
i 

STATUS OF THESIS 

Title of thesis 
AMINO-N-(3-(DIMETHYLAMINO)PROPYL)ACETAMIDE 
AS AN ABSORBENT FOR CARBON DIOXIDE CAPTURE 

AND UTILIZATION 

I HANAN BINTI MOHAMED MOHSIN 

hereby allow my thesis to be placed at the Information Resource Center (IRC) of the 
Universiti Teknologi PETRONAS (UTP) with the following conditions: 

1. The thesis becomes the property of UTP
2. The IRC of UTP may make copies of the thesis for academic purposes only.
3. This thesis is classified as

Confidential 

X Non-confidential 

If this thesis is confidential, please state the reason: 
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________ 

The contents of the thesis will remain confidential for _________ years. 

Remarks on disclosure: 
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________ 

Endorsed by 

Signature of Author 

Name of Author: 
Hanan binti Mohamed Mohsin 

Signature of Supervisor 

Name of Supervisor: 
Dr. Khairiraihanna binti Johari 

Permanent address:  
730, Lorong 22/2, Lavender Heights, 
70450, Senawang,  
Negeri Sembilan, Malaysia. 

Date: __________           Date: __________



ii 

APPROVAL PAGE 

UNIVERSITI TEKNOLOGI PETRONAS 

AMINO-N-(3-(DIMETHYLAMINO)PROPYL)ACETAMIDE AS AN 

ABSORBENT FOR CARBON DIOXIDE CAPTURE AND UTILIZATION 

by 

HANAN BINTI MOHAMED MOHSIN 

The undersigned certify that they have read and recommend to the Postgraduate Studies 
Programme for acceptance of this thesis for the fulfilment of the requirements for the 
degree stated. 

Signature: 

Main Supervisor: 

Signature: 

Co-Supervisor: 

Signature: 

Head of Department: 

Date: 



 

iii 
 

AMINO-N-(3-(DIMETHYLAMINO)PROPYL)ACETAMIDE  

AS AN ABSORBENT FOR CARBON DIOXIDE  

CAPTURE AND UTILIZATION 

 

by 

 

HANAN BINTI MOHAMED MOHSIN 

 

A Thesis 

Submitted to the Postgraduate Studies Programme 

as a Requirement for the Degree of 

 

MASTER OF SCIENCE 

CHEMICAL ENGINEERING 

UNIVERSITI TEKNOLOGI PETRONAS 

BANDAR SERI ISKANDAR, 

PERAK 

 

MARCH 2020 

 



iv 

DECLARATION OF THESIS 

Title of thesis 
AMINO-N-(3-(DIMETHYLAMINO)PROPYL)ACETAMIDE 
AS AN ABSORBENT FOR CARBON DIOXIDE CAPTURE 

AND UTILIZATION 

I HANAN BINTI MOHAMED MOHSIN 

hereby declare that the thesis is based on my original work except for quotations and 

citations which have been dully acknowledged. I also declare that it has not been 

previously or concurrently submitted for any other degree at UTP or other institutions. 

Witnessed by 

Signature of Author Signature of Supervisor 

Permanent address: Name of Supervisor 
730, Lorong 22/2,  Dr. Khairiraihanna binti Johari 
Lavender Heights, 
70450, Senawang, 
Negeri Sembilan, Malaysia 

Date: Date: 



v 

ACKNOWLEDGEMENT 

With the grace of Almighty, I am able to finish this thesis study. This work 

would not have been possible without the assistance and encouragement of various 

individuals from the beginning until the end of this master journey. I would like to take 

this opportunity to convey my uttermost gratitude to my main supervisor, 

Dr. Khairiraihanna Johari for the persistence guidance, inspiration, and motivational 

support in ensuring that I completed this master thesis. My appreciation also goes to 

my co-supervisor, Prof Dr. Azmi Mohd Shariff for sharing his knowledge and wisdom 

in the subject matter. To my family members, especially my parents and my siblings, 

thank you for the support and words of encouragement that helped keep me motivated 

throughout my study period. To my housemates and friends, Nur Afiqah, Siti Suhailah, 

Anisah, Norliza, and Khaliesah, I really appreciate the knowledge and experience 

shared with me which assisted towards the completion of my thesis.  The same amount 

of gratitude goes to the lab technologies, Mr. Adli, Ms. Shahidah, and Mr. Samad who 

are always available to lend a helping hand when handling equipment in the 

laboratories. Last but not least, I would like to thank the university and CO2 Research 

Center (CO2RES) in particular, for the financial support and facilities provided for me 

to carry out my research activities. 



vi 

ABSTRACT 

Monoethanolamine (MEA) is a conventional absorbent used for CO2 capture in 

the industry. However, MEA has limited CO2 absorption capacity. Moreover, high 

energy input is required to separate CO2 from MEA after the absorption process. In this 

study, the CO2 desorption process was eliminated through integration of CO2 capture 

and utilization. The high energy requirement during CO2 utilization can also be reduced 

through the integration process. The performance of 3-dimethylaminopropylamine 

(DMAPA) neutralized with glycine as potential absorbent for CO2 capture was 

evaluated in this study by measuring the CO2 loading capacity of the absorbent. The 

physical properties of the absorbent were evaluated by measuring the density, viscosity, 

refractive index, and surface tension of the absorbent. The absorbent formed through 

the neutralization process was analyzed by using Fourier transform infrared (FTIR) 

spectroscopy. The possibility of CO2 utilization was also studied through addition of 

ethanol into the CO2-saturated absorbent. The FTIR results indicated that

amino-N-(3-(dimethylamino)propyl)acetamide was formed when glycine was added 

into DMAPA. The CO2 loading capacities of the absorbent were found to decrease as 

the concentration of the absorbent increased. However, the net CO2 loading capacity 

showed an opposite trend such that the total amount of CO2 absorbed by the solution 

increased as the concentration of the absorbent increased. This was supported by the 

results obtained for CO2 utilization which indicated that the amount of solids recovered 

increased as concentration of the absorbent increased. At 5 bar and 303.15 K, the 

optimum concentration of absorbent for CO2 capture and subsequent utilization was 

1.0 M, with CO2 loading capacity of 1.6 mol CO2/ mol of absorbent, which was higher 

than the conventional monoethanolamine (MEA) absorbent (0.77 mol CO2/ mol MEA). 

The solids recovered contained carbamate salt. Based on this study, the CO2 loading 

capacity of the amino-N-(3-(dimethylamino)propyl)acetamide showed significant 

improvement, in comparison to MEA. Moreover, the formation of solid products 

indicated the possibility of CO2 conversion at low pressure and temperature conditions, 

and hence reduction in energy requirement during CO2 utilization process.   
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ABSTRAK 
 
 

Monoethanolamina (MEA) ialah penyerap konvensional yang digunakan untuk 

menangkap karbon dioksida (CO2) di industri. Namun begitu, MEA mempunyai kadar 

penyerapan CO2 yang terhad. Tambahan pula, input tenaga yang tinggi diperlukan 

untuk mengasingkan CO2 daripada MEA selepas proses penyerapan. Dalam kajian ini, 

proses penyaherapan CO2 disingkirkan melalui proses integrasi antara penangkapan 

dan pengunaan CO2. Keperluan tenaga yang tinggi semasa pengunaan CO2 juga boleh 

dikurangkan melalui proses integrasi ini. Prestasi 3-dimetilaminopropilamina 

(DMAPA) yang dineutralisasi dengan glisina sebagai penyerap untuk penangkapan dan 

pengunaan CO2 telah dinilai dengan mengukur kadar penyerapan CO2. Sifat fizikal 

cecair dinilai dengan mengukur ketumpatan, kelikatan, indeks biasan, dan ketegangan 

permukaan. Penyerap yang dihasilkan melalui proses neutralisasi dianalisa 

menggunakan spektroskopi inframerah transformasi Fourier (FTIR). Kemungkinan 

penggunan CO2 juga dikaji dengan menambah etanol ke dalam penyerap yang telah 

tepu dengan CO2. Keputusan FTIR menunjukkan amino-N-(3-(dimetilamino) 

propil)asetamida terhasil apabila glisina ditambah kepada DMAPA. Kadar muatan CO2 

oleh penyerap didapati menurun apabila kepekatan penyerap meningkat. Namun begitu, 

jumlah bersih kapasiti muatan menunjukkan arah aliran yang berbeza iaitu jumlah 

keseluruhan CO2 yang diserap oleh penyerap meningkat apabila kepekatan penyerap 

meningkat. Penemuan ini disokong oleh keputusan kajian penukaran CO2, iaitu jumlah 

pepejal yang dihasilkan meningkat apabila kepekatan penyerap meningkat. Pada 5 bar 

dan 303.15 K, kepekatan optimum penyerap untuk proses penangkapan dan penukaran 

CO2 kepada produk baru ialah  1.0 M, dengan kadar larutan CO2 sebanyak 1.6 mol CO2/ 

mol penyerap yang didapati lebih tinggi daripada penyerap konvensional MEA        

(0.77 mol CO2/ mol MEA). Pepejal yang dihasilkan mengandungi garam karbamat. 

Melalui kajian ini, kadar muatan CO2 amino-N-(3-(dimetilamino)propil)asetamida 

menunjukkan peningkatan berbanding dengan MEA. Tambahan pula, penghasilan 

pepejal menunjukkan kemungkinan proses penukaran CO2 pada suhu dan tekanan gas 

yang rendah, malah, menurunkan penggunaan tenaga semasa proses penukaran CO2. 
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CHAPTER 1 
 
 

INTRODUCTION 

1.1 Overview 

This chapter provides an overall summary of the thesis study. This research 

focused on carbon dioxide (CO2) capture and utilization, as one of the methods for CO2 

mitigation. CO2 absorption is currently the most advanced technology available for CO2 

capture. However, limited CO2 absorption capacity of the absorbent and high 

regeneration energy during the CO2 desorption process were identified as the 

limitations for CO2 absorption technology. Moreover, the high energy requirement 

during CO2 utilization process was also addressed in this research. The main aim of this 

research is to identify a potential absorbent with high CO2 capacity compared to the 

conventional monoethanolamine (MEA). This research also investigates the possibility 

of integrating the CO2 capture with CO2 utilization process to eliminate the CO2 

desorption process and hence reduce the energy requirement during CO2 utilization.   

1.2 Research Background 

Global warming is a natural phenomenon driven by high emissions of CO2 into 

the atmosphere. Increasing of the Earth’s surface temperature, melting of ice glaciers, 

droughts, and floods are contributed by excessive anthropogenic emissions of CO2. 

Carbon capture and utilization (CCU) was identified as one of the methods for CO2 

mitigation. Several methods have been reported for CO2 capture such as            

absorption [1], adsorption [2], membrane technology [3], and cryogenic distillation [4]. 

Based on the amine scrubbing process patented by Bottoms [5] in 1930, absorption 

process is regarded   as   the   most   mature   and  well understood technology with high 

CO2  removal   efficiency.  The   absorption   process  relies    on   chemical   interactions  
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between CO2 molecules to separate CO2 from natural gas [6], followed by solvent 

regeneration process to release CO2 and recycle the solvent back into the system. The 

solvent regeneration process is usually performed by heating the solvent at temperature  

ranging between 100 to 120 °C [1]. The desorption process contributes to significant 

energy requirement during the CO2 capture process. Various alternatives were 

considered to reduce the energy requirement during solvent regeneration process which 

include replacing amine with other types of absorbent [7-9] and mixing the absorbent 

with organic solvents [10, 11]. Apart from that, CO2 desorption process can also be 

eliminated through simultaneous CO2 capture and conversion process [12, 13], which 

will be further explored in this research.  

The use of CO2 as a building block for the synthesis of carbon-based materials 

were discussed by various authors [6, 14, 15]. High purity CO2 usually obtained from 

CO2 capture process can be converted into value-added products such as urea, salicylic 

acid, methanol, and cyclic carbonates [15] which provides an alternative pathway for 

CO2 storage. At present, the industrial application of CO2 fixation is limited by the high 

activation energy during the synthesis of low energy carbon-based products [14]. Thus, 

the existing technology for CO2 conversion requires large energy input, which increases 

the cost of CCU technology. This can be seen in the production of urea which occurs 

at temperature of approximately 185 to 190 °C and pressure of 180 to 200 atm [15]. 

Similarly, salicylic acid is produced at high temperature and pressure through the 

Kolbe-Schmitt method [14]. One of the methods which was identified to lower the 

energy requirement during CO2 fixation is by reacting CO2 with co-reactants such as 

hydroxide or amine solution which can lower the activation energy and hence allow 

conversion to occur at reduced temperature [15].  

Organic media such as alcohol was identified as one of the reagents which can 

be used to convert CO2 into value-added products such as carbamates which are useful 

for drug synthesis and agrochemical products [16, 17]. Apart from carbamates, ethanol 

can also be converted to carbonates in the presence of CO2 gas [18]. The conventional 

method for generating carbamates involves the use of toxic chemicals such as 

isocyanates and chloroformates [16]. Moreover, the conversion process usually occurs 

at high temperature and pressure conditions. CO2 capture and subsequent utilization by 

using ethanol was proposed as one of the methods to reduce the energy requirement 

during the CO2 conversion process.  
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1.3 Problem Statement 

Monoethanolamine (MEA) is the most common type of absorbent used in the 

oil and gas industry for removing CO2 from flue gas. The chemistry behind the MEA 

absorption process is well understood and MEA is also available at reasonable cost [19]. 

Despite that, MEA has limited CO2 absorption capacity which requires large absorption 

tank to attain high removal efficiency [19]. Diamines such as N-methylpropane-1,3-

diamine (MAPA) and 3-dimethylaminopropylamine (DMAPA) demonstrated 

significantly higher CO2 absorption capacity compared to other types of amines [20]. 

The neutralization of diamine with amino acid were also studied to further increase the 

CO2 absorption capacity of the absorbent [21, 22]. Moreover, the addition of amino acid 

provides additional advantages such that amino acid is known to have low toxicity, low 

volatility, and high oxidation stability [23].  

In spite of the advantages of diamine neutralized with amino acid, the high 

energy requirement during absorbent regeneration process remains a challenge which 

needs to be overcome to ensure competitiveness of the CO2 absorption technology. The 

high regeneration energy during the desorption process can be eliminated by integrating 

the CO2 capture with CO2 utilization process. The integration process is also expected 

to address the issue of high thermodynamic stability of the CO2 molecules which 

requires high energy input during the conversion process.  

In CCU, organic media such as ethanol has been found to successfully convert 

CO2 into value-added products [24]. However, the study conducted by Han and Wee 

[24] indicated that the addition of organic media (ethanol) into the absorbent increased 

the viscosity of the absorbent, which hinders diffusion of CO2 molecules into the 

absorbent during absorption process. To overcome this problem, a two-step CO2 

capture and subsequent utilization method was employed where in the organic solvent 

was added directly after the CO2 capture process, thus the high viscosity of the ethanol 

may not affect the CO2 diffusion process. Previous studies on diamines [21, 22] also 

focused on CO2 capture at lower pressure, which focused on post-combustion 

technology.  
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In this study, the performance of 3-dimethylaminopropylamine (DMAPA)  

neutralized with glycine as a potential absorbent for CO2 capture was evaluated at 

higher pressure ranging from 5 to 25 bar, focusing on pre-combustion technology. The 

possibility of utilization CO2 was also investigated by mixing the CO2-saturated 

absorbent with ethanol as a reagent.  

1.4 Objective 

This study covered the following aims: 

i.  To prepare and characterize the amino-N-(3-(dimethylamino)propyl)acetamide 

as an absorbent for CO2 capture.  

ii.  To evaluate the CO2 absorption capacity of the prepared absorbent.  

iii.  To study the utilization of CO2 by using the prepared absorbent and ethanol.  

1.5 Scope of Study 

The preparation of amino-N-(3-(dimethylamino)propyl)acetamide was carried 

out through basic neutralization of glycine with aqueous DMAPA solution. The 

concentrations of amino-N-(3-(dimethylamino)propyl)acetamide prepared were within 

the range of 0.1 to 2.0 mol/L (M). The absorbents were characterized by using density 

meter, viscometer, refractometer, and tensiometer to measure the physical properties of 

the absorbent which will affect the CO2 solubility in the absorbent, particularly 

viscosity of the absorbent. The surface functional groups available in the absorbent 

were identified by using Fourier transformation infrared (FTIR) spectrometer, to 

indicate the neutralization reaction between glycine and DMAPA.  

The solubility of CO2 in the prepared absorbent was evaluated using a high 

pressure solubility cell, by bubbling CO2 gas into the absorbent. The CO2 loading 

capacity of the absorbent was calculated by using pressure differential technique. The 

solubility study was conducted at pressure ranging from 5 to 25 bar and temperature 

between 303.15 K to 323.15 K.  
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CO2 utilization study was carried out by using two-step CO2 capture and 

conversion method. After the CO2 absorption process, ethanol was added into the    

CO2-saturated amino-N-(3-(dimethylamino)propyl)acetamide absorbent. The solids 

produced from the reaction was characterized by using FTIR, and X-ray photoelectron 

spectroscopy (XPS) to determine the functional groups and chemical binding available 

in the absorbent.  

1.6 Thesis Organization 

This thesis is divided into five (5) chapters as outlined: 

Chapter 1 covers the background of study, problem statements, as well as objectives 

and scope of research. This introduction section is aimed to provide readers with general 

overview on the proposed research topic.   

Chapter 2 presents the literature reviews on the importance of CO2 mitigation and 

methods which can be adopted to reduce CO2 content in the atmosphere. Carbon capture 

and storage (CCS) as well as carbon capture and utilization (CCU) were also briefly 

outlined in this chapter. Methods for CO2 separation process were also highlighted. 

Moreover, the different types of solvent previously studied as potential absorbents for 

CO2 capture and subsequent utilization were also listed in the literature reviews. 

Finally, the mechanisms involved in CO2 capture and the reaction pathways for CO2 

utilization were also briefly discussed.  

Chapter 3 describes the experimental procedures used in this research which covers the 

absorbent preparation and characterization, CO2 solubility study, and CO2 utilization 

study.  

Chapter 4 reports the results obtained from the experimental work. The results were 

also compared with outcomes reported in previous literatures to validate the 

methodology used in this thesis study.  

Chapter 5 provides a general conclusion based on the experimental data collected as 

well as future work required for this research followed by a list of references cited in 

this thesis.  
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CHAPTER 2 
 
 

LITERATURE REVIEW 

2.1 Overview 

 High emissions of CO2 into the atmosphere is an environmental concern which 

needs to be addressed to reduce the impacts of global warming. The different sources 

of CO2 were identified in this chapter. Carbon capture is one of the methods which can 

be applied for CO2 mitigation process. CO2 capture technologies include absorption, 

adsorption, membrane technology, and cryogenic distillation. This chapter also 

highlights various types of CO2 utilization technology (CCU) and the opportunities as 

well as challenges in CO2 conversion process. The integration of CO2 capture with CO2 

utilization process and the use of ethanol as a reagent for CO2 was proposed as a method 

to eliminate the energy intensive CO2 desorption and to reduce energy requirement 

during CO2 utilization. Different types of absorbents previously used for CO2 capture 

and subsequent utilization were also discussed in this chapter.  The final section of this 

chapter describes the mechanisms for CO2 capture and utilization process.  

2.2 CO2 Mitigation to Reduce the Impacts of Global Warming on the 

Environment  

CO2 is one of the greenhouse gases present in the atmosphere which plays a 

significant role in heating up the Earth’s surface through the greenhouse effect. 

Excessive emission of CO2 into the atmosphere was identified as the main contributor 

of global warming. It was reported that the Earth’s temperature increased by an average 

of 1.7 °C per century over the last 45 years mainly contributed by emissions from 

human activities [25]. Apart from increased in atmospheric temperature, global 

warming also causes drastic  climate  changes  which  include   melting   of   snow   and 
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ice  glaciers,  droughts,  floods, and rising of the sea levels [26, 27]. Thus, there is a 

crucial need for CO2 mitigation to ensure the Earth’s sustainability for current and 

future generations.  

2.2.1 Sources of CO2 

Sources of CO2 are divided into two categories namely natural sources or 

anthropogenic sources [26-29] as indicated in Figure 2.1. The concentration of CO2 in 

the atmosphere is maintained by the natural carbon cycle such that CO2 emitted through 

respiration of living organisms, ocean release, and organic material decompositions are 

re-absorbed through natural mechanisms such as photosynthesis, forestation, and ocean 

uptake [27]. Apart from natural emissions, CO2 is also released from large point sources 

such as power plants and manufacturing facilities. The combustion of fossil fuels, iron 

and steel production, cement production, ammonia production, and hydrogen 

production contributed to the most significant increase in CO2 levels in the atmosphere.  

