	-34.72	-13.91	0.31	8.79	-48.63	0.223
	77	-11120.01	447.59	2183.6	1.15	1.35	0.001076	16.1	-30.69	-11.49	-0.35	0.78	-42.18	0.194
	78	-11037.63	417.72	1929.1	1.14	1.30	0.001061	16.1	-30.47	-11.15	-0.41	8.77	-41.62	0.192
	79	-10343.75	839.28	4424 1	1.08	1.97	0.001035	16.1	-28.61	16.20	0.20	0.46	-44,80	0.152
	88	-16724 00	1327 12	8114 0	1.68	2 99	0.001300	16.1	-45.75	24 33	0.35	0.48	-78.88	0.239
	81	-15674.12	1624.34	9456.2	1.57	3.89	0.001717	16.1	-42.91	31.68	0.58	0.38	-74.60	0.251
	82	-19355 47	1946 34	12250 4	2.88	4 56	0.001853	16.1	-52.83	36.99	0.51	0.50	-89.82	0.303
	83	-22051.01	2326.82	15677.4	2.38	5.42	0.001961	16.1	-68.84	43.54	0.09	0.70	-103.57	0.348
	84	-22198.64	2348.58	15919.8	2.40	5.45	0.001946	16.1	-60.41	43.77	0.04	0.73	-104.19	0.350
	85	-22307.22	2368.12	16144.1	2.41	5.48	0.001929	16.1	-60.72	43.96	-0.01	0.75	-184.68	0.352
	86	-19971.50	2095.26	14967.8	2.09	4.29	0.001206	0.0	-47.27	70.35	-5.58	10.05	-117.84	0.321
	87	-16141.61	1985.58	12829.3	1.62	4.21	0.001794	0.0	-38.21	52.96	-29.24	9.14	-98.70	0.268
	88	-15502.22	1831.16	12094.3	1.56	4.12	0.001848	0.0	-36.69	48.83	-29.45	8.78	-93.72	0.255
	89	-11754.60	1235.21	6787.1	1.21	3.21	0.001829	16.1	-32.39	-26.50	-0.15	0.94	-58.89	0.197
	90	-8452.30	1043.08	3654.9	0.90	3.12	0.001894	16.1	-23.57	-25.88	-0.79	0.85	-49.46	0.163
	91	-8236 55	1036 50	3567 5	0.88	3 09	0 001877	16.1	-23.00	-25 69	-0.82	0.83	-48 78	0 161
146 PS1	66	-14913.96	676.83	5072.2	1.50	0.97	0.000433	4.0	-38.39	-6.88	-10.88	3.07	-51.26	0.236
	67	-18554.26	1292.36	8899.2	1.90	2.50	0.000757	16.1	-50.68	20.03	0.56	0.47	-78.72	0.325
	68	-18711.73	1320.33	9066.9	1.92	2.57	0.000783	16.1	-51.10	20.63	0.56	0.46	-71.73	0.330
	69	-19434.49	1489.36	10034.3	2.82	3.04	0.000963	16.1	-53.05	24.48	0.54	0.40	-77.46	0.354
	70	-19542.94	1618.09	10734.7	2.03	3.41	0.001134	16.1	-53.33	27.43	0.34	0.36	-80.76	0.368

*** PILE MAXIMUM UNITY CHECK SUMMARY ***

PILE GRUP	LOAD	********	PILEHEAD FORCE	5 *******	* PILEH	EAD DISPL	LACEMENTS *	******	**** STR	ESSES AT I	MAX. UND	TY CHEC	к ******	******
эт.	CASE	AXIAL	LATERAL	MOMENT	AXIAL	LATERAL	ROTATION	DEPTH	AXIAL	FBY	FBZ	SHEAR	COMB.	UNITY
		KN	KN	KN-M	CM	CM	RAD	м			N/MM2			CHECK
	71	-19448.69	1616.71	10718.9	2.02	3.41	0.001135	16.1	-53.08	27.42	0.31	0.36	-80.50	0.366
	72	-19265 19	1684 69	10637 3	1 99	3 38	0 001124	16.1	-52 59	27.18	0 27	0.35	-79 77	0 363
	72	-15707 32	1279 84	8526.4	1 59	2 55	0 000830	16.1	-43 00	- 28 51	0 46	0.37	-62 62	0 290
	24	-10101 02	1007 00	6520.4	1.00	2.20	0.001005	16.1	-00.00	-10.40	0.70	0.00	-47.61	0.234
		-10151.02	1007.22	6520.0	1.00	2.35	0.001050	10.1	-20.20	-15.40	0.70	0.40	-47.01	0.214
