
i

AUGMENTED REALITY BASED INDOOR POSITIONING

NAVIGATION TOOL

by

LOW CHEE HUEY

DISSERTATION

Submitted to the Electrical & Electronics Engineering Programme

in Partial Fulfillment of the Requirements

 for the Degree

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi PETRONAS

 Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

 Copyright 2010

by

Low Chee Huey, 2010

ii

CERTIFICATION OF APPROVAL

AUGMENTED REALITY BASED INDOOR POSITIONING

NAVIGATION TOOL

by

LOW CHEE HUEY

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONIC ENGINEERING)

Approved by,

(Mr. Patrick Sebastian)

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

DECEMBER 2010

iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

(LOW CHEE HUEY)

iv

ABSTRACT

Indoor positioning gained popularity recently due to its potential to be used in

the increasing complexity of indoor environment. Unfortunately GPS signals are

restricted from indoor purposes. The main objective of this project is to design a new

method to develop indoor positioning navigation system without using wireless

technology through image processing. Apart from that, the project aims to develop an

interactive indoor navigation system. Augmented reality is being used to superimpose

the directional signage on the real view of the indoor environment in 3D form. Along

with the 3D guides, voice guidance will be output from the system to assist users in

identifying their locations easily. Overall scope of study mainly revolves the research

on augmented reality, audio API, and other additional techniques that could improve the

program in computing the route. As development phase, laptop has been used as

computing device. In the future, this idea could be broadly applied to mobile devices

such as mobile hand phones and PDA as added indoor navigation functionality without

using GPS and wireless communication. The system has been tested at ground floor in

Information Resource Centre (IRC) and the results show the flexibility of the system in

navigating 12 locations and handling up to 30 possible routes.

v

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to persons who

helped me a lot in completing the project. First and foremost I want to show my

appreciation to my project supervisor, Mr. Patrick Sebastian for his guidance and advice

on the project. Mr. Patrick has contributed a lot of constructive ideas for this project.

Secondly, I would like to thank my colleagues including a post graduate student

from IT department for supporting and guiding me on the knowledge of using

ARtoolkit and 3D modeling software.

Last but not least, I would like to show my gratitude to my family for supporting

me in my academic so that I could do the best for my final year project.

vi

TABLE OF CONTENT

ABSTRACT ... iv

ACKNOWLEDGEMENTS .. v

LIST OF FIGURES .. ix

LIST OF TABLES ... xi

LIST OF ABBREVIATIONS ... xii

CHAPTER 1 INTRODUCTION .. 1

 1.1 Background of Study ... 1

 1.2 Problem Statement ... 3

 1.3 Objectives .. 4

 1.4 Scope of Study ... 4

CHAPTER 2 LITERATURE REVIEW ... 5

 2.1 Augmented Reality .. 5

 2.2 ARtoolkit ... 8

 2.2.1 Introduction of ARtoolkit .. 8

 2.2.2 Image Processing of ARtoolkit .. 10

vii

 2.2.3 Analysis of ARtoolkit’s Accuracy .. 13

 2.3 OpenAL .. 15

CHAPTER 3 METHODOLOGY .. 16

 3.1 Procedure of Project Identification .. 16

 3.2 Project Methodology .. 17

 3.2.1 Research .. 17

 3.2.2 Basic Software Development .. 17

 3.2.3 Demo Development ... 17

 3.3 Tools and Required Equipment ... 19

 3.4 Project Operation ... 20

CHAPTER 4 RESULT & DISCUSSION .. 22

 4.1 Program Initialization .. 22

 4.2 ARtoolkit .. 23

 4.2.1 ARtoolkit: Initialization .. 24

 4.2.2 ARtoolkit: Frame Acquisition ... 25

 4.2.3 ARtoolkit: Marker Detection ... 26

 4.3 Route Planner Algorithm ... 26

 4.4 ARtoolkit: VRML Model Rendering ... 28

 4.5 Audio Module .. 29

viii

 4.6 Overall Summary of the Result .. 31

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 33

 5.1 Conclusions .. 33

 5.2 Recommendations .. 34

REFERENCES .. 35

APPENDICES .. 37

APPENDIX A :Floor Plance of IRC Ground Floor .. 38

APPENDIX B :Source Code of Simple VRML Program 39

APPENDIX C :Patterns Used to Evaluate Maker Matching Algorithm 56

APPENDIX D :Results of Maker Matching Algorithm Evaluation Under

Fluorescent (White) Lighting .. 59

APPENDIX E :Results of Maker Matching Algorithm Evaluation Under

Tungsten-Halogen (Yellow) Lighting 62

ix

LIST OF FIGURES

Figure 1 Real desk with virtual lamp and two virtual chairs [4] ... 5

Figure 2: Optical see-through HMD by Hughes Electronics [4] ... 6

Figure 3 Video see-through HMD by Hughes Electronics [4] ... 6

Figure 4 A Mini augmented reality ads hit newsstands [5] ... 7

Figure 5 Main ARtoolkit pipeline [6] .. 9

Figure 6 Computer vision and image processing in ARtoolkit [6] 11

Figure 7 Working flow in ARtoolkit [7] ... 11

Figure 8 Pattern normalization and template matching in ARtoolkit [12] 12

Figure 9 VRML object being overlay on the marker .. 12

Figure 10 Plot of systematic error of ARtoolkit at different camera distance [14] 14

Figure 11 OpenAL logo [8] .. 15

Figure 12 Project activities .. 16

Figure 13 Project Overview ... 21

Figure 14 Console output window .. 22

Figure 15 Flowchart of ARtoolkit algorithm ... 23

Figure 16 Camera parameter setting window .. 24

Figure 17 Marker dimensions [9] .. 25

file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039487
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039488
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039489
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039489
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039491
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039491
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039491
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039491
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039491
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039491
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039492
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039491
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039495
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039491
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039496
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039497
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039498

x

Figure 18 Output display ... 28

Figure 19 Flowchart of OpenAL algorithm ... 29

Figure 20 Marker is placed in IRC .. 31

Figure 21 Updated map with current route .. 32

file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039499
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039491
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039491
file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039491

xi

LIST OF TABLES

Table 1 Software and hardware used in the project .. 19

Table 2 Lookup table that defines the route between the check points in IRC ground

floor…………………………………………………………………………………….28

Table 3 Indication of the code ... 28

file:///C:/Documents%20and%20Settings/cheehuey/Desktop/Interlim%20report_draft1.doc%23_Toc260039491

xii

LIST OF ABBREVIATIONS

API: application programming interface

AR: augmented reality

GSM: Global System for Mobil Communication

GPS: global positioning signal

HMD: head mounted device

OpenCV: Intel open source computer vision

RFID: radio frequency identification

USB: universal serial bus

VE: virtual environment

WLAN: wireless local area network

WPF: Window Presentation Foundation

3D: three-dimensional

1

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Indoor Positioning technology is to locate and track objects in an indoor area.

Currently GPS technology fail to perform positioning in indoor area as the GPS signal

get attenuated when it pass through the obstacles and walls of the building.

Experiments[1] reveal that the attenuation of Global positioning system (GPS) that is

higher than 1dB per meter of structure is estimated to drop down to roughly -160dBW

to 200dBW. However the lowest accepted working range based on GPS coarse

acquisition code it is designed to reach on the ground not less than -150dBW power

level. Hence GPS is not suitable for enclosed areas.

Nevertheless there are organizations that develop indoor positioning based on

wireless technology such as Bluetooth, GSM (Global System for Mobile

Communication), RFID, and WLAN. Nokia Research Centre has explored the research

field of indoor positioning technology that using wireless technology. Their mobile

phone S60 named as Kamppi Trial [2] is equipped with the indoor positioning

functionality. Other than that there are researchers are having great passion to further

explore the indoor positioning field by taking cooperative efforts such as organizing

conference and publishing papers. The 2010 International Conference on Indoor

Positioning and Indoor Navigation [3] organized by Indoor Positioning and Indoor

Navigation organization, IEEE and other related bodies serves the mentioned purpose.