 
Figure 2.1: Sources of CO2 released into the atmosphere [26-29]. 
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As the anthropogenic CO2 gases continue to be emitted, the carbon cycle may 

not be able to cope with the excessive amount of CO2, thus results in accumulation of 

CO2 in the atmosphere. Statistic published by the United States Environmental 

Protection Agency [30] indicated that anthropogenic gases accelerated global warming 

by approximately 37% from the year 1990 to 2015, of which 30% was attributed by 

CO2 alone.  

2.2.2 CO2 mitigation from point sources 

In parallel with the efforts to reduce the impacts of global warming contributed 

by the combustion of fossil fuels and industrial activities, several strategies were 

adopted such as enhancing the energy generated from combustion of fossil fuels and 

introduction of low-carbon or carbon-free fuels [26, 27]. Another method which can be 

implemented for CO2 mitigation is by capturing CO2 from large point sources such as 

power plants and manufacturing facilities, followed by injection of the CO2 gas into 

underground reservoirs. This process is known as carbon capture and storage (CCS).  

2.2.2.1 Carbon Capture and Storage (CCS) Technology 

CCS is a highly proven technology based on its commercial application for 

natural gas sweetening process  [31, 32]. The earliest large scale CCS plant, Val Verde 

natural gas plants commenced operation in the year 1972 with CO2 capture capacity of 

1.3 million tonnes per annum [31]. Examples of large scale CO2 capture facilities from 

large point sources which are currently in operation include the Boundry Dam CCS 

facility in Canada, which captures CO2 from coal-fired power plant, the Abu Dhabi 

CCS facility in United Arab Emirates which captures CO2 from iron and steel 

production, and the Quest plant in Canada which captures CO2 from hydrogen 

production plant [33].  

CCS is divided into a few categories namely pre-combustion, post-combustion, 

and oxy-fuel combustion [34]. The pre-combustion technology involves 

decarbonization of fuel prior to the energy generation process [32]. Through 

gasification process, fuels are converted into syngas which primarily contained 

hydrogen (H2) and carbon monoxide (CO). The syngas is then converted into mixtures 
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of H2 and CO2 through water-gas shifting reaction, which increases the CO2 

concentration in gas stream. The pre-combustion CO2 capture technology which 

occurred at elevated pressure of approximately 2 to 14 bar  [35], which offers a number 

of benefits such as higher driving force during the separation process, lower energy 

requirement during compression process, as well as low emissions of sulphur and 

nitrogen oxides [32]. 

 Post-combustion process is another CCS technology which focused on 

capturing CO2 released after combustion of fuels. This process can be easily retrofitted 

to any existing power plants or industrial manufacturing plants to reduce downstream 

CO2 emissions [32], with minimal plant modification. However, the low concentration 

of flue gas in power plants (atmospheric pressure) limits the efficiency of CO2 

separation process. Nonetheless, this technology is widely applied to capture CO2 from 

industrial facilities such as ammonia, hydrogen, and methane production which release 

exhaust gas at higher pressure ranging from 5 to 27 bar [36].  

Apart from pre-combustion and post-combustion technology, oxy-fuel is also 

has potential to reduce CO2 emissions from large point sources. By reacting 

hydrocarbon fuels with pure oxygen, flue gas generated, mainly composed of CO2 can 

be directly send for sequestration. However, the main challenge of this technology is 

the high energy requirement for production of oxygen (O2).   

Among all the CCS technologies discussed, both pre-combustion and post-

combustion technology at elevated pressure of more than 2 bar is a promising option 

for capturing CO2 from large point sources due to higher driving force during the 

separation process. Hence, this research will focus on capturing CO2 at elevated 

pressure.  

2.2.2.2 Methods for CO2 capture 

Several methods for CO2 separation process were reported in the literatures 

namely absorption [6, 19, 37], adsorption [37-39], membrane [40, 41], and cryogenic 

distillation  [42-44].  Descriptions for each method are as presented in Table 2.1.  The 

advantages and disadvantages of different CO2 capture methods are also summarized 

in Table 2.2. Chemical-based absorption is the earliest existing technology and is the 
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most mature technology available up-to-date. Meanwhile, adsorption and cryogenic 

distillation technologies are still in development stage and it will take years before they 

can be fully commercialized for large scale application for CO2 capture. Membrane is 

another technology which is fully commercialized, but its application is limited by 

flowrate up to 700 million standard cubic feet per day (MMscfd) and high maintenance 

requirements.  

Table 2.1: Various methods for CO2 capture. 

Methods Descriptions References 
Absorption • Divided into two – chemical and physical 

absorption. 
• Separation process relies on the physical or 

chemical interactions between an absorbent and the 
feed gas.  

• Examples of chemical solvent: monoethanolamine 
(MEA), diethanolamine (DEA), diglycolamine 
(DGA), and methydiethanolamine (MDEA). 

• Examples of physical solvent: Flour Solvent TM, 
Selexol, Purisol, Rectisol, and Ifpexol.  
 

[6, 19, 37] 

Adsorption • Molecules adhere to onto the surface of solid 
materials based on strong affinity of CO2 towards 
certain functional groups.  

• Divided into two – chemical and physical 
adsorption. 

• Examples of adsorbents: amine-modified activated 
carbon, zeolites, metal-organic-framework (MOF), 
and silica.  
 

[37-39] 

Membrane • Membrane operates based on transportation of gas 
molecules across a thin layer film composed of 
organic or inorganic materials.  

• Membranes available include porous membrane 
transport process, solution-diffusion membrane, 
and ion transport membrane 
 

[40, 41] 

Cryogenic 
separation 

• Cryogenic refers to the extremely low temperature 
condition during the separation process. 

• Consist of three stages – compression, 
refrigeration, and cryogenic distillation.  

• The technology has been patented (Ryan/Homes 
process, Controlled FreezeZoneTM, and CryoCell)  
 

[42-44]. 
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Table 2.2: Advantages and disadvantages of various technologies available for CO2 
capture. 

Technologies Advantages Disadvantages References 
Absorption 
(chemical 
and physical) 

• Mature technology  
• High separation 

efficiency (80 -90 % 
separation 
efficiency).  

• High reactivity.   
• Commercially 

available solvent.  
 
 

• High solvent 
regeneration energy 
for chemical 
absorption - solvent is 
heated between 100 
to 120 °C).  

• High capital, 
operation, and 
maintenance cost.  

• Limited capacity (for 
MEA – 0.5 mol 
MEA/ mol CO2)  

• Bulky equipment  

[29, 32, 45-
47] 

Adsorption 
(chemical 
and physical) 

• Simple process and 
easy to handle.  

• Lower regeneration 
energy.  

• No liquid required – 
reduce risk of 
corrosion. 

• Limited flowrate.  
• Larger equipment 

size when CO2 
content is more than 
2%.  

[29, 32, 37, 
38] 

Membrane 
technology 

• Mature technology 
• Compact and 

modular design (low 
footprint).  

• Flexible process 
operation conditions 
(CO2 concentration 
from 3 to 90 %; Feed 
flow between 3 to 
700 MMscfd).   

• No chemicals 
required. 

• Low capital cost.  

• Limited gas 
processing volume 
(700 MMscfd).  

• High maintenance 
due to fouling. 

[29, 32, 41, 
42] 

 
 

Cryogenic 
distillation 

• Used in production of 
industrial gases. 

• Generate CO2 in 
liquid form. 

• No gas compression 
is required for CO2 
transportation. 

• No chemicals 
required. 

• Suitable for CO2 
concentration of more 
than 50%.  

• High energy 
requirement for 
refrigeration process. 

• Formation of CO2 
solids at low 
temperature. 

• Still in development 
stage.  

[4, 29, 37, 
42, 46] 
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In the near future, absorption is still regarded as the most efficient removal 

technology for CO2 capture plant based on its historic performances and high reliability. 

However, the there are several issues related to absorption technology which needs to 

be addressed to ensure that the technology remains competitive for CO2 capture 

process. This include the high energy requirement during the CO2 desorption process 

as well as the performance of the absorbent used for CO2 capture. Researchers have 

come out with various methods to enhance the operation of CO2 absorption system 

which include the elimination of the highly intensive solvent regeneration process. This 

can be done through integration of CO2 capture with CO2 utilization process which will 

be further discussed in Section 2.3.  

2.2.2.3 Absorption process as a method for CO2 mitigation from point sources 

The absorption process is a separation method based on physical or chemical 

interactions between CO2 molecules and liquid absorbent. The acidic nature of CO2 

allows the molecules to react chemically with amine absorbent and hence separate CO2 

molecules from feed gas. On top of that, organic solvent can also be used to capture 

CO2 through physical binding [6]. Figure 2.2 demonstrates the absorption technology 

used for CO2 removal process. The main processes involved in this technology are CO2 

absorption process and solvent regeneration process.  

 

Figure 2.2: Process flow diagram of the amine scrubbing process, adopted from 
Bottoms [5].  
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 Monoethanolamine (MEA) is the most well established solvent used for CO2 

capture [32]. MEA is widely utilized as an absorbent in gas sweetening process due to 

the properties of MEA such as low cost, availability, and high reactivity [32]. Apart 

from MEA, other amine solvents such as diethanolamine (DEA), diglycolamine 

(DGA), and methydiethanolamine (MDEA) also demonstrated significant 

performances as CO2 capture absorbents [45-47]. Amine solvent contains amino 

functional group (-NH) which is responsible for the reaction between the absorbent and 

CO2 molecules. This process may be reversed by heating action to regenerate the 

solvent for recycling. However, due to high thermal stability of the compound formed 

during the reaction, a large amount of heat is required for CO2 desorption process. 

Typically the temperature requirement for the solvent regeneration process is 

approximately 100 to 120 °C [1, 32]. This is main limitation of the absorption 

technology, which contributes to high operational cost for CO2 separation process. On 

top of that, limited CO2 loading capacity, high volatility, as well as high thermal and 

oxidation degradation of amine solutions also need to be addressed to ensure that the 

absorbent is economically competitive [48].  

Physical solvents such as Flour Solvent TM, Selexol, Purisol, Rectisol, and 

Ifpexol were commercially developed based on various organic chemicals [42] to 

reduce the high energy requirement during solvent regeneration process. Nonetheless, 

the disadvantage of this type of solvent is the low absorption capacity compared to 

amine solution. This leads to increase in the amount of solvent required to remove CO2 

molecules which contributes to larger size of absorption column and hence larger 

capital cost. Alternatively, mixed solvents which incorporate both the chemical and 

physical absorption mechanisms may be used to reduce regeneration energy while 

maintaining high absorption capacity.  

Numerous research were carried out to identify an alternative solvent with high 

absorption capacity, low solvent regeneration energy, high thermal and oxidation 

stability, and low vapor pressure [48-50]. Apart from that, integration of CO2 capture 

with CO2 utilization was identified as one of the strategies which can be adopted to 

reduce energy requirement or eliminate the highly intensive CO2 regeneration process.  
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2.2.2.4 CO2 compression and sequestration 

Apart from CO2 capture process, the CCS technology involves additional steps 

namely compression and transportation followed by sequestration. In order to transport 

CO2 into underground reservoirs, the CO2 separated from feed gas needs to be 

compressed to higher pressure within the range of 100 to 150 bar [1]. This contributes 

to higher energy requirement for both the compression and transportation process. 

Moreover, CCS technology is also associated with both high capital and operating cost 

mainly attributed to compression of CO2, construction of additional infrastructures and 

continuous monitoring of CO2 behavior. The high cost incurred by this technology can 

be compensated by the increase in production of crude oil and methane through the 

EOR and ECBM technology, respectively. Nonetheless, the abundant of CO2 available 

from the natural gas sweetening process coupled with shorter distances between CO2 

sources and geological reservoirs contributed to lower demand for CO2 captured from 

other sources such as power plants and industrial manufacturing facilities. For long term 

storage of CO2 in deep saline aquifers and ocean storage, no value-added products are 

generated and hence the CCS technology is not economically attractive. On the other 

hand, CCU was introduced to enhanced the economic competitiveness of the carbon 

capture technology.  

2.3 Carbon Capture and Utilization (CCU) Technology  

The term carbon capture and utilization (CCU) refers to the process of capturing 

CO2 from feed gas and reutilizing the gas either in its original form or by converting the 

CO2 gas into other commercial products. At present, CO2 is already widely used in 

various industries such as pharmaceutical [14], chemical manufacturing [14, 51], food 

and beverages [52, 53], textile [53], oil and gas [53] and electronic industries [53]. The 

most common applications of CO2 utilization include enhanced oil recovery (EOR) 

process, and production of chemicals such as inorganic carbonates [14, 51], urea, as 

well as salicylic acid [54]. The shift from CCS to CCU is seen as a better alternative to 

address the shortcomings of CCS technology particularly the high cost for CO2 

sequestration [55].  
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2.3.1 Types of CO2 utilization 

 CO2 utilization are categorized into two types namely direct and indirect 

utilization. Direct utilization refers to the process of utilizing CO2 directly in its original 

state, without any conversion process [15]. Meanwhile, indirect utilization refers to the 

process of converting CO2 molecules into other carbon-based products [15]. In the 

following subsection, the direct and indirect uses of CO2 are discussed.  

2.3.1.1 Direct utilization of CO2   

Enhanced oil recovery (EOR) and enhanced coal bed methane recovery 

(ECBM) technologies are examples of direct utilization such that CO2 is directly used 

to enhance the production of oil and methane, by injecting the gas into underground 

reservoirs. Established in 1986, EOR is one of the earliest form of direct CO2 utilization 

technology available in the market and widely used in oil-producing countries such as 

Norway, Canada and the USA [52, 56]. In contrast, the ECBM technology is still in 

development stage [57].  

Food and beverages industry is the second largest application of direct CO2 

utilization up-to-date [56]. High purity CO2 can be used as carbonating agent and as 

seal gas during production of wines. On the other hand, supercritical CO2 can be used 

as fluids for the removal of caffeine from coffee.  In the food industry, CO2 is mainly 

used in packaging and preservation processes to protect food against bacteria. On top 

of that, CO2 is also used to provide inert atmosphere during food manufacturing 

processes to prevent contamination.  

Another existing direct CO2 utilization is urea yield boosting [56]. The synthesis 

of urea from natural gas generate excess amount of ammonia, which decreases 

production output. On top of that, CO2 is also released as a by-product. Instead of 

venting the gas into the atmosphere, the CO2 can be captured and reacted with ammonia 

to boost urea production. This application has been successfully proven by a number of 

projects around the world [56].  

 



 

17 
 

Apart from the large-scale direct CO2 utilization, small scale uses of CO2 are 

also commercially available in the market, namely for physical solvent application. This 

include the use of CO2 for pulp and paper processing, production of dry ice, water 

treatment, steel manufacturing, dry cleaning solvent, welding, refrigerant gas, and as 

fire extinguishers [52, 55]. 

2.3.1.2 Indirect utilization of CO2   

Indirect utilization of CO2 involves chemical reactions between CO2 molecules 

and other materials for the formation of new products. CO2 is an attractive feedstock 

for many chemical and fuel conversions due to the abundance of CO2 supply, non-toxic, 

and non-flammable properties [58]. Moreover, CO2 contains the element carbon which 

is the building block of many essential chemicals such as urea, methanol, salicylic acid, 

formic acid, and cyclic carbonates [15].  

 Mineral carbonation is another type of indirect CO2 utilization, such that CO2 is 

reacted with metal oxides found in silicate minerals such as serpentine, olivine, and 

wollastonite [57] to produce metal carbonates. Mineral carbonation involves direct or 

indirect carbonation process. For direct carbonation process, CO2 is reacted with 

mineral silicates under pressurized condition. In contrast, indirect mineral carbonation 

occurs through a series of steps which include metal extraction using hydrochloric acid 

or molten salt, followed by hydration process to produce metal hydroxide, and finally 

the carbonation process which involves reacting CO2 gas with the metal hydroxide 

solution [57].  

 The cultivation of microalgae using CO2 molecules also creates an opportunity 

for CO2 utilization for production of biofuels. Microalgae can be used for both 

capturing CO2 from gas streams and converting CO2 into value-added biofuels [57]. 

Moreover, the nitrogen gas from flue gas can also be used as a nutrient source for the 

cultivation process [57]. The cultivation of microalgae can be performed in an open 

pond or by using a photo-bioreactor. The microalgae can then be converted into fuels 

by harvesting the biomass, followed by thermochemical or biochemical conversion 

process.  
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Table 2.3 shows the different types of chemicals which can be synthesis 

indirectly from CO2 molecules, along with their potential applications in the industries. 

The vast amount of products which can be produced from CO2 molecules created a 

higher demand for indirect CO2 utilization as compared to direct CO2 utilization [56]. 

Table 2.3: List of chemicals derived from CO2 and their uses. 

Chemicals derived 
from CO2 

Uses  References 

Urea Agricultural fertilizers 
Moisturizer in pharmaceutical industry 
 

[14] 

Formic acid Leather processing  
Textile industry 
Food preservation 
Hydrogen storage media (fuel) 
 

[59] 

Salicylic acid Pharmaceutical 
 

[54] 

Synthesis gas (CO 
and H2) 

Synthesis of hydrocarbon fuel 
Production of methanol 
Transportation fuel  
 

[14] 

Carbamates Drug design 
Medicinal chemistry 
Agrochemical  
 

[17, 60] 

Inorganic carbonates Building and cement manufacturing industry 
Paper making industry 
Pharmaceutical industry 
Raw materials for optical glasses 
 

[14, 51] 

Cyclic carbonates Manufacturing of polymers 
Used as solvents – (ethylene carbonate and 
propylene carbonates) 
 

[14] 

Polycarbonates Building material 
Building foam 
Insulating materials 
Plastics 
 

[14] 

Dimethyl carbonates Intermediates for organic synthesis 
Intermediates for polymer production 
 

[14] 
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2.3.2 Opportunities and challenges in CO2 utilization process 

 EOR, ECBM, utilization of CO2 in the production of food and beverages, as 

well as urea yield boosting are currently dominating the industry for direct CO2 

utilization, with well proven technologies currently available in the market. Despite its 

wide application in various industries, the volume of CO2 utilized through physical 

means are limited at industrial level [55]. For the EOR and ECBM technologies, 

geological constraints and the possibility of CO2 leakages are issues which need to be 

addressed when considering these technologies for CCU application. Moreover, due to 

stringent industry requirements, high purity CO2 is required for utilization of CO2 in 

the food and beverages industry. On the other hand, utilization of CO2 to boost the 

production urea, does not require external supply of CO2, as the gas is obtained on-site 

from the urea manufacturing plant. Although direct utilization of CO2 through physical 

means open up new pathways for a more sustainable production approach through 

recycling of captured CO2, the large-scale industrial application is currently limited by 

several factors which include geological constrains and CO2 supply.   

Existing large scale indirect CO2 utilization technologies include the production 

of urea and salicylic acid [54]. The annual production of urea and salicylic acid were 

reported to be approximately 150 million tons and 70 thousand tons respectively [15]. 

However, the conversion of these products are usually carried out at very high 

temperature and pressure [61]. This can be seen in the production of urea which 

involves the reaction between CO2 and ammonia at temperature ranging between 185 

to 190 °C and pressure of 190 to 200 atmosphere [15]. This is due to the high 

thermodynamic stability of CO2 molecules, being the most oxidized state of carbon. 

Moreover, the demand for urea and salicylic acid is not expected to grow in the next 

few years [54]. Nonetheless, other types of chemicals such organic and inorganic 

carbonates have huge potential for CCU application as reported by Brinckerhoff [56], 

based on its various industrial applications. However, despite the opportunities 

available for CO2 conversion, the large-scale commercialization of CCU technology is 

still subject to the high energy requirement during the conversion process due to the 

high thermodynamic barrier of CO2 molecules.  
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2.3.3 Integration of CO2 capture and utilization  

To maximize the potential application of CCU, researchers conducted studies 

to identify methods to overcome the high thermodynamic barrier of CO2. One of the 

methods which can be applied to reduce the activation energy during CO2 conversion 

process is by introducing catalyst during the reaction [6]. Examples of catalyst which 

can be used during CO2 conversion process include aluminum oxide, platinum, and 

zirconium dioxide [15]. The use of these catalyst is a promising method to reduce the 

activation energy during conversion process [15]. However, for commercialization of 

large-scale CO2 utilization plant the use of expensive metal catalyst is not economically 

attractive option.  

