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ABSTRACT 

 

As Si CMOS devices are scaled down into the nanometer (nm) range, they 

will soon reach their practical limits. Future nanodevices are more error-prone (due to 

structural and signal faults) than conventional CMOS devices. Moreover, the 

uncertainty of unreliable devices is common to all nanotechnologies. It is therefore 

important to model and characterize for example, the randomness and failures of 

logic states. In this report, the architecture for each basic logic gates, NOT, NAND, 

AND, NOR and OR using Markov Random Field (MRF) approach is presented. The 

scope of study includes probability and statistics with emphasis on MRF and Belief 

Propagation (BP), digital systems design and graph theory. The methodology of this 

project was first, literature research, and then followed by data evaluation. Next was 

to design probabilistic circuit using MRF approach on paper. After paper design, the 

circuit was simulated and verified using MATLAB. The result show that the MRF-

implemented circuit is more complex than conventional circuit and is theoretically 

proven to be noise-tolerant. The main achievement of this project is the 

generalization of probabilistic circuit architecture. In other words, in mapping MRF 

into CMOS circuitry, one must fulfill two requirements; first bistable storage element 

for each logic state and second feedback network for belief propagation. For future 

work, it is recommended to demonstrate the signal fault tolerance of the architecture 

presented in this report as well as to extend the MRF approach to more complex 

circuits. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of Study 

 

Mainstream Si technology has relied on scaling down CMOS transistors 

following Moore’s Law for decades. However, the International Technology 

Roadmap for Semiconductor (ITRS) predicts that the continued shrinkage will 

stop around 2015, due to unavoidable physical limits (with the ultimate transistor 

gate length near 10 nm). These ultimate transistors will be nanodevices in the true 

sense of the word. One example of nanotechnology is molecular electronics, 

which has been demonstrating the potential for unprecedented levels of device 

density, low-power computing, and high operating speed. However, many 

challenges remain for most nanotechnologies before they can replace 

conventional CMOS. 

One of the challenges for example in designing nanoscale CMOS is signal 

error caused by noise. Since the faults are random and dynamic in nature, so the 

only way to deal with them is to design probabilistic circuits. A probabilistic 

circuit is an electrical circuit which their element values are defined by probability 

functions. In deterministic circuit, we use Boolean algebra but, in probabilistic 

circuit, we use probability theory, for example Markov Random Field (MRF). 

Compared to other methods, the MRF is so versatile that it can be used to describe 

any logic circuit. Moreover, it is a powerful tool for modeling uncertain and noisy 

computation, making it widely used in many areas, including physics and 

communications.
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Probabilistic computing provides a new approach towards building more 

powerful fault-tolerant nanoarchitectures and systems. Since current designs 

employing probabilistic approach only focus on simpler circuits, so if extended to 

more complex circuits, this approach could lead to a paradigm shift in computing 

architecture. 

 

1.2 Problem Statement 

 

Circuits built with nanoscale devices will face design challenges that have 

not been much of an issue so far. Until now, the fabrication of nanoelectronic 

circuits has been limited to a few devices intended to demonstrate simple logic or 

memory operations. There are no actual data to measure the characteristics of 

large networks of devices. However, it is possible to predict two likely 

characteristics that will have to be confronted: 

i. High and dynamic failure rate 

 It is expected that a significant fraction of the devices and their 

interconnections will fail. 

 These failures will occur both during fabrication and at steady 

rate after fabrication. 

ii. Operation near the thermal limit 

 As device sizes shrink, the energy difference between the logic 

states will approach the thermal limit. 

 There will be errors due to temporary malfunction of the device 

while operating near the thermal limit and they are more 

significant in nanoscale devices due to very low noise margin, 

reduced supply voltages and low stored charges in nodes. 

The first characteristic is a simple extrapolation of current device 

fabrication experience. The smaller the dimensions of the device, the more 

phenomena can interfere with correct operation. It seems likely that architectures 
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will have to cope with device and connection failure rates of 10% or more. The 

second characteristic can be extrapolated from the evolution of current CMOS 

technology towards smaller device sizes. Current processor chips have about 100 

million transistors and dissipate over 100 W. It can be assumed that this power 

level is already near the practical limit in terms of battery life and dangerous 

external temperatures. 

