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Abstract 

The Maisotsenko Cycle (M-Cycle) is a new heat exchanger model which captures energy 

from the ambient air by utilizing the psychrometric renewable heat transfer energy which can 

be obtained from the latent heat of water evaporating into the air. The cycle is well-known in 

the air-conditioning (AC) field due to its potential of dew-point evaporative cooling. 

However, its applicability has been recently expanded in several energy recovery applications. 

This paper provides the overview of M-Cycle and the general background of evaporative 

cooling system. The evaporative cooling is differentiated into direct evaporative and indirect 

evaporative cooling.  M-cycle cooling is an indirect evaporative cooling that modified from 

the traditional IEC. The inventor of M-cycle is Valeriy Maisotsenko which is the founder for 

Coolerando company. Several research studies on M-cycle had been compared and analysed 

in this paper. There are several experimental studies and numerical studies on IEC did by 

previous researchers. These studies are mostly traditional IEC or M-cycle counter flow. The 

numerical analysis on cross flow M-cycle is still an unknown. Numerical study on cross flow 

M-cycle is proposed for the FYP 2.  ANSYS FLUENT is the main tool for the numerical 

simulation study. A new cross flow heat exchanger model will be designed according to the 

author’s design dimension specification. The outcome of the FYP is to identify the optimum 

inlet air velocity for greatest cooling performance.   
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1.0 INTRODUCTION 

1.1 Background of Evaporative Cooler 

According to MECS, the overall energy consumption for all manufacturing industry is 

10%. The energy consumption is directly affects the operating and production cost of the 

manufacturing industry. The efficiency of HVAC facility plays a huge role in minimizing the 

production cost. Therefore, IEC (Indirect Evaporative Cooling) has becoming the main trend 

for HVAC industry to produce low energy consumption air conditioning system. Indirect 

evaporative cooling, utilizing the principle of water evaporation for heat absorbing, has 

gained growing prestige for use in HVAC [1], due to its austerity in constitution and good use 

of natural water latent heat energy present in ambient. This led to improved system COP with 

the range from 15 to 20, which is greatly higher than the conventional vapour compression 

and common air conditioning systems. Evaporative cooling has been proven to save more 

energy than the conventional vapour compression refrigeration. It has great energy saving 

potential, and it is also an eco-friendly solution for air cooling systems which is able to 

reduce carbon emission [2]. 

 

A new kind of mass and heat exchanger utilize the benefit of the Maisotsenko cycle (M-

Cycle) has captured huge attention from the HVAC field in recent years for its excellent 

cooling efficiency and the ability to save a lot energy [3].  The Maisotsenko cycle (M-cycle) 

is a proven thermodynamic process which captures energy from the air and utilizing the 

psychometric renewable heat transfer energy from water latent heat, the overall heat transfer 

process is spontaneous which required less energy and it is able to produce great cooling load. 

In cooling process, the M-cycle uniquely integrate thermodynamic processes of heat transfer 

and evaporative cooling, in order to produce air that nearly equal to the ambient dew point 

temperature. In addition, the heat energy captured from the latent heat of evaporation may be 

used in generation of electricity, advance engine technology, and distillation of water with 

definitely zero carbon dioxide emissions. Most popular application of the Maisotsenko cycle 

is the indirect evaporative cooling. It is proven that M-Cycle can reduce the energy 

consumption up to 90% in comparison to traditional solutions [4]. Although M-cycle is 

mostly used in indirect evaporative cooling but the principles of M-cycle is very beneficial in 

any application which requires energy. Besides the evaporative cooling systems, M-Cycle 

can also be used for effective water desalination, increasing the effectiveness of gas turbines 

and photovoltaic panels.  
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1.2 Problem Statement 

The IEC, compared to the conventional refrigeration air conditioning system, is still 

relatively fresh technology and is less known to public including some of experts. New 

indirect evaporative cooling heat exchanger model, M-cycle (Maisotsenko Cycle) is develop 

by Valeriy Maisotsenko in 2004, M-cycle were no full area of study are undergoing and no 

clear information and research data about the M-cycle cross flow system. In the aspect of 

water flow method, allocation and status, the available studies are distant from excellent. 