Another strategy which can be implemented to reduce the energy requirement 

during CO2 conversion process is by reacting CO2 in its ionic form such as carbamate 

or carbonate ions [61]. This is because carbamate and carbonate ions have higher energy 

levels compared to CO2 molecules, thus reduce the activation energy required during 

conversion process [61]. The ionic form of CO2 molecules can be obtained by reacting 

CO2 molecules directly with amine solutions. Depending on the CO2 capture 

mechanisms, CO2 capture and subsequent utilization leverage on the formation of 

carbamates, or carbonates in aqueous solutions [61] during the absorption process. In 

the conventional process, carbamates are formed when CO2 are absorbed by the amine 

solution. These carbamates are regenerated to allow the solvent to be recycled back into 

the system. However, due to the high thermal stability of carbamates, high energy is 

required to breakdown the carbamates into its original constituents [62]. Converting 

this carbamate ions into valuable products such as calcium and magnesium carbonates 

can be done at atmospheric temperature and pressure as reported by Galvez-Martos et 

al. [63] and Lee et al. [51]. Through CO2 capture and subsequent utilization, carbamate 

can be recovered without the use of harmful chemicals.  

Carbon capture and subsequent utilization is expected to benefit both the capture 

and utilization process. The utilization process allows the elimination of solvent 

regeneration and hence the high energy requirement during CO2 capture process. 

Furthermore, the utilization also eliminates the gas compression and transportation 

processes for direct and indirect CCU application.  
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2.3.4  The use of alcohol as reagent for CO2 utilization  

Carbonates and carbamates were identified as potential products of CO2 

utilization with various industrial applications as indicated in Table 2.3. Carbamates are 

primarily used for manufacturing of polymers and agrochemical products as well as 

drug designs [14, 17, 60]. Carbamates can be synthesized by using a few different routes 

as discussed by Ghosh and Brindisi [17]. However, the traditional methods for 

production of carbamates involve the use of highly toxic materials such as isocyanates, 

acyl azides, and nitroaromatic compounds [17]. Green synthesis of carbamates by using 

amines and alcohols were previously studied by Ion et al. [16], by reacting CO2 with 

amines and alcohol, in the presence of a metal catalyst such as tin (Sn) and nickel (Ni). 

This study indicated that alcohol is a potential reagent which can be used to transform 

CO2 into carbamates. 

Apart from production of carbamates, alcohol can also be utilized for the 

production of carbonates. Both organic and inorganic carbonates have high demand in 

the industry, particularly in the manufacturing and construction industries as previously 

listed in Table 2.3. Previous studies indicated that linear carbonates can also be derived 

by reacting alcohol with CO2 with the use of metal catalyst such as tin oxides and ceria-

zirconia oxides [64].  

The main drawback for the production of carbamates or carbonates using 

ethanol and CO2 is the use of expensive metal catalyst. To eliminate the use of catalyst 

during production of organic carbonates and carbamates, the integration of CO2 capture 

process with CO2 utilization process using alcohol as a reagent were studied by various 

authors [18, 65, 66]. Table 2.4 indicates some of the products which can be obtained 

from the CO2 conversion process. In general, alcohol such as methanol, ethanol, and    

1-propanol can be utilized along with CO2 to produced various precursors of carbamate 

or carbonate depending on the mechanism during CO2 capture and utilization process. 

For the purpose of simplification in this, ethanol was selected as a reagent for CO2 

utilization study. Moreover, alcohol has lower toxicity compared to methanol and also 

is easily available.  
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Table 2.4: Different type of carbamate or carbonate products obtained from CO2 utilization by using alcohol as a reagent. 

Absorbent 
(reacted with CO2) 

Medium/ reagent Rate of CO2 
absorption (%) 

Products Maximum yield 
of products (%) 

References 

NH3  Ethanol 90 Ammonium carbamate 
 

94a [66] 

 1-propanol 88 Ammonium carbamate 
 

98a [66] 

Triethylenetetramine (TETA) Ethanol 82 TETA-carbamate 
 

Not available [67] 

Piperazine Methanol Not available Piperazine dicarbamate 
 

Not available [68] 

Potassium prolinate Ethanol Not available Bicarbonate and proline 
carbamate 
 

Not available [18] 

2-amino-2-methyl-1-propanol  Ethylene glycol + ethanol/  
Ethylene glycol + 
1-propanol 
 

75 – 95 AMP-carbamate 
Alcohol carbonate 

Not available [69] 

Sodium hydroxide 
 

Ethanol Not available Sodium ethyl carbonate Not available [24] 

Sodium hydroxide 
 

Methanol 55 Sodium methyl carbonate 
 

45b [65] 

a with respect to absorbent 
b with respect to CO2 

    

 

 

22 

 



 

23 
 

2.4  Absorbents for CO2 Capture and Utilization 

 The absorbents which were studied for CO2 capture and utilization were listed 

discussed in this section. Among all the solvents reported, amine is the most widely 

studied absorbent. However, amine such as monoethanolamine (MEA) has limited 

absorption capacity. Literature reviews suggested that amine can be potentially replaced 

with diamines based on its high CO2 absorption capacity. Moreover, the neutralization 

of amine with amino acid salt also showed significant improvement in terms of CO2 

loading capacity of the absorbent.  

2.4.1 Types of absorbent for CO2 capture and utilization 

Various absorbents were reported for CO2 capture and subsequent utilization 

namely amines [62, 70, 71], strong bases [24, 65, 72], weak bases [73-75], ionic liquids 

[76, 77] and amino acid salts [18], as summarized in Table 2.5. The transformation 

process is divided into two types namely one-step transformation process or two-step 

process as indicated in Figures 2.3 and 2.4, respectively. The products obtained from 

the conversion process are dependent on the media used during CO2 capture as well as 

additional reagents added before or after the CO2 capture process as also indicated in       

Table 2.5.  

In the one-step process, organic medium such as methanol [65, 68], ethanol 

[78], and vegetable oils [79, 80] was mixed with absorbent and used as medium for CO2 

capture. The organic medium can be substituted with other non-aqueous solvents 

namely deep eutectic solvent [81] and ionic liquid [82]. During the CO2 absorption 

process, the absorbents are directly converted into solid carbamate salts in a non-

aqueous environment. Other than organic medium, inorganic carbonates can be 

instantaneously generated through a one-pot reaction when solvents such as calcium 

hydroxide [72] and aqueous ammonia [75] are used as absorbents for CO2 capture. 

Cyclic carbonates were also generated through addition of epoxides into ionic liquids 

using one-step reaction [76, 77]. Alternatively, two-step reaction can also generate 

carbamate salts and carbonated products through additions of reagents into CO2-

saturated absorbents.  
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Figure 2.3: One-step conversion process (in-situ utilization). 

 

 

Figure 2.4: Two-step conversion process. 
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Table 2.5:  List of absorbents, media, and additional reagents used for CO2 capture and subsequent utilization. 

Absorbents Media for 
CO2 
capture 

Additional 
reagents/ 
catalysts 

Products of 
CO2 
conversion 

Conditions during CO2 
conversion process 

Type of 
conversions 

CO2 loading 
capacity 

(mol CO2/ 
mol 

absorbent)  

Product 
yielda/ 

conversion 
rateb (%) 

Ref. 

P 
(atm) 

T 
(K) 

Time  
(hours) 

One-
step 

Two-
step 

Amine (Aqueous Phase) 
MEA  Water Aqueous 

calcium 
chloride, 
CaCl2 

Calcium 
carbonate 

1 303.15 24 ̸  Not available Not 
available 

[62] 

MEA/ DEA/ 
PZ/                               
AMP/                            
MDEA 

Brine 
(aqueous 
NaCl) 

Not 
applicable  

Sodium 
bicarbonate 

1 313.15 24 ̸  0.94 85a [83] 

MEA/ DEA/ 
MDEA 

Water Aqueous 
calcium 
oxide (CaO) 

Calcium 
carbonate 

1 303.15 24  ̸ 0.18 – 0.40 17 - 84 [84] 

EDA PEG Aqueous 
calcium 
hydroxide, 
Ca(OH)2 

Calcium 
carbonate 

1 363.15 2  ̸ Not available Not 
available 

[85] 
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Table 2.5:  List of absorbents, media, and additional reagents used for CO2 capture and subsequent utilization (continued) 

Absorbents Media for 
CO2 
capture 

Additional 
reagents/ 
catalysts 

Products of 
CO2 
conversion 

Conditions during CO2 
conversion process 

Type of 
conversions 

CO2 loading 
capacity 

(mol CO2/ 
mol 

absorbent)  

Product 
yielda/ 

conversion 
rateb (%) 

Ref. 

P 
(atm) 

T 
(K) 

Time  
(hours) 

One-
step 

Two-
step 

Amine (Aqueous Phase) - continued 
MEA/ DEA/ 
MDEA 

Water Aqueous 
barium  
chloride 

Barium 
carbonate 

1 303.15 2  ̸ Not available 60 – 90b [86] 

MEA/ DEA/ 
MDEA/ 
AMP 

Water Anhydrous 
calcium 
chloride, 
CaCl2 

Calcium 
carbonate 

1 313.15 6  ̸ 0.65 – 0.75 0.25 – 0.75 
g CaCO3/ 

CaCl 

[87] 

EDA 1,2-ethylene 
glycol (EG) 

Aqueous 
calcium 
hydroxide, 
Ca(OH)2 

Calcium 
carbonate 

1 373.15 1  ̸ 1.26 46a         [71] 

MEA/ DEA/ 
MDEA 

Water Ca2+ ions 
(industrial 
wastewater) 

Inorganic 
metal 
carbonate 

 

1 298.15 3  ̸ 0.30 – 0.40 30 - 40b [12] 
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Table 2.5:  List of absorbents, media, and additional reagents used for CO2 capture and subsequent utilization (continued) 

Absorbents Media for 
CO2 
capture 

Additional 
reagents/ 
catalysts 

Products of 
CO2 
conversion 

Conditions during CO2 
conversion process 

Type of 
conversions 

CO2 loading 
capacity 

(mol CO2/ 
mol 

absorbent)  

Product 
yielda/ 

conversion 
rateb (%) 

Ref. 

P 
(atm) 

T 
(K) 

Time  
(hours) 

One-
step 

Two-
step 

Amine (Aqueous Phase) 
MEA/ EDA/ 
DEA/ TEA/ 
MDEA/ 
AMP 

Water Metal ions 
(Ca2+/Sr2+/ 
Ba2+/ Mn2+/ 
Cd2+/ Pb2+) 

Metal 
carbonates 

1-6 
Mpa 

293.15 
-303.15 

0.5 - 3  ̸ Not available Not 
available 

[88] 

MEA Water Ca(OH)2 
(industrial 
wastewater) 

Calcium 
carbonate 

1 298.15 3  ̸ 0.45 – 0.50 Not 
available 

[70] 

Amine (Non-Aqueous Phase) 
DEA Ionic liquid Not 

applicable 
DEA 
carbamate 

1 298.15 6 ̸  0.50 Not 
available 

[82] 

AMP  EG + 
ethanol/ EG 
+ 1-
propanol 

Not 
applicable 

AMP-
carbamate, 
alcohol 
carbonates 

1 293.15 
-313.15 

24 ̸  Not available Not 
available 

[69] 
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Table 2.5:  List of absorbents, media, and additional reagents used for CO2 capture and subsequent utilization (continued) 

Absorbents Media for 
CO2 
capture 

Additional 
reagents/ 
catalysts 

Products of 
CO2 
conversion 

Conditions during CO2 
conversion process 

Type of 
conversions 

CO2 loading 
capacity 

(mol CO2/ 
mol 

absorbent)  

Product 
yielda/ 

conversion 
rateb (%) 

Ref. 

P 
(atm) 

T 
(K) 

Time  
(hours) 

One-
step 

Two-
step 

Amine (Non-Aqueous Phase) - continued 
MEA/ DEA/ 
AMP/ TEA)        
MAE 

Vegetable 
oil 

Not 
applicable 

Carbamates 1-8 
bar 

298.15 
-338.15 

0.5 - 
2.5 

̸  0.94 53a [80] 

AMP Deep 
eutectic 
solvent 

Not 
applicable 

AMP 
carbamate 

1-10 
bar 

298.15 
-338.15  

0.5 - 
2.5 

̸  0.48 82a [81] 

EDA/ 
DETA/ 
TETA 

Vegetable 
oil 

Not 
applicable 

Carbamates 1.5, 
10 

298.15 0.5 - 
1.5 

̸  1.40 72a [79] 

PZ Water/ 
ethanol 

Not 
applicable 

PZ 
carboxamide 

1 298.15 168 ̸  Not available Not 
available 

[78] 

PZ Methanol Not 
applicable 

PZ-
dicarbamate 

1 298.15 Few 
hours 

̸  Not available Not 
available 

[68] 
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Table 2.5:  List of absorbents, media, and additional reagents used for CO2 capture and subsequent utilization (continued) 

Absorbents Media for 
CO2 
capture 

Additional 
reagents/ 
catalysts 

Products of 
CO2 
conversion 

Conditions during CO2 
conversion process 

Type of 
conversions 

CO2 loading 
capacity 

(mol CO2/ 
mol 

absorbent)  

Product 
yielda/ 

conversion 
rateb (%) 

Ref. 

P 
(atm) 

T 
(K) 

Time  
(hours) 

One-
step 

Two-
step 

Metal Hydroxide Solution (Strong Base) 
Calcium 
hydroxide 

Water Not 
applicable 

Calcium 
Carbonate 

1 298.15 NM ̸  Not available Not 
available 

[72] 

Sodium 
hydroxide 
(NaOH) 

Ethanol Not 
applicable 

Sodium 
ethyl 
carbonate 

1 298.15 NM ̸  Not available 99a [24] 

Sodium 
hydroxide 
(NaOH) 

Methanol Not 
applicable 

Sodium 
methyl 
carbonate 

1 298.15 0.5 ̸  4.36 g 
CO2/500 mL 

methanol 

45b [65] 

Ionic Liquid 
Urea 
derivative-
based ionic 
liquid 

Not 
applicable 

Propylene 
oxide 

Propylene 
carbonate 

0.5 - 
2.5 

373.15 
- 

413.15 

0.5 – 3 ̸  1.40 – 2.20 99a [77] 

Bifunctionali
zed ionic 
liquid 

Water Styrene 
oxide 

Styrene 
carbonate 

1 373.15 12 ̸  1.00 – 1.20 20 – 94b [13] 

 

29 



 

30 
 

Table 2.5:  List of absorbents, media, and additional reagents used for CO2 capture and subsequent utilization (continued) 

Absorbents Media for 
CO2 
capture 

Additional 
reagents/ 
catalysts 

Products of 
CO2 
conversion 

Conditions during CO2 
conversion process 

Type of 
conversions 

CO2 loading 
capacity 

(mol CO2/ 
mol 

absorbent)  

Product 
yielda/ 

conversion 
rateb (%) 

Ref. 

P 
(atm) 

T 
(K) 

Time  
(hours) 

One-
step 

Two-
step 

Ionic liquid - continued 
Histidine 
derived ionic 
liquid 

Dimethyl 
carbonate  

Epoxide Cyclic 
carbonates 

1 353.15 5 ̸  0.84 55 - 98a [76] 

Weak Base 
Chilled 
ammonia 

Water Not 
applicable 

Ammonium 
carbonate 
and 
bicarbonate 

NA 275.15 
- 

283.15 

NM ̸  0.1 – 0.1 Not 
available 

[89] 

Aqueous 
ammonia  

Water Zinc sulfate 
heptahydrat
e/ zinc 
chloride/ 
barium 
chloride 
dehydrate 

Metal 
carbonates 

1 293 < 1 ̸  0.29 – 1.86 Not 
available 

[90] 
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Table 2.5:  List of absorbents, media, and additional reagents used for CO2 capture and subsequent utilization (continued) 

Absorbents Media for 
CO2 
capture 

Additional 
reagents/ 
catalysts 

Products of 
CO2 
conversion 

Conditions during CO2 
conversion process 

Type of 
conversions 

CO2 loading 
capacity 

(mol CO2/ 
mol 

absorbent)  

Product 
yielda/ 

conversion 
rateb (%) 

Ref. 

P 
(atm) 

T 
(K) 

Time  
(hours) 

One-
step 

Two-
step 

Amino Acid Salt 
Potassium 
Prolinate  

Ethanol Not 
applicable 

Bircarbonate 
and proline 
salts 

0.5 303.15 4 ̸  0.64 – 1.13 45 – 59b [18] 

Others 
Superbase 
(Diazabicycl
o 5.4.0-
undec-7-ene 
(DBU)) 

PEG N-
butylamine 

Dibutyl 
urea 

1 373.15 
-403.15 

12 - 24  ̸ 0.74 – 1.09 47 – 97a [91] 

Weak acid 
(Ammonium 
nitrate + 
calcium 
oxide) 

Water Not 
applicable 

Calcium 
carbonate 

1 298.15 24 ̸  0.58 99a [51] 
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2.4.1.1 Amine  

Amine such as monoethanolamine (MEA), diethanolamine (DEA), 

ethylenediamine (EDA), 2-amino-2-methyl-1-propanol (AMP), and piperazine (PZ) 

are the most widely studied types of absorbent for CO2 capture and direct conversion 

into value-added products (Table 2.5). The chemical reaction between amine and CO2 

is well understood based on its application for CO2 removal from natural gas. Moreover, 

amine has high reactivity and it can be easily obtained at reasonable cost [92]. In theory, 

the reactions between CO2 and aqueous amine solution are divided into three steps. The 

first step involved dissolution of CO2 molecules into liquid phase (aqueous CO2), 

followed by formation of bicarbonate, and finally formation of carbamate ions [46].  

The ionic CO2 molecules can be easily converted into metal carbonates though 

addition of metal ions in an aqueous medium. This process was demonstrated through 

studies performed by various researchers [12, 62, 70, 71, 83-88] which reported that 

metal carbonates such as calcium, barium, and magnesium carbonates can be produced 

at low pressure (mostly 1 atmosphere) and moderate temperature. However, the source 

of metal ions for the carbonation process is a crucial factor which determines the 

commercial viability of this technology. In a study reported by Park et al. [62] and Arti 

et al. [87], calcium ion was obtained by dissolving solid calcium chloride in water. 

Meanwhile, Kang et al. [84] used calcium oxide to provide metal ions for the 

conversion process. Similarly, other metal ions such as barium, and magnesium were 

also obtained from their respective metal oxides which were subsequently converted to 

metal hydroxides [71, 85, 88]. Production of these metal oxides usually involve energy 

intensive processes such as mining, conversion process, and transportation [93]. 

Alternatively, the metal oxides can be replaced with metal ion waste available from 

desalination process. The concept of utilizing industrial waste as a source of metal ions 

was investigated by Dindi et al. [83], Kang et al. [12], and Yoo et al. [70]. Reject brine 

from desalination process contained high amount of metal ions which can be recycled 

instead of being released back into the seawater. This provides a more sustainable 

approach for the carbonation process. However, the use of reject brine is subject to the 

concentration of chlorine ions in the waste solution, as high concentration of chlorine 

ions can cause equipment corrosion.  
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Dilution of concentrated amine by using water for the purpose of CO2 capture 

was identified as one of the main causes of pipeline corrosion. According to Hasib-ur-

Rahman et al. [82], aqueous amine solution which contained 15 weight percentage 

(w/w%) DEA showed high corrosion activity compared to DEA-ionic liquid emulsion 

which indicated almost negligible corrosion activity. This was due to the absence of 

water which prevented the formation of carbonic acid when water molecules reacted 

with CO2, thus reduced its interaction with iron surface [82]. Moreover, the non-

aqueous environment hindered the formation of bicarbonate and carbonate ions and 

hence allowed the formation of solid carbamates. The study conducted by                               

Hasib-ur-Rahman et al. [82] has prompted other authors to investigate the performances 

of CO2 capture and subsequent utilization by using amine-based solvent mixed with 

organic solutions such as methanol [68], ethanol [78], ethylene glycol, and ethanol 

mixtures [69], as well as vegetable oils [79, 80]. Deep eutectic solvent [81] was also 

studied as a potential non-aqueous medium for CO2 capture.  

Apart from generation of solid carbamates, the non-aqueous medium may 

contributed to higher CO2 loading capacity, depending on the nature of the solvent. 