The increased number of gates per chip and clock speed will decrease the 

logic transition energy limits to within a few orders of magnitude of kbT. It can be 

shown that the energy cost of computation cannot be reduced below Landauer’s 

principle, given as (ln2)kbT per bit. This basic result is derived from the necessary 

increase in randomness as information is lost during computation. Consequently, 

as nanocircuits operate near the thermal limit, there will be signal errors which 

directly account for thermal noise. This injected noise is random and dynamic in 

nature and it will start to affect the performance of the circuit. Since there will be 

structural faults due to process variations and defects and also signal faults due to 

random thermal noise, thus a probabilistic-based approach is more suitable (to 

handle these structural and signal errors) than the conventional deterministic 

circuit designs. 

 

1.3 Objectives 

 

In this project, there are two main objectives: 

i. To improve the performance of CMOS circuits under noisy 

condition 

ii. To design probabilistic circuits based on Markov Random Field 

(MRF) theory 
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1.4 Scope of Study 

 

The scope of study of this project includes the following: 

i. Probability and Statistics 

 Markov Random Field (MRF) 

 Belief Propagation (BP) 

ii. Digital Systems Design 

iii. Graph Theory 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Literature Review 

 

The problems of structural and signal faults have become more significant as 

the size of the device approaches nanoscale level. Many fault-tolerant circuit 

techniques have been proposed. Folling [1] proposed architecture based on neural 

network which provides continuous adaptation to errors. They showed that arrays of 

simple neural processing elements show features such as association, fault tolerance 

and self-organization. Nevertheless, how their behavior generalizes to new 

computational examples is not clear and also their performance is difficult to 

optimize. MRF is a powerful tool for modeling uncertain and noisy computation and 

is widely used in many areas, such as physics, computer vision and communications. 

Inspired by Von Neumann’s pioneering work [2], MRF has proven a 

promising solution for the unreliability problem of nanoscale devices. Von Neumann 

asserted that device failure should not render faults in computing systems if it has 

been designed to be fault-tolerant from the beginning. Von Neumann proposed a 

majority voting scheme to overcome logic errors so that the errors will not be 

dominant. Using similar principles, [3-6] proposed a probabilistic approach using 

MRF. Bahar [3] showed that using MRF, structural and signal faults can be tolerated. 

The approach adapts to errors as a natural consequence of probability maximization, 

thus removing the need to detect faults which further reduces the complexity.
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Correct state configuration is achieved by propagating state values through the 

network and updating each node assignment with a node state having the maximum 

probability. Current designs employing probabilistic approach only focus on 

elementary logic circuits. The probabilistic approach can be implemented to more 

complex circuits by combining these elementary logic units using belief propagation. 

Rao [7] used belief propagation algorithm to compute error probability at each node 

and thus overall circuit fault-tolerance performance can be evaluated. The future of 

nanocomputer is uncertain but if this probabilistic approach is successfully extended 

to more complex circuits, it would lead to a paradigm shift in the computer 

architecture. 

 

2.2 Markov Random Field (MRF) 

 

In this project, the probabilistic approach will be based on Markov Random 

Field (MRF). The main reason for selecting the Markov random network as the basis 

for the design is that its operation does not depend on perfect devices or perfect input 

signals. The basic idea of MRF design is that under the probabilistic framework, we 

cannot expect logic values in a circuit at a particular time to be correct. We can only 

expect the probability distribution of the values to have the highest or maximum 

likelihood in a correct logic state. The MRF is a powerful tool for modeling uncertain 

and noisy computation. It is a completely general computational framework and in 

principle any type of computation could be mapped onto the model.  

The MRF approach can express any arbitrary logic circuits and logic 

operation is achieved by maximizing the probability of the state configurations in the 

logic network. Maximizing state probability is equivalent to minimizing a form of 

energy that depends on neighboring nodes in the network. Once elementary logic 

components have been developed, they can be linked together using belief 
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propagation to build desired architectures. In the probabilistic-based circuit design, 

the logic states are considered to be random variables. Therefore, one can no longer 

expect a correct logic signal at all nodes at all times, but only that the joint probability 

distribution of signal values has the highest likelihood for valid logic states. This joint 

distribution can be considered to be a distribution on random vectors, with a vector 

element for each logic variable in the circuit.  