	12	-56/2.00	1035.00	0205.1	1.05	2.35	0.001121	10.1	-27.34	-15.15	0.75	0.50	-40.51	0.205
	/6	-9256.50	/1/./8	3556.4	0.98	1.80	0.001107	16.1	-25.71	-14.99	0.34	0.62	-40.70	0.184
		-9668.78	440.00	1120.7	1.01	1.45	0.001055	10.1	-20.05	-12.14	-0.24	0.71	-38.79	0.1//
	78	-9747.19	417.64	882.6	1.02	1.37	0.001067	16.1	-27.01	-11.67	-0.29	0.72	-38.69	0.177
	/9	-14/17.14	947.10	6386.2	1.48	1.90	0.000924	16.1	-40.34	15.43	0.58	0.64	-55.78	0.193
	80	-21611.77	1641.56	11290.0	2.32	3.37	0.001111	16.1	-58.86	27.08	0.06	0.60	-85.95	0.295
	81	-21744.16	1962.89	13041.3	2.33	4.35	0.001546	16.1	-59.22	35.07	0.15	0.50	-94.29	0.320
	82	-23085.67	2142.66	14119.9	2.53	4.94	0.001787	16.1	-62.80	39.84	0.41	0.43	-102.65	0.347
	83	-23370.04	2321.54	15264.6	2.57	5.57	0.002054	16.1	-63.56	44.80	0.38	0.45	-108.36	0.365
	84	-23216.80	2321.89	15257.6	2.54	5.57	0.002056	16.1	-63.15	44.82	0.36	0.45	-107.97	0.364
	85	-23037.54	2320.35	15236.3	2.52	5.57	0.002056	16.1	-62.67	44.79	0.32	0.44	-107.46	0.362
	86	-16236.38	1812.65	11649.0	1.63	4.01	0.001465	16.1	-44.43	-32.35	0.50	0.32	-76.79	0.258
	87	-7256.48	1809.07	10716.6	0.79	4.29	0.001861	0.0	-17.18	48.38	-14.58	8.63	-67.70	0.179
	88	-6702.57	1777.43	10345.9	0.74	4.27	0.001900	16.1	-18.92	-34.59	0.56	0.49	-53.51	0.173
	89	-5820.58	1347.71	6648.1	0.66	3.53	0.001854	16.1	-16.58	-28.92	0.09	0.65	-45.49	0.147
	98	-6828.19	1131.30	4225 7	0.68	3 28	0.001915	16.1	-17,13	-27.12	-0.61	0.77	-44.26	0.144
	91	-6248 81	1104 36	4010 7	0.70	2 22	0 001999	16.1	-17 69	- 25 . 57	-0.66	0.79	-44 27	0 144
	-	0240.02	1104.00				0.001000			20.07	0.00			0.244
100 000		-16717 67	1466 48	10747 0	3 74	2 60	0.000505		. 20 . 57	- 50 45	4.73	7 00	-00.24	0.220
199 752	67	-14920 26	1200.40	02/0 1	1 53	2.00	0.000010	0.0	- 25 00	- 30.40	22.02	6 20	-70 12	0.000
		24020.00	1070.00	0000.1		2.40	0.000020	0.0	24.50	26.42		6.00	77.44	0.000
		-14012.01	1270.05	5052.1	1.51	2.40	0.000554	0.0	- 34. 55	- 50.45	22.55	0.00	-//.40	0.205
	69	-12580.88	899.06	6183.7	1.32	1.79	0.001000	15.0	- 34 . 79	14.67	0.05	0.88	-49.46	0.227
	78	-10800.61	558.43	5211.4	1.15	1.42	0.001066	15.0	- 50 . 00	12.52	0.04	0.74	-42.53	0.195
	71	-10702.01	514.93	2943.9	1.14	1.37	0.001055	15.0	-29.74	12.16	0.04	0.73	-41.90	0.192
	72	-10658.78	473.79	2691.8	1.13	1.29	0.001031	15.0	-29.62	11.62	0.04	0.72	-41.24	0.190
	73	-11495.01	242.57	2661.9	1.21	0.45	0.000561	3.7	-29.67	-6.68	8.22	1.12	-40.21	0.185
	74	-14968.25	1014.62	6856.4	1.55	1.89	0.000706	15.9	-41.09	-15.02	-1.66	0.52	-56.20	0.259
	75	-15348.32	1089.37	7348.0	1.59	2.07	0.000757	15.9	-42.12	-16.46	-1.69	0.53	-58.66	0.270