Uma Maheswari and Palanivelu [81], reported that the CO2 loading capacity of amine 

mixed with deep eutectic solvent was higher compared to aqueous alkanoamine 

solutions. This may be due to the high polar nature of deep eutectic solvents which 

attracted more CO2 molecules to dissolve in the solution [81]. However, in the case of 

vegetable oil, the CO2 absorption capacity is subjected to the oil’s viscosity [79, 80]. In 

general, vegetable oils such as sunflower oil, gingelly oil, groundnut oil, and palm oil 

have high viscosities [94] which hindered the desorption of CO2 molecules within the 

solution. Nonetheless, amine solution especially AMP reported some improvement in 

CO2 loading capacity when mixed with coconut oil [80]. This is due to the lower 

viscosity of coconut oil [95] compared to other types of vegetable oil [94]. The effect 

of viscosity on the CO2 loading capacity of the absorbent was observed in the work 

reported by Shamiri et al. [96]. At lower concentrations of glycerol in the MEA-glycerol 

mixtures, higher CO2 loading capacities were recorded compared to 30 w/w% MEA 

[96]. However, as concentration of glycerol increased, the CO2 absorption capacities of 

MEA-glycerol mixtures were reported to be lower than the 30 w/w% MEA due to 

higher viscosity of the organic medium [96]. 
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The addition of non-aqueous medium into pure amine solution resulted in the 

formation of immiscible liquids which are easier for product separation [82].             

Two-phase flow system is a common phenomenon in many industrial processes 

particularly in the oil and gas industry. However, despite advances in technology, the 

mechanism of CO2 capture in a two-phase media is not fully understood. Moreover, 

characterization of two phase flow requires complex mathematical calculations [97] 

which are both time consuming and costly. Current study focuses on batch process     

[79, 80, 82] which is direct and straight forward. In contrast, the CO2 capture process 

in the industry involves continuous flow and transportation of immiscible liquid would 

be more complicated. Hence, despite the formation of value-added product, the use of 

non-aqueous solvent mix with amine solution may not be suitable for large scale 

commercial application. In contrary, the carbonation of CO2 using aqueous amine 

solution mixed with metal ions is regarded to bring a positive impact in the production 

of metal carbonates due to lower temperature and pressure requirement during 

conversion process.  

2.4.1.2 Metal hydroxide solution 

Metal hydroxide solution was also reported as a potential absorbent for CO2 

capture due to its high absorption capacity and fast capture rate [98]. Aqueous calcium 

hydroxide was previously studied for its application in CO2 capture and subsequent 

utilization [72]. In an aqueous environment, calcium hydroxide dissolved into calcium 

and hydroxide ions. Calcium carbonate was form instantaneously when calcium ions 

reacted with CO2 the in the aqueous phase. This process occurred at room temperature 

of 298.15 K and pressure of 1 atm [72]. Sodium hydroxide is another type of strong 

base which can be used for CO2 capture. In the presence of CO2, aqueous sodium 

hydroxide produced sodium carbonate (Na2CO3) which was subsequently converted to 

sodium bicarbonate (NaHCO3) [98]. In comparison with calcium hydroxide solution, 

the bicarbonate obtained from sodium hydroxide solution was not recovered as solid 

product due to its high solubility in water [98].  

Han and Wee [24, 65] proposed the use of alcohol such as ethanol [24] and 

methanol [65] as a medium for CO2 capture and utilization. This method was 

successfully proven to generate sodium ethyl carbonate and sodium methyl carbonate 
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when sodium hydroxide was dissolved in ethanol and methanol, respectively. The 

advantage of using alcohol is the presence of -OH functional group, which can 

participate in physical absorption of CO2 [65]. However, the use of organic medium is 

limited by its high viscosity, which hinders the CO2 absorption process. Another 

drawback of using sodium hydroxide dissolved in ethanol as an absorbent is the high 

concentration of sodium hydroxide is required for efficient removal of CO2 [65]. 

Similarly, the production of methyl carbonate only occurred at higher concentrations of 

sodium hydroxide solution [65]. Considering the fact that sodium hydroxide is 

produced from expensive metal ions, this process may not be economically viable. 

Industrial waste was utilized as source of metal ions as reported by Kang et al. [12]. 

However, in order to attain high purity product, the metal ions needs to be segregated 

since industrial waste usually contained more than one type of metal ions [12]. 

Moreover, metal hydroxide is also known to be highly corrosive [6] and hence it is an 

unattractive choice of absorbent for CO2 capture and subsequent utilization application.  

2.4.1.3 Ionic liquid 

Ionic liquid is an emerging solvent for CO2 capture which has gained significant 

attention mainly based on its properties such as low volatility, high thermal stability, 

and tunable structures [99]. On top of being an absorbent, ionic liquid can also be used 

as a catalyst for the production for cyclic carbonate. Cycloaddition of epoxides with 

CO2 using ionic liquids were investigated by a few authors such as  Kumar at al. [76], 

Luo et al. [13], and Lui et al. [77]. Experimental results revealed that epoxides were 

transformed into cyclic carbonates at atmospheric pressure. Moreover, the ionic liquid 

can be recycled up to six times with yield more than 95% was reported by Kumar et al. 

[76].  

Despite the positive aspects of ionic liquid as an absorbent for CO2 capture and 

utilization, the absorbent also has certain drawbacks. The synthesis of ionic liquid 

involves complex steps and occurred at high temperature, increasing its production cost 

[100]. On top of that, the synthesis of ionic liquid as well as CO2 conversion process 

occurred in the presence of organic media such as toluene, acetonitrile [77], and 

dimethlyformamide [76]. These solvents are highly flammable and volatile, thus release 

toxic fumes into the environment. Moreover, the production of ionic liquid generates 
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organic waste product. Hence, the development of ionic liquid for CO2 capture and 

utilization remains a challenge mainly due to high cost and the use of organic media 

during conversion process.  

2.4.1.4 Weak base  

The transformation of metal ions into metal carbonates through CO2 capture and 

utilization can also be performed by using weak base as an absorbent. This process was 

studied by Gaur et al. [90], in which metal carbonate was successfully synthesized when 

CO2 reacted with a mixture containing metal salt and aqueous ammonia. In comparison 

to strong base (metal hydroxide solution) which produced carbonated products at higher 

concentration of absorbent [24, 65], smaller concentration of weak base was sufficient 

to transform CO2 into solid products [90]. Weak base can also be replaced by alkaline 

industrial waste, which was also capable of generating metal carbonates when reacted 

with CO2 and metal salts [90]. Weak base can generate precipitates directly during the 

CO2 capture process without additional reagent or the use of organic medium. Solids 

crystals such as ammonium bicarbonate and ammonium carbonate can be easily 

generated using aqueous ammonia as an absorbent depending on pH of the solution 

[73]. However, the pH of the solution needs to be controlled to prevent the formation 

of by-products [73]. Nonetheless, the carbonated products have high commercial values 

as they are sources of fertilizers [101].  

The disadvantage of using aqueous ammonia as an absorbent for CO2 capture 

and utilization is the high volatility of the solvent which leads to vapor loss to the 

environment. This problem was resolved by decreasing temperature of the absorbent 

by using the chilled ammonia technology [89]. In this process, ammonia is cooled down 

to a temperature ranging between 2 to 10 °C before entering the absorption column, 

thus prevented the evaporation of ammonia [89]. Products which were recovered 

though chilled ammonia CO2 capture process include ammonium bicarbonate, 

ammonium carbonate, and ammonium carbamate [89]. However, the major drawback 

of chilled ammonia process is that the absorption and conversion process occurred at 

very low temperature, and hence more energy is required for refrigeration and cooling 

processes.  
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2.4.1.5 Amino acid salt 

Amino acid salt is another type of absorbent which was investigated for the 

purpose of CO2 capture [23, 102]. The properties of amino acid salt include low 

oxidation degradation, high reactivity, and low volatility which makes it a good 

absorbent for CO2 capture [23]. Similar to aqueous ammonia, pH of the absorbent plays 

an important role in the formation of precipitates during CO2 capture which leads to 

reduction in energy during solvent regeneration process through phase separation 

method [102]. However, these solids are regenerated to allow amino acid salt to be 

recycled back into the system. Currently, there are limited studies on CO2 capture and 

utilization using amino acid salt.  

In study conducted by Shen et al. [18], amino acid salt was mixed with ethanol 

which increased the rate of CO2 capture compared to aqueous amino acid salt. Although 

the study focused on phase change method through regeneration of precipitates, the 

formation of carbamate proline, bicarbonate, and ethyl carbonate salts proved that 

amino acid salt in organic medim has the capability to be used as an absorbent for CO2 

capture and subsequent utilization. However, the viscosity of the solution in ethanol 

was reported to be higher than in water [18] which limits the dissolution of CO2 in the 

absorbent. The CO2 loading capacity of the amino acid salt mixed with ethanol was 

reported to be lower when compared to aqueous amino acid salt solution [18].  

Nonetheless, as an environmentally friendly solvent, amino acid salt is an alternative 

absorbent which can potentially replace other types of absorbent for CO2 capture and 

utilization application.  

2.4.1.6 Other types of absorbent  

Superbase [91] and weak acid [51] were also reported as absorbents for CO2 

capture and utilization. Superbase namely diazabicyclo[5.4.0]-undec-7-ene (DBU) 

dissolved in PEG solution was reacted with CO2 to produce liquid amidinium carbonate 

salt, which was subsequently converted into urea in the presence of amine solution. The 

reaction occurred at 1 bar and temperature between 100 to 130 °C [91] compared to 

conventional process which occurred at temperature of 185 to 190 °C and pressure of 

180 to 200 atm [15]. Weak acid was also studied as a potential absorbent [51] such that 
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ammonium nitrate was used to extract metal ions from solid industrial waste. When 

ammonium nitrate was mixed with calcium oxide (solid industrial waste), ammonium 

hydroxide was produced which increased the capacity of the mixture to absorb CO2. 

Simultaneously, calcium ions from industrial waste were directly converted to metal 

carbonates [51].  

Superbase has high CO2 absorption capacity of approximately twice compared 

to the conventional MEA solution [91]. However, superbase has high basicity which 

can causes equipment and pipeline corrosions. Moreover, the use of organic medium 

increases the viscosity of the absorbent. Nonetheless, these studies [51, 91] suggested 

that apart from solvents listed in the previous categories, there are other types of 

absorbent which are also capable of capturing CO2 and directly converting CO2 into 

value-added products at moderate temperature and pressure conditions. This include 

the production of urea from superbase and amine mixture.   

2.4.1.7 Advantages and disadvantages of different types of absorbent  

The potential absorbents which can be used for CO2 capture and utilization are 

as illustrated in Figure 2.5. The solvents are divided into a few categories namely amine 

solution, metal hydroxide solution (strong base), weak base, ionic liquid, amino acid 

salt, and others. Direct carbonation of CO2 into metal carbonates can be achieved 

through addition of solution containing metal ions. In the absence of water molecules, 

solid carbamate can be generated. Certain absorbents such as calcium hydroxide and 

aqueous ammonia are able to transform CO2 directly into solid products without the use 

of organic media or additional reagents. Amino acid salt is an environmentally friendly 

absorbent which can also be utilized for CO2 capture and conversion process. 

Nonetheless, amino acid salt has limited absorption capacity. Moreover, cyclic 

carbonates can be generated without the use of expensive metal complexes by using 

ionic liquid as CO2 absorbent and catalyst for the conversion process. However, the 

cycloaddition process may require the presence of highly toxic organic medium such 

as toluene, acetonitrile, and dimethylformamide.  
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Figure 2.5: Type of absorbents, reaction media, and additional reagents used for CO2 capture and utilization. 
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The advantages and disadvantages of each types of absorbents are summarized 

in Table 2.6. Among all the absorbents, aqueous amine is the most mature absorbent 

available for CO2 capture. On top of that, the addition of metal ions generated inorganic 

carbonates at low temperature and pressure. The expensive cost of metal ions can be 

replaced with industrial waste which provides a more sustainable approach for the 

production of metal carbonates. However, the CO2 capture capacity of amine solvent is 

much lower compared to other types of absorbents such as ionic liquid, and superbase. 

The use of organic media such as methanol and ethanol are also attractive for the 

purpose of CO2 capture and subsequent utilization. The high viscosity of absorbent 

which may reduce the diffusivity of CO2 can be overcome by using the two-step 

conversion method instead of one-step utilization process.  

Table 2.6: Advantages and disadvantages of absorbents and reaction media/ reagents 
for CO2 capture and utilization. 

Type of 
absorbents 

Reaction 
Media/ 
reagents 

Advantages Disadvantages Ref. 

Amine 
solution 

Metal ion 
solutions/ 
industrial 
waste 

• Mature solvent 
• Generate metal 

carbonates at low 
temperature and 
atmospheric 
pressure 

• Energy intensive 
process for 
production of metal 
ions 

• High concentration 
of chlorine ions in 
industrial waste 

• Metal ions in 
industrial waste 
needs to be 
segregated to obtain 
high purity product 

[12, 
62, 
71, 
83-
88] 

Organic 
media 

• Produces organic 
carbamate 
without the use 
of toxic 
chemicals 

• Low capital cost 
(one-step 
reaction) 

• Organic media has 
high viscosity 

• Formation of two-
phase liquid  

[68, 
69, 
79-
81, 

103] 

Metal 
hydroxide 

Water  • Generate metal 
carbonate at low 
temperature and 
atmospheric 
pressure 

• Low capital cost 

• Energy intensive 
process for 
production of metal 
ions/ metal salts  

• Absorbent is highly 
corrosive 

[72] 
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Table 2.6: Advantages and disadvantages of absorbents and reaction media/ reagents 
for CO2 capture and utilization (continued). 

Type of 
absorbents 

Reaction 
Media/ 
reagents 

Advantages Disadvantages Ref. 

Metal 
hydroxide 

Organic 
media 

• Produces organic 
carbonate in 
liquid form 
(organic solvent)  

• Organic media has 
high viscosity 

• Absorbent is highly 
corrosive 

[24, 
65] 

Ionic liquid Organic 
solvent/ 
Epoxide 

• High CO2 
absorption 
capacity 

• Transform 
epoxides into 
cyclic carbonate 
at low 
temperature and 
atmospheric 
pressure 

 

• The use highly toxic 
organic media 
(toluene, DMF) 
during synthesis of 
ionic liquid and 
during conversion 
process 

• Ionic liquid is 
expensive  

• Ionic liquids have 
high viscosity 

[13, 
76, 
77] 

Weak base Water • No additional 
media/ reagent is 
required for 
conversion 
process  

• High energy 
requirement for 
cooling process 

[89] 

Metal salt • Generate metal 
carbonates at low 
temperature and 
atmospheric 
pressure 

• Energy intensive 
process for 
production of metal 
ions/ metal salts  

• Aqueous ammonia 
has high volatility 

[90] 

Amino acid 
salt 

Organic 
solvent 

• Environmentally 
friendly 
absorbent 

• Low absorption 
capacity 

[18] 

Others 
(Superbase 
and weak 
acid)  

PEG/ 
metal 
oxide  

• Superbase has 
high CO2 
absorption 
capacity 

 

• Organic media has 
high viscosity 

• High toxicity  
• Corrosive 

[51, 
91] 
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2.4.2 Amine as an absorbent for CO2 capture and utilization 

 As previously discussed in Section 2.4, amine is the most widely type of 

absorbent used for CO2 capture and utilization. However, one of the disadvantages of 

using amine such as monoethanolamine (MEA) is the limited CO2 absorption capacity 

of the absorbent. In this section, the different types of amines were reviewed to 

identified a potential amine which can be used as an absorbent for CO2 capture and 

utilization.  

2.4.2.1 CO2 solubility of monosubstituted amine 

This section will compare the performance of different types of monosubstituted 

amine commonly reported for CO2 absorption studies at various absorption conditions 

as shown in Table 2.7. The studies revealed that amine such as MEA, DEA, and TEA 

has limited absorption capacity (less than 1.0 mol CO2 / mol amine) due to limited 

amino functional group to interact with CO2 molecules.  

Table 2.7: CO2 solubilities of different types of monosubstituted amine at 313.15 K. 

Amine Concentration 
of amine (M) 

P 
(bar) 

CO2 solubility 
(mol CO2/ 
mol amine) 

Reference 

Monoethanolamine (MEA) 

 

2.0 1.01 0.676 [104] 
5.0 1.01 0.594 [105] 
5.0 1.15 0.469 [7] 
5.0 1.40 0.620 [105] 
5.0 5.52 0.676 [105] 
5.0 5.04 0.653 [106] 
5.0 8.83 0.728 [105] 
5.0 15.04 0.784 [106] 
5.0 25.12 0.842 [106] 

Diethanolamine (DEA) 

 

2.0 1.01 0.727 [104] 
2.9 1.15 0.502 [7] 
2.0 1.04 0.727 [107] 
4.0 1.02 0.639 [107] 
3.8 34.47 0.880 [108] 
3.8 41.37 1.04 [108] 

Triethanolamine (TEA) 

 

3.0 1.15 0.266 [7] 
3.0 1.06 0.425 [109] 
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Table 2.7: CO2 solubilities of different types of monosubstituted amine at 313.15 K    
(continued). 

Amine Concentration 
of amine (M) 

P 
(bar) 

CO2 solubility 
(mol CO2/ 
mol amine) 

Reference 

Methyldiethanolamine 
(MDEA) 

 
 

2.0 1.01 0.805 [104] 
2.8 2.00 0.930 [110] 
2.8 4.50 0.990 [110] 
2.8 8.00 1.060 [110] 
2.8 12.5 1.100 [110] 

2-amino-2methyl-1-
propanol (AMP) 
 

 

3.4 1.15 0.626 [7] 
2.0 1.59 0.991 [111] 
2.0 0.94 0.940 [112] 
3.0 0.94 0.875 [112] 
2.0 5.60 1.26 [113] 
3.0 5.30 1.06 [113] 

2.4.2.2 Diamine as potential absorbent for CO2 capture and utilization  

To further improve the absorption capacity of monosubstituted amines, the CO2 

solubilities of diamines were investigated as by various authors [43, 47]. The structures 

of several diamines are as shown in Figure 2.6. The enhancement in CO2 absorption 

performance was mainly based on the additional -NH functional group present in 

diamine solutions which provided further attachment sites for binding of CO2 

molecules [20].  

 

Figure 2.6: Structures of various diamines. 
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In Table 2.8, the CO2 solubilities of at different types of diamines at various 

conditions were reviewed. The results indicated diamine generally have higher CO2 

loading capacity in comparison to monosubstituted amine solution.  

Table 2.8: CO2 solubilities of different types of diamines at 313.15 K.  

Diamine Concentration of amine 
(M) 

P 
(bar) 

CO2 solubility 
(mol CO2/ mol 

amine) 

Reference 

MAPA 2.0 0.98 1.365 [114] 
2.0 1.67 1.455 [114] 
2.0 2.57 1.523 [114] 
2.0 3.29 1.584 [114] 

DMAPA 1.0 0.07 0.970 [115] 
1.5 1.24 1.300 [116] 
1.5 1.75 1.350 [116] 
1.5 2.25 1.400 [116] 
1.5 2.75 1.450 [116] 

EDA 1.0 0.07 0.980 [115] 
2.0 5.00 1.100 [117] 
2.0 2.00 1.080 [117] 
2.0 0.45 0.990 [117] 

DMEA 1.0 0.07 0.780 [115] 

Apart from the presence of additional -NH functional group, other factors which 

affects the CO2 loading capacity are diamine chain length and the presence of additional 

methyl group attached to the N atom. In a study performed by Zhang et al. [20], it was 

suggested that DMAPA exhibited the highest performance for CO2 capture based on 

high removal efficiency and high CO2 cyclic capacity (Figure 2.7). Despite that, the 

high volatility of DMAPA remains an obstacle for further development of this solvent. 

Diamines were reported to have significant vapor pressure which contributed to solvent 

loss and emissions of toxic fumes into the environment [118, 119].  Moreover, DMAPA 

is also associated with substantial regeneration energy, although it was reported to be 

lower than MEA [20].  
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Figure 2.7: Performance of various diamine solutions in comparison to MEA. Reprinted 

with permission from Rui Zhang et al. Energy & Fuels 2017 31 (10), 11099-
11108. Copyright (2019) American Chemical Society.  

2.4.2.3 Neutralization of amine with aqueous amino acid  

One of the methods which was studied to reduce the vapor pressure of alkaline 

solution is through neutralization with aqueous amino acid as reported by Yang et al. 

[120]. Amino acid salt was reported as potential absorbent for CO2 capture based on its 

low toxicity and non-volatile properties [121]. The simplest form of amino acid 

reported for CO2 capture is glycine [122-125], which has the following zwitterion 

structure in aqueous form as illustrated in Figure 2.8.  