Thus, with this probabilistic approach, circuit design is guided by the 

formulation of a multivariate distribution on vectors, aiming for a distribution that 

attains maximum probability for the valid states of the circuit. In a circuit with 

hundreds of logic variables, it is impractical to directly consider a joint probability 

distribution. The number of constraints required to enforce maximum probability for 

the valid states grows exponentially with the dimension of the random vector space 

and so the computation becomes intractable. However, the representation for these 

high dimensional joint distributions can be factored into low dimensional 

distributions using MRF. 

The Markov random field defines a set of random variables, 

k,...,, 21 . Each variable i , can take on various values, e.g. state labels. 

Associated with each variable is a neighborhood, Ni, which is a set of variables from 

i . Simply put, the probability of a given variable depends only on a (typically 

small) neighborhood of other variables. An appropriate model for the MRF is a graph 

structure, where the nodes of the graph represent logic variables and the edges 

represent statistical dependency between the variables. The definition of the MRF is 

as follows: 

i. Positivity:  ,0P          (1) 

ii. Markovianity:                 (2)
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In other words, a set of random variables form a MRF if all sites have a finite 

positive probability and the probability of a particular site in the neighborhood 

depends only on its immediate neighbors to which it is connected by an edge. The 

edges in the neighborhood represent the conditional dependence between the 

connected variables in the neighborhood. The conditional probability of a given site 

in terms of its neighborhood can be formulated in terms of the associated clique of 

the graph structure. Figure 2.1 shows an example of a neighborhood with one 1
st
 

order clique and one 2
nd

 order clique. 

 

Figure 2.1: The MRF neighborhood system 

 

The conditional probability of a node state in terms of its neighborhood can be 

formulated in terms of cliques. It can be shown due to the Hammersley-Clifford 

theorem: 

Cc c
b

U
Tk

ii e
Z

P

1

1

        (3)
 



9 
 

This form for the probability is called the Gibbs distribution. The normalizing 

constant Z is called the partition function and insures that P is in the range [0, 1]. The 

set C is the set of cliques for a given node, i. The function UC is called the clique 

energy function and depends only on the nodes in the clique. It also can be seen that 

the probability of states depends on the ratio of clique energy of the MRF to the 

thermal energy, kbT. For instance, the probability is uniform at high values of kbT and 

becomes sharply peaked at low values of kbT.  

Circuit networks can be expressed in terms of such neighborhoods and the 

interaction of the logic states and variables can be represented as a dependence graph. 

Figure 2.2 shows a simple multi-level circuit and its corresponding dependence 

graph. In this case, the graph is equivalent to a Markov random field, where the nodes 

are random logic variables that can hold values ranging from 0V to VDD and the 

edges are the conditional dependencies between the variables. Importantly, there is no 

notion of directed logic flow and causality, just statistical dependence. For instance, if 

the output of the first NAND gate is at logic 0, then both the inputs are constrained to 

be at logic 1 which means that there is a (backward) statistical dependency between 

the output state and the input state. 

 

Figure 2.2: A logic circuit and its dependence graph 
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The general algorithm for finding individual site labels that maximize the 

probability of the overall network is called belief propagation and provides an 

efficient means of solving inference problems by propagating marginal probabilities 

through the network. There are three essential probability functions: 

i. Joint probability:   

110 ,...,, nxxxp                   (4)      

ii. Marginal probability:  

ijxxxpxp
j nx x

n

xx

i ,,...,,......
110

110                (5) 

iii. Conditional probability: 

i

n

iii
xp

xxxp
xxxxxp 110

1110

,...,,
,...,,...,,

                                      (6)

 

The basic idea of belief propagation is that the probability of state labels at a 

given node in the network can be determined by marginalizing (summing) over the 

joint probabilities for the node state given just the probabilities for site labels in the 

Markov neighborhood, Ni. The nodes in the network can be classified into: 

i. Observable nodes 

 Those that have defined label probabilities 

 Correspond to a computational input whose value is constrained by 

the problem setup 

ii. Hidden nodes 

 Those whose values must be determined by the propagation 

algorithm 

 



11 
 

In a logic circuit, the input/output can be thought of as observable nodes and 

the others as hidden nodes. The marginal probabilities that are computed 

approximately are referred as beliefs, and the belief at node i is denoted by b(xi). In 

MRF, the observable nodes, yi are considered to be fixed, and we can write ii x  as 

a short-hand for iii yx , , where xi is the hidden nodes. We further assume that there 

is some statistical dependence between xi and yi at each position i, which we write as 

a joint probability iii yx , .  