	76	-17337.71	1434.80	9850.0	1.82	2.83	0.000921	0.0	-41.04	43.85	15.30	6.87	-87.48	0.321
	77	-18539.51	1682.51	11773.5	1.98	3.34	0.000983	0.0	-43.88	-54.39	-11.10	8.86	-99.39	0.363
	78	-18589.63	1694.91	11889.1	1.99	3.36	0.000976	0.0	-44.00	-55.07	-10.49	8.12	-100.05	0.366
	79	-18341.41	1939.74	13907.5	1.96	3.86	0.001042	0.0	-43.42	-65.38	5.08	9.28	-108.99	0.296
	88	-18180.61	1820.97	13035.1	1.93	3.70	0.001391	0.0	-43.03	-55.00	27.43	8.72	-104.49	0.285
	81	-14483.15	1678.34	11250.3	1.50	3.65	0.001606	0.0	-34.28	-45.12	27.90	8.03	-87.32	0.237
	82	-10722.70	1206.75	6595.6	1.14	3.13	0.001788	15.0	-29.79	26.15	0.51	0.85	-55.95	0.187
	83	-7588.58	1115.76	4183.7	0.85	3.29	0.001969	15.0	-21.39	27.88	0.39	0.48	-49.27	0.161
	84	-7398.08	1108.54	4074 9	0.83	3.28	0.001957	15.0	-28.85	27.75	0.36	0.45	-48.60	0.159
	85	-7215.76	1102.27	4000.4	0.81	3.26	0.001942	15.0	-20.39	27.58	0.33	0.43	-47.97	0.157
	86	-9886 22	730.07	2243 2	0.00	1 89	0 001110	15.0	-25 /0	-15 99	0 44	0.41	-41 20	0 140
	87	-14608 31	1337 02	7774 6	1 51	3 12	0 001422	15.0	-40 26	-25 26	-0.97	0.61	-65 53	0 222
		-15262 44	1427 70	0400 4	1 50	2 22	0 001/07	15.0	-42.20	- 26 . 01	-1.05	0.55	- 69 . 22	0.224
	20	-18701 02	1838 62	11742 4	2 01	4 17	0.001457	15.0	-51 12	-33.60	-1.52	0.00	-84 74	0 284
		20102.00					0.001007	40.0		22.00				

* * * PILE NAXINUM UNITY CHECK SUMMARY * * *

PILE GRUP	LOAD		ILEHEAD FORCE	ES	PILEH	EAD DISPL	ACEMENTS *		STR	ESSES AT I	AX. UNI	TY CHEC	K	
31.	CASE	AXIAL	LATERAL	MOMENT	AXIAL	LATERAL	ROTATION	DEPTH	AXIAL	FBY	FBZ	SHEAR	COMB.	UNITY
		KN	KN	KN-M	CM	CM	RAD	м			N/MM2			CHECK
	36	-211/2.35	2255.71	15327.9	2.37	5.11	0.001/92	0.0	-50.11	/0.38	16.43	10.86	-122.38	0.334
	91	-21292.16	2279.90	15576.3	2.39	5.15	0.001781	0.0	-50.40	71.72	15.81	10.98	-123.84	0.337
197 PS2	66	-15370.94	1451.76	10800.6	1.59	2.63	0.000734	0.0	-36.38	-48.68	14.95	6.92	-87.30	0.318
	67	-10922.35	1069.09	7132.1	1.16	2.24	0.001154	15.0	-30.33	18.19	0.44	0.94	-48.52	0.219
	68	-10617.65	1034.30	6819.7	1.13	2.20	0.001163	15.0	-29.51	17.92	0.38	0.91	-47.43	0.214
	69	-8366.94	695.41	3982.8	0.92	1.69	0.001114	15.0	-23.47	14.44	-0.06	0.71	-37.91	0.171
	78	-6873.00	480.08	1784.5	0.78	1.43	0.001065	15.0	-19.47	12.69	-0.06	0.59	-32.16	0.145
	71	-6872.64	457.41	1544.1	0.78	1.38	0.001047	15.0	-19.47	12.32	-0.05	0.59	-31.79	0.143
	72	-6963.47	426.15	1488.5	0.79	1.31	0.001018	15.0	-19.71	11.76	-0.03	0.60	-31.47	0.142
	73	-10354.24	311.22	3491.2	1.11	0.34	0.000544	3.7	-26.76	-5.85	11.18	1.47	-39.37	0.179
	74	-16849.10	1217.36	9141.7	1.66	2.05	0.000560	0.0	-37.99	39.24	17.84	5.79	-81.09	0.298