Impact of the flowing water velocity along the wet channel for the cross flow heat 

exchanging plate on the temperature drop efficiency of the M-cycle cross flow heat 

exchanger was not yet studied. Furthermore, the water flow pattern along the wet channel of 

the heat exchanger plate was also not undergoes detailed measure [5]. Path of water channel 

and spray and its potential of producing good flow of water along the surface of the heat 

exchanger plate are also the major topics to be highlighted. Furthermore, way of handling 

water to maintain its cleanliness and avoid precipitation of the wet surface of the heat 

exchanger plate is considered as a complex issue, which is required of advanced investigation. 

Due to the short history of the technology and the low market demand, the M-cycle 

evaporative cooling products is still relatively inconsistent compared to the current air 

conditioning refrigeration cycle systems. The common application for M-cycle IEC is 

restricted to the most favourite climatic regions. The M-cycle IEC is usually joined operation 

with other air conditioning devices like air conditioning refrigeration cycle systems [6]. M-

cycle cross flow heat exchanger were not undergoes fully investigation and no clear 

knowledge and understanding in term of the numerical analysis study. Currently, there is no 

real numerical analysis that is able to visualise the internal operation of M-cycle cross flow 

heat exchanger. 

1.3 Objective  

 To design a 3D model of cross flow heat exchanger for M-cycle Indirect Evaporative 

Cooling (MCIEC) 

 To conduct numerical study on the crossflow heat exchanger of M-Cycle Indirect 

Evaporative Cooling (MCIEC) using CFD simulation approach 

 To identify the air temperature drop across primary channel respect to different inlet 

air velocity 

 



3 
 

1.4 Scope of Study 

The general purpose of the study on the evaporative cooler is to identify the characteristic of 

the new indirect evaporative cooling system technology, M-cycle. Several journal and article 

had been studied to improve the current information about the M-cycle configuration. The 

factors like humidify, temperature, air flow rate and thickness of air passage that affect the 

effectiveness of M-cycle is identified for the further simulation process. Different type of 

evaporative cooler technology such as direct evaporative cooling, indirect evaporative 

cooling, power and unpowered evaporative cooling are studied to compare the application 

and to understand the working principle of the current advance evaporative cooling 

technology. The operational skill of the software ANSYS FLUENT is practice well to 

improve the accuracy of the simulation analysis.  
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2.1 Introduction of Literature Review on Evaporative cooler 

Evaporative cooling is a natural cooling process where the evaporation of water reduced the 

temperature of an object. It occurs when sensible heat is converts into latent heat which 

decreases the temperature of the ambient due to the cooling effect by water evaporation [7]. 

The evaporative cooling application has been implemented for different sector from small 

volume cooling to heavy HVAC application. Evaporative cooling is able to provide great 

cooling towards the environment without using any external energy source which is the 

uniqueness of evaporative cooling that different from conventional air conditioning 

refrigeration cycle technologies that always required a compressor. The cooling effectiveness 

of evaporative cooler increases by increase the wetness of a surface and allowing the water to 

evaporate to the ambient. It is similar to the body of humans, during sweating the body is 

cooled and cooling effect can be felt notably when the sweat on the skin is evaporated during 

physical exertion. This is a form of direct evaporative cooling which is the foundation for 

more advance evaporative cooling systems like indirect evaporative cooling.  

 

Evaporative cooling only occurs when the air that passes over the wet surface is not overly 

humid. It provides greater cooling when the rate of evaporation is fast. Therefore, the 

efficiency or the cooling performance of an evaporative cooler relies on the ambient air 

humidity. When the ambient air is dry, the air tends to absorb more moisture, this produce 

greater cooling effect. In some of the extreme condition, when the air is saturated with water, 

the water inside the air is difficult to evaporate thus cooling process would not happen. 