2

Augmented Reality (AR) [4] is a visual enhancive technology whereby the

computer-generated graphics being superimposed on the user‟s real view to create the

mixture of virtual and reality effects. AR technology has been invented since 1950s‟

and for current few years it has been explored rapidly in more domestic fields such as

gaming fields and personal research projects from previous industrial application e.g.

medical visualization, industrial manufacturing, military aircraft navigation and etc. The

motivation force that driven behind the technology is the enhancement of the visual

effect that could assists users in presuming certain object more easily. Therefore the

interactive 3D image being superimposed on the real scene may improve the efficiency

in training based application such as assisting doctors in surgery demonstration, robotic

design and etc.

3

1.2 Problem Statements

Indoor positioning application appears increasingly important as the result of the

development of constructions around the world. However GPS signals will be

attenuated down to undetectable level in enclosed areas, it cannot be used in navigating

in the indoor environment.

 Although there are few newly invented indoor positioning applications that are

based on wireless technology such as WLAN and Bluetooth, they are very dependent on

the signal coverage provided to that particular area. Hence the performance of the

indoor positioning system will be very fragile to the coverage of the wireless signal in

the indoor environment.

The conventional navigation guidance provided for indoor purpose such as map

and signage around the building are not directing in straight forward manner since they

take some time for the users to figure out their exact location and find the route to their

wanted locations. Such condition gets worse in the buildings with very complicated

internal layout design.

4

1.3 Objectives

i. To develop an interactive indoor positioning system with

 3D view (AR) of navigation information display

 Navigation information with voice guidance

ii. To design new method for navigating and locating without using wireless

technology through

 Concept of matrix (Lookup table) to relate locations

1.4 Scope of Study

The scopes of study include the field of computer vision and image processing;

field of audio programming and field of 3D modeling. The main scope of study is

revolving computer vision and image processing which is mainly applied in ARtoolkit.

Several image processing techniques have been applied to process the incoming frame

to detect markers. Other than that ARtoolkit has applied several computer graphics API

includes OpenGL and GLUT. They are the cross-platform for writing application to

produce computer graphics.

Audio programming is another scope of study in this project which is using the

OpenAL library to generate 3D audio output. This involves the programming

techniques to manipulate the effect or sounds and functionality to load the sound tracks.

The project involves 3D modeling to create the VRML model for augmented

reality rendering.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Augmented Reality

Augmented Reality (AR) [4] is a term of a live direct or indirect view of

physical real-world environment whose element are merged with (or augmented by)

virtual computer-generated imagery creating a mixed reality. For example, Figure 1 is

showing the result of AR. The table lamp and chairs are computer generated image

which have been superimposed on the real scene (the table with the telephone on it). It

creates the experience of mixed reality to the users. However it is not only limited to

sight but also involve other sense such as sound. But current most of the research works

are focus on sight. The general concepts of the AR require it to be mixture of reality and

virtual objects; real-time running; interactive and immerse users in 3Dscene.

Figure 1 Real desk with virtual lamp and two virtual chairs [4]

6

Usually the AR requires the use of Head-Mounted Display (HMDs) in order to

immerse the user in a mixed reality world. Both optical and video technologies (Figure

2 and Figure 3) are being applied to accomplish the augmented reality effects. Video

see-through augmented reality enables user to view virtual images overlay on the live

video of the real world. While optical see-through augmented reality superimposes

virtual images directly on the view of real world.

Figure 2 Optical see-through HMD by Hughes Electronics [4]

Figure 3 Video see-through HMD [4]

7

However recently the AR technology are being explored become being able to be

accomplished in much convenient way, for example [5] the augmented reality hit

newsstands which create a truly interactive media piece out of a 2-dimensional pre-

recognized image symbol which is illustrated in Figure 4 below.

Figure 4: Mini augmented reality ads hit newsstands [5]

8

2.2 ARtoolkit

2.2.1 Introduction of ARtoolkit

 ARtoolkit 2.72.1 is a C and C++ language open source software library which is

released by HIT Lab web site [6] to provide programmers the foundation to build

project with AR applications. In general ARtoolkit is mainly to overlay a predesigned

3D object on the detected marker. The great part of ARtoolkit is that it is able to real-

time precisely track the view point of the user by using computer vision techniques to

calculate the camera position and orientation relative to the marker orientation.

ARtoolkit has to be supported by the other computer vision libraries and drivers. The

prerequisites that need to be installed to run ARtoolkit include:

 Microsoft Visual Studio .NET 2003

The development environment required to build and debug the project.

 DSVideoLib-0.0.8b-Win32

The library used to handle the interface of the Web Cam.

 OpenGL

It is a cross-platform APIs that is mainly for writing application to produce 2D

and 3D computer graphics. It is used to render the virtual object.

 GLUT (The OpenGL Utility Toolkit)

It implements a simple windowing application programming interface (API) for

OpenGL. It is used by ARtoolkit for windows and event handler.

 Video input device (USB Web Cam)

Web Cam is needed to capture live view and send the frame to be processed.

9

The working flow of ARtoolkit is based on a global pipeline metaphor which is shown

in Figure 5.

The video input is grabbed from camera by the video module which acts as the interface

between the driver of the camera and ARtoolkit. AR module includes the processing

over the video frames such i.e. viewpoint tracking. Finally the virtual image is drawn by

the Gsub module and output as augmented image.

Video

Input

Video

Module

AR

Module

Gsub

Module

Augmented

Image

Figure 5 Main ARtoolkit pipeline [6]

10

2.2.2 Image Processing of ARtoolkit

Figure 6 and 7 shows the image processing process of ARtoolkit. First a frame

from video stream is grabbed from the web cam. The image will be converted into

binary image (black and white) based on the threshold value. It is represented by the

binarization and thresholding [11] [12] block. Next the program will look for square

regions by using image labeling technique where those connected components and the

size which is almost to accommodate a fiduciary marker will be extracted. After that,

the outlines of the contours that can fit four line segments will be recognized as square

regions. The corner will then be detected from the mentioned contour. The square

region can be in any orientations therefore it must be normalized to the initial

orientation as shown in Figure 9. The pattern inside the normalized square region will

then be compared with the pre-trained markers which have been stored as binary data. If

there is a match, confidence value which is the percentage of matching will be

computed.

When there is a marker being detected, the position and orientation of the

marker relative to the camera will be computed. After the view point being computed

OpenGL API will be used to overlay the VRML model on the marker based on the

computed view point (camera‟s coordinates). As the result the virtual object will

appeared exactly aligned with the marker (Figure 7). Same process is repeated for real

time processing.

11

Figure 7 Working flow in ARtoolkit [7]

Image Acquisition

Binarization and Thresholding

Image Labeling

Contour Extraction and Corner

Detection

Pattern Normalization and

Template Matching

Pose and Position Estimation

Augmented Rendering

Figure 6 Computer vision and image processing in ARtoolkit [6]

12

Figure 9 VRML object being overlay on the marker

Figure 8 Patten normalization and template matching in ARtoolkit [11]

13

2.2.3 Analysis of ARtoolkit’s Accuracy

The performance of ARtoolkit plays an important role in determining the

performance of the entire indoor positioning system as the 3D arrows and all navigation

guides are depends on the detection input from ARtoolkit. The subsequence modules in

the program are more stable compare to the detection module of ARtoolkit.

The performance of ARtoolkit can be evaluated from its ability of detecting a

marker and the tracking accuracy upon the detection of marker. Confidence value that

represents the matching percentage of the detected marker with the pre-trained marker

will be calculated by ARtoolkit once it detects a marker.

The accuracy of ARtoolkit to detect a marker is very dependent on the lighting

condition from where it detects the marker. If the lighting condition is similar to the

lighting condition where the marker being trained then the threshold value is

appropriate to easily detect the marker else it cannot. However the threshold value is

adjustable to suit different lighting condition in the indoor environment.

On the other hand, the tracking accuracy of the ARtoolkit upon the detection is

shown in Figure 10. The experiment [13] is carried out with the conditions that a

55mmx55mm marker is being fixed at x- and z-directions while changing y-direction

(20cm to 100cm) from the camera. The camera used is a web cam with resolution 640 x

490 pixels and frame rate of 15 just as the configuration of this project.