	75	-16533.90	1302.46	9739.3	1.72	2.25	0.000592	0.0	-39.13	42.56	17.25	6.20	-85.05	0.312
	76	-18449.28	1664.31	12370.1	1.97	3.04	0.000684	0.0	-43.67	57.32	10.79	7.94	-101.99	0.372
	77	-19212.10	1871.22	13880.1	2.08	3.51	0.000777	0.0	-45.47	-65.41	-2.17	8.94	-110.92	0.403
	78	-19183.93	1875.52	13913.5	2.07	3.52	0.000781	0.0	-45.41	-65.59	-1.18	8.96	-111.01	0.403
	79	-17076.20	1889.54	13648.6	1.79	3.75	0.001175	0.0	-40.42	-61.70	18.28	9.03	-104.78	0.284
	88	-13495.25	1491.98	9744.3	1.48	3.41	0.001723	15.0	-37.25	27.68	1.19	1.22	-64.96	0.218
	81	-8304.59	1303.55	7014.6	0.91	3.37	0.001861	15.0	-23.30	27.97	0.26	0.80	-51.27	0.169
	82	-4199.64	1096.50	4314.6	0.53	3.12	0.001817	15.0	-12.31	26.25	-0.21	0.39	-38.56	0.123
	83	-1597.28	1268.90	5611.9	0.28	3.42	0.001824	15.0	-5.34	28.28	-0.04	0.10	-33.62	0.104
	84	-1572.70	1268.21	5661.1	0.28	3.40	0.001804	15.0	-5.28	28.09	-0.01	0.09	-33.37	0.104
	85	-1585.26	1264.51	5687.9	0.28	3.37	0.001781	15.0	-5.31	27.86	0.02	0.09	-33.17	0.103
	86	-8013.04	584.91	2108.4	0.89	1.64	0.001095	15.0	-22.52	-14.23	0.37	0.48	-36.75	0.124
	87	-17510.11	1519.48	10389.2	1.84	3.19	0.001344	15.9	-47.94	-25.69	-0.28	0.89	-73.63	0.251
	88	-18320.97	1651.82	11393.4	1.95	3.45	0.001381	0.0	-43.36	47.49	25.10	7.92	-97.08	0.266
	89	-21323.43	2149.47	15477.2	2.39	4.44	0.001372	0.0	-50.47	70.35	19.39	10.31	-123.44	0.336
	90	-23139.08	2515.24	18575.5	2.67	5.36	0.001444	0.0	-54.77	87.23	7.84	12.08	-142.35	0.386
	91	-23131.90	2527.60	18693.7	2.67	5.39	0.001442	0.0	-54.75	87.91	6.35	12.14	-142.89	0.387
149 PS2	66	-14585.61	1262.38	8415.7	1.51	2.52	0.000507	15.9	-40.06	20.05	0.56	0.43	-60.15	0.274
	67	-10531 88	1132 01	7098 1	1 12	2 39	0 000992	15.9	-29 28	19.24	-0.40	0 46	-48 44	0 218
	68	-10337.63	1111.17	6919.3	1.10	2.36	0.001001	15.9	-28.68	19.01	-0.43	0.46	-47.69	0.215
	69	-9387.70	824 86	4664 0	1.01	1.87	0.001016	15.0	-26.21	15.52	-0.04	0.55	-41.73	0.189
	70	-9260.75	546.20	2249.8	1.00	1.51	0.001050	15.0	-25.87	13,19	-0.03	0.55	-39.05	0.178
	71	-9372 60	510 59	1996 0	1 01	1.45	0 001036	15.0	-26 17	12 73	-0.03	0.56	-38 89	0 177
	72	-9564.22	466.02	1738.3	1.03	1.36	0.001009	15.0	-26.68	12.05	-0.04	0.57	-38.73	0.177
	73	-13472 73	493 16	2544 0	1.49	0.46	0 000436	3.7	- 24 74	0.57	11 31	1.86	-46 86	0 213
	74	-17771.88	1161.68	7988 8	1.88	2 21	0.000574	15.9	-48.64	-17.58	-1.34	9.46	-66.27	0.306
	75	-18058.05	1226.84	8286 6	1.92	2 39	0.000744	15.9	-49.41	-19.00	-1.38	0.45	-68.46	0.315
	76	-19962 10	1471 26	9749 0	2.04	2.00	0 001005	15 0		- 24 31	-1 62	0.42	-76 10	0 249
		-18834 72	1686 14	10552 8	2 82	3 41	0 001155	15 9	-51 49	27 27	1 47	0.42	-78 79	0.358