Commonly, the structure of evaporative cooling is made from porous object that is constantly 

supplied with water. When high temperature and low humidity air passes through the porous 

object, the water evaporates into the hot air and increases its humidity while the dry bulb 

temperature of the air is drop [8].The evaporative cooling take advantages on the difference 

between the dry bulb temperature and wet bulb temperatures of the ambient air and 

evaporation rate of water to undergo the heat removal process for the ambient air. By using 

evaporative cooling, it cut down the usage of high power consumption electrical part like 

compressor and the chemical refrigerants like R410, R32. With the result to significantly 

reduce the total energy, at the same time reduce carbon emission, improved cooling 

performance. The evaporative cooling system has begun to gain growing popularity in the 

sector of HVAC. 
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2.2 Types of evaporative coolers 

 

 

 

 

 

 

Figure 2.1: Type of evaporative coolers 

 

The evaporative cooler designs differ according to the absorbent medium, storage chamber 

structure and evaporation method. Most evaporative coolers designs retain in either 

unpowered or in the form of externally powered. The evaporative coolers that do not require 

external power source are made to create the spontaneous airflow for sufficient cooling 

purpose through convection process. Different configurations among the unpowered and 

powered coolers allow the heat transfer in briefly different method. The method is either 

direct evaporative cooling or indirect evaporative cooling. Most evaporative coolers depend 

on altering the sensible heat from air into latent heat of water, the working principle for this 

alteration can be dissimilar. Several evaporative cooler designs are developed from porous 

object to let water to infiltrate from an inner container to an outside surface which 

evaporation takes place. For these designs, heat is removed from inner cooling chamber 

during evaporation of water. During evaporation, high temperature water molecules 

evaporate and leaved the outer surface, thus the surface temperature drop and appearance of 

heat gradient allow heat to transfer from the inner chamber out to the surface [9]. At the end 

of the process, the temperature of the inner volume drops and causing a cool space which can 

provide cooling effect for any object that is inserted in the cooler. There is another type of 

evaporative cooler process depends on speed of air over a moist pad to produce cooling. For 

this design, absorbent pads act as part of the boundary between cooling chamber and air. The 

cooling takes place either through spontaneous airflow or forced air flow from an electrical 

blower travels over the moist pad. The temperature of the air is drop when the water is 

evaporated from the moist pad into the air. Cooling effect is produce when this cool air 

travels over to the cooling chamber.  

 

 

 

Evaporative Coolers 

Externally powered Unpowered 
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2.2.1. Unpowered  

 

Pot-in pot cooler is one of the most outstanding evaporative coolers because of its austerity 

and performance. Mohammed Bah Abba is the first person that design the pot-in-pot 

evaporative cooler who is a Rolex Award receiver of this contribution. The pot-in-pot 

evaporative cooler consists of one large and one small concentric clay pot. The smaller pot is 

located inside the larger pot with compact sand medium in between. The function of sand is 

to provide a moist medium that contains the water as heat absorbent for evaporative cooling 

purpose [10]. One moist fabric lay on the upper part of the pots for better cooling 

effectiveness. The other name for pot-in-pot evaporative cooler is Zeer pot because of the 

repuatation of the pots usage at several Africa region. The Zeer pot undergoes examination 

for food conservation by the organization called Practical Action, it is proven to increase food 

storage life notably which up to five times longer for some vegetable [11]. The Zeer pot has a 

proximate storage volume of 12kg of vegetable. The effectiveness of the Zeer pot is restricted 

by the overall size of pots currently used, larger volume yield better cooling effectiveness.  

 

There are several other unpowered cooler designs exist besides the most popular pot-in-pot 

design. The Janata cooler is another unpowered cooler developed by the Nutrition and Food 

Board of India is similar to the Zeer pot which also using pots made by ceramic. The Janata 

utilize one storage pot inserted in a huge water bowl which fully filled with water and it is 

cover with a cloth [12]. The cloth is contacted with the water bowl to absorb water for 

wetness which is essential to produce significant evaporative cooling.  