The result shows that the systematic error of ARtoolkit to continuously track a

marker is low for the estimated distance from 20cm up to 70cm from the camera to the

marker. This is considered acceptable as the expected working range from the marker to

the user will be fixed within the mentioned range.

14

Figure 10 Plot of systematic error of ARtoolkit at different

camera distance. [13]

15

2.3 OpenAL

OpenAL [8] is a 3D audio API that is used to handle audio in cross-plattform

application. It enables the developer to set the position and velocity of the source and

listener to achieve the 3D audio effect. The OpenAL algorithm will be discussed further

in the result and discussion. OpenAL SDK for windows has to be installed before it is

applied in programming.

Figure 11 OpenAL logo [8]

16

CHAPTER 3

 METHODOLOGY

3.1 Procedure of Project Identification

Figure 12 Flow chart for project activities

Research

Basic Software

Development

Demo Development

A demo project is developed

 Design targeted area‟s floor plane

 Pre-program Lookup Table

 Design 3D objects

 Trained markers

 Multiple audio sources simulated

and bind to markers

Project is completed

Selection of a topic

Literature Review

ARtoolkit testing and debug

Audio Integration

 OpenAL

17

3.2 Project Methodology

 The project can be divided into mainly three phases i.e. research phase; basic

software development; and demo development.

3.2.1 Research

At the research phase, research methodology is started from the selection of a

topic followed by a literature review. Augmented reality field is the main focus of the

research at the beginning of the project. Many applications of augmented reality have

been explored include initial study on AR applications journals, AR working concept

journals and review of AR application projects from internet. Several version of open

source augmented reality projects are available from internet so it is necessary to screen

through the software and projects.

3.2.2 Basic Software Development

Several AR software being downloaded and tested then come to the final

selection-ARtoolkit due to its suitability for further development. To debug ARtoolkit

some prerequisites such as Windows APIs, drivers and integrated development

environment (IDE) needed to be installed. Similar to OpenAL, the SDK is needed to be

installed before it is applied in the programming. The algorithm of the ARtoolkit and

OpenAL is discussed further in result and discussion.

3.2.3 Demo Development

In order to develop a complete demo navigation project, the directional

information needed to be input to the database therefore a collection of background

information of the targeted indoor area is necessary. The targeted indoor area for the

demonstration of this project is the ground floor of UTP‟s Information Resource Center

(IRC). The required background information includes floor plan and introductory

information on certain checkpoints. The navigation information then will be converted

18

into VRML models (such as 3D arrows) 3D modeling software while the corresponding

sound tracks will be created by text-to-speech software.

For pre-processing stage, the floor plane of IRC (Appendix) is designed using

Edraw Max 5. The check points have to be pre-defined. They are chosen around the

junction and corner areas. After the checkpoints being indentified, markers are needed

to be trained and each of them will be placed at their respective checkpoint. Each

checkpoint shall have only a unique marker. Then certain locations will be selected to

be included into the list of destination for user to select from at the beginning of the

program. Then a matrix (lookup table) that contains the routes between the locations

and the check points will be programmed into the indoor positioning program together

with the floor plane. At the same time, the sound tracks that corresponding to different

navigation guidance will be created using the AT&T Labs Natural Voices® Text-to-

Speech Demo program and being stored into the program.

 The project is completed when the demo navigation project is tested and proved

to be working in handling up to 12 locations and more than 30 routes. IRC ground floor

as the demonstration area has been divided into 12 important locations.

19

3.3 Tools and Required Equipment

The project mainly revolves programming while the hardware involved are only

computing device (e.g. laptop) and USB Web Cam. The table below shows the list of

software and hardware that required implementing the project.

Table 1 Software and hardware used in the project

Software
Hardware

Microsoft Visual Studio 2003
USB Web Cam

ARtoolkit

GLUT

OpenAL SDK
Laptop

(acts as processing and display unit)

AT&T Labs Natural Voices® Text-to-

Speech Demo

Autodesk 3D Studio Max 9

Edraw Max 5.1

20

3.4 Project Operation

A complete set of hardware and software needed for this project is a computing

device (for example laptop which also acts as a displaying device) and a USB web cam.

The web cam will keep capturing the live image frames and send to the

computing device. ARtoolkit will process the frame and recognize if there is at least one

trained marker (pattern) being detected. If no marker is detected then the displaying

device (laptop) will only shows the usual view of the live image captured from web cam.

However if marker is detected, then the marker detection module in ARtoolkit will pass

the detected marker ID to the route planner module.

 The route planner module will compute the route based on the detected marker

(which represents user‟s current checkpoint) and the desired location selected by the

user. The route computation is based on the lookup table that pre-programmed to the

system. The output from the route planner is the navigation information which will be

sent to the VRML object rendering unit and audio module.

The rendering unit of ARtoolkit will overlay the corresponding 3D virtual image

on the live view of the web cam based on the navigation information received from

route planner. Other than textual information, sound track that corresponds to the

navigation information will be played. Next, the image of the user‟s location on the map

will be updated with the route being specified.

21

Figure 13 Project overview

Route

Planner

Algorithm

Desired

Destination

Audio Module

Figure 9 Hardware requirement: a

computing device with a web cam

ARtoolkit

VRML object

output display

ARtoolkit

Figure 10 Live video

from web cam

Figure 11 Voice guidance

Figure 12 Output Display

Marker

Detection

22

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Program Initialization

User is required to select a targeted location at the beginning of the program. A

console window prompted to show the list of destinations. Then the program will store

the location that input by the user.

Figure 14 Console output window

23

4.2 ARtoolkit

Start

Camera Initialization

Load all the markers

Grab a frame from

camera

Is marker

detected?

Draw the virtual object

Continue?

Quit

Figure 15 Flowchart of ARtoolkit algorithm

24

Figure 16 shows the processing flow of ARtoolkit. Some other modules such as route

planner algorithm and audio module has been integrated into ARtoolkit to run the

indoor positioning navigation.

4.2.1 ARtoolkit: Initialization

Camera Initialization

The program is started by detecting USB connected camera. After the camera

calibration, the parameter of the camera will be saved as a file then it will be loaded

during the camera initialization. Figure 17 shows the window prompt to ask user to

select several setting of the camera. Output size is referring to the size of output console

window.

Figure 16 Camera parameter setting window

25

Load all the markers

The markers have to follow certain criteria such as black and white, rectangular

and the ratio must follow as shown in Figure 17 to be recognized. Trained markers are

kept in the database as binary data and they must be listed out in object_data_vrml file

located in data directory. The program is continued by loading marker pattern file to

load those markers and their assigned VRML models (virtual objects) once for

validation purpose. The program will be halted if any error found in identifying marker

of locating the VRML model.

4.2.2 ARtoolkit: Frame acquisition

OpenGL will be initialized at this section to load a window from GLUT this is

where ARtoolkit video capture interacts with the windows graphic display API. After a

frame is grabbed from the camera it will be output at the window loaded. A timer is set

to keep track of the frame rates that determined by the user at the initialization stage.

Figure 17 Marker dimensions [9]

26

4.2.3 ARtoolkit: Marker Detection

The live video images are grabbed from the camera for real time tracking. The

image will be converted into binary image (black and white). The program will start

matching the square regions in the image with the pre-trained markers. The program can

detect and handle more than one marker at a time. The output from marker detection

module includes the number of the detected marker, the recognition confidence value

and the detected marker ID. Having the information of marker ID, the program can

track the current location of the user. If there is no marker detected the process continue

to grab a new frame.

Appendix D and E show the results of evaluating the marker template matching

algorithm from ARtoolkit. Twenty similar patterns (Appendix C) are used to test

whether the ARtoolkit is sensitive to differentiate the slight differences among all. The

experiment is carried out under the different lighting conditions, white and yellow

lighting condition to ensure the ability of marker detection being adaptive to different

lighting conditions. From the result table, shaded area represents a “hit” (match) by the

input pattern to the certain pattern. If the input and detected pattern are same which

means the marker detection algorithm correctly recognize the marker. The results

positively verify the sensitivity of marker detection although there is slight error is

detected.