	78	-18733 70	1607 15	10559 4	2 83	3 41	0 001155	15 0	-51 22	27.29	1.45	0.42	-78 54	0.357
	79	-15053.96	1673.94	10848 1	1 55	3 62	0 001275	15.9	-41 33	28.98	0.39	0.41	-70 31	0.237
	80	-12198 10	1621 47	10214 6	1 29	3 62	0 001475	15.0	-33 65	29.17	-0.10	0.55	-62 82	0 210
	81	-7278.27	1614.32	9569.7	0.82	3.76	0.001643	15.9	-20.51	30.39	-0.53	0.48	-50,91	0.166
	82	-5676.46	1327.05	6674.4	0.67	3.43	0.001788	15.0	-16.26	28.29	0.11	0.48	-44.56	0.144

* * * PILE MAXIMUM UNITY CHECK SUMMARY * * *

PILE GRUP	LOAD	••••• P	ILEHEAD FORCE	5 *******	* PILEH	EAD DISPL	LACEMENTS *	******	**** STR	ESSES AT 1	MAX. UND	CTY CHEC	к *****	******
эт.	CASE	AXIAL	LATERAL	MOMENT	AXIAL	LATERAL	ROTATION	DEPTH	AXIAL	FBY	FBZ	SHEAR	COMB.	UNITY
		KN	KN	KN-M	CM	CM	RAD	м			N/HH2			CHECK
						2.45								
	83	-5365.25	1215.72	4900.7	0.64	5.40	0.001967	15.0	-15.45	28.99	0.25	0.52	-44.45	0.145
		-5566.8/	1189.55	4677.5	0.66	3.41	0.001955	15.0	-15.9/	28.62	0.24	0.32	-44.68	0.144
		-5//0.54	1102.70	4404.4	0.00	5.55	0.001555	15.0	-10.55	20.21	0.22	0.55	-44.75	0.145
	80	-15050.40	740.67	4408.1	2.30	2.65	0.001017	15.0	-56.02	-14.18	0.85	0.65	-50.22	0.1/5
		-20103.51	1000.02	10//1.1	2.21	5.00	0.001/00	15.5	- 54.07	-20.00	-0.47	0.51	-02.00	0.200
		-20005.04	1007.00	1205.5	2.20	4 55	0.001422	15.5	-50.20	- 26 66	-1.26	0.40	-06 50	0.250
	00	-22302.55	1000 00	14222 4	2.40	4.30 5.05	0.001055	15.0	-50.05	- 42.00	-1 40	0.40	-100.50	0.246
	91	.220020 20	2200.55	14352.4	2.52	5 25	0.001965	15.9	-60.42	-42.05	-1.40	0.51	-102.55	0.340
					2.00		0.001000		00.00			0.01	102.22	0.044
119 PS2	66	-14969.84	1475.07	10612.3	1.55	2.75	0.000666	0.0	-35.43	-49.81	-4.74	7.04	-85.47	0.311
	67	-16239.21	1655.13	11352.6	1.69	3.36	0.001043	0.0	-38.44	-52.75	9.10	7.92	-91.97	0.335
	68	-16173.50	1641.03	11221.0	1.68	3.34	0.001050	0.0	-38.28	-52.02	9.65	7.85	-91.19	0.332
	69	-14614.77	1369.01	9109.6	1.51	2.78	0.000960	0.0	-34.59	-41.00	12.79	6.55	-77.54	0.284
	70	-12554.26	1062.24	6752.4	1.31	2.15	0.000844	15.9	-34.61	17.24	-1.28	0.41	-51.89	0.236
	71	-12343.74	1025.71	6500.9	1.29	2.06	0.000820	15.9	-34.05	16.57	-1.28	0.40	-50.67	0.231
	72	-12093.33	981.07	6205.4	1.27	1.96	0.000786	15.9	-33.38	15.72	-1.26	0.40	-49.15	0.224
	73	-9512.50	326.18	2618.7	1.03	0.54	0.000496	3.7	-24.68	-3.65	-8.37	1.47	-33.73	0.155
	74	-7954.80	399.85	1686.7	0.88	1.21	0.000974	15.0	-22.37	-10.97	0.27	0.62	-33.34	0.152
	75	-8111.72	458.48	2088.3	8.89	1.29	0.000997	15.0	-22.79	-11.50	0.22	0.65	-34.29	0.156
	76	-10067.98	803.62	5322.3	1.08	1.63	0.000952	15.0	-28.03	-13.53	-0.15	0.78	-41.57	0.190
		-12103.94	1150.50	8085.8	1.2/	2.15	0.000857	0.0	-28.65	-51.52	-21.45	5.46	-00.70	0.245