 

The third example of unpowered cooler is Almirah cooler which is made from a wooden box 

with cloth covering the box to provide a enclose storage chamber. Cloth is immersed into a 

plate of water to soak up water and provide a low surface temperature for better rate of 

evaporation [13]. The unpowered rigid evaporative coolers give a bigger room for higher 

volume storage chamber. Unpowered rigid evaporative coolers are commonly constructed 

with a bilayer bricks material chamber. The space among the layers differs by other designs 

utilize an interval from 3 to 5 inches. The interval is packed fully with sand like the Zeer pot. 

The moisture of sand can be controlled by physically water addition it or with the usage of a 

drip hose binding with water tank. The foods are usually kept inside the cooling chamber and 

the foods are placed into different tray [14]. 
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2.2.3. Externally Powered  

 

Externally powered evaporative cooling system is constructed with the support from an 

electrical blower to increase air flow rate and a water pumping device to supply non-stop 

moisture into the wet channel. Externally powered system are designed dissimilarly than 

unpowered coolers, externally powered system using a cooling cushion as an moist medium 

and do not depend on water flow rate along a porous material that is undergo evaporation. 

Electrical fan pushes air over the moist absorbent cushion where water evaporation takes 

place and thus the air is cooled. The cooled air then moves through the cooling chamber to 

reduce the temperature of desired area. In these systems, the absorbent pad plays a important 

role throughout the cooling process. Several factors can affect performance of pad are the pad 

material, pad thickness, and size of perforations [15]. Most commercial pads are often made 

of acetate, plastic, or fiberglass which can be expensive and are not made from locally 

accessible materials by most manufacturer [16].  

 

2.3 Factors Affecting Rate of Evaporation 

 

 

 

 

 

 

Figure 2.2: Factor of evaporation rate 

 

According to study conducted by D. Pandelidis [17], there are 4 main factors could impact 

the water evaporation rate. These major factors all correlate with each other to impact the 

water evaporation rate for the overall cooling system, and the cooling capacity. The factors 

discussed by [17] consist: 

 

(1) Air Temperatures: Water evaporation takes place when water molecule is draws adequate 

heat energy to transform state from liquid to vapour form. High temperature hot air is able to 

boost the water evaporation rate and the air able to hold large amount of water molecule in 

vapour state. Thus, object surface with higher temperatures yield higher water evaporation 

Rate of Evaporation is affected by 

Air Temperatures 

Surface Area Air Movement 

Relative Humidity 
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rate and causes bigger temperature drop. If air temperature is low, less water molecule can be 

kept by the air and less water evaporation rate yield lower cooling load.  

 

(2) Air Movement (Velocity): The movement of air can be natural (wind) or artificial (fan), 

the air flow rate is an major factor could changes the water evaporation rate. When water 

molecule evaporates from moist medium, it causes humidity of air that is nearest to the moist 

medium to increase. The water evaporation rate will drop if the humid air keeps in 

environment. Because as the humidity increases the evaporation rate decrease. Besides that, if 

the humid air near the water medium is constantly being forced away and substituted with dry 

air, the water evaporation rate has the potential to rise or maintain the same.  

 

(3) Surface Area: The third factor that can impact the water evaporation rate is the area of the 

evaporating surface. The larger surface evaporating area causes greater amount of water 

exposed to the ambient air, the greater possibility for the water to evaporate and yield higher 

evaporating rate. 

 

(4) Relative Humidity of the Air: The RH of the air is the measurement of the water vapour 

contain in the air as a fraction of the maximum amount that the air is able to hold at a 

particular temperature. The definition of low relative humidity of the air is when there is only 

a small portion of the total amount of water which the air is capable to hold is being held. 

When the relative humidity of air is low, the air has the ability to take more moisture, thus 

with all other preferable conditions, the rate of water evaporation will increase, and thus the 

higher efficiency of the evaporative cooling system can be obtained.  
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2.4 Methods of evaporative cooling 

 

Figure 2.3: Direct Evaporative Cooling System 

 

 

Figure 2.4: Indirect Evaporative Cooling System 

 

Rusten[18], classified that there are two major methods of evaporative cooling which is 

Direct evaporative cooling (DEC) and Indirect evaporative cooling (IEC).  