 

Figure 2.8: Zwitterion structure of glycine in aqueous form.  
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In order to activate the amino group for CO2 absorption process, glycine needs 

to be activated by neutralizing the molecules with a basic solution such as potassium 

hydroxide (KOH). The CO2 solubility of potassium glycinate at various absorption 

conditions are tabulated in Table 2.9.  

Table 2.9: CO2 solubility of potassium glycinate at 0.9 M and 313.15 K [126]. 

P (bar) CO2 solubility 
 (mol CO2/ mol absorbent) 

1.68 0.629 
2.99 0.721 
5.85 0.796 
8.60 0.873 
15.11 0.988 
21.42 1.125 

Although potassium glycinate has high potential to be used as and absorbent for 

CO2 capture, it has limited absorption capacity. Apart from inorganic base, amino acid 

can also be neutralized with organic base namely amine to reduce the vapor pressure of 

amine solution. The neutralization of aqueous amino acid with MEA and MAPA were 

investigated by Aronu et al. [22], which revealed that amine amino acid salts have 

higher CO2 absorption capacity compared to amino acid neutralized with potassium 

hydroxide. 

Previous CO2 solubility studies by using amine and amino acid were reported 

in the literatures as shown in Table 2.10. These studies were limited to low pressure of 

CO2 at 10 kPa. Hence, this research focused on the use of DMAPA neutralized with 

amino acid at higher pressure (between 5 to 25 bar) for pre-combustion CO2 capture 

application. For amino acid, glycine was selected as a basis in this experiment, glycine-

MEA absorbent was reported to have highest amino acid carbamate formation 

compared to other amino acids [127]. This would benefit the CO2 utilization process 

due to formation of more carbamate ion.  

In parallel with the efforts to reduce the high regeneration energy during the 

CO2 desorption process, integration of CO2 capture and utilization using diamine and 

amino acid as an absorbent was proposed. Based on Section 2.3, ethanol was identified 

as a potential reagent which can transform CO2 into carbon-based products. However, 

due to high viscosity of the absorbent, the CO2 capture and utilization was performed 

by using a two-step utilization method.   
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Table 2.10: CO2 absorption studies for different types of amino acid and amine 
solutions at 313.15 K. 

Base 
solution 

Amino 
Acid 

CO2 Capture Conditions CO2 loading 
capacity (mol 

CO2/ mol 
absorbent) 

Ref 
Concentration 

(M) 
P 

(kPa) 

MEA Serine 0.5 10 0.700 [127] 
MEA Glycine 2.0 10 0.700 [127] 
MEA L-proline 1.0 10 0.890 [127] 
KOH Sarcosine 2.5 10  0.509 [22] 
MAPA Sarcosine  2.5 10  0.527 [22] 
MAPA Glycine 2.5 10 0.519 [22] 
MAPA Β-alanine 2.5 10 0.518 [22] 
MAPA Sarcosine 5.0  10 0.51 [128] 

2.5 Mechanism of Study for CO2 Capture and Utilization 

The mechanism of study describes the movements of electrons as well as the 

proton transfer during the formation of a new compound. In this section, the mechanism 

study is divided into two parts, namely the mechanisms for CO2 capture using amine 

solution (Section 2.5.1) and the mechanisms for CO2 utilization (Section 2.5.2).   

2.5.1 Mechanisms for CO2 capture for amine solution 

The interactions between CO2 and amines can be described by using a few 

different mechanisms such as the zwitterion [129], and carbamic acid mechanism [130], 

depending upon the types of amine used as absorbent. For primary and secondary 

amines, the CO2 absorption process is commonly explained through the zwitterion 

mechanism [79, 80]. Meanwhile, for tertiary amine, the absorption process was defined 

through the carbamic acid mechanism [79, 80].  

2.5.1.1 Mechanisms of CO2 capture for monoamine  

Based on the zwitterion mechanism [129], CO2 will interact nitrogen atom from 

the primary or secondary amino functional group to form an intermediate zwitterion 

structure as indicated in Scheme 2.1.  
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Scheme 2.1: The formation of zwitterion structure from primary or secondary amine 
(adopted from [80]). 

The zwitterion intermediate will then react with another base molecule (base catalyst) 

such as amine or water to form a carbamate ion as described by Scheme 2.2 and    

Scheme 2.3.  

 

Scheme 2.2: The formation of protonated amine and carbamate ion by reaction between 
zwitterion and amine (adopted from [80]). 

 

Scheme 2.3: The formation of protonated amine and hydronium ion by reaction 
between zwitterion and water (adopted from [80]). 

The mechanisms based on Schemes 2.2. and 2.3 suggested that the primary and 

secondary amino group will result in the formation of carbamate ion. However, for 

tertiary amino group, due to lack of proton, the formation of zwitterion not be feasible 

[80]. Instead, CO2 will react with water molecule to form carbamic acid which will 

interact with tertiary amine group to produce protonated tertiary amine along with 
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bicarbonate ion. The formation of carbamic acid and its reaction with tertiary amine are 

described by Scheme 2.4 and Scheme 2.5, respectively. The overall reactions between 

CO2 and tertiary amines are illustrated by Scheme 2.6.  

 

Scheme 2.4: Formation of carbamic acid from CO2 and water molecule (adopted from 
[80]). 

 

Scheme 2.5: Formation of protonated tertiary amine and bicarbonate ion  (adopted from 
[80]). 

 

Scheme 2.6: Overall reaction between CO2 and tertiary amine (adopted from [80]). 
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2.5.1.2 Mechanisms of CO2 capture for diamines 

The general mechanisms for CO2 capture using diamines briefly proposed by 

Zhang et al. [20] and  Ciftja et al. [127]. The mechanisms described suggested that in 

diamine solution, the primary or secondary amino group will be transformed into 

monocarbamate (Scheme 2.7), followed by a dicarbamate (Scheme 2.8).  

 

Scheme 2.7: The formation of monocarbamate from a diamine molecule (adopted from 
[20]). 

 

Scheme 2.8: Formation of dicarbamate from a diamine molecule (adopted from [20]). 

For a diamine molecule containing tertiary amino group, the formation of dicarbamate 

is inhibited due to lack of proton from the amino group. A mechanism of CO2 absorption 

using DMAPA which contains both primary and tertiary amino group was studied by 

[131].  The primary amino group will react with CO2 to form a DMAPA-zwitterion 

intermediate as illustrated in Figure 2.9.  
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Scheme 2.9: Formation of DMAPA-zwitterion from DMAPA and CO2 molecule 
(adopted from [131]). 

The DMAPA-zwitterion will undergo further deprotonation through reaction between 

primary or tertiary amino group of a neighboring DMAPA molecule to produce a 

protonated DMAPA carbamate as shown in Schemes 2.10 and 2.11. The 

monoprotonated DMAPA molecule will then react continuously with CO2 to generate 

protonated DMAPA carbamate as designated by Scheme 2.12. Finally, the mono 

DMAPA carbamate will also undergo protonation with water via its tertiary amino 

group to give protonated DMAPA carbamate.  

 

Scheme 2.10: Formation of DMAPA carbamate and monoprotonated DMAPA from 
primary amino group (adopted from [131]). 
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Scheme 2.11: Formation of DMAPA carbamate and monoprotonated DMAPA from 
tertiary amino group (adopted from [131]). 

 

 

Scheme 2.12: Reaction between monoprotonated DMAPA with CO2 to produce 
protonated DMAPA carbamate (adopted from [131]). 

2.5.2 Mechanisms for CO2 utilization  

The mechanisms for reaction between CO2, ethanol and amino acid salt was 

previously reported by Shen et al. [18]. The mechanisms suggested the formation of 

two main products namely prolinate carbamate and sodium ethyl carbonate as 

demonstrated by Schemes 2.13 and 2.14, respectively.  



 

53 
 

 

Scheme 2.13: Reaction between potassium prolinate and CO2 to produce potassium 
prolinate carbamate (adopted from [18]). 

 

Scheme 2.14: Formation of sodium ethyl carbonate through reactions between 
potassium prolinate, CO2 and water (adopted from [18]). 
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2.6 Summary 

 Based on the literature reviews, carbon capture and storage (CCS) from large 

point sources was identified as one of the strategies which can be implemented to 

reduce CO2 content in the atmosphere. CO2 capture at elevated pressure above 2 bar 

(for pre-combustion and post-combustion technology) offers a higher CO2 separation 

efficiency. Absorption process was identified as the most promising method for CO2 

capture based on its high efficiency, maturity, and reliability. Aqueous amine is the 

most common type of absorbent reported for CO2 absorption studies. However, the 

major drawback of using amine solution is the limited absorption capacity of the solvent 

(MEA) and the high regeneration energy during solvent regeneration process. Previous 

research indicated that the high energy requirement during solvent regeneration 

problem can be resolved by integrating the CO2 capture with CO2 utilization process. 

This offers two advantages, such that the elimination of the CO2 desorption process and 

reduction in energy requirement during CO2 conversion process. Diamine was namely 

3-dimethylamino-1-propanol (DMAPA) was identified as a promising absorbent for 

CO2 capture, based on its high CO2 absorption capacity. Moreover, the neutralization 

with diamine with amino acid was proposed to reduce the vapor pressure of DMAPA. 

The use of ethanol for CO2 utilization process was also proposed based previous 

research which suggested that reaction of CO2 with ethanol and amine solution will 

generate carbamate salt which is a useful product for agrochemical and medicinal 

chemistry industries.  
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CHAPTER 3 
 
 

METHODOLOGY 

3.1 Overview 

This chapter provides an overview of the research methodology used in this 

study. The flow of research methodology was divided into three main sections namely 

absorbent preparation and characterization, CO2 solubility measurement, and CO2 

utilization study. All the materials used in this research were listed in this chapter along 

with their purity and sources. The preparation and characterization of DMAPA 

neutralized with glycine as an absorbent for CO2 capture were also described in this 

chapter. Empirical correlations was used to analyze the relationship between the 

concentration and temperature of the absorbent with its physical properties. The CO2 

solubility measurement was conducted using solubility cell, such that the CO2 loading 

capacity was calculated by using the pressure differential method. Finally, the CO2 

utilization study was performed by using DMAPA neutralized with glycine as an 

absorbent for CO2 capture and the product obtained was characterized to identify the 

nature of the product.  

3.2 Research Flow 

Figure 3.1 illustrates the research flow for this study. The research activities 

were performed based on the three main objectives as listed in Section 1.4. The 

methodologies for each of the objectives are detailed out in Sections 3.4 to 3.6.  
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Figure 3.1:  Flow of research methodology used in this study. 

 

3.3 Materials and Chemicals 

Chemicals used for the preparation of absorbent include monoethanolamine 

(MEA), glycine (GLY), 3-dimethylaminopropylamine (DMAPA), and potassium 

hydroxide (KOH). Ethanol was added as a reagent during the CO2 conversion process. 

The properties of all the chemicals used in this experiment are presented in Table 3.1. 

Deionized water was produced through double distillation process (purity ≥ 99.99%), 

while the remaining materials were purchased from respective sources and used without 

further purification.  
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Table 3.1: The properties of chemicals used in this experiment. 

Chemicals/ 
materials 

Chemical formulas Molecular 
weights 
(g/mol) 

Purity 
(%) 

Sources 

MEA NH2CH2CH2OH 61.08 ≥ 99.00 Merck 
Glycine H2NCH2COOH 75.06 ≥ 99.00 Merck 
DMAPA H2NCH2CH2CH2N(CH3)2 102.18 ≥ 99.00 Sigma Aldrich 
KOH KOH 56.11 ≥ 85.00 Merck 
Ethanol C2H5OH 46.07 ≥ 99.50 R&M 

Chemicals 
CO2 gas CO2 44.01 ≥ 99.98 Linde 
Nitrogen gas N2 14.00 ≥ 99.99 Linde 

3.4 Preparation and Characterization of Absorbent 

The absorbent used in this thesis was prepared based on Section 3.4.1. The 

physical properties of the absorbent were measured by using density meter, tensiometer, 

refractometer, and viscometer. The absorbent was analyzed chemically by using 

Fourier transform infrared radiation (FTIR) to identify the surface functional groups 

present in the absorbent.  

3.4.1 Preparation of absorbent 

The absorbent was prepared through basic neutralization method by mixing 

equimolar amount of glycine with DMAPA in a 100 mL volumetric flask. The solids 

were then dissolved in deionized water. The absorbent was prepared for concentrations 

of 0.1, 0.5, 1.0, 1.5, and 2.0 mol/L (M). The concentration was selected up to 2.0 mol/L 

since the absorbent is fully saturated and glycine cannot be dissolved in the absorbent 

beyond 2.0 mol/L. To confirm the reliability of solubility cell in measuring the CO2 

absorption capacity of the absorbent, 5.0 M MEA (equivalent to 30 w/w% MEA) and 

1.0 M GLY-KOH (equivalent to 10 w/w% potassium glycinate) were also prepared. 

Both the concentrations were selected based on data readily available from the 

literature. Moreover, 5.0 M MEA is usually used in benchmark in many absorption 

studies [96, 126, 132]. Apart from readily available data, 1.0 M GLY-KOH was also 

selected as it has higher CO2 absorption capacity compared to 5.0 M MEA, at lower 

absorbent concentration. The solutions were then transferred into storage bottles for 

further characterization, CO2 solubility and utilization study.       
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3.4.2 Physical characterization 

The physical characterization of the absorbent was studied at temperature 

ranging from 298.15 to 323.15 K and pressure of 1 atm by using density meter, 

viscometer, refractometer, and tensiometer. At the start of each measurement, the 

equipment was washed with acetone to remove any impurities. Each of the equipment 

was calibrated using deionized water and the results were compared with previous 

experimental data available from the literature [133]. The average absolute deviation 

(AAD) was calculated based on Equation (3.1): 

% AAD = 
1
n
��

Xexp - Ylit

Ylit
�  ×100 (3.1) 

where Xexp is the experimental data and Ylit is the corresponding value reported by the 

literature [133]. To ensure consistency of experimental data, the measurements were 

repeated at least three times (with the exception of surface tension where measurements 

were repeated five times) and average values were reported in this work.    

3.4.2.1      Density 

     Density of the absorbent was measured using a digital U-tube density meter 

(Anton Paar, DMA-4500 M) with an accuracy of ±5 x 10-5 g/cm3. Compressed air was 

blown into the U-tube pipe to ensure the pipe is dried. Then, approximately 2 mL of the 

sample was injected into the U-tube pipe and the equipment was set to measure density 

at desired temperature as mentioned in Section 3.4.2. The uncertainty of temperature 

measured was reported to be within the range ±0.01 K.  

3.4.2.2      Surface tension 

     Surface tension was measured using an optical contact angle tensiometer 

(Dataphysics, OCA 15EC). The measurement was conducted based on the pendant drop 

method. The solution was injected drop wise inside a thermostat chamber by using a 

syringe attached to a needle (diameter = 0.525 mm). The chamber was connected to a 

water bath which controlled the temperature of the air inside the chamber to the desired 

value (with an accuracy of ± 0.2 K). A digital camera was used to capture images of the 
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droplet inside the chamber. The camera was set to record images of 20 frames per 

second with resolution of 725 x 480 pixels [134]. The equipment was connected to a 

computer software (SCA 20) which displayed the image of the droplet. Based on the 

image and density of the solution, the software calculated the surface tension using the 

Young-Laplace equation.  

3.4.2.3      Refractive index 

     Refractive index measures the speed of light travelled in a vacuum compared 

to the speed of light travelled in a selected medium [135]. The attenuation of light varies 

according to the amount of molecules in a medium. Hence, refractive index can be used 

indirectly to determine the concentration of the absorbent. The refractive index of the 

absorbent was measured using a refractometer (Anton Paar, Abbemat-WR) with an 

accuracy of ± 5 x 10-5 nD. The sample was transferred drop wise on to the prism surface 

using a 1 mL syringe. The uncertainty of temperature of the solution recorded was 

within the range of ± 0.01 K. 

3.4.2.4      Viscosity 

     An electromagnetic viscometer (Cambridge Viscometer, VISCOPro 2000) 

was used to determine viscosity of the absorbent with an accuracy of ±5 x 10-3 mPa.s. 

A piston was inserted into a measurement cell preloaded with approximately 5 mL of 

the absorbent. The piston size was selected based on the viscosity range of the solution. 

In this experiment, the piston selected corresponded to viscosity range of 0.2 to 2 mPa.s. 

After inserting the piston, the measurement chamber was tilted at an angle of 45°. The 

equipment was then set to measure viscosity of the absorbent at desired temperatures, 

with an accuracy of ±0.01 K.  

3.4.2.5      Correlation studies of physical properties of GLY-DMAPA  

     Empirical correlations were used to study the relationships between 

temperature and concentration of the absorbent with physical properties of the 

absorbent. Sheikh et al. [136] predicted the correlation of density, refractive index, and 
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surface tension based on a single parameter. The correlation is a relatively simple 

equation which correlates the temperature of the absorbent with its physical properties  

[136]. Nonetheless, the equation did not include the effect of concentration on the 

physical properties of the absorbent [136]. On the other hand, Graber et al. [137] 

derived an equation which included temperature and concentration of the solutions to 

predict selected physical properties of the solution. Graber’s equation was then 

modified [133, 138, 139] to provide a better representation of the physical properties of 

an aqueous solution as indicated in Equation (3.2).  

 Z=x × exp�A1+ A2T0.5+A3x0.5�+A4+A5T0.5+A6x0.5  (3.2) 

where Z is density, refractive index, or surface tension of the absorbent, x  is the 

concentration the absorbent, T is the temperature of the solution, and A1 to A6 are the 

fitting parameters which were determined using the least-square method. In this 

experiment, the parameters were directly obtained through the curve fitting function in 

MATLAB (version R2015b).  

     A different correlation (Equation (3.3)) was used to predict viscosity of the 

absorbent based on different temperature and concentration of the solution as described  

by Grag et al. [133].  

ɳ = exp �B0+ B1
T

+ B2

T2� (3.3) 

where ɳ represents viscosity of the absorbent and Bj are fitting coefficients which are 

dependent on the concentration of the absorbent (x). The values of Bj were determined 

based Equation (3.4):  

Bj= bj,0+bj,1(x)+bj,2(x2) (3.4) 

where bj,i are fitting parameters which were obtained by using curve the fitting function 

in Matlab (version R2015b). 

     The empirical correlations were validated through statistical analysis by 

calculating the standard deviations (σ) and least-square regression coefficient (R2) values 

for each physical property based on Equations (3.5) and (3.6), respectively. 
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σ =�
∑ (Zexp-Zcor)2  i=n

i=1
n-1

 (3.5) 

R2=
∑ (Zexp-Z�cor)

2 - i=n
i=1 ∑ (Zexp-Zcor)

2  i=n
i=1

∑ (Zexp-Z�cor)
2 i=n

i=1

 (3.6) 

where, Zexp is the density, refractive index, surface tension, and viscosity measured 

experimentally, Zcor is the physical properties predicted by the correlation and n is the 

number of experimental data.  

3.4.3 Fourier transform infrared (FTIR) spectroscopy 

     The surface functional groups present in the absorbent were identified by 

using Fourier transform infrared (FTIR) spectrometer (PerkinElmer) based on the 

attenuated total reflectance (ATR) method. A drop of the sample was loaded onto a 

glass plate and light was transmitted directly on the sample. The transmittances of each 

absorbent were recorded at wavenumber ranging between 4000 cm-1 to 400 cm-1.  

3.5 CO2 Solubility Measurement  

The CO2 solubility study was performed by reacting CO2 with the prepared 

absorbent in a solubility cell (DIXSON, SN-0115). The process flow diagram of the 

equipment is as shown in Figure 3.2. At the beginning of each experiment, the premixed 

tank and the solubility cells (cell 1 to 3) were purged with N2 to remove traces of 

contaminants. The solubility cells were subsequently vacuumed. Pressurized CO2 gas 

was then introduced into the 5000 mL premixed tank, while 5 mL absorbent was 

injected into the 50 mL solubility cell. An automated chiller (JUBALO) and solenoid 

valves (SMC, VXZ2230) were used to maintain a constant temperature in the premixed 

tank and solubility cells. The temperature and pressure inside the equilibrium cell were 

measured using a digital thermometer (YOKOGAWA-7653 with an accuracy of       

±0.2 K) and pressure indicator (Druck DPI 150 with an accuracy of ±0.01 bar), 

respectively. The sample was injected into each cell and stirred at 300 rotations per 

minute (rpm). Then the pressurized CO2 was transferred from the premixed tank into 
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the solubility cell and the temperature and pressure were monitored by using the Sim-

coder Basic Software. The CO2 absorption was assumed to reach equilibrium state 

when the total pressure in the equilibrium cell remained constant for more than 4 hours.  