	78	-12308.13	1076 01	3321.2	1.29	2.20	0.000841	0.0	-29.13	-33.14 -	-21.00	5.62	-08.5/	0.249
	00	-10770.10	2377.31	15012 0	2.07	4 76	0.001550	0.0	-45 27	- 60 .00	11 14	10.46	-116 16	0.207
	01	-100/0 22	2222 /2	1/052 0	2.05	5 11	0.001027	0.0	-45.07		14 52	10.74	-116 67	0.214
	82	-16224 26	1821.96	11228 3	1 68	4 22	0.001007	15.9	-44 51	34.02	-1 21	0.50	-79 66	0.314
		-12570 40	1616 77	9647 6	1 22	2 62	0.001622	15 0	-24 69	20.40	-1 00	0.30	-64 11	0.204
	84	-12144 55	1479.06	8387 7	1 28	3 54	0.001589	15.9	-33 51	28.70	-1 24	0.32	-62 24	0.208
		-11713 07	1443 76	8142 8	1 22	2 45	0 001555	15.9	- 22 26	28.01	-1 19	0.30	-60 20	0 202
	86	-6994.69	823.90	4026.8	8.79	2.00	0.001055	15.0	-19.88	-16.59	0.02	0.33	-36.39	0.122
	87	-4582.55	1102.81	4155.9	0.56	3.17	0.001838	15.0	-13.34	-26.64	0.58	0.31	-39.99	0.128
	88	-4892.15	1097.83	4068.3	0.59	3.18	0.001868	15.0	-14.16	-26.84	0.60	0.36	-41.01	0.132
	89	-8368.69	1134.32	5898.8	0.92	2.98	0.001717	15.0	-23.48	-24.95	0.45	0.75	-48.44	0.160
	90	-12194.71	1609.50	10558.1	1.28	3.53	0.001576	0.0	-28.86	42.08	26.59	7.69	-78.64	0.213
	91	-12599.57	1657.06	10998.7	1.32	3.59	0.001548	0.0	-29.82	-44.56	-26.52	7.92	-81.68	0.221
	~~		2462.30											
117 P52	60	-13/01.0/	1468.30	10/24.5	1.42	2.70	0.000/01	0.0	-32.45	-48.33 -	14.86	0.00	-85.00	0.300
	60	-17156.51	1045.20	12496 7	1.75	2 50	0.000023	0.0	-40.55	- 63.64	2.45	0.00	-104.41	0.3/0
	60	-16143 31	1045.40	11736 7	1.00	0.00	0.000720	0.0	-20.01	- 65.55	10.00	7.66	- 104.24	0.3//
	78	-14243 79	1267.97	9160.9	1 47	2.26	0.000730	0.0	-38.21	- 29 26	17 79	6.04	-76 01	0.281
	71	-12964 /0	1222 47	9933 4	1.45	2 20	0 000703	0.0	-33.05	- 37 51	18 10	5 92	-74 79	0 272
	72	-13604.62	1168.88	8440.5	1.41	2.08	0.000681	0.0	-32.20	-35.33	18.33	5.57	-72.88	0.263
	73	-8788 51	383.96	3529 8	0.96	0.46	0.000485	3.7	-22.75	-2.76	-11.47	1.77	-34.49	0.155
	74	-4603.94	408.06	713.1	0.56	1.25	0.000951	15.0	-13.39	-11.21	0.01	0.51	-24.60	0.110
	75	-4554.67	438.56	988.4	0.56	1.32	0.000983	15.0	-13.26	-11.76	-0.06	0.51	-25.02	0.111

*** PILE MAXIMUM UNITY CHECK SUMMARY ***

PILE	GRUP	LOAD	*******	PILEHEAD FORCES	5 *******	* PILEH	EAD DISPL	ACEMENTS *	******	**** STR	ESSES AT	MAX. UND	TY CHEC	к *****	******
эт.		CASE	AXIAL	LATERAL	MOMENT	AXIAL	LATERAL	ROTATION	DEPTH	AXIAL	FBY	FBZ	SHEAR	COMB.	UNITY
			KN	KN	KN-M	CM	CM	RAD	м			N/MM2			CHECK
		76	-6848.84	619.20	3259.0	0.70	1.54	0.001047	15.0	-17.24	-13.32	-0.40	0.63	-30.56	0.137
		77	-8377.47	931.56	6024.2	0.92	1.95	0.001056	15.0	-23.50	15.96	0.30	0.80	-39.46	0.177
		78	-8669.15	965.25	6325.0	0.95	1.99	0.001046	0.0	-20.52	-20.15	-21.99	4.60	-50.34	0.183