The function iii yx ,  is often called the evidence for xi. For us to be able to 

infer anything about the nanoscale computer architecture, there has to be some 

structure to the hidden nodes, xi. We encode the assumed structure by saying that the 

variable xi should, insofar as possible, be “compatible” with nearby variable, xj, as 

represented by compatibility function jiij xx , , where 
ij

only connects nearby 

positions. We then take the joint probability distribution for the unknown variables xi 

as: 

ii
i

jiij
ij

xxx
Z

xP ,
1

                              (7)
 

This marginalization establishes the label probabilities for the next 

propagation step. It can be shown that this propagation algorithm will converge to the 

maximum probability site label assignment for the entire network, provided there are 

no loops. However, it can be shown that the belief propagation algorithm usually 

converges to the maximum probability state even in the presence of loops. As an 

example of how the belief propagation is calculated, consider Figure 2.2, where the 

probability, p(s0, s1, s2, s3, s4, s5) can be decomposed into: 

      (8) 
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For belief propagation, we start from the primary inputs of the circuit 

network. As a first step, s0 and s1 are eliminated by summing U(s0, s1, s3) over all 

states of s0 and s1 to obtain U(s3), that is s0 and s1 are marginalized out. Then s2 and s3 

can be eliminated by summing U(s3)U(s2, s3, s4) over all states of s2 and s3, giving 

U(s4). Finally, s4 can be eliminated similarly to obtain U(s5). This example shows that 

achieving the correct state configuration in the network corresponds to propagating 

state values through the network and updating each node assignment with a node 

state having the maximum probability. Moreover, the advantage of the Markov 

network model is that this probability is maximum when the total clique energy is a 

minimum.  
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Procedure Identification 

 

Figure 3.1: Flow chart of Final Year Project (FYP)

Literature Research 

Data Evaluation 

Probabilistic Circuit Design 

Simulation and Verification 

Results and Discussion 
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1. Literature Research 

 

 Probability and Statistics: Did research on Markov Random Field (MRF), 

Belief Propagation (BP) and few other probabilistic methods 

 Digital System Design: Did research on how to design basic logic 

circuits using probability theory 

 Graph Theory:  Did learn how to use graph theory in Markov 

Random Field 

 

2. Data Evaluation 

 

 Chose which data or reading materials were relevant to the scope and 

objectives of the project 

 Selected Markov Random Field and Belief Propagation to design 

probabilistic circuit 

 

3. Probabilistic Circuit Design 

 

 Implemented probability theories, Markov Random Field and Belief 

Propagation in designing basic logic circuits 

 Did design on paper 

 

4. Simulation and Verification 

 

 Based on paper design, did the probabilistic circuit in MATLAB, using 

Simulink 

 

5. Results and Discussion 

 

 Analyzed the performance of the MRF CMOS circuits 



15 
 

3.2 Tool 

 

 The primary tool used in this project was MATLAB 7.1. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1 Results 

 

 
Figure 4.1: Digital signal corrupted by AWGN with SNR 10 dB 
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Figure 4.2: Digital signal corrupted by AWGN with SNR 5 dB 
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Figure 4.3: Graph of probability of an inverter output for T = 0.5 
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Figure 4.4: Graph of probability of an inverter output for T = 0.25 
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Figure 4.5: Graph of probability of an inverter output for T = 0.1 
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Figure 4.6: Graph of probability of an inverter output as a function of T 
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Figure 4.7: MRF NOT gate 
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Figure 4.8: 2-input MRF NAND gate 
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Figure 4.9: 2-input MRF AND gate 
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Figure 4.10: 2-input MRF NOR gate 
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Figure 4.11: 2-input MRF OR gate 
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4.2 Discussion 

 

The MRF is a completely general computational framework and in principle 

any type of computation could be mapped onto the model. In order to concretely 

illustrate the operation of the model, we will use combinatorial logic as an example. 

The programming of the MRF is straightforward in this case and will permit some 

analysis of the fault tolerance of the architecture. Combinatorial logic can be 

implemented using a simple, yet powerful, form for the clique energy, called the 

auto-model. For cliques up to order three, the energy function is given by: 

 

kjiijkCkjijiijCjiiiCiCU
210 ,,,     (9)

 

 

The constants, i , ij  and ijk  are called interaction coefficients. The constant  

acts as an energy offset. This form for CU  has been used in many MRF 

applications including image segmentation, texture classification and object 

recognition. 