4.3 Route Planner Algorithm

The desired location selected by the user and the detected marker ID will pass to

route planner. Route planner will then generate the route to link the targeted location

and the current location of the user. The route planner will work according to the lookup

table as well as the floor plane (Appendix) of the internal layout of the building. Route

planner will search for the matrix stored in the lookup table (Table 2 and Table 3) for

27

the link between two locations. The corresponding route will refer to a particular

VRML model ID and certain voice commands that already pre-defined. The VRML

model will be the 3D navigation information that being displayed to guide the user.

Table 2 Lookup table that defines the routes between the check points in IRC ground

floor

Table 3 Indication of the code

Check

Point 1

VRML

ID

Check

Point 2

VRML

ID

Check

Point 3

VRML

ID

Entrance 0 (S) 5 1 (S) 9 3, 1 (S) 15

Circulation 0 (N) 0 1 (S) 9 3, 1 (S) 15

Magazine Display 1 (N) 1 1, 3 (S) 11 3, 1, 3 (S) 17

Self-check

Machines
0 (N)

0
1, 3 (S)

11
3, 1(S) 15

Reading Areas 1, 2 (N) 2 2 (N) 7 2 (N) 13

Reference Shelves 1, 3 (N) 3 3 (N) 8 0 (N) 12

IT Zone 1, 3 (N) 3 3 (N) 8 0 (N) 12

To Basement 3 (N) 4 1, 2 (S) 10 3, 1, 2 (S) 16

Lift 3 (N) 4 1, 2 (S) 10 3, 1, 2 (S) 16

Newspaper

Reading Corner
1, 2 (N)

2
2 (N)

7
2 (N) 13

Toilet 1 (N) 1 1 (N) 6 2 (N) 13

Discussion Rooms 1, 3 (N) 3 3 (N) 8 3 (N) 14

Code Indication

0 Exactly at that particular point

1 Go straight

2 Turn left

3 Turn right

N Direction shown with respect to North indicated in the map

S Direction shown with respect to South indicated in the map

28

4.4 ARtoolkit: VRML Model Rendering

OpenGL and GLUT libraries are the APIs that being used for VRML model

rendering, the camera transformation matrix which corresponds to the position and

orientation of camera viewpoint is input to the 3D rendering module. ARtoolkit will

compute the viewpoint of the camera relative to the marker. As the result the virtual

object will be draw exactly align with the orientation of the detected marker. The result

is shown in Figure 18. The map that is showing user‟s current location and undertaking

route will be shown at the corner of the display as well.

Figure 18 Output display

29

4.5 Audio Module

AT&T Labs Natural Voices® Text-to-Speech Demo [10] is text to speech demo

software from AT&T Labs. It converts the directional information in text form into

WAV format to be saved as sound tracks.

OpenAL as the audio API used in the application to play the sound tracks.

Number of sound track is depending on the application for example the number of the

check points or depth of the information required. For the demonstration of this project,

the number of sound track almost similar to the number of routes.

The algorithms of OpenAL can be summarized as the Figure 19.

Start

Initialization

Load WAV file to buffer

Sound track is played

depending on the detected

pattern id

Free the memory

Quick

Figure 19 Flowchart of OpenAL algorithms

30

In initialization stage buffer and sources are being declared as well as location and

velocity of the sources and listener are being set. This is how the 3D audio effect is

created. Memory has to be created to hold the buffer and sources where multiple

sources can be hold by a single buffer. If ARtoolkit rendering a virtual object it will

continuously reading the input from the keyboard. When user press „A‟ or „a‟ button,

the sound track that correspond to the output navigation information will be played and

it will stop when „S‟ or „s‟ is pressed. It is possible to play multiple sound tracks if more

than one marker is detected. However it will create unwanted result therefore users can

refresh by stopping all the sound tracks.

31

4.6 Overall Summary of the Result

For performance evaluation, the project has been tested at the ground floor in the

Information Resource Center (IRC) of Universiti Teknologi PETRONAS.

For pre-processing phase, floor plane (Appendix) of the targeted indoor

environment should be created and a matrix (Table 2 & 3) connecting the route between

the checkpoints in the map must be input to the system. The route planner module will

look for the route from lookup table based on the detected location ID and the

destination location ID input from the user.

Figure 20 shows the marker placed at the check point 3 in IRC. The required

setup for the system is a laptop and web cam. The web cam captures the live video of

the condition in IRC when the user walks in IRC. The program is stated when user input

a destination (Basement) at the initialization phase. Figure 21 shows the program

recognizes the marker when the user reach checkpoint 3 and the route planner module

computes the route from checkpoint 3 to basement. Figure 22 shows the updated map

display with the route suggested by the route planner module.

Figure 20 Marker is placed in IRC

32

Figure 21 Directional information is overlay on the marker

Figure 22 Updated map with current route

33

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The indoor positioning system that is based on augmented reality aims to deepen

user‟s perception in perceiving the information conveyed from the map and to ease the

user in identifying the route that leads to the destination. The project has been tested in

IRC, and it has shown its flexibility in working as indoor positioning to navigate 12

locations which handles more than 30 possible routes. However it has room for

improvement in terms of system‟s flexibility in handling more complicated indoor

layout before it could be applied as an alternative manner of current indoor navigation

solutions.

 The concept of this project serves great potential for future development as it

incorporate the visual enhancive technology in designing the indoor positioning

technology which is also another growing technology.

34

5.2 Recommendations

For future enhancement, more research may focus on improving the intelligence

of route planner such as shortest-distance-route computation; alternative routes based on

the criteria input from the user. For example user may like to choose the routes which

concentrated with restaurants in the shopping mall. However it is very dependent on the

application. Therefore the flexibility of the system is very important.

Another desired improvement may focus on the accuracy of detecting and

tracking a marker in the indoor environment as lighting condition in certain area may be

different definitely it will affect the performance of ARtoolkit. This may be achieved by

having self-adjust threshold value based on the lighting condition so that the marker

could be easily being detected and tracked.

35

REFERENCES

[1] B. B. Peterson, D. Bruckner, and S. Heye, “Measuring GPS Signals Indoors”,

Proceedings of the Institute of Navigation‟s ION GPS-2001, September, 2001.

[2] Tim Stevens, Nokia‟s Kamppi Trial succeeds at indoor positioning.

http://www.engadget.com/2009/12/22/nokias-kamppi-trial-succeeds-at-indoor-

positioning-gets-shelve/ Consulted in Feb 2010.

[3] 2010 International Conference on Indoor Positioning and Indoor Navigation

(IPIN) http://www.geometh.ethz.ch/ipin/ Consulted in Feb 2010.

[4] Ronald T. Azum, August 1997, “A Survey of Augmented Reality”, Hughes

Research Laboratories, CA 90265

[5] Augmented Reality Project website http://technabob.com/blog/2008/12/17/mini-

augmented-reality-ads-hit-newstands/ Consulted 26 April 2010.

[6] H. Kato, HIT Lab of University of Washington, HIT Lab NZ of University of

Canterbury, New Zealand, ARtoolkit Website. Availabe at

 http://www.hitl.washington.edu/artoolkit/ Consulted in Jan 2010.

[7] H. Kato, M. Billinghurst, I. Poupyrev, Documentation of “ARtoolkit version

2.33”, HIT Lab of University of Washington, November 2000.

[8] OpenAL Website. Available at

http://www.engadget.com/2009/12/22/nokias-kamppi-trial-succeeds-at-indoor-positioning-gets-shelve/
http://www.engadget.com/2009/12/22/nokias-kamppi-trial-succeeds-at-indoor-positioning-gets-shelve/
http://www.geometh.ethz.ch/ipin/
http://technabob.com/blog/2008/12/17/mini-augmented-reality-ads-hit-newstands/
http://technabob.com/blog/2008/12/17/mini-augmented-reality-ads-hit-newstands/
http://en.wikipedia.org/wiki/Augmented_reality%20last%20visit%2026/4/2010
http://www.hitl.washington.edu/artoolkit/documentation/devstartup.htm

36

 http://connect.creativelabs.com/openal/default.aspx Consulted in Feb 2010.