 

Figure 3.2: Process flow diagram of solubility cell. 

The amount of CO2 gas transferred from the premixed tank into the solubility 

cell (nco2) was calculated based on the pressure change in the premixed tank, 

temperature, and size of the tank as per Equation (3.7): 

nco2= 
Vpt

RTpt
�

Pi

zi
-
Pf

zf
� (3.7) 

where Vpt is the volume of the premixed tank, R is the gas constant, Tpt is the 

temperature in the premixed tank, Pi and Pf are the pressure in the premixed tank at the 

initial and final stages, respectively, and z is the compressibility factor at respective 

pressure. The compressibility factor was calculated using the Peng Robinson Equation 

of State (sample calculation can be found in Appendix B). Once equilibrium was 

achieved in the cell, the equilibrium pressure was determined using Equation (3.8). 
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Pco2= PT - Pv (3.8) 

where Pco2 is the equilibrium pressure, PT is the total pressure in the solubility cell, and 

Pv is the vapor pressure of the solution recorded prior to CO2 being pumped into the 

cell. In this experiment, Pv was assumed to be negligible. The amount of CO2 in the gas 

phase (nco2(g)), was calculated based on Equation (3.9): 

nco2(g) =  
VgPco2

ZCO2RT
 (3.9) 

where Vg is the volume in the gas phase and  T is temperature in the solubility cell. The 

number of moles of CO2 absorbed by the liquid (nco2(l)) was determined by using 

Equation (3.10): 

nco2(l) = nco2- nco2(g) (3.10) 

The CO2 loading capacity (α) measured in mol CO2/ mol of absorbent was then 

calculated based on Equation (3.11): 

α =
nco2(l)

nliquid
 (3.11) 

where nliquid is the number of moles of the absorbent.   

The experimental conditions during the CO2 absorption process are listed in 

Table 3.2. Experiments A1 and A2 were performed to determine the reliability of the 

solubility cell in generating results for the CO2 solubility study based on the data readily 

available from the literature at selected pressure range. 5.0 M MEA (equivalent to          

30 w/w% MEA) was selected for comparison since it widely used as a benchmark in 

numerous CO2 absorption studies [106, 126, 132, 140]. Moreover, 1.0 M GLY-KOH 

has higher CO2 loading capacity compared to 5.0 M MEA, even with lower solute 

concentration.  For experiment A3, the concentration of absorbent was fixed at 1.0 M 

of the absorbent as a basis to study the effect of temperature in the equilibrium cell on 

the CO2 solubility of the absorbent, by varying the temperature in the equilibrium cell 

from 303.15 to 323.15 K. Meanwhile, experiment A4 was conducted to study the effect 

of concentration on the CO2 solubility of the absorbent. In all the experiments, the 

pressure was varied from 5 to 25 bar to investigate the relationship between pressure 

and CO2 loading capacity of the absorbent. 
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Table 3.2: Experimental conditions for CO2 capture process. 

No.  Absorbent  Concentration of  
absorbent (mol/L) 

Pressure  
(bar) 

Temperature 
(K) 

A1 MEA 5.0  5 313 
A2 GLY-KOH 1.0 5 313 
A3 GLY-DMAPA 1.0 5 303, 313, 303 
A4 GLY-DMAPA 0.1 5-25  303 
A5 GLY-DMAPA 0.5 5-25 303 
A6 GLY-DMAPA 1.0 5-25 303 
A7 GLY-DMAPA 1.5 5-25 303 
A8 GLY-DMAPA 2.0 5-25 303 

3.6  CO2 Utilization and Characterization Study  

The utilization study was carried after the CO2 absorption process, by adding 

ethanol into the CO2-saturated absorbent. The solids were then characterized by using 

FTIR and X-ray photoelectron spectroscopy (XPS).   

3.6.1 CO2 utilization study 

CO2 utilization was carried out by using the two-step method of CO2 capture 

and subsequent utilization (Figure 3.3). Similar method was described by                     

Yang et al. [91] such that CO2 was captured by using an absorbent (superbase mixed 

with polyethylene glycol) to activate the CO2 molecules. Once the absorption process 

was completed, fresh amine solution was added to produce urea. In this experiment,       

DMAPA neutralized with glycine was used as an absorbent during CO2 capture while 

organic medium (ethanol) was added after the CO2 capture process. CO2-saturated 

solution was obtained from the solubility study experiment in Section 3.5, followed by 

addition of 1mol of ethanol into the solution. The mixture was left idle for three hours 

to allow the formation of solids. Next, the sample was filtered in order to recover the 

solids formed during CO2 conversion. The product is then oven-dried at 343.15 K for 

approximately 6 hours. The solid particles were collected, weighted, and analyzed by 

using FTIR and XPS.  
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Figure 3.3: Two-step method for CO2 capture and utilization study.  

3.6.2 Characterization of solid particles 

 The solids product obtained were characterized by using two methods namely 

the FTIR spectroscopy and the X-ray photoelectron spectroscopy as described in the 

following subsections.  

3.6.2.1      Surface functional group analysis  

     The nature of the product was identified by observing the surface functional 

groups present in the solids by using FTIR spectroscopy. The methodology for FTIR 

analysis is similar to the method previously outlined in Section 3.4.3.  
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3.6.2.2      Surface chemical binding  

     X-ray photoelectron spectroscopy (XPS) was used to determine the surface 

chemical binding of the final product. The XPS spectra were recorded by using Thermo 

Scientific, K-alpha. The overall scan was performed based on pass energy of 200 eV 

for binding energy ranging from 0 to 1400 eV. The pass energy was then reduced to   

50 eV to obtain a high resolution for each surface element present in the solids. The 

surface element detected by the XPS include carbon (280 - 294 eV), nitrogen                 

(392 - 410 eV), and oxygen (525 - 545 eV).  

3.7 Summary 

The absorbent was prepared by using the basic neutralization method with 

concentrations ranging from 0.1, 0.5, 1.0, 1.5, and 2.0 mol/L (M). The absorbent was 

characterized physically by using density meter, refractometer, tensiometer, and 

viscometer. The surface functional groups found in the absorbent were analyzed by 

using the FTIR. 5.0 MEA and 1.0 M glycine neutralized with inorganic base (GLY-

KOH) was selected to calibrate the CO2 solubility cell based on publish data readily 

available from the literature. The CO2 solubility study was performed by bubbling CO2 

into the absorbent in a solubility cell and the absorption capacity was measured based 

on pressure differential in the cell. The CO2 utilization study was performed by adding 

1 mol of ethanol into the CO2 saturated absorbent. The solids obtained were 

characterized by using FTIR and XPS.   
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CHAPTER 4 
 
 

RESULTS AND DISCUSSION 

4.1 Overview 

Experimental results were collected based on three main objectives as identified 

in Section 1.3 and the outcomes of the study were discussed in this chapter. The results 

for physical properties were reported in this chapter, accompanied by correlation 

studies which indicated the effects of temperature and concentration of the absorbent 

on its density, refractive index, surface tension, and viscosity. The absorbent obtained 

through neutralization of DMAPA with glycine were identified based on the surface 

functional group found in the absorbent. The performance of the absorbent as a 

potential absorbent for CO2 capture was also discussed in this chapter. The CO2 loading 

capacity of absorbent was compared with other absorbents such as monoethanolamine 

(MEA) and glycine neutralized with potassium hydroxide (GLY-KOH). In the last 

section of this chapter, the results obtained for CO2 utilization study were highlighted. 

The CO2 utilization product was analyzed using FTIR and XPS which suggest the 

formation of carbamate compound during the utilization process.   

4.2 Characterization of Absorbent 

 The absorbent was characterized by physically by measuring the density, 

viscosity, surface tension, and refractive index as reported in Section 4.2.1, followed 

by correlation study based on the physical properties of the absorbent (Section 4.2.2).  

The absorbent was also analyzed chemically by using FTIR spectroscopy to identify 

the surface functional groups found in the absorbent. 
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4.2.1 Physical properties of the absorbent 

 The instruments used to measure the physical properties of the absorbent were 

calibrated by using deionized water. The results obtained were compared with previous 

literatures as shown in Appendix A. The densities, refractive indices, surface tensions, 

and viscosities of 0.1 M, 1.0 M, and 2.0 M of the absorbent, were measured from 298.15 

to 323.15 K. The relationships between temperature and concentration of the absorbent 

with its physical properties are presented graphically as shown in Figures 4.1 to 4.4, in 

which the solid lines represent the empirical correlations as outlined in Section 3.4.2.5.   

Based on Figures 4.1 to 4.4, the physical properties of the absorbent showed a 

decreasing trend as temperature of the absorbent increased. When the absorbent was 

heated, the kinetic energy within the molecules increased. As the molecules vibrated 

and moved further apart, density of the solution decreased. The increase in void spaces 

between the molecules as temperature increased reduced the interactions between light 

and absorbent molecules, thus the solution recorded a lower refractive index. Moreover, 

the increased in kinetic energy of the absorbent molecules resulted in weakening of 

hydrogen bonding, and thus causing more molecules to accumulate near the surface of 

the liquid which lead to lower surface tension of the solution [133, 141]. The viscosity 

of absorbent also decreased as the temperature increased, since the molecules are able 

to move freely against an opposing motion due to lack of interaction between molecules 

within the absorbent. The relationship between temperature and physical properties of 

absorbent was commonly observed in aqueous solution, namely amino acid salt 

solutions [133, 142], amine amino acid salt solution [143], and DMAPA solution [141], 

such that density, refractive index, surface tension, and viscosity decreased as 

temperature of the absorbent increased.  
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Figure 4.1: Densities of the absorbent at different temperatures. 

 

Figure 4.2: Refractive indices of the absorbent at different temperatures. 
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Figure 4.3: Surface tensions of absorbent at different temperatures. 

 

Figure 4.4: Viscosities of absorbent at different temperatures. 

 

40

45

50

55

60

65

70

75

295 300 305 310 315 320 325

Su
rf

ac
e 

te
ns

io
n,

 ɤ
(m

N
/m

)

Temperature, T (K)

0.1 M 1.0 M 2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

295 300 305 310 315 320 325

V
is

co
si

ty
, ɳ

 (m
Pa

.s)

Temperature, T (K)

0.1 M 1.0 M 2.0 M



 

71 
 

Figures 4.1 to 4.4 also indicated that the density, refractive index, and viscosity 

of the absorbent increased as the concentration of the absorbent increased. At a constant 

temperature, the effect of concentration of the absorbent on density and viscosity were 

consistent with the results reported by Aronu et al. [143] for aqueous amine amino acid 

salt solution. On top of that, the refractive index followed a similar trend to aqueous 

amino acid salt solution [133, 142]. The increased in number of molecules within the 

solution contributed to higher density. In addition, the presence of more absorbent 

molecules which interacted with light passing through the solution which caused the 

refractive index to increased. The large number of molecules also restricted the motion 

of molecules within the absorbent, resulting in higher viscosity of the absorbent. On the 

other hand, the surface tension exhibited an opposite trend such that, the surface tension 

decreased as the concentration of the absorbent increased. According to a study 

conducted by Blanco et al. [141], aqueous DMAPA also reported similar behavior such 

that DMAPA molecules accumulated at the surface of the gas-liquid interface as the 

concentration of the absorbent increased, thus reducing the surface tension of the 

absorbent [141]. This could be due to lack of hydrogen bonding effects within the 

solution, which could be due to packing effect [141].    

4.2.2. Correlation studies for physical properties of the absorbent 

Data obtained from the physical studies were represented by using empirical 

correlations based on temperature and concentration of the absorbent. The density, 

refractive index, and surface tension of the absorbent were fitted based on             

Equation (3.2). Meanwhile, the viscosity of the absorbent was predicted based on 

Equations (3.3) and (3.4). Studies reported by previous authors [133, 138, 139] 

suggested that the empirical correlations provided good representations of the physical 

properties of an aqueous system. The empirical coefficients, A1 to A6 (Equation (3.2)) 

for the selected physical properties of absorbent are tabulated in Table 4.1. The empirical 

correlation parameters for viscosity of the absorbent were given in Table 4.2.  
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Table 4.1: Ai values based on Equation (3.2) for density, refractive index, and surface 
tension of the absorbent.  

i Ai 

Density, ρ  
(g/cm3) 

Refractive index, 
RI (nD) 

Surface tension, γ 
(mN/m) 

1 -72.860 -4.708 2.834 
2 0.090 -0.035 0.059 
3 46.540 0.790 -0.869 
4 1.269 1.417 233.600 
5 -0.016 -0.005 -9.366 
6 0.028 0.023 -34.590 

Table 4.2: Fitting parameters based on Equations (3.3) and (3.4) to predict viscosity of 
the absorbent.  

j Parameters 
bj,0 bj,1 bj,2 

1 -21.27 -1.15 -1.56 
2 10750.00 1494.00 722.40 
3 -1.31 x 106 -2.61 x 105 -8.96 x 104 

The standard deviations (σ) and regression coefficient (R2) values for the 

physical properties of the absorbent solutions were presented in Table 4.3. The small 

standard deviations recorded indicated that the experimental data were in good 

agreement with the correlations. Moreover, the regression coefficient (R2) values were 

close to 1, which also suggested that the experimental data fitted well within the 

empirical correlations. 

Table 4.3: Standard deviations (σ) and regression coefficients (R2) of the physical 
properties of the absorbent.  

Physical properties Regression 
coefficients (R2) 

Standard deviations 
(σ) 

Density, ρ (g/cm3) 0.9984 8.66 x 10-4 
Refractive Index, RI (nD) 0.9999 9.27 x 10-4 
Surface tension, γ (mN/m) 0.9960 0.39 
Viscosity, ɳ (mPa.s) 0.9993 0.03 

The data obtained can be further analyzed by comparing the experimental data 

with the results predicted by the empirical correlations as illustrated in                         

Figures 4.5 to 4.8. The plots indicated that the deviations between experimental and 

predicted values were very small which confirmed that the data were well represented 

by the empirical correlations for density, surface tension, refractive index, and 

viscosity.   
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Figure 4.5: Comparison between experimental and predicted density of the absorbent.

 

Figure 4.6: Comparison between experimental and predicted refractive index (RI) of 
the absorbent.  
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Figure 4.7: Comparison between experimental and predicted surface tension of the 
absorbent.  

 

Figure 4.8: Comparison between experimental and predicted viscosity of the 
absorbent.  
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4.2.3 Surface functional groups of the absorbent 

The possible interaction between GLY and DMAPA molecules is given in 

Figure 4.9. The proposed structure was based on the reaction between -OH functional 

group from glycine molecule with primary amine of the DMAPA molecule. Several 

studies [144, 145] also suggested similar behavior such that the reaction between 

carboxylic acid and secondary amine was more dominant compared to tertiary amine, 

since the former is more nucleophilic compared to the latter. Moreover, the hindrance 

effect of the two methyl groups attached to nitrogen atom may prevented the reaction 

between the tertiary amine of DMAPA molecules with larger molecules.  

 
Figure 4.9:  The proposed interaction between glycine (GLY) and DMAPA molecules. 

 The FTIR spectra of GLY, DMAPA, and the absorbent are presented as shown 

in Figure 4.10. The disintegration of some characteristic peaks followed by formation 

of new peaks in the FTIR spectra suggested possible chemical interactions between 

GLY and DMAPA molecules. The surface functional groups present in the aqueous 

glycine, aqueous DMAPA, and the absorbent were identified based on the respective 

wavenumbers as indicated in Table 4.4.  
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Figure 4.10: The FTIR spectra of (a) aqueous glycine (GLY), DMAPA, and the 
absorbent, amino-N-(3-(dimethylamino)propyl)acetamide and (b) close-
up spectra between 2000 to 600 cm-1.  
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Table 4.4: Surface functional groups and vibration modes for each peak detected in 
the FTIR spectra of aqueous GLY, DMAPA, and the absorbent. 

Wavenumbers, v (cm-1) Surface 
functional 

groups 

Vibration  
modes GLY DMAPA Absorbent 

3270 3270 3314 NH2 /OH Stretching 
2100 2100 2100 C-N Stretching 
1631 1635 1618 NH2 Scissors 
1631 - 1618 C=O Asymmetric 

stretching 
- - 1565 N-H In-plane bending 

1527 - - CH2 (besides 
OH) 

In-plane bending 

- 1469 1473 C-CH2 Scissors 
1433 - - OH In-plane bending 
1410 - 1400 C=O Symmetric 

stretching 
- 1386 - C-N Stretching 

1329 - 1317 C-O Stretching 
1123 1105 1105 C-N-C Stretching 

- 750-860 600-750 N-H Out-of-plane 
bending 

669 - - O-H Out-of-plane 
bending 

The chemical interactions between GLY and DMAPA were suggested based on 

the changes in several characteristic peaks at wavenumbers ranging from 1800 to      

1000 cm-1. The formation of a new peak at wavenumber 1565 cm-1 was detected in the 

absorbent corresponded to the N-H in-plane bending from a secondary amide functional 

group [146]. This indicated the formation of an amide linkage (-H-N-C=O), when GLY 

reacted with DMAPA. The formation of amide linkage was supported by the change in 

the wavelength range for N-H out of plane bending peak from 750 - 860 cm-1 (primary 

amine from DMAPA molecules) to 600 - 750 cm-1  (secondary amide) [146]. The peak 

observed in GLY spectrum at wavenumber 1527 cm-1 represented CH2 bending besides 

an OH functional group [147]. The disintegration of the peak 1527 cm-1 indicated 

possible reaction between the OH functional group with the amino functional group 

from DMAPA molecules. This was supported by the disappearance of OH functional 

group in GLY molecules detected at wavenumber 1433 cm-1. Another change in 

characteristic peak was observed at 1386 cm-1  whereby the intensity of the C-N 
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stretching peak found in the DMAPA molecules were reduced, which could be due to 

change in the C-N environment of the DMAPA molecules, when the N-H besides the 

C-N functional group reacted with GLY molecules. The FTIR spectra also suggested 

the reaction between -OH (from glycine) and N-(CH3)2 from DMAPA molecule was 

insignificant as no peak was observed at approximately 1505 cm-1. According to Smith 

[146], a medium intensity peak at 1505 cm-1 was usually detected in tertiary amide due 

to C-N-(CH3)2 stretching. This showed lack of interaction between -OH and N-(CH3)2 

from glycine and DMAPA, which could be due to high reactivity of secondary amino 

group compared to primary amino group  [144, 145]. In general, the reaction between 

GLY and DMAPA leads to the formation of amino-N-(3-(dimethylamino) 

propyl)acetamide as shown in Figure 4.9.  

4.3 CO2 Solubility Study 

The CO2 solubility study is divided into three sections which covers the 

experimental data for CO2 solubility study, comparison of the CO2 solubilities with 

other absorbents, and also the possible interactions between CO2 and the amino-N-(3-

(dimethylamino)propyl)acetamide absorbent.  

4.3.1 Experimental data for CO2 solubility study 

 The reliability of the high pressure solubility cell in generating experimental 

results for the CO2 solubility study was evaluated as per Appendix C, by comparing the 

experimental results of CO2 solubility of 5.0 M MEA and 1.0 M GLY-KOH with 

previous data available from the literatures [105, 132, 148]. The small standard 

deviations recorded indicated high consistency of the CO2 loading capacity results 

obtained by using the solubility cell.  

Figure 4.11 indicate the CO2 loading capacity (α) of 1.0 M amino-N-(3-

(dimethylamino)propyl)acetamide measured at different temperatures. It was found 

that increasing the temperature of the absorbent from 303.15 K to 323.15 K resulted in 

decreased in CO2 loading capacity of the absorbent. This trend was observed mainly 

because CO2 absorption is an exothermic process which released heat when CO2 

interacted with the absorbent molecules and hence dissolved in the absorbent. When 
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external heat is added into the system, it will cause the equilibrium reaction to be 

revisable, thus reducing the CO2 solubility in the absorbent [96]. In addition, the 

influence of pressure on the CO2 loading capacity can also be seen from Figure 4.11, 

such that the latter increased as the former increased. The trend observed is based on 

the increase in the amount of CO2 in the gas phase as the pressure increased. Thus, more 

CO2 molecules are able to react with the absorbent. The behaviors were commonly 

observed for other absorbents such as MEA [105, 132, 148] and GLY-KOH [126].  

 
Figure 4.11: CO2 loading capacities of 1.0 M amino-N-(3-(dimethylamino) 

propyl)acetamide at different temperatures. 
 

Based on the high CO2 loading capacity obtained at the temperature of        

303.15 K, the effect of concentrations of absorbent on CO2 solubility was studied at 

this temperature by varying the concentrations of the absorbent from 0.1 M to 2.0 M. 