 

There are two aspects of fault tolerance that must be considered. The first one 

is structural fault and the second one is signal fault. However, until now, only 

tolerance to discrete errors in signal is simulated. The structural fault and continuous 

errors in signal will be considered in future work. Based on the results obtained: 

 

i. For Figure 4.1, the generated signal is a square wave signal that 

resembles the digital waveform. Then, this signal is added with 

Additive White Gaussian Noise (AWGN) to reflect the nature of 

random and dynamic noise in nanoscale devices. The signal-to-noise 

ratio (SNR) is arbitrarily defined as 10 dB. This is done so to observe 

the effect of noise to the signal. It can be seen that +1 V and -1 V 

oscillate randomly. 
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ii. For Figure 4.2, the generated signal is again a square wave signal that 

imitates the digital waveform. This signal is then injected with AWGN 

to reflect the nature of random and dynamic noise in nanoscale 

devices. The difference between Figure 4.2 and Figure 4.1 is only in 

the SNR. In Figure 4.2, the SNR is decreased to 5 dB. This means that 

if the signal power remains constant, the noise power increases. This 

soundly reflects the effect of scaling CMOS down to nanoscale level, 

where noise becomes more significant. It also can be seen that the +1 

V can be mistakenly interpreted as -1 V since the noise power is now 

more significant. The same applies to -1 V. Thus, the logic operation 

can be deemed as no longer correct since 1 can be 0 and vice versa.   

iii. Successful operation of a gate is designated by the compatibility 

function, f(x0, x1) as shown below: 

 

 

 

Figure 4.12: Conventional NOT gate 

 

 

 

 

 

 



29 

 

Table 4.1: NOT gate logic compatibility function with all possible states 

 

States Input Output Validity 

i x0 x1 f 

0 0 0 0 

1 0 1 1 

2 1 0 1 

3 1 1 0 

 

 

Where x0 is the input and x1 is the output. Here, all possible states are 

listed as shown in Table 4.1 (valid states with f = 1 and invalid states 

with f = 0) because the probabilistic approach adapts to errors and 

makes no assumption about the occurrence of errors. In order to relate 

the logic compatibility function to Gibbs energy form, it is necessary 

to use the axioms of the Boolean ring. The Boolean ring expresses the 

rules of symbolic Boolean logic in terms of algebraic manipulations as 

follows: 

 

XX 1'
                  (10)        

2121 XXXX                  (11)        

212121 XXXXXX                 (12) 

 

The logic variables are treated as real valued algebraic quantities and 

logic operations are transformed into arithmetic operations. 

Additionally, it is desired that valid input/output states should have 

lower clique energies than invalid states. Thus, the clique energy 

expression is obtained by a negative sum over minterms from the valid 

states (f = 1): 
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i

i xxfxxU 1010 ,,

                (13)

 

 

Where fi = 1, and the minterms are transformed using the Boolean ring 

rules. For the NOT gate example, by summing over the valid states, 

the clique energy can be computed as follows: 

 

The Boolean ring conversion for the minterm (x0, x1) = 01 is, 

 

1

'

0 xx  = (1 - x0)x1 

  = x1 - x0x1                 (14) 

 

The Boolean ring conversion for the minterm (x0, x1) = 10 is, 

 

'

10 xx  = x0(1 - x1) 

  = x0 - x0x1                 (15) 

 

So, the clique energy or auto-model of an inverter is, 

 

U = -(x1 - x0x1 + x0 - x0x1) 

  = -(-2x0x1 + x0 + x1) 

  = 2x0x1 - x0 - x1                (16) 

 

Then, the Gibbs distribution becomes, 

 

10102
1

10

1
,

xxxx
Tkbe

Z
xxp

                (17)
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Suppose the input, x0 takes on values from {0,1}. The dependence on 

the input x0 can be marginalized away by summing over its possible 

values: 

 

Tk

Tk

x

Tk

x

x

xxxx
Tk

b

bb

b

e

ee
e

Z
xp

1

1

1,0

2
1

1

12

1

11

0

1010

              (18)

 

 