[9] H. Kato and M. Billinghurst, Inside ARToolKit. Available at

 http://www.hitl.washington.edu/artoolkit/Papers/ART02-Tutorial.pdf.Consulted

in April 2010.

[10] AT&T Labs Natural Voices® Text-to-Speech Demo. Available at

 http://www2.research.att.com/~ttsweb/tts/demo.php Consulted in June 2010.

[11] Dr. Peter Scott, Animate Vision Principles for 3D Image Sequences,

http://www.cse.buffalo.edu/faculty/peter/cse668/ Consulted in June 2010.

[12] Dr. RameshRaskar, MIT Media Lab

http://www.media.mit.edu/people/bio_raskar.html Consulted in June 2010.

[13] Daniel F. Abawi, Joachim Bienwald, and Ralf Doerner, “Accuracy in optical

tracking with fiducial markers: An accuracy function for ARToolkit”, In

ISMAR, 2004.

http://connect.creativelabs.com/openal/default.aspx
http://www.hitl.washington.edu/artoolkit/Papers/ART02-Tutorial.pdf
http://www2.research.att.com/~ttsweb/tts/demo.php
http://www.cse.buffalo.edu/faculty/peter/cse668/
http://www.media.mit.edu/people/bio_raskar.html

37

APPENDICES

38

APPENDIX A

FLOOR PLANE OF IRC GROUND FLOOR

39

APPENDIX B

SOURCE CODE OF SIMPLE VRML PROGRAM

/*

 * simpleVRML.c

 *

 * Demonstration of ARToolKit with models rendered in VRML.

 *

 * Press '?' while running for help on available key commands.

 *

 * Copyright (c) 2002 Mark Billinghurst (MB)

grof@hitl.washington.edu

 * Copyright (c) 2004 Raphael Grasset (RG)

raphael.grasset@hitlabnz.org.

 * Copyright (c) 2004-2006 Philip Lamb (PRL) phil@eden.net.nz.

 *

 * Rev Date Who Changes

 * 1.0.0 ????-??-?? MB Original from ARToolKit

 * 1.0.1 2004-10-29 RG Fix for ARToolKit 2.69.

 * 1.0.2 2004-11-30 PRL Various fixes.

* This file is part of ARToolKit.

 *

 * ARToolKit is free software; you can redistribute it and/or modify

 * it under the terms of the GNU General Public License as published

by

 * the Free Software Foundation; either version 2 of the License, or

 * (at your option) any later version.

 *

 * ARToolKit is distributed in the hope that it will be useful,

 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 * GNU General Public License for more details.

 *

 * You should have received a copy of the GNU General Public License

 * along with ARToolKit; if not, write to the Free Software

 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-

1307 USA

 *

 */

// Include

#ifdef _WIN32

#include <windows.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#ifdef __APPLE__

include <GLUT/glut.h>

#else

include <GL/glut.h>

#endif

40

#include <AR/config.h>

#include <AR/video.h>

#include <AR/param.h> // arParamDisp()

#include <AR/ar.h>

#include <AR/gsub_lite.h>

#include <AR/arvrml.h>

#include "object.h"

#include <AL/alut.h>

#include <iostream>

#include <conio.h>

#include <AL/al.h>

#include <AL/alc.h>

//#include <AL/alut.c>

#include <time.h>

#include "bitmap.h"

// define _MT so that _beginthread() is available

#ifndef _MT

#define _MT

#endif

#include <process.h>

#include "resource.h"

int Dest_no;

#define MAX_LOCATION 12 //total of 12 locations in route planner LUP

/* Create checkerboard texture */

#define checkImageWidth 64

#define checkImageHeight 64

static GLubyte checkImage[checkImageHeight][checkImageWidth][4];

static int nTextureWidth;

static int nTextureHeight;

static GLuint texName;

//BYTE *map1, *map2, *map3, *CurrentMap, *map0;

BYTE* map[4]; //an array of 4 BYTE pointers

BYTE *CurrentMap, *Image;

//

===

// Constants

//

===

#define VIEW_SCALEFACTOR 0.025 // 1.0 ARToolKit unit

becomes 0.025 of my OpenGL units.

#define VIEW_SCALEFACTOR_1 1.0 // 1.0 ARToolKit

unit becomes 1.0 of my OpenGL units.

#define VIEW_SCALEFACTOR_4 4.0 // 1.0 ARToolKit

unit becomes 4.0 of my OpenGL units.

41

#define VIEW_DISTANCE_MIN 4.0 // Objects

closer to the camera than this will not be displayed.

#define VIEW_DISTANCE_MAX 4000.0 // Objects

further away from the camera than this will not be displayed.

//

==

// Global variables

// Preferences.

static int prefWindowed = TRUE;

static int prefWidth = 640; // Fullscreen

mode width.

static int prefHeight = 480; // Fullscreen mode

height.

static int prefDepth = 32; // Fullscreen

mode bit depth.

static int prefRefresh = 0; // Fullscreen

mode refresh rate. Set to 0 to use default rate.

// Image acquisition.

static ARUint8 *gARTImage = NULL;

// Marker detection.

static int gARTThreshhold = 100;

static long gCallCountMarkerDetect = 0;

// Transformation matrix retrieval.

static int gPatt_found = FALSE; // At least one

marker.

// Drawing.

static ARParam gARTCparam;

static ARGL_CONTEXT_SETTINGS_REF gArglSettings = NULL;

// Object Data.

static ObjectData_T *gObjectData;

static int gObjectDataCount;

static int detectedMarker;

//======================= AUDIO ===============================

#define MAX_AUDIO 3

// These index the buffers and sources.

#define TEST_SOUND0 0

#define TEST_SOUND1 1

#define TEST_SOUND2 2

// Buffers hold sound data.

ALuint Buffers[MAX_AUDIO];

// Sources are points of emitting sound.

ALuint Sources[MAX_AUDIO];

42

// Position of the source sounds.

ALfloat SourcesPos[MAX_AUDIO][3];

// Velocity of the source sounds.

ALfloat SourcesVel[MAX_AUDIO][3];

// Position of the Listener.

ALfloat ListenerPos[] = { 0.0, 0.0, 0.0 };

// Velocity of the Listener.

ALfloat ListenerVel[] = { 0.0, 0.0, 0.0 };

// Orientation of the Listener. (first 3 elements are "at", second 3

are "up")

// Also note that these should be units of '1'.

ALfloat ListenerOri[] = { 0.0, 0.0, -1.0, 0.0, 1.0, 0.0 };

 /* ALboolean LoadALData()

 * This function will load our sample data from the disk using

the Alut

 * utility and send the data into OpenAL as a buffer. A source

is then also created to play that buffer.

 */

ALboolean LoadALData()

{

 ALenum format;

 ALsizei size;

 ALvoid* data;

 ALsizei freq;

 ALboolean loop;

 int i;

 // Load wav data into buffers.

 alGenBuffers(gObjectDataCount, Buffers);

 if (alGetError() != AL_NO_ERROR)

 return AL_FALSE;

 for (i=0; i<gObjectDataCount ; i++)

 {

 fprintf(stdout,"\nTHIS%s\n",gObjectData[i].Audio_name);

 alutLoadWAVFile(gObjectData[i].Audio_name, &format, &data,

&size, &freq, &loop);

 alBufferData(Buffers[i], format, data, size, freq);

 alutUnloadWAV(format, data, size, freq);

 // Bind buffers into audio sources.

 alGenSources(gObjectDataCount, Sources);

43

 if (alGetError() != AL_NO_ERROR)

 return AL_FALSE;

 alSourcei (Sources[i], AL_BUFFER, Buffers[i]);

 alSourcef (Sources[i], AL_PITCH, 1.0);

 alSourcef (Sources[i], AL_GAIN, 1.0);

 alSourcefv(Sources[i], AL_POSITION, SourcesPos[i]);

 alSourcefv(Sources[i], AL_VELOCITY, SourcesVel[i]);

 alSourcei (Sources[i], AL_LOOPING, AL_FALSE);