The CO2 loading capacity of the amino-N-(3-(dimethylamino)propyl)acetamide 

absorbent measured at different pressure are presented in Figure 4.12. It was observed 

that, the CO2 solubility decreased as the concentration of the absorbent increased. This 

was in line with the presence of additional molecules within the absorbent as the 
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the diffusion of CO2 molecules into the solution. The influence of concentration of the 

absorbent on the CO2 loading capacity were consistent with the findings reported by 

other authors [126, 132, 148].   

 

 

Figure 4.12: CO2 loading capacity of different concentrations of the absorbent 
(Temperature: 303.15 K).  

Despite the fact that 0.1 M amino-N-(3-(dimethylamino)propyl)acetamide 

exhibited the highest CO2 loading capacity, theoretically the net CO2 absorbed by the 

solution was the lowest due to low amount of molecules present in the solution which 

participated in the CO2 absorption process. This is can be seen from                               

Figure 4.13 (Detailed calculations on the total mole of CO2 absorbed by the absorbent 

can be found in Appendix E), such that the net CO2 absorbed by amino-N-(3-

(dimethylamino)propyl)acetamide solution showed an opposite trend compared to the 

CO2 loading capacity of the absorbent. The same observation was reported by Harris et 

al. [148] for 0.1 M sodium glycinate. The authors indicated that the total amount of CO2 

absorbed by the solution at fixed volume increased when concentration increased [148].  
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Figure 4.13: Net CO2 absorbed by the absorbent (Temperature: 303.15 K). 

4.3.2 Comparison of CO2 solubilities of the absorbent with other absorbents 

 The CO2 loading capacity of the absorbent was compared with 30 w/w % MEA 

(5.0 M MEA), which is the conventional absorbent used as bench mark in various CO2 

absorption studies [19, 126, 132]. Based on Figure 4.14, it was deduced that the CO2 

solubility of amino-N-(3-(dimethylamino)propyl)acetamide is generally higher than 

then conventional MEA absorbent. It is also observed that smaller concentration of 

amino-N-(3-(dimethylamino)propyl)acetamide contributed to higher CO2 loading 

capacity compared to 5.0 M MEA. This results suggested amino-N-(3-

(dimethylamino)propyl)acetamide can be used as a potential absorbent for CO2 capture 

since smaller amount of absorbent is required to achieve high absorption capacity.   

Amino acid neutralized with inorganic base (GLY-KOH) was reported as a 

potential absorbent for CO2 capture [122, 126]. Since the absorbent amino-N-(3-
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compared with GLY-KOH [126] to study the performance of the absorbent in 

comparison to amino acid neutralized with inorganic base. Figure 4.15 indicated that 

amine neutralized with organic base has higher CO2 loading capacity compared to 

amino acid neutralized with inorganic base. The neutralization of amino acid with 

organic base resulted in the formation of amide linkage which provides additional sites 

for CO2 attachments along with amino group from the amino group from the glycine 

molecules as shown in Figure 4.9. In comparison, amino acid neutralized with inorganic 

base only has one active site available from amino group of the glycine molecules. This 

result is in agreement with the work reported by Aronu et al.  [22], such that amine 

amino acid salt absorbed larger amount of CO2 in contrast to its KOH counter parts.  

 

Figure 4.14: CO2 loading capacity of amino-N-(3-(dimethylamino)propyl)acetamide  
absorbent in comparison with 30 w/w % MEA measured at 303.15 K.  
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Figure 4.15: The CO2 loading capacity of 0.1 and 1.0 M amino-N-(3-(dimethylamino) 
propyl)acetamide measured at 303.15 K, in comparison with GLY-KOH.  

4.3.3 Interactions between CO2 and the absorbent 

The chemical interactions between the absorbent, amino-N-(3-(dimethylamino) 

propyl)acetamide and CO2 were analyzed by studying the FTIR spectra of the absorbent 

before and after CO2 capture process as illustrated in Figure 4.16. The characteristic 

peaks detected in the FTIR spectra before and after the absorption process are listed in 

Table 4.5. Based on the structure of amino-N-(3-(dimethylamino)propyl)acetamide 

(Figure 4.9), CO2 molecules is expected to react with amide linkage (HN-C=O) to 

produce imide, respectively. The interaction between CO2 molecules and the amide 

linkage can be justified based on the disintegration of broad -NH wagging peak at 

wavenumber between 600 – 750 cm-1 [146], as observed from Figure 4.15(b). 

Moreover, the dissolution of amide bond was also indicated by degeneration of N-H 

peak at 1565 cm-1  [146]. The presence of imide functional groups can be detected at 

wavelengths 1505 cm-1 and 1137 cm-1, which corresponded to N-H in-plane bending 

and C-N stretching, respectively. 
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Figure 4.16: FTIR spectra of (a) the absorbent before and after the absorption process 
(b) close-up spectra between 1750 to 600 cm-1.   
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Table 4.5: The characteristics peaks of the absorbent before and after CO2 absorption 
process. 

Wavenumbers (cm-1) Assignments  Remarks 
Before CO2  
absorption 

After CO2 
absorption 

3314 3314 O-H stretch -OH molecules from water 
molecules  
 

2825-2801; 
2775-2765 

2825-2801; 
2775-2765 

N-(CH3) 
symmetric C-H 
stretch/ N-H 
 

Difficult to identify the exact 
functional groups  
due to overlapping of functional 
groups. The peaks smoothen and 
the intensity decreased after the 
CO2 absorption process.  
 

2100 2100 C-N stretch No changes observed at this 
wavelength 
 

1618 1631 C=O 
asymmetric 
stretch 

COO- functional group from 
amide bond and possible 
attachments of CO2 
 

1565 - N-H in-plane 
bend 

N-H bending from CHNO 
functional group of secondary 
amide 
 

1473 - C-CH2 scissors This peak corresponds to CH2 
functional group. This peak was 
not detected after CO2 capture 
due to overlapping with N-H in-
plane bending 
 

- 1505 N-H in-plane 
bend 

Peak was present after CO2 
absorption. The N-H bending is 
specific to nitrogen atom 
attached to two carbonyl groups 
(imide) 
 

1400 1407 C=O symmetric 
stretch 

COO- functional group from 
amide bond and possible 
attachment of CO2 

 
- 1361 C=O symmetric 

stretch 
COO- functional group from 
carbamate ion 
 

- 1329 
 

N-CO2
- This peak was detected after CO2 

capture due to skeletal vibrations 
of N-CO2

- 
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Table 4.5: The characteristics peaks of the absorbent before and after CO2 absorption 
process (continued). 

Wavenumbers (cm-1) Assignments  Remarks 
Before CO2  
absorption 

After CO2 
absorption 

1317 - C-O stretch C-O stretching from carboxylic 
acid functional group. Peak is 
very weak, could be contributed 
by the presence of unreacted 
glycine during sample 
preparation 
 

- 1300 C-N stretch 
 

C-N stretching from secondary 
amide.  
 

- 1137 C-N stretch C-N stretching from imides  
 

600- 750 - NH wag This peak is contributed by NH 
from secondary amide [146]. 
The disappeared of this peak 
after CO2 absorption process 
indicating the interaction  
between amide and CO2 

 

The primary amine group from amino-N-(3-(dimethylamino)propyl)acetamide 

is also predicted to react with CO2 molecules to produce carbamate ion. While it is 

difficult to distinguish the N-H functional groups of the primary amine and the N-H 

functional group from the amide functional group, the  interaction between CO2 with 

primary amine can be justified through the formation of carbamate ions detected in the 

FTIR spectrum through the formation of new characteristics peaks at 1329 cm-1 due to 

skeletal vibrations of N-CO2
- [71]. Moreover the COO- functional group from 

carbamate ions can also be detected at wavenumber 1361 cm-1.  

For the tertiary amino group forum within the amino-N-(3-(dimethylamino) 

propyl)acetamide molecule, the lack of proton leads inhibit direct reaction between CO2 

molecules and the amino group. However, CO2 will react with water molecule to form 

carbamic acid which will interact with tertiary amine group to produce protonated 

amine [80]. The presence of protonated amine may be deduced through the formation 

of a new characteristic peaks at 1505 cm-1.  
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In general, the FTIR spectra provided evident of possible interactions between 

CO2 molecules and the amino-N-(3-(dimethylamino) propyl) acetamide absorbent. The 

dissolution of the amide linkage and the formation of additional peaks from the FTIR 

spectra suggested that occurrence of chemical reactions during the CO2 absorption 

process. However, the further analysis is required to determine the exact mechanism 

for the CO2 capture process.  

4.4 CO2 Utilization and Characterization Study 

The CO2 utilization study was carried out at low pressure condition to evaluate 

the possibility of CO2 conversion at low pressure condition (5 bar). The performances 

of CO2 utilization were evaluated in this section. The product obtained from CO2 

capture was then characterized using FTIR and XPS.   

4.4.1 CO2 utilization performances  

In this work, the CO2 utilization study was conducted at 5 bar in order to study 

the possibility of CO2 conversion at low pressure condition. The conversion process 

was carried out through addition of 1 mol ethanol into CO2-saturated solution at 303.15 

K.   Formation of white precipitate was observed after three hours. The mass of solids 

recovered during the conversion process are indicated in Figure 4.17. The experiments 

were repeated three times and the average values along with standard deviations were 

listed in Appendix G. Formation of solids were not detected when 0.1 M amino-N-(3-

(dimethylamino)propyl)acetamide was used as an absorbent. This result was consistent 

with the CO2 absorption capacity results reported in Section 4.3.1 which suggested that 

the net amount of CO2 absorbed by 0.1 M amino-N-(3-(dimethylamino) propyl) 

acetamide was minimum. This is based on the low amount of solute found in the 

absorbent, contributing to negligible solid formation. However, as the concentration of 

amino-N-(3-(dimethylamino)propyl)acetamide increased from 0.5 to 2.0 M, the 

amount of solids recovered also increased from 15 to 95 mg solid/ g absorbent.  
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Figure 4.17: Amount of solids from CO2 utilization based on different concentrations 

of absorbent (Ethanol concentration: 1 mol). 

The concentration of absorbent selected for the CO2 capture process is 

dependent on both the amount of products recovered and the CO2 loading capacity of 

the absorbent. Despite the high solid formations at higher concentration of absorbent, 

the CO2 loading capapcity of the absorbent decreased as the concentration of the 

absorbent increased, as indicated in Figure 4.18. The highest CO2 loading capacity was 

recorded at 0.1 M amino-N-(3-(dimethylamino)propyl)acetamide. However, no 

product was obtained at this concentration. From 0.5 to 1.0 M amino-N-(3-

(dimethylamino)propyl)acetamide, the CO2 loading capacity decreased by 40%. In 

contrast, the amount of product recovered increased by 196%. The higher increment in 

product formation outweighs the decrease in the CO2 loading capacity of the absorbent. 

Moreover, The CO2 loading capacity at 1.0 M was reasonably higher than the CO2 

loading capacity of 1.0 M GLY-KOH which was reported to be between 0.8 to 0.9 mol 

CO2/ mol of absorbent, measured at 4.2 and 6.5 bar, respectively  [126].  Hence, 1.0 M 

amino-N-(3-(dimethylamino)propyl)acetamide was used as a basis for further CO2 

utilization study.  
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Figure 4.18: CO2 loading capacities and the total amount of solids recovered during 
utilization process.  

The effect of amount of ethanol on the absorbent was evaluated by varying the 

moles of ethanol added during the CO2 utilization process. Based on Figure 4.19, it was 

observed that the amount of solids recovered increased when the number of moles of 

ethanol added increased from 0.5 to 1.0 M. However, beyond 1 M, the amount of solids 

recovered decreased. The initial increase the product formation is due to the increase in 

number of molecules that are able to participate in the CO2 conversion process. 

However, after 1.0 M, the CO2 conversion activity decreased due to excess amount of 

reagent, which shifted the chemical reaction to the left, thus producing less solids. This 

trend is also reported by [79-81], such that excess reactant causes the yield during CO2 

conversion process to decrease.  

Figure 4.20 shows the conversion time for the CO2 utilization process, which 

indicated that the CO2 utilization process requires at least one hour to reach equilibrium. 

Based on the findings, the optimum amount of product for CO2 utilization was 45 mg/g, 

which was attained by using 1.0 M absorbent, and 1.0 mol ethanol after 1 hour. 

Meanwhile the CO2 loading capacity recorded was 1.6 mol CO2/ mol of absorbent.  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0

20

40

60

80

100

120

0.1 0.5 1 1.5 2

C
O

2
lo

ad
in

g 
ca

pa
ci

ty
 (m

ol
 C

O
2/ 

m
ol

 a
bs

or
be

nt
) 

M
as

s o
f s

ol
id

s r
ec

ov
er

ed
/ m

as
s o

f a
bs

or
be

nt
  (

m
g/

g)

Concentration of absorbent (mol/L)

Total amount of solids CO2 Loading CapacityCO2 loading capacity

No product



 

90 
 

 

  
Figure 4.19: The effect of amount of ethanol on the product formation (absorbent 

concentration = 1 mol; time = 3 hours). 

  
Figure 4.20: The effect of conversion time on the product formation (absorbent 

concentration = 1 mol; ethanol concentration = 1 mol). 

0

20

40

60

80

0.5 1 2 3

A
m

ou
nt

 o
f s

ol
id

/ m
as

s o
f a

bs
or

be
nt

 (m
g/

g)

Moles of ethanol added (mol)

0

20

40

60

80

0.5 1 2 3

A
m

ou
nt

 o
f s

ol
id

/ m
as

s o
f a

bs
or

be
nt

 (m
g/

g)

Time, t (hours)



 

91 
 

4.4.2 Characterization of solid particles 

 The solid particles were characterized by using the Fourier transform infrared 

spectroscopy to identify the surface functional group of the absorbent. Furthermore,     

x-ray photoelectron spectroscopy (XPS) was also used to identify the surface chemical 

binding of the solid product.  

4.4.2.1 Surface functional group 

The FTIR spectra of ethanol was compared with the solid products obtained 

after the CO2 utilization process as illustrated in Figure 4.21. The interactions between 

ethanol and the CO2-saturated absorbent were suggested based on the changes in the 

main characteristic peaks found in the CO2 -saturated absorbent and ethanol.  For the 

ethanol and CO2-saturated absorbent spectra, the main changes were observed at 

wavenumber 3302 cm-1. In the CO2-saturated absorbent, this peak is contributed by the 

presence of water molecules in the absorbent. However, in ethanol, this peak 

corresponded to the OH functional group found in the alcohol. The shifting of the in 

the OH functional group at wavenumber 3302 cm-1 after the addition of ethanol in the 

CO2-saturated absorbent may be due to the interaction between the OH group and the 

absorbent, to produce a different functional group.  

A close up FTIR spectrum of the solids was provided in Figure 4.22 to identify 

the surface functional group present in the solid particles. The characteristic peaks of 

the solids are listed in Table 4.6. The FTIR spectrum suggested the presence of 

carbamate compound based on the functional groups based on the carbamate moiety in 

the solid precipitates. The characteristic peak at wavenumber 1332 cm-1 was detected 

in the FTIR spectrum corresponded to N-COO- stretching vibrations. In a study 

conducted by Sun and Dutta [148], the same characteristic peak corresponding to 

carbamate peak (1332 cm-1) was detected in the presence of MEA carbamate. 

Moreover, the peak NHCOO- is also observed at wavenumber 1517 cm-1, which 

suggested the N-H in-plane bending next to a COO- functional group [145]. This two 

peaks provide evident on the formation of carbamate salt during CO2 utilization 

process. On top of that, the COO- stretching detected at wavenumber 1606 cm-1 and 

1134 cm-1 are also contributed by carbamate functional group.   
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Figure 4.21: Full FTIR spectra of the solids, ethanol, and CO2-saturated absorbent, for 

wavenumber ranging from 4000 to 600 cm-1.  

 
Figure 4.22: The close up spectra of the solid products at wavenumber ranging from 

1800 cm-1 to 600 cm-1.  
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Table 4.6: The characteristics peaks of solids obtained after addition of ethanol. 

Wavenumbers (cm-1) Assignments  Remarks 
2200 - 3450 NH3

+ 

stretching 
summation 
bands 
 

NH3
+ may be due to the formation of 

carbamate salt  
 
 

2124 C-N stretch The peak indicated the presence of amine 
group 
 

1608 C=O 
asymmetric 
stretch 

The C=O is due to COO- from carbamate 
salt.  For organic carbonates, this peak 
should be detected at 1740 cm-1 

 

1517 N-H in-plane 
bend/ COO- 
stretching 

This peak corresponded to secondary 
amide which is contributed by carbamate 
functional group NHCOO-   
 

1431 C-CH2 
stretching  

This peak is based on the CH2 carbon 
chain 
 

1414 C=O 
symmetric 
stretching 

This peak is mainly due to COO- 
functional group from carbamate salt  
 

1121 C-O 
stretching  
 

The C-O stretching was contributed by 
the carbamate group. For organic 
carbonates this peak should be visible at 
1280 – 1240 cm-1 

 

1332 N-CO2
- Skeletal vibrations of N-CO2

- from 
carbamate ion 
 

1111 C-N stretch Due to RNHCOO- 
 

Apart from identifying the carbamate functional groups, analysis was also 

carried out to identify the presence of inorganic carbonate in the FTIR spectrum. The 

inorganic carbonate functional groups are usually detected at wavenumbers 1740 cm-1 

and 1280 cm-1 which correspond to C=O stretching and O-C-O stretching, respectively 

[146]. However, the characteristic peaks corresponding to inorganic carbonates were 

not detected in the FTIR spectrum of the solids presented in Figure 4.22, which 

suggested inorganic carbonates may not be formed during the reaction between alcohol 

and CO2-saturated amino-N-(3-(dimethylamino)propyl)acetamide. However, this 

needs to be confirmed by other types of analysis. Nonetheless, the FTIR results 

indicated the presence the carbamate compound in the solid particles.          
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4.4.2.2 Surface chemical binding  

The XPS spectra of the solid products obtained from CO2 utilization are as 

illustrated in Figure 4.23. Three main elements were detected in the spectra namely 

oxygen (525 – 545 eV), nitrogen (392 – 410 eV) and carbon (280 – 294 eV). The 

chemical bindings found in each element were studied through a more detailed scan as 

shown in Figure 4.24. The specific chemical moiety represented by the binding energies 

are listed in Table 4.7, for each of the elements found in the spectra.  

 

Figure 4.23: XPS spectrum of solids obtained after addition of ethanol into 
               CO2-saturated solution.  
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Table 4.7: Binding energy detected by the XPS spectra and the corresponding moiety. 

Elements Binding Energy (eV) Moiety 
Carbon (C) 285.6 C-C/ C-H 
 287.9 C=O 
 288.9 O-C=O 

 
Nitrogen (N) 399.1 NH-C(=O)- 
 400.8 (O=C)-N-(C=O) 
 401.8 (NR4)+ 

 
Oxygen (O) 530.9 C=O 
 532.6 C-O 

 

For the carbon element, the main peak corresponded to C-C and C-H were 

observed at 285.6 eV. Meanwhile the carbamate functional group (COO-) was 

identified at binding energies 287.9 eV and 288.8 eV based on the presence of C=O and 

O-C=O linkage, respectively. The XPS spectra also detected three types of bonding for 

the nitrogen atom. The imide functional group was identified at binding energy of    

400.8 eV, whereas C-N was observed at 399.1 eV, and finally the peak at 401.8 eV 

corresponded to (NR4)+ which might be detected due to the presence of unreacted 

protonated amine found on the surface of the solid particles. Two peaks were observed 

for oxygen at 530.9 eV and 532.6 eV which corresponded to C-O and C=O bonding, 

respectively. 

The presence of carbamate compound in the were confirmed by comparing the 

results obtained with the work reported by Edere et al. [149], which employed XPS to 

characterize polyurethane nanomaterials which contained carbamate functional group. 