		79	-15466.07	1921.53	13678.9	1.60	3.87	0.001241	0.0	-36.61	-61.70	-18.79	9.18	-101.10	0.273
		88	-20451.44	2401.80	17767.3	2.26	4.95	0.001259	0.0	-48.41	-83.76	1.29	11.51	-132.18	0.357
		81	-21138.18	2498.87	18275.0	2.37	5.36	0.001486	0.0	-50.03	-85.88	7.00	11.99	-136.20	0.368
		82	-19297.07	2133.48	15129.6	2.09	4.48	0.001444	0.0	-45.67	-68.71	19.19	10.23	-117.01	0.318
		83	-16469.98	1701.75	11323.8	1.71	3.71	0.001544	15.9	-45.15	29.86	-0.42	0.86	-75.01	0.253
		84	-15996.93	1637.80	10795.8	1.66	3.59	0.001534	15.9	-43.87	28.96	-0.43	0.84	-72.83	0.246
		85	-15493.77	1572.07	10255.5	1.60	3.47	0.001523	15.9	-42.51	28.05	-0.44	0.82	-70.56	0.238
		86	-6509.05	653.50	2616.4	0.74	1.74	0.001085	15.0	-18.50	-14.85	0.10	0.42	-33.34	0.112
		87	493.71	1273.33	5996.5	0.08	3.29	0.001684	15.0	0.26	-27.04	0.15	0.11	27.30	0.082
		88	551.83	1274.10	5988.6	0.08	3.33	0.001720	15.0	0.41	-27.36	0.06	0.10	27.77	0.084
		89	-2114.12	1059.18	4083.8	0.33	2.99	0.001733	15.0	-6.73	-25.12	-0.37	0.33	-31.85	0.100
		90	-6136.18	1248.39	6446.9	0.71	3.25	0.001811	15.0	-17.50	-27.05	-0.26	0.71	-44.54	0.145
		91	-6680.30	1285.53	6888.0	0.76	3.29	0.001802	15.0	-18.95	-27.24	-0.20	0.76	-46.20	0.151
147	PS2	66	-12536.55	1275.95	8341.9	1.31	2.59	0.000857	0.0	-29.67	-39.12	-4.10	6.10	-69.00	0.252
		67	-16496.25	1583.32	10244 9	1.72	3.40	0.001189	15.9	-45.22	27.24	-0.75	0.37	-72.47	0.328
		68	-16610.95	1582.19	10238.8	1.73	3.40	0.001188	15.9	-45.53	27.22	-0.79	0.37	-72.75	0.329
		69	-16622 23	1433 79	9365 0	1 73	2.99	0 001015	15.9	-45 56	23.94	-1.07	0.38	-69 52	0 316
		70	-16028.23	1241.03	8225.5	1.66	2.47	0.000806	15.9	-43.96	19.72	-1.16	0.40	-63.71	0.291
		71	-15880.09	1289.88	8837.8	1.64	2.39	0.000773	15.9	-43.55	19.04	-1.16	0.41	-62.63	0.287
		72	-15657.83	1168.36	7786.6	1.62	2.28	0.000731	15.9	-42.96	18,16	-1.15	0.41	-61.15	0.280
		73	-11638.87	486.06	3719.2	1.23	0.61	0.000374	3.7	-30.04	2.74	-10.23	2.23	-40.63	0.187
		74	-7231.86	420.93	934.7	0.81	1.29	0.000979	15.0	-20.43	-11.57	0.05	0.53	-32.00	0.145
		75	-6986.26	477.20	1416.9	0.79	1.40	0.001007	15.0	-19.77	-12.33	-0.01	0.51	-32.09	0.145
		76	-6984.27	758.04	4846.7	0.79	1.75	0.000981	15.0	-19.77	-14.59	-0.42	0.48	-34.36	0.154
		77	-8856.47	1008.64	6125.3	0.89	2.12	0.000924	15.9	-22.59	-17.08	-1.13	0.41	-39.70	0.178
		78	-8242.49	1028.03	6295.1	0.91	2.14	0.000914	15.9	-23.09	17.27	1.14	0.40	-40.39	0.181
		79	-12820.75	1712.94	10969.2	1.34	3.74	0.001343	0.0	-30.35	-51.65	-2.78	8.28	-82.07	0.222
		88	-19301.90	2077.92	13512.5	2.09	4.78	0.001743	15.9	-52.73	38.35	-0.56	0.48	-91.08	0.306