 }

 // Do another error check and return.

 if(alGetError() != AL_NO_ERROR)

 return AL_FALSE;

 return AL_TRUE;

}

void SetListenerValues()

{

 alListenerfv(AL_POSITION, ListenerPos);

 alListenerfv(AL_VELOCITY, ListenerVel);

 alListenerfv(AL_ORIENTATION, ListenerOri);

}

void KillALData()

{

 alDeleteBuffers(MAX_AUDIO, &Buffers[0]);

 alDeleteSources(MAX_AUDIO, &Sources[0]);

 alutExit();

}

//

==

// Functions

//

===

static int setupCamera(const char *cparam_name, char *vconf, ARParam

*cparam)

{

 ARParam wparam;

 int xsize, ysize;

 // Open the video path.

 if (arVideoOpen(vconf) < 0) {

 fprintf(stderr, "setupCamera(): Unable to open connection to

camera.\n");

 return (FALSE);

44

 }

 // Find the size of the window.

 if (arVideoInqSize(&xsize, &ysize) < 0) return (FALSE);

 fprintf(stdout, "Camera image size (x,y) = (%d,%d)\n", xsize,

ysize);

 // Load the camera parameters, resize for the window and init.

 if (arParamLoad(cparam_name, 1, &wparam) < 0) {

 fprintf(stderr, "setupCamera(): Error loading parameter

file %s for camera.\n", cparam_name);

 return (FALSE);

 }

 arParamChangeSize(&wparam, xsize, ysize, cparam);

 fprintf(stdout, "*** Camera Parameter ***\n");

 arParamDisp(cparam);

 arInitCparam(cparam);

 if (arVideoCapStart() != 0) {

 fprintf(stderr, "setupCamera(): Unable to begin camera data

capture.\n");

 return (FALSE);

 }

 return (TRUE);

}

static int setupMarkersObjects(char *objectDataFilename[])

{

 // Load in the object data - trained markers and associated

bitmap files.

 if ((gObjectData = read_VRMLdata(objectDataFilename[Dest_no-1],

&gObjectDataCount)) == NULL) {

 fprintf(stderr, "setupMarkersObjects(): read_VRMLdata returned

error !!\n");

 return (FALSE);

 }

 printf("Object count = %d\n", gObjectDataCount);

 return (TRUE);

}

// Report state of ARToolKit global variables arFittingMode,

// arImageProcMode, arglDrawMode, arTemplateMatchingMode,

arMatchingPCAMode.

static void debugReportMode(void)

{

 if(arFittingMode == AR_FITTING_TO_INPUT) {

 fprintf(stderr, "FittingMode (Z): INPUT IMAGE\n");

 } else {

 fprintf(stderr, "FittingMode (Z): COMPENSATED IMAGE\n");

 }

45

 if(arImageProcMode == AR_IMAGE_PROC_IN_FULL) {

 fprintf(stderr, "ProcMode (X) : FULL IMAGE\n");

 } else {

 fprintf(stderr, "ProcMode (X) : HALF IMAGE\n");

 }

 if (arglDrawModeGet(gArglSettings) == AR_DRAW_BY_GL_DRAW_PIXELS)

{

 fprintf(stderr, "DrawMode (C) : GL_DRAW_PIXELS\n");

 } else if (arglTexmapModeGet(gArglSettings) ==

AR_DRAW_TEXTURE_FULL_IMAGE) {

 fprintf(stderr, "DrawMode (C) : TEXTURE MAPPING (FULL

RESOLUTION)\n");

 } else {

 fprintf(stderr, "DrawMode (C) : TEXTURE MAPPING (HALF

RESOLUTION)\n");

 }

 if(arTemplateMatchingMode == AR_TEMPLATE_MATCHING_COLOR) {

 fprintf(stderr, "TemplateMatchingMode (M) : Color

Template\n");

 } else {

 fprintf(stderr, "TemplateMatchingMode (M) : BW

Template\n");

 }

 if(arMatchingPCAMode == AR_MATCHING_WITHOUT_PCA) {

 fprintf(stderr, "MatchingPCAMode (P) : Without PCA\n");

 } else {

 fprintf(stderr, "MatchingPCAMode (P) : With PCA\n");

 }

}

static void Quit(void)

{

 arglCleanup(gArglSettings);

 arVideoCapStop();

 arVideoClose();

#ifdef _WIN32

 CoUninitialize();

#endif

 exit(0);

}

static void Keyboard(unsigned char key, int x, int y)

{

 int mode;

 switch (key) {

 case 0x1B: // Quit.

 case 'Q':

 case 'q':

 Quit();

 break;

46

 case 'C':

 case 'c':

 mode = arglDrawModeGet(gArglSettings);

 if (mode == AR_DRAW_BY_GL_DRAW_PIXELS) {

 arglDrawModeSet(gArglSettings,

AR_DRAW_BY_TEXTURE_MAPPING);

 arglTexmapModeSet(gArglSettings,

AR_DRAW_TEXTURE_FULL_IMAGE);

 } else {

 mode = arglTexmapModeGet(gArglSettings);

 if (mode == AR_DRAW_TEXTURE_FULL_IMAGE)

 arglTexmapModeSet(gArglSettings, AR_DRAW_TEXTURE_HALF_IMAGE);

 else arglDrawModeSet(gArglSettings,

AR_DRAW_BY_GL_DRAW_PIXELS);

 }

 fprintf(stderr, "*** Camera - %f (frame/sec)\n",

(double)gCallCountMarkerDetect/arUtilTimer());

 gCallCountMarkerDetect = 0;

 arUtilTimerReset();

 debugReportMode();

 break;

 case '?':

 case '/':

 printf("Keys:\n");

 printf(" q or [esc] Quit demo.\n");

 printf(" c Change arglDrawMode and

arglTexmapMode.\n");

 printf(" ? or / Show this help.\n");

 printf("\nAdditionally, the ARVideo library supplied

the following help text:\n");

 arVideoDispOption();

 break;

 case 'a':

 case 'A':

 if (gPatt_found)

 {

 switch (gObjectData[detectedMarker].vrml_id)

 {

 case 0: alSourcePlay(Sources[TEST_SOUND2]);

 break;

 case 1: alSourcePlay(Sources[TEST_SOUND1]);

 break;

 default:

 break;

 }

 }

 else

 alSourcePlay(Sources[TEST_SOUND0]);

 break;

47

 case 's':

 case 'S':

 if (gPatt_found)

 {

 alSourceStop(Sources[TEST_SOUND0]);

 alSourceStop(Sources[TEST_SOUND1]);

 alSourceStop(Sources[TEST_SOUND2]);

 }

 break;

 default:

 break;

 }

}

static void Idle(void)

{

 static int ms_prev;

 int ms;

 float s_elapsed;

 ARUint8 *image;

 ARMarkerInfo *marker_info;

 int marker_num;

int i, j, k;

 // Find out how long since Idle() last ran.

 ms = glutGet(GLUT_ELAPSED_TIME);

 s_elapsed = (float)(ms - ms_prev) * 0.001;

 if (s_elapsed < 0.01f) return; // Don't update more often than

100 Hz.

 ms_prev = ms;

 // Update drawing.

 arVrmlTimerUpdate();

 // Grab a video frame.

 if ((image = arVideoGetImage()) != NULL) {

 gARTImage = image; // Save the fetched image.

 gPatt_found = FALSE; // Invalidate any previous

detected markers.

 gCallCountMarkerDetect++; // Increment ARToolKit FPS

counter.

 // Detect the markers in the video frame.

 if (arDetectMarker(gARTImage, gARTThreshhold,

&marker_info, &marker_num) < 0) {

 exit(-1);

 }

 // Check for object visibility.

 for (i = 0; i < gObjectDataCount; i++) {

48

 // Check through the marker_info array for highest

confidence

 // visible marker matching our object's pattern.

 k = -1;

 for (j = 0; j < marker_num; j++) {

 if (marker_info[j].id == gObjectData[i].id) {

 if(k == -1) k = j; // First marker

detected.

 else if (marker_info[k].cf <

marker_info[j].cf) k = j; // Higher confidence marker detected.