The carbamate functional group corresponding to NHCOO- were detected at 

approximately 289.0 eV, which is close to 288.8 eV (Table 4.7). This suggest the 

presence of carbamate compound in the solid particles was obtained, when                   

CO2-saturated amino-N-(3-(dimethylamino)propyl)acetamide was reacted with 

ethanol.  
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Figure 4.24: XPS spectra of (a) oxygen; (b) carbon; and (c) nitrogen, of the solids. 
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4.5 Summary 

In this chapter, the performance of amino-N-(3-(dimethylamino) 

propyl)acetamide as a potential absorbent for CO2 capture was reported. The absorbent 

was formed through neutralization of 3-dimethylaminopropylamine (DMAPA) with 

glycine. FTIR analysis confirmed that the neutralization of diamine with amino acid 

formed amide linkage. The CO2 loading capacity of the absorbent was also reported in 

this chapter. The results indicated that the CO2 absorption capacity of the absorbent was 

significantly higher than the conventional MEA absorbent. The CO2 utilization study 

suggested the possibility of using two-steps CO2 capture and conversion process 

contributed to formation of solid products. The FTIR and XPS analysis provide 

evidences that the solid particles contained carbamate compound. However, further 

analysis is required to confirm the structure of the carbamate salt.  
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CHAPTER 5 
 
 

CONCLUSION 

5.1 Conclusion 

 Carbon capture and utilization is regarded as a promising option for reducing 

CO2 emissions in the atmosphere, parallel with the efforts to reduce the impacts of 

global warming. Based on the literature reviews, chemical absorption was identified as 

one of the methods for CO2 mitigation by capturing CO2 from large point sources. 

Monoethanolamine is widely used in the CO2 capture industry. However, the main 

drawback of using MEA is limited CO2 loading capacity of the absorbent and the high 

energy requirement during CO2 desorption process. Moreover, CO2 utilization process 

also requires high energy input to overcome the high thermodynamic stability of the 

CO2 molecules during the conversion process. In this study, the possibility of 

integrating CO2 absorption with the CO2 utilization process was evaluated to eliminate 

the energy intensive CO2 desorption and CO2 conversion process.  

The first part of this study focused on the preparation and characterization of an 

absorbent for CO2 capture. The absorbent was prepared through neutralization of            

3-dimethylaminopropylamine (DMAPA) with glycine. The density, viscosity, surface 

tension, and refractive index were measured at temperature ranging from 298.15 to 

323.15 K. The results revealed that the physical properties of the absorbent decreased 

as the temperature of the absorbent increased. At constant temperature, density, 

refractive index, and viscosity of the absorbent increased as the concentration of the 

absorbent increased. In contrast, the surface tension decreased with increased in the 

concentration of the absorbent. The experimental data for the physicochemical study 

were successfully represented by using empirical correlations. The FTIR results 

indicated the formation of amino-N-(3-(dimethylamino)propyl)acetamide when 

glycine was added into DMAPA solution. 
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Based on the CO2 solubility study, amino-N-(3-(dimethylamino)propyl) 

acetamide was reported to be significantly higher in comparison to the conventional 

MEA absorbent. Moreover, the absorption capacity of amino-N-(3-(dimethylamino) 

propyl)acetamide was reported to be higher than glycine neutralized with amino acid 

salt. The effects of temperature, pressure, and concentration of the absorbent were also 

investigated in this study. The CO2 loading capacity of the absorbent increased when 

temperature and concentration of the absorbent decreased. In addition, the CO2 loading 

capacity was found to increase in parallel with pressure of CO2.  

The results obtained from the CO2 utilization study revealed that the addition of 

ethanol into CO2 saturated absorbent was able to generate solid products.  1.0 M amino-

N-(3-(dimethylamino)propyl)acetamide was used as a basis for the CO2 utilization 

study based on its high CO2 loading capacity (1.6 mol CO2/ mol of absorbent). The 

product obtained was analyzed using FTIR and XPS which suggest the presence of 

carbamate salt. The experimental results obtained in this study suggested that amino-

N-(3-(dimethylamino)propyl)acetamide has a potential to be developed as an absorbent 

for CO2 capture. The integration of CO2 capture with CO2 utilization provide suggested 

that the highly intensive solvent regeneration process can be eliminated from the CO2 

absorption technology. This will reduce the overall energy requirement for CO2 capture 

process. Moreover, the study on CO2 utilization indicated the possibility of CO2 capture 

and conversion at lower temperature and pressure conditions.  

5.2 Recommendations 

This study focused on CO2 capture at pressure ranging from 5 to 25 bar, for pre-

combustion CO2 capture application. Based on the high CO2 loading capacity of the 

amino-N-(3-(dimethylamino)propyl)acetamide absorbent, the study can be extended 

for higher pressure applications particularly for natural gas purification process. Apart 

from that, kinetic studies should also be included to evaluate the rate of CO2 absorption, 

which is another important criterion for selection of absorbent for CO2 removal process. 

Based on the solids generated at low pressure, the CO2 utilization study should also be 

evaluated at higher pressure to study the effect of pressure on the conversion process. 

On top of that, further characterization on the solids obtained from the CO2 utilization 

process needs to be carried out to provide a better understanding on the mechanisms 
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involved during the conversion process. The fundamental studies on the amino-N-(3-

(dimethylamino)propyl)acetamide absorbent for CO2 capture and utilization is 

performed though batch processes, using small amount of absorbent. This is crucial to 

properly investigate the behavior of the absorbent, before proceeding to continuous 

study which usually involves larger quantity of absorbent.  
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APPENDIX A 
 
 

Physical properties of absorbent 

The equipment used to measure the physical properties of the absorbent were 

calibrated by using deionized water. The density, refractive index, surface tension, and 

viscosity of the deionized water were compared with previous literature [133] as shown 

in Table A1. The average absolute deviations (AAD) recorded were less than 3%, 

mainly attributed to the uncertainty in measurements, variations in purity of deionized 

water, and different types of equipment used in the experiment. Nonetheless, the small 

AAD reported indicated that the experimental results were within close proximity to 

the work reported by Garg et al. [133].  

Table A1: Comparison of experimental (Exp.) physical properties of deionized water 
with previous literature (Lit.) [133] at various temperatures (T).   

T 
(K) 

Density, ρ 
(g/cm3) 

Refractive index, 
RI 

(nD) 

Surface 
tension, γ 
(mN/m) 

Viscosity, ɳ 
(mPa.s) 

Exp. Lit. Exp. Lit. Exp. Lit. Exp. Lit. 
298.15 0.99704 0.99696 1.332531 1.33243 71.76 71.79 0.897 0.895 
303.15 0.99564 0.99587 1.331931 1.33187 71.26 71.10 0.817 0.797 
308.15 0.99402 0.99425 1.331291 1.33124 70.32 70.25 0.747 0.719 
313.15 0.99221 0.99243 1.330565 1.33054 69.58 69.42 0.684 0.653 
318.15 0.99020 0.99043 1.329778 1.32973 68.68 68.66 0.624 0.596 
323.15 0.98803 0.98826 1.328937 1.32889 67.69 67.75 0.557 0.547 
AAD 
(%) 

0.02 0.01 0.12 2.95 

Table A2: Densities of the absorbent at different temperatures (T). 

T 
(K) 

Density, ρ (g/cm3) 
0.1 M 1.0 M 2.0 M 

298.15 0.9997 1.0188 1.0411 
303.15 0.9982 1.0176 1.0387 
308.15 0.9966 1.0156 1.0362 
313.15 0.9948 1.0135 1.0339 
318.15 0.9928 1.0112 1.0309 
323.15 0.9906 1.0087 1.0281 
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Table A3: Refractive indices of the absorbent at different temperatures (T). 

T 
(K) 

Refractive index, RI (nD) 
0.1 M 1.0 M 2.0 M 

298.15 1.33610 1.36232 1.39159 
303.15 1.33548 1.36152 1.39056 
308.15 1.33477 1.36065 1.38949 
313.15 1.33401 1.35985 1.38847 
318.15 1.33323 1.35908 1.38779 
323.15 1.33239 1.35846 1.38740 

Table A4: Surface tensions of the absorbent at different temperatures (T). 

T 
(K) 

Surface tension, σ (mN/m) 
0.1 M 1.0 M 2.0 M 

298.15 70.8 61.5 53.9 
303.15 69.6 60.7 52.4 
308.15 68.7 59.6 51.7 
313.15 67.5 58.6 50.6 
318.15 66.3 57.9 49.6 
323.15 65.3 57.1 48.8 

Table A5: Viscosities of GLY-DMAPA at different temperatures (T). 

T 
(K) 

Viscosity, ɳ (mPa.s) 
0.1 M 1.0 M 2.0 M 

298.15 1.122 2.237 3.620 
303.15 1.038 2.030 3.330 
308.15 0.904 1.812 2.872 
313.15 0.790 1.596 2.500 
318.15 0.698 1.409 2.188 
323.15 0.639 1.264 1.944 
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Appendix B 
 
 

Sample calculation for CO2 loading capacity  

The CO2 loading capacity of 5.0 M MEA at 5 bar was determined based the following 

steps: 

1) Data was collected from the computer (Figure B1) 

Pi = 5.52 bar;      Pf = 5.41 bar;      PT = 3.95 bar; 

 
Figure B1: Pressure in solubility cell and premixed tank during the CO2 absorption  

               process. 

2) The compressibility factor (Z) at respective pressure was calculated by using Peng 
Robinson Equation of State as per Equation B1.  
(Example was based on Pi = 5.52 bar = 0.552 MPa) 

Z3 – (1 – B) Z2 + (A – 3B2 – 2B)Z – (AB – B2 – B3) = 0  (B1) 
 

A = 
aP

R2T2  (B2) 

 

B= 
bP
RT

 
 (B3)  

 

a(Tc)=0.45724
R2Tc

2

Pc
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b(Tc)=0.07780
RTc

Pc
  (B5)  

       
For carbon dioxide, Tc = 304.2 K; Pc = 7.382 MPa;  
 
The values Tc and Pc were substituted into Equations B4 and B5.  
The values P = 0.552 Mpa, along with a and b previously determined from 
Equations B4 and B5 were then substituted into Equations B2 and B3. The variables 
a, b, A, and B are given in Table B1.  
 

Table B1: Variables a, b, A, and B based on Peng Robinson Equation. 

Variables Values 
a 396194.7 
b 26.655 
A 0.023 
B 0.004 

The variables in Table B1 were then substituted into Equation A1 to form a cubic 
equation Z3 + a2Z2 + a1Z +a0 = 0. The values of a2, a1, and a0 are given in Table B2. 

Table B2: Variables a2, a1, and a0 based on cubic equation Z3 + a2Z2 + a1Z +a0 = 0.  

Variables Values 
a2 -0.99435 
a1 0.0202 
a0 -0.00015 

 

The goal seek method in Microsoft Excel was then used to solve the equation, which 
gives z = 0.97376, when P = 5.52 bar.  

 
3) The amount of CO2 transferred from the mixing vessel into the solubility cell was 

determined based on the pressure change in the pre-mixed tank based on the 
following equation: 

nco2= 
Vpt

RTpt
�

Pi

zi
-
Pf

zf
� 

Data required for the calculation are as follows; 
 
Vpt = 5 L;       R = 8.314 m3⋅Pa⋅K−1⋅mol−1;        Tpt = 313.15 K  
Pi = 5.52 bar;      zi = 0.97376;      Pf = 5.41 bar;      zf = 0.97429;                        
 
number of moles of CO2 transferred from premixed tank to solubility cell,  

 nco2= 5 L
8.314 m3.Pa.K-1mol-1×313.15 K

� 5.52
0.97376

- 5.41
0.97429

�× 1m3

1000 L
 × 105 Pa

1 bar
 

 
          = 0.0222749 mol 
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4) The CO2 equilibrium pressure in the solubility cell, Pco2 was determined. In this 
experiment, the vapor pressure was assumed to be negligible.  
Hence Pco2=PT=3.95 bar    
 

5) The amount of CO2 in the gas phase was calculated based on the following 
equation; 

nco2(g)= 
VgPco2

zCO2RT
 

Data required for the calculation are as follows; 
Vg = 0.045 L;     Pco2=3.95 bar;     zCO2= 0.98128;         
R = 8.314 m3⋅Pa⋅K−1⋅mol−1;        T = 313.15 K  
 
Number of CO2 in the gas phase, 

 nco2(g)= 0.045 L×3.95 bar
0.98128 ×8.314 m3.Pa.K-1mol-1×313.15 K

× 1m3

1000 L
 × 105 Pa

1 bar
 

                   =0.0069575 mol  

6) The amount of CO2 dissolved in the absorbent (liquid phase) was determined from 
the following equation (nco2(l)=nco2- nco2(g)) 

      nco2(l)= 0.0222748-0.0067575=0.01531 mol 

7) CO2 loading capacity (𝛼𝛼)is determined by the following equation: 
 

α =
nco2(l)

nliquid
  

 
Volume of absorbent = 5 mL.  
No of moles in liquid,  nliquid= 5 mol

1000 ml
 ×5 mL  = 0.0249 mol 

Hence, the CO2 loading capacity, α = 0.015314
0.0249

=0.616 mol CO2/ mol MEA 
 

8) Steps 1 to 6 were repeated three times and the average values were reported as per 
Table B3.  

Table B3: Data and measured values for determination of CO2 loading capacity of 
           5.0 M MEA. 

Exp Pi zi Pf zf Pco2 zCO2 nco2 nco2(g) nco2(l) α 
1 5.52 0.9738 5.41 0.9743 3.95 0.9813 0.0223 0.0070 0.0153 0.6164 
2 5.37 0.9745 5.26 0.9750 3.83 0.9819 0.0223 0.0067 0.0155 0.6237 
3 5.48 0.9740 5.36 0.9745 4.43 0.9790 0.0243 0.0078 0.0165 0.6627 

     Average CO2 loading capacity of 5.0 M MEA measured at 5 bar, 

     αaverage= 0.6164 +0.6237+0.6627
3

=0.634 mol CO2/ mol MEA 
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APPENDIX C 

 
 

Verification of solubility cell for measuring CO2 solubility 

To confirm the reliability of the solubility cell used in this study, the CO2 loading 

capacities of 5.0 M MEA (30 w/w %) and 1.0 M GLY-KOH were measured at pressure 

ranging from 5 to 25 bar and temperature of 313.15 K are presented in Figure C1. The 

experiments were repeated three times and the average standard deviations for pressure 

and CO2 loading capacities were reported for pressure and CO2 solubility were less than 

0.15 bar and 0.05 mol CO2/ mol absorbent, respectively (Table C1 and C2). The small 

standard deviations suggested that the equipment have high reliability in measuring the 

CO2 solubility of the absorbent.   

 

Figure C1: CO2 loading capacities of 5.0 M monoethanolamine (MEA) in comparison 
with previous literatures (Temperature: 313.15 K).  
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Table C1: The standard deviations for pressure and CO2 loading capacities of 5.0    
MEA measured at 313.15 K. 

Pressure 
(bar) 

CO2 loading capacities 
(mol CO2/ mol MEA) 

Measured 
values 

Average 
values 

Standard 
deviations 

Measured 
values 

Average 
values 

Standard 
deviations 

5.52 
5.46 0.08 

0.616 
0.634 0.025 5.37 0.624 

5.48 0.663 
10.62 

10.51 0.10 
0.694 

0.695 0.004 10.48 0.698 
10.43 0.692 
15.09 

15.28 0.18 
0.748 

0.746 0.020 15.31 0.725 
15.44 0.766 
20.01 

20.17 0.17 
0.779 

0.778 0.003 20.34 0.769 
20.17 0.785 
25.35 

25.21 0.12 
0.810 

0.786 0.021 25.15 0.784 
25.14 0.766 
Average standard 

deviation 0.13 Average standard 
deviation 0.015 

 

 

Figure C2: CO2 loading capacities of 1.0 M GLY-KOH in comparison with previous 
        literature (Temperature: 313.15 K). 
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Table C2: The standard deviations for pressure and CO2 loading capacity of 1.0 M 
GLY-KOH measured at 313.15 K. 

Pressure 
(bar) 

CO2 loading capacities 
(mol CO2/ mol GLY-KOH) 

Measured 
values 

Average 
values 

Standard 
deviations 

Measured 
values 

Average 
values 

Standard 
deviations 

5.02 
5.03 0.03 

0.780 
0.815 0.039 5.06 0.810 

5.01 0.857 
10.31 

10.29 0.07 
1.120 

1.062 0.053 10.22 1.048 
10.35 1.016 
15.30 

15.35 0.08 
1.248 

1.242 0.021 15.44 1.218 
15.31 1.260 
20.23 

20.23 0.09 
1.407 

1.412 0.056 20.15 1.470 
20.32 1.358 
25.29 

25.17 0.11 
1.566 

1.528 0.054 25.10 1.467 
25.11 1.551 
Average standard 

deviation 0.07 Average standard 
deviation 0.045 
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APPENDIX D 
 
 

Experimental data on CO2 solubility study at different temperature and pressure 

Table D1: The CO2 loading capacities (α) of 1.0 M amino-N-(3 (dimethylamino)propyl) 
acetamide measured at different temperature and pressure (P).  

Temperature 
303.15 K 313.15 K 323.15 K 

P α P α P α 
5.15 1.609 5.07 1.224 5.21 0.749 
9.99 2.149 10.10 1.463 10.28 1.169 
15.00 2.460 15.05 1.829 15.20 1.512 
20.27 2.723 20.12 2.186 20.26 1.749 
25.11 3.058 25.24 2.419 25.57 1.963 

 

Table D2: The CO2 loading capacities (α) of 0.1 M to 2.0 M amino-N-(3-
(dimethylamino)propyl)acetamide measure at different pressure (P) and 
303.15 K.  

Concentration of GLY-DMAPA 
0.1 M 0.5 M 1.0 M 1.5 M 2.0 M 

P α P α P α P α P α 
5.08 4.038 5.30 2.664 5.15 1.609 5.23 1.117 5.18 0.961 
10.16 5.748 10.10 3.203 9.99 2.149 10.09 1.556 10.00 1.271 
15.23 7.419 15.01 3.838 15.00 2.460 15.23 1.797 15.07 1.484 
20.49 8.072 20.27 4.337 20.27 2.723 20.32 2.039 20.11 1.640 
25.26 8.997 25.11 4.493 25.11 3.058 25.46 2.269 25.38 1.791 
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APPENDIX E 
 
 

Total moles of CO2 absorbed by the absorbent 

Table E1: Total moles of CO2 absorbend by the absorbent.  

Pressure Number of moles of 
absorbent (mol) 

CO2 loading capacity, α 
(mol CO2/ mol 

absorbent) 

Net CO2 

absorbed* (mol) 

5 

0.10 4.498 0.45 
0.50 2.664 1.33 
1.00 1.609 1.61 
1.50 1.117 1.68 
2.00 0.961 1.92 

10 

0.10 8.177 0.82 
0.50 2.664 1.33 
1.00 2.149 2.15 
1.50 1.556 2.33 
2.00 1.271 2.54 

15 

0.10 11.133 1.11 
0.50 3.244 1.62 
1.00 2.460 2.46 
1.50 1.797 2.70 
2.00 1.484 2.97 

20 

0.10 12.995 1.30 
0.50 3.903 1.95 
1.00 2.723 2.72 
1.50 2.039 3.06 
2.00 1.640 3.28 

25 

0.10 14.377 1.44 
0.50 4.064 2.03 
1.00 3.058 3.06 
1.50 2.269 3.40 
2.00 1.791 3.58 

 

Sample calculation: 

Net CO2 absorbed = Number of moles of absorbent x CO2 loading capacity 
      = 0.1 x 4.498 mol 
      = 0.45 mol 
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APPENDIX F 
 
 

Mass of solids recovered from CO2 utilization process 

Table F1: The average mass of solids recovered and standard deviations based on 
         1 mol ethanol. 

Concentration of  
GLY-DMAPA 

 (mol/L) 

Mass of solids recovered/ mass of absorbent 
 (mg/g) 

Standard 
deviations 

1 2 3 averages 
0.1 0.00 0.00 0.00 0.00 0.00 
0.5 15.48 15.70 14.72 15.30 0.16 
1.0 43.16 47.62 45.53 45.43 3.15 
1.5 68.00 64.13 61.66 64.59 2.73 
2.0 95.41 95.68 97.73 96.27 1.27 
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APPENDIX G 
 
 

Permission to reprint Figure 2.10 
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APPENDIX H 
 
 

Publications 

H. M. Mohsin, A.M. Shariff, K. Johari. (2019). 3-Dimethylaminopropylamine 

(DMAPA) mixed with glycine (GLY) as an absorbent for carbon dioxide capture and 

subsequent utilization. Separation and Purification Technology. 222, 297 – 308.  

H. M. Mohsin, K. Johari, A.M. Shariff (2019). Absorbents, media, and reagents for 

carbon dioxide capture and utilization, Sustainable Agriculture Reviews 38 (pp. 41-62): 

Springer. 

H. M. Mohsin, K. Johari, A.M. Shariff. (2018). Virgin coconut oil (VCO) and 

potassium glycinate (PG) mixture as absorbent for carbon dioxide capture. Fuel. 232, 

454-462.  
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