 

2.4.1 Direct evaporative cooler 

Direct Evaporative Cooling is a method by which the ambient air is passed over a porous 

media that is saturated with water. The latent heat correlated with the evaporation of the 

water deceases temperature and increases humidity the air streams which then allows the wet 

and cool air to flow to its desired direction. [18]. [19]. Direct evaporative cooling has the 

three main restrictions: 

1) The increments of humidity in product air may not be the desired condition. 

2) The wet-bulb temperature of outside air is the lowest obtainable temperature. 

3) The large quantity of precipitation or mineral in water deposit on the cushion and the heat 

exchanger part can lead to retardation, and corrosion, and need a lot cleaning, restoration, and 

maintenance. 
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2.4.2 Indirect evaporative cooler 

 

Figure 2.4 (a): Air flow pattern and psychrometric process of traditional IEC and dew point 

IEC with M-Cycle: (a) traditional IEC (b) M-Cycle IEC (c) psychrometric process. 
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Figure 2.5: Detailed psychrometric flow of M-cycle 

 

According to Lei Wang[3] IEC research paper, the M-Cycle makes use of the dry channel 

and wet channel of to exchange heat like the traditional heat exchangers of indirect 

evaporative cooling system, but with a another airflow method which able to produce an 

excellent thermal exchange. Based on schematic diagram in Fig. 2.4(b), the primary product 

air is separated into 2 streams. First stream (product air) is channel into places for cooling 

operation while second air stream channel down to the wet channels. When the process start, 

the primary air flows into the dry channel and a portion of the product air flow is engaged as 

the secondary air, it moves into nearby wet channel in opposite path. The wetness of wet 

channel heat exchanger surface is increased due to water addition. Thus, the temperature 

difference causes the sensible heat transfer in the wet channel. While pressure difference of 

water vapour between the wet channel surface and secondary air stream create mass transfer 

of water at the wet channel inlet. The temperature of primary air is dropped without 

interacting with water physically, the humidity ratio of primary air at entrance and exit are 

same. M-cycle utilises the hot water saturated air and the enthalpy difference of air during 

dew point temperature to remove heat from ambient air [20]. 



12 
 

M-cycle coolers have the capability to decrease temperature of air close to dew point 

temperature with lesser energy consumption compare with mechanical compress air 

conditioner [14]. M-cycle coolers able to maintain moisture content along the product air 

stream even thou the cooling medium of M-cycle coolers is water fluid. Furthermore, among 

all coolers with similar cooling power, M-cycle cooler consumes lower amount of water 

compare to traditional IEC or DEC. Mechanical compress coolers maintain moisture to the 

air because it uses CFC as a cooling mechanism in order to achieve the cooling. By 

comparing to DEC coolers, the probability of getting health problems due to the water 

contamination in M-cycle coolers is zero because of zero interaction between water fluid 

from wet channel and product air from dry channel. The cooling capacity of M-cycle coolers 

improves by increasing inlet air temperature [14]. Due to the absence usage of high energy 

consumption component like evaporator, condenser, refrigerant, compressor in M-cycle 

coolers, this make M-cycle cooler to has greater market and lower affordable cooling 

expenses compare to mechanical compress air conditioner [14]. The M-cycle coolers offer 

health issues free enclosed environment air with comprising 100% fresh air. 

 

2.5 Application of IEC 

 

There are over 200 patents globally for Maisotsenko cycle [15]. The first practical 

apperception of the M-cycle cooler technology is developed by Coolerado cooperation [17] 

for many purposes including residential, commercial, hybrid and solar M-cycle air coolers. 

Based on testing which conducted by National Renewable Energy Laboratory (NREL), 

Coolerado’s H-80 air cooler used 4 times lesser electrical energy than mechanical compress 

air conditioner in dry and hot climate country [17]. The Coolerado air conditioners are able 

available in HVAC markets over the world. The Coolerado coolers are separated into 3 major 

classes which are HMX, M50 and C60. Below is the figure of their products. 