		81	-19986.93	2194.66	14073.0	2.19	5.24	0.001994	15.9	-54.56	42.09	-0.98	0.46	-96.66	0.324
		82	-19851.59	1993.64	12753.5	2.17	4.61	0.001741	15.9	-54.28	37.07	-1.00	0.42	-91.29	0.308
		83	-18907.94	1840.07	11863.3	2.03	4.12	0.001532	15.9	-51.68	33.13	-0.71	0.46	-84.82	0.287
		84	-18659.91	1886.79	11663.3	2.00	4.02	0.001492	15.9	-51.02	32.34	-0.67	0.47	-83.37	0.282
		85	-18393.76	1772.04	11451.4	1.96	3.92	0.001452	15.9	-50.31	31.53	-0.64	0.48	-81.84	0.277
		86	-11357.76	849.59	5176.5	1.20	1.84	0.000981	15.0	-31.50	-15.17	-0.19	0.64	-46.67	0.160
		87	-3793.74	1143.27	4397.1	0.49	3.27	0.001879	15.0	-11.22	-27.42	0.47	0.29	-38.65	0.123
		88	-3373.64	1180.62	4650.5	0.45	3.35	0.001907	15.0	-10.10	-28.07	0.43	0.27	-38.17	0.121
		89	-3487.12	1276.46	6249.1	0.46	3.31	0.001735	15.0	-10.40	-27.30	-0.05	0.41	-37.70	0.120
		90	-4974.75	1570.23	9147.2	0.60	3.66	0.001614	0.0	-11.77	48.72	14.20	7.47	-54.90	0.144
		91	-5288.20	1591.83	9381.0	0.63	3.68	0.001592	0.0	-12.52	41.94	14.05	7.58	-56.75	0.149

APPENDIX -9: Pile Head Load Summary

SACS V VETAD	/81 1UN	SELECTS PLATFOR	eries M INP:	4 (vs.) LACE AN	7) ALYSIS		.00				DATE 23	-MAR-2016	TIME 0	0:37:4	a PSI PA	4 ¹⁰ -	32
					20.5	SOIL	нахін	UN AX	I A	LCAP	ACITY	SUMMA	. # V . *	515			
PILE 0	iap.			1.1			**** COMP	RESSION *				тра	1530N ***				
31		PILE 0.0. CM	HEAD THK. CM	WEIGHT KIN	PEN,	CAPACITY (INCL. WT) KN	HAX. LOAD KN	CRITIC LOAD KN	AL CO LOAD CASE	SAFETY FACTOR	EAPACITY (INCL. WT) KN	HAX. LOAO KN	CRITIC LOAD KN	AL CON LOAD I CASE	DITION SAFETY FACTOR	*MAKI UNITY CHECK	LOAD CASE
181 F 183 P 148 P 103 F 181 F 146 P 197 F 149 F 149 F 149 F	PS1 PS1 PS1 PS1 PS1 PS1 PS2 PS2 PS2 PS2 PS2 PS2 PS2 PS2 PS2 PS2	213.40 213.40 213.40 213.40 213.40 213.40 213.40 213.40 213.40 213.40 213.40 213.40 213.40	6.58 6.58 6.58 6.58 6.58 6.58 6.58 6.58	2922.5 2922.5 2922.5 2922.5 2922.5 2922.5 2922.5 2638.1 2638.1 2638.1 2638.1 2638.1	108.5 108.5 108.5 108.5 108.5 108.5 93.5 93.5 93.5 93.5 93.5 93.5	-49766.7 -49766.7 -49766.7 -49766.7 -49766.7 -49766.7 -49766.7 -45474.1 -45474.1 -45474.1 -45474.1	-25833.5 -27014.8 -26400.5 -24375.1 -22307.2 -23370.0 -21202.2 -23139.1 -22187.7 -19170.1 -21138.2	-25033.5 -27014.8 -26480.5 -24375.1 -22307.2 -23370.0 -21202.2 -23139.1 -22187.7 -19170.1 -21138.2	87 88 84 85 83 01 99 98 88 81	1.99 1.84 1.89 2.04 2.23 2.13 3.14 1.97 2.05 2.37 2.15	53684.8 53684.8 53684.8 53684.8 53684.8 53684.8 48834.2 48834.2 48834.2 48834.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00 66 66 66 66 66 66 65 66 88	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 88.50	8,87 9,01 8,79 8,76 9,70 9,82 8,84 8,83 8,71 8,75	74 75 76 71 71 71 71 71 71 60 60