 }

 }

 if (k != -1) {

 // Get the transformation between the marker

and the real camera.

 //fprintf(stderr, "Saw object %d.\n", i);

 if (gObjectData[i].visible == 0) {

 arGetTransMat(&marker_info[k],

gObjectData[i].marker_center, gObjectData[i].marker_width,

gObjectData[i].trans);

 } else {

 arGetTransMatCont(&marker_info[k],

gObjectData[i].trans,

gObjectData[i].marker_center, gObjectData[i].marker_width,

gObjectData[i].trans);

 }

 gObjectData[i].visible = 1;

 gPatt_found = TRUE;

 } else {

 gObjectData[i].visible = 0;

 }

 }

 // Tell GLUT to update the display.

 glutPostRedisplay();

 }

}

//

// This function is called on events when the visibility of the

// GLUT window changes (including when it first becomes visible).

static void Visibility(int visible)

{

 if (visible == GLUT_VISIBLE) {

 glutIdleFunc(Idle);

 } else {

 glutIdleFunc(NULL);

 }

49

}

void renderBitmapString(

 float x,

 float y,

 void *font,

 char *string) {

 char *c;

 glRasterPos2f(x, y);

 for (c=string; *c != '\0'; c++) {

 glutBitmapCharacter(font, *c);

 }

}

// This function is called when the

// GLUT window is resized.

static void Reshape(int w, int h)

{

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glViewport(0, 0, (GLsizei) w, (GLsizei) h);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 glMatrixMode(GL_MODELVIEW);

 glLoadIdentity();

 // Call through to anyone else who needs to know about window

sizing here.

}

static void Display(void)

{

 int i;

 GLdouble p[16];

 GLdouble m[16];

 // Select correct buffer for this context.

 glDrawBuffer(GL_BACK);

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear the

buffers for new frame.

 arglDispImage(gARTImage, &gARTCparam, 1.0, gArglSettings); //

zoom = 1.0.

 arVideoCapNext();

 gARTImage = NULL; // Image data is no longer valid after calling

arVideoCapNext().

 if (gPatt_found) {

 // Projection transformation.

 arglCameraFrustumRH(&gARTCparam, VIEW_DISTANCE_MIN,

VIEW_DISTANCE_MAX, p);

 glMatrixMode(GL_PROJECTION);

 glLoadMatrixd(p);

 glMatrixMode(GL_MODELVIEW);

50

 // Viewing transformation.

 glLoadIdentity();

 // Lighting and geometry that moves with the camera should

go here.

 // (I.e. must be specified before viewing

transformations.)

 //none

 // All other lighting and geometry goes here.

 // Calculate the camera position for each object and draw

it.

 for (i = 0; i < gObjectDataCount; i++) {

 if ((gObjectData[i].visible != 0) &&

(gObjectData[i].vrml_id >= 0)) {

 //fprintf(stderr, "About to draw object %i\n",

i);

 arglCameraViewRH(gObjectData[i].trans, m,

VIEW_SCALEFACTOR_4);

 glLoadMatrixd(m);

 arVrmlDraw(gObjectData[i].vrml_id);

 detectedMarker = gObjectData[i].vrml_id;

 // set the map to be load

 CurrentMap = map[1+gObjectData[i].vrml_id];

 }

 }

 } // gPatt_found

 //else CurrentMap = map0;

 // Any 2D overlays go here.

 // Draw Text

 //// switch to projection mode

 glMatrixMode(GL_PROJECTION);

 //// save previous matrix which contains the

 ////settings for the perspective projection

 glPushMatrix();

 // reset matrix

 glLoadIdentity();

 gluOrtho2D(-300, 300, -200, 200);

 // switch back to modelview mode

 glMatrixMode(GL_MODELVIEW);

 glPushMatrix(); // to save the previous setting if gPatt is

found

 glLoadIdentity();

51

 renderBitmapString(200,180,GLUT_BITMAP_HELVETICA_18,"Destination

:");

 if (Dest_no == 1)

 renderBitmapString(200,160,GLUT_BITMAP_HELVETICA_18,"Entrance");

 else if (Dest_no == 2)

 renderBitmapString(200,160,GLUT_BITMAP_HELVETICA_18,"Circulation

");

 else if (Dest_no == 3)

 renderBitmapString(150,160,GLUT_BITMAP_HELVETICA_18,"Magazine

Display");

 else if (Dest_no == 4)

 renderBitmapString(130,160,GLUT_BITMAP_HELVETICA_18,"Self-check

Machines");

 else if (Dest_no == 5)

 renderBitmapString(150,160,GLUT_BITMAP_HELVETICA_18,"Reading

Areas");

 else if (Dest_no == 6)

 renderBitmapString(130,160,GLUT_BITMAP_HELVETICA_18,"Reference

Shelves");

 else if (Dest_no == 7)

 renderBitmapString(200,160,GLUT_BITMAP_HELVETICA_18,"IT Zone");

 else if (Dest_no == 8)

 renderBitmapString(200,160,GLUT_BITMAP_HELVETICA_18,"Basement");

 else if (Dest_no == 9)

 renderBitmapString(200,160,GLUT_BITMAP_HELVETICA_18,"Lift");

 else if (Dest_no == 10)

 renderBitmapString(110,160,GLUT_BITMAP_HELVETICA_18,"Newspaper

Reading Corner");

 else if (Dest_no == 11)

 renderBitmapString(200,160,GLUT_BITMAP_HELVETICA_18,"Washrooms")

;

 else if (Dest_no == 12)

 renderBitmapString(130,160,GLUT_BITMAP_HELVETICA_18,"Discussion

Rooms");

 else

 renderBitmapString(200,160,GLUT_BITMAP_HELVETICA_18,"Location

X");

 glDisable (GL_DEPTH_TEST);

 glDisable (GL_TEXTURE_2D);

 glRasterPos2d (-295, -195);//left bottom corner

 glDrawPixels (256, 128, GL_BGR_EXT, GL_UNSIGNED_BYTE,

CurrentMap);

 glMatrixMode(GL_PROJECTION);

 glPopMatrix();

 glMatrixMode(GL_MODELVIEW);

 glPopMatrix();

 glutSwapBuffers();

}

52

int Load_BMP_Img (char *szFileName, BYTE **pBitmapData)

{

 HANDLE hFileHandle;

 BITMAPINFO *pBitmapInfo = NULL;

 unsigned long lInfoSize = 0, lBitSize = 0;

 int nTextureWidth, nTextureHeight;

 static short VERBOSE = TRUE, first = TRUE;

 hFileHandle = CreateFile (szFileName, GENERIC_READ,

FILE_SHARE_READ, NULL,

 OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN,

NULL);

 if (hFileHandle == INVALID_HANDLE_VALUE) return FALSE;

 BITMAPFILEHEADER bitmapHeader;

 DWORD dwBytes;

 ReadFile (hFileHandle, &bitmapHeader, sizeof(BITMAPFILEHEADER),

 &dwBytes, NULL);

 if (dwBytes != sizeof(BITMAPFILEHEADER)) return FALSE;

 if (bitmapHeader.bfType != 'MB') return FALSE;

 lInfoSize = bitmapHeader.bfOffBits - sizeof(BITMAPFILEHEADER);

 pBitmapInfo = (BITMAPINFO *) new BYTE[lInfoSize];

 ReadFile (hFileHandle, pBitmapInfo, lInfoSize, &dwBytes, NULL);

 if (dwBytes != lInfoSize) return FALSE;

 nTextureWidth = pBitmapInfo->bmiHeader.biWidth;

 nTextureHeight = pBitmapInfo->bmiHeader.biHeight;

 lBitSize = pBitmapInfo->bmiHeader.biSizeImage;

 if (VERBOSE) {

 if (first) {

 first = FALSE;

 printf ("\n");

 }

 printf (" Image '%s' is: %d by %d pixels\n", szFileName,

 nTextureWidth, nTextureHeight);

 }

 if (lBitSize == 0) lBitSize = (nTextureWidth *

 pBitmapInfo->bmiHeader.biBitCount + 7) / 8 *

 abs(nTextureHeight);