 

 

Are me you are the hello hard soft rock only for suitable book mouse and screen.  
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Figure 2.6: HMX Coolerado air cooler [from brochure] 

 

 

Figure 2.7: C60 Coolerado air cooler [from brochure] 

 
Figure 2.8: Coolerado air cooler [from brochure] 
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2.6 Recent Research Study for IEC  

 

In order to reduce the gap of modelling and measurement results, a 1-D numerical model of 

the IEC flat plate counter flow heat exchanger is developed by Kettleborough and Hsieh [20] 

with the support basis made by Maclaine-corss and Banks [21]. All the factors like poor 

wetting and alteration of the distributed water temperature along the heat exchanger plate 

surface is took into consideration for this one dimensional numerical model. As the final 

result, the percentage error between the experimental efficiency and modelling of this study 

had lowered down to 14%.  

 

The following numerical analysis is completed by Guo and Zhao [22]. The thermal 

performance of the cross flow indirect evaporative cooler (IEC) had been analysed 

dedicatedly by them. This numerical analysis mainly concentrate on the properties of 

numerous parameters, these parameters includes primary and secondary air flow rate ratio, 

channel dimension, relative humidity of inlet air and wet-ability of the wet channel 

corresponding to the cooling performance for the IEC system. The research concluded that 

the smaller width of the channel, the relative humidity of secondary air inlet will be lower. 

This increases the wet-ability of the heat exchanger plate and at the same time it yielded a 

greater ratio of the secondary to primary air. With the condition above, higher cooling 

effectiveness of IEC can be obtained. 

 

Ren and Yang [23] constructed an improved mathematical model which capable to imitate 

the coupled mass and heat transfer processes in counter flow and parallel indirect evaporative 

cooling heat exchanger according to several working state. In contradistinction with the 1-D 

model above, this mathematical model resolved the coupled mass transfer and heat equations 

by including several Lewis factor such as plate surface moisture, water evaporation, velocity, 

enthalpy and temperature of the injected water. By comparing with solutions obtained from 

the 1-D mathematical models, lower errors were obtained by implementing this improved 

mathematical model. The errors lowered by 0.17% to the 0.64% to the product air 

temperature of second channel, air supply temperature, and 0.24% to the product air humidity 

ratio at second channel respectively. This research rated that during counter current flow, 

most efficient operation can be obtained in constant heat exchanger parameter inside the flat-

plate heat exchanger. The parameter such as the primary air flowing in the counter-current 

orientation to the secondary air and water membrane yield a better cooling result because no 
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heat conduction was identified along the air flow longitudinal direction within the boundary 

of heat exchanger.  

 

Hettiarachchi et al. [24] uses NTU method to investigate the impact of 2D longitudinal heat 

transfers in the plate wall among a tight cross flow flat plate heat exchanger. A group of 

governing equations is applied in this study to consider the important parameters like the 

mass transfer inside the wet channels and the heat transfer parameters of convection inside 

the dry channel and wet channel. This research concluded that the depravation in cooling 

effectiveness of the indirect evaporative cooling by the longitudinal heat conduction was 

nearly 10% or above during normal working state while below 5% was identified under 

several extreme states. 

 

The table 2.6 below showed the important experimental study for traditional IEC and 

numerical study on M-cycle counter flow. The numerical data from Cui X [25] is validated 

by the experimental study by Riangvilaikul B [26]. The validation graph is showed in Figure 

2.6. The error between two study is within 10%.  

 

Table 2.1: Highlighted research study for FYP 
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Figure 2.9: Comparison between outlet air temperature based on mathematical model and 

experimental data 

 

2.7 Conclusion of Literature Review 

The main evaporative cooling system is Direct Evaporative Cooling (DEC) and Indirect 

Evaporative Cooling (IEC). The most common application is the water spraying system with 

the support of ventilating fan. DEC decrease the ambient temperature by increasing the 

humidity of the environment. While the IEC system uses two different channel which is dry 

channel and wet channel. The wet channel absorbs the heat from the dry channel. The 

product of the dry channel is cool air with the same humidity as the entrance. The application 

of IEC is not popular due to lack of research data and lesser cooling load compare to air 

conditioner.  A new IEC heat exchanger model, M-cycle is develop by Valeriy Maisotsenko 

in 2004. This heat exchanger model is proved to have better cooling performance than the 

traditional IEC model.  
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3.0 Methodology 

3.1 Project process flow chart 

 

Design 3D heat 

exchanger model 

Obtain input 

parameter 

Generate mesh for the 

model 

Set boundary condition 

and input 

Adjust the number of 

iteration 

Generate Result 
Is data 

converging? 

Analyse result 

Is result meets 
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Step 1: Design optimum cross flow MCIEC heat exchanger by trial and error method 

 

The initial design dimension parameters for the 3D model are compiled in table form below. 

Then a 3D model is constructed in Ansys Space Claim following the value of the table. Trial 

and error in Ansys CFD are conducted by manipulating the dimension of the 3D model and 

fixed the boundary condition (inlet air temperature and velocity) to obtain suitable dimension 

for the 3D model.  

Table 3.1: Design Parameter 

Trial 1  2  3 (Best) 

Height 109mm 69mm 29mm 

Width 268mm 168mm 68mm 

Length 321mm 201mm 81mm 

Steel Thickness 3mm 3mm 3mm 

Channel Size 50mm x 50mm 30mm x 30mm 10mm x 10mm 

Hole Diameter 60mm 18mm 6mm 

Material Steel Steel Steel 

Inlet Air Temperature  333K 333K 333K 

Inlet Air Velocity  1 m/s 1 m/s 1 m/s 

 

 

 

Figure 3.1: Cross Flow MCIEC 3D model 
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Step 2: CFD simulation for best 3D model 

The best 3D model from previous design is inserted into Ansys Fluent to conduct CFD 

simulation. Meshing is generated accordingly before CFD simulation. The fixed boundary 

conditions are inlet air temperature and secondary channel surface temperature while the 

manipulated boundary condition is the inlet air velocity (0.5m/s, 1.0m/s, 1.5m/s, 2.0m/s,). 

The number iterations for 1000 times is being assigned the 3D model. The temperature drop 

is recorded respect to the different inlet air velocity. And the optimum inlet air velocity can 

be obtained by identify the temperature drop across primary channel.  

 

 

Figure 3.2: Cross Flow MCIEC 3D Temperature Contour 
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3.2 Gant Chart and Key Milestone 

Final Year Project 1 Gantt Chart 

 

No. Task  W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 

1 Understanding Project Background                             

2 Literature Review                             

3 Design Methodology                              

4 Learn ANSYS Fluent                             

5 Interim Report Drafting                             

 

 

 

Milestone: 

• Compute methodology flow chart (Week 8) 

• Learn CFD 3D modeling (Week 9~12) 
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Final Year Project 2 Gantt Chart 

 

No. Task  W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 

1 Develop 3D model                             

2 Simulation of the developed model                             

3 Obtain result                             

4 Validation Process                             

5 Analysis Data                             

6 Final report Preparation                             

 

 

 

Milestone: 

• Obtain result (Week 5) 

• Data Validation (Week 8) 

• Preparation for Report (Before Week 12) 
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4.0 Results and Discussion 

4.1 Construct 3D Model 

The crossflow heat exchanger model is designed by the author because there is no any design 

parameters and study conducted by other researchers. All the channels width and height are 

1 cm. The third primary and all the secondary channel are wet channel. There are 6 holes 

along the third primary channel. The diameter of the hole is 6mm. The hole allows the inlet 

air to move downward to the secondary channel. The thickness of the heat exchanger body is 

3mm apart between each channel. Below is the specification of the heat exchanger body.  The 

figure below is constructed using ANSYS FLUENT software. 