 *pBitmapData = new BYTE[lBitSize];

53

 ReadFile (hFileHandle, *pBitmapData, lBitSize, &dwBytes, NULL);

 if (lBitSize != dwBytes)

 {

 if (*pBitmapData) delete [] (BYTE *) *pBitmapData;

 *pBitmapData = NULL;

 return FALSE;

 }

 CloseHandle (hFileHandle);

 return TRUE;

}

int main(int argc, char** argv)

{

 int i, j;

 char glutGamemode[32];

 const char *cparam_name =

 "Data\\camera_para.dat";

 //const char *mapFile = "Data\\IMGirc4.png";

#ifdef _WIN32

 char *vconf = "Data\\WDM_camera_flipV.xml";

#else

 char *vconf = "";

#endif

 //char objectDataFilename[] = "Data\\object_data_vrml";

 char* objectDataFilename[MAX_LOCATION]=

 { ("Data\\object_data_vrml_0"),

 ("Data\\object_data_vrml_1"),

 ("Data\\object_data_vrml_2"),

 ("Data\\object_data_vrml_3"),

 ("Data\\object_data_vrml_4"),

 ("Data\\object_data_vrml_5"),

 ("Data\\object_data_vrml_6"),

 ("Data\\object_data_vrml_7"),

 ("Data\\object_data_vrml_8"),

 ("Data\\object_data_vrml_9"),

 ("Data\\object_data_vrml_10"),

 ("Data\\object_data_vrml_11")

 };

 // Library inits.

 //

 glutInit(&argc, argv);

 // Initialize OpenAL and clear the error bit.

 alutInit(NULL, 0);

 alGetError();

 // Hardware setup.

 //

54

 if (!setupCamera(cparam_name, vconf, &gARTCparam)) {

 fprintf(stderr, "main(): Unable to set up AR (cparam_name)

camera.\n");

 exit(-1);

 }

#ifdef _WIN32

 CoInitialize(NULL);

#endif

 // Library setup.

 // Set up GL context(s) for OpenGL to draw into.

 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);

 if (!prefWindowed) {

 if (prefRefresh) sprintf(glutGamemode, "%ix%i:%i@%i",

prefWidth, prefHeight, prefDepth, prefRefresh);

 else sprintf(glutGamemode, "%ix%i:%i", prefWidth,

prefHeight, prefDepth);

 glutGameModeString(glutGamemode);

 glutEnterGameMode();

 } else {

 glutInitWindowSize(gARTCparam.xsize, gARTCparam.ysize);

 glutCreateWindow(argv[0]);

 }

 // Setup argl library for current context.

 if ((gArglSettings = arglSetupForCurrentContext()) == NULL) {

 fprintf(stderr, "main(): arglSetupForCurrentContext()

returned error.\n");

 exit(-1);

 }

 debugReportMode();

 arUtilTimerReset();

 fprintf(stdout,

"***

*******\n");

 fprintf(stdout, " Please Select Your Destination\n");

 fprintf(stdout, " 1. Entrance\n");

 fprintf(stdout, " 2. Circulation\n");

 fprintf(stdout, " 3. Magazine Display\n");

 fprintf(stdout, " 4. Self-check Machines\n");

 fprintf(stdout, " 5. Reading Areas\n");

 fprintf(stdout, " 6. Reference Shelves\n");

 fprintf(stdout, " 7. IT Zone\n");

 fprintf(stdout, " 8. Basement\n");

 fprintf(stdout, " 9. Lift\n");

 fprintf(stdout, " 10. Newspaper Reading Corner\n");

 fprintf(stdout, " 11. Washrooms\n");

 fprintf(stdout, " 12. Discussion Rooms\n");

 fprintf(stdout, " Please Press the number of your desired

destination\n");

 fscanf (stdin, "%d",&Dest_no);

55

 fprintf(stdout, "the chosen destination No. is %d\n",Dest_no);

 fprintf(stdout,

"***

*******\n");

 if (!setupMarkersObjects(objectDataFilename))

 {

 fprintf(stderr, "main(): Unable to

set up AR objects and markers.\n");

 Quit();

 }

 // Load the wav data.

 if (LoadALData() == AL_FALSE)

 fprintf(stdout, "main(): Unable to load the wave data\n");

 else {

 fprintf(stdout, "\nmain(): Sucessfully loaded the wave

data\n");

 SetListenerValues();

 // Setup an exit procedure.

 atexit(KillALData);

 }

 //initTexture(mapFile);

 Load_BMP_Img ("Data\\maps\\OriMap.bmp", &map[0]);

 CurrentMap = map[0]; // initialize map

 for (j=0; j<gObjectDataCount ; j++)

 {

 Load_BMP_Img (gObjectData[j].Map_name, &Image);

 map[j+1] = Image;

 }

 fprintf(stdout, "Pre-rendering the VRML objects...");

 fflush(stdout);

 glEnable(GL_TEXTURE_2D);

 for (i = 0; i < gObjectDataCount; i++) {

 arVrmlDraw(gObjectData[i].vrml_id);

 }

 glDisable(GL_TEXTURE_2D);

 fprintf(stdout, " done\n");

 // Register GLUT event-handling callbacks.

 // NB: Idle() is registered by Visibility.

 glutDisplayFunc(Display);

 glutReshapeFunc(Reshape);

 glutVisibilityFunc(Visibility);

 glutKeyboardFunc(Keyboard);

 glutMainLoop();

 return (0);

}

56

APPENDIX C

PATTERNS USED TO EVALUATE MARKER MATCHING

ALGORITHM

Pattern 1 Pattern 2 Pattern 3

Pattern 4 Pattern 5 Pattern 6

Pattern 7 Pattern 8 Pattern 9

57

Pattern 10 Pattern 11 Pattern 12

Pattern 13 Pattern 14 Pattern 15

Pattern 16 Pattern 17 Pattern 18

58

Pattern 19 Pattern 20

59

APPENDIX D: RESULTS OF MARKER MATCHING ALGORITHM EVALUATION UNDER FLUORESCENT (WHITE)

LIGHTING

Distance

from the

marker

to the

camera

(cm)

Detected

Marker

Input

Marker

Patt1 Patt2 Patt3 Patt4 Patt5 Patt6 Patt7 Patt8 Patt9 Patt10 Patt11 Patt12 Patt13 Patt14 Patt15 Patt16 Patt17 Patt18 Patt19 Patt20

30

Patt1

50

70

30

Patt2

50

70

30

Patt3

50

70

30

Patt4

50

70

30

Patt5

50

70

30

Patt6

50

70

30

Patt7

50

70

30

Patt8

50

70

30

Patt9

50

70

60

 Hit

 Miss

30

Patt10

50

70

30

Patt11

50

70

30

Patt12

50

70

30

Patt13

50

70

30

Patt14

50

70

30

Patt15

50

70

30

Patt16

50

70

30

Patt17

50

70

30

Patt18

50

70

30

Patt19

50

70

30

Patt20

50

70

61

APPENDIX E: RESULTS OF MARKER MATCHING ALGORITHM EVALUATION UNDER TUNGSTEN-HALOGEN

(YELLOW) LIGHTING

Distance

from the

marker

to the

camera

(cm)

Detected

Marker

Input

Marker

Patt1 Patt2 Patt3 Patt4 Patt5 Patt6 Patt7 Patt8 Patt9 Patt10 Patt11 Patt12 Patt13 Patt14 Patt15 Patt16 Patt17 Patt18 Patt19 Patt20

30

Patt1

50

70

30

Patt2

50

70

30

Patt3

50

70

30

Patt4

50

70

30

Patt5

50

70

30

Patt6

50

70

30

Patt7

50

70

30

Patt8

50

70

30

Patt9

50

70

62

 Hit

 Miss

30

Patt10

50

70

30

Patt11

50

70

30

Patt12

50

70

30

Patt13

50

70

30

Patt14

50

70

30

Patt15

50

70

30

Patt16

50

70

30

Patt17

50

70

30

Patt18

50

70

30

Patt19

50

70

30

Patt20

50

70

63