 

Figure 4.1: 3D Modelling of M-cycle Cross Flow Heat Exchanger (Body) 

 

Table 4.1: Specification of heat exchanger 

Height 29mm 

Width 68mm 

Length 81mm 

Steel Thickness 3mm 

Channel Size 10mm x 10mm 

Hole Diameter 6mm 

Material Steel 
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4.2 Working Principle of cross flow MCIEC 

4 Primary square channels (all top except middle), 1 secondary inlet channel (top middle) and 

6 secondary square channels (bottom) were used for the 3D CFD simulations. The main 

cooling process take place in primary channels while secondary channels act as cooling 

medium. Figure 4.1.1 shown the air flow of primary channel from inlet to the outlet. The hot 

air is move across the 4 primary channels and heat is absorbed by secondary channel. Cooled 

air is produced at the outlet of primary channel. Figure 4.1.2 shown the air flow of secondary 

channel, the inlets for secondary channels is located at the top middle. There are 6 holes 

along the top middle channel. Hot air is forced to move from top to bottom through the holes. 

Then the air moves perpendicularly into 2 different direction towards the outlets. The surface 

of the secondary channel is surrounded by wet surface.  

 

Figure 4.2.1: Air Flow Path Across Primary Channel 

 

Figure 4.2.2: Air Flow Path Across Secondary Channel 
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4.3 CFD Simulation Results 

There are 2 fixed boundary conditions for the simulation which are the inlet air temperature 

(333K) and the surface temperature of secondary channels (297K). The manipulated 

boundary condition is the initial air inlet velocity at primary channel. The inlet air velocity 

varies from 0.5m/s, 1m/s, 1.5m/s and 2m/s. At the end of the simulation, the outcome is to 

identify the temperature drop across the primary channel respect to its inlet air velocity. Table 

4.3 shown the result of CFD simulation for 4 different inlet air velocity. While the graph 4.3 

shown the temperature drop against the inlet air velocity.  

Table 4.3: CFD Analysis Results  

Reading:

 

Inlet Air Velocity: 0.5 m/s

Reynolds Number: 10557 

Temperature Drop: 19 K 

Inlet Air Velocity: 1.0 m/s

Reynolds Number: 21115 

Temperature Drop: 15 K 

Inlet Air Velocity: 1.5 m/s

Reynolds Number: 31672 

Temperature Drop: 9 K 

Inlet Air Velocity: 2.0 m/s

Reynolds Number: 42229 

Temperature Drop: 7 K 
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Graph 4.3: Temperature Drop vs Inlet Air Velocity   

The highest temperature drop 19K is obtained when the inlet air is 0.5m/s. All conditions are 

in turbulent flow because Reynolds Numbers are greater than 4000. As the inlet air velocity 

increases, the temperature drop across the primary channel reduces. This is because more 

heat is being absorbed by secondary channels when the duration of air remain in the primary 

channels is longer. Therefore, greater cooling effect can be achieved when slow air 

movement is applied in the primary channel. The result of this CFD simulation are 

successfully computed and the results are reasonable.  
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5.0 Conclusion and Recommendation 

Evaporative cooling system is still a relatively new era for the field of HVAC. 

Indirect Evaporative cooling system can provide comfort cooling without changing the 

humidity of the environment. Cost of production is directly affected by the energy 

consumption during the cooling operation. IEC is the best solution for the investors in term of 

cost saving. IEC consume lesser electrical energy because evaporative cooling is a 

spontaneous process. Among all the IEC, M-cycle is the most potential heat exchanger model 

to replace the current air conditioner. According to previous study on M-cycle, it can generate 

cool air efficiently using only single air supply without changing the environment humidity. 

However, the numerical study data for crossflow is absent. Numerical simulation is 

completed in this semester using ANSYS FLUENT software. In the future, experimental 

prototype will be developed to future study the actual behaviour of the M-cycle cross flow 

heat changer model. The numerical data will be validated by previous experimental study and 

numerical study of counter flow M-cycle heat exchanger model. This numerical study on 

cross flow model is a starting point for M-cycle future development. The study is very 

beneficial to the HVAC field to develop less energy consumption cooling system for coming 

years. In the future, detail study like varying the inlet air temperature can be conducted. To be 

more advance, an experimental prototype of the crossflow 3D model can be fabricated, and 

the actual data can use to validate with the CFD simulation data of this study. 
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