In the marginalization, it is assumed that the input to the inverter is 

equally likely to be 0 or 1 and that the inverter has exact clique energy 

weights. These assumptions are somewhat idealized since in practice 

the inverter will have variable clique coefficients and the input will 

range over a continuous set of values near 0 or 1 according to the 

distribution of signal noise and device error.  

iv. Figure 4.6 is the plot of marginalized inverter output distribution 

function for various values of thermal energy, kbT. It can be seen that 

both outputs 0 and 1 are equally likely. However, note that the most 

likely outputs are 0 and 1 and the likelihood of any intermediate values 

become significantly small as kbT approaches 0. This behavior is the 

characteristic of Markov random network processing. As long as the 

energy balance is favorable to correct logic state, decreasing kbT will 

lock in the valid configurations. 

 

As described earlier, the key of the MRF circuit behavior is that the logic 

states of network nodes need to depend, in a probabilistic fashion, on the logic states 

of some finite number of neighboring nodes. For the purposes of probabilistic 

computation, a physical embodiment of interacting logic levels and the clique energy 

function must be determined. To obtain correct logic operation, clique energy must be 

minimized.  
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This energy minimization can be achieved by a device or device configuration 

that produces a bi-stable energy function. A binary flip-flop circuit possesses this 

desired energy behavior where the required asymmetry of state energy is created by 

the summing mechanism just described. Nepal [4] found two requirements in 

mapping the MRF model into CMOS circuitry: 

  

i. Each logic state, si, should be represented as a bistable storage 

element, taking on logical values of ”0” an ”1” with equal probability. 

The probability for any other signal value should be low. 

ii. The constraints of each logic graph clique should be enforced by 

feedback to the appropriate storage elements, implementing the logic 

compatibility functions to maximize the joint probability of the correct 

logical values. 

 

The first requirement ensures that the MRF logic states are maintained so that 

the conditional probabilities among the neighboring elements can propagate. The 

feedback paths, required by the second design principle, are based on conditional 

probabilities and ensure that the correct logic states are the most probable states. 

Whereas the bistable element allows us to maintain a particular logic state at a given 

node, the feedback mechanism allows us to model the belief propagation and the 

dependence of a node on the state of its neighborhood.  

 

For 2-input NAND gate, from Table 4.2 below, it can be seen that there are a 

total of four minterms. Each minterm is a valid input-output pair whose probability 

must be be maximized using a bistable storage element. The feedback to x′2 comes 

from the first three minterms containing x2, while the feedback to x2 comes only from 

the final minterm containing x′2. Since more than one minterm can determine the state 

of a logic variable, a complex feedback network consisting of NOR logic gates are 

needed as shown in Figure 4.8. The circuit shows that a bistable element is required 

for each minterm. 
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Table 4.2: 2-input NAND gate logic compatibility function with all possible states 

 

States Inputs Output Validity 

i x0 x1 x2 f 

0 0 0 0 0 

1 0 0 1 1 

2 0 1 0 0 

3 0 1 1 1 

4 1 0 0 0 

5 1 0 1 1 

6 1 1 0 1 

7 1 1 1 0 

 

 

In designing MRF CMOS circuits, the feedback network models the belief 

propagation and it shows that achieving the correct state configuration corresponds to 

propagating the state values and updating each node assignment with a node state 

having the maximum probability. The same approach was used in designing other 

basic logic gates, AND, NOR and OR. The logic compatibility function for each of 

the remaining basic logic gates (AND, NOR and OR): 
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Table 4.3: 2-input AND gate logic compatibility function with all possible states 

 

States Inputs Output Validity 

i x0 x1 x2 f 

0 0 0 0 1 

1 0 0 1 0 

2 0 1 0 1 

3 0 1 1 0 

4 1 0 0 1 

5 1 0 1 0 

6 1 1 0 0 

7 1 1 1 1 

 

 

Table 4.4: 2-input NOR gate logic compatibility function with all possible states 

 

States Inputs Output Validity 

i x0 x1 x2 f 

0 0 0 0 0 

1 0 0 1 1 

2 0 1 0 1 

3 0 1 1 0 

4 1 0 0 1 

5 1 0 1 0 

6 1 1 0 1 

7 1 1 1 0 
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Table 4.5: 2-input OR gate logic compatibility function with all possible states 

 

States Inputs Output Validity 

i x0 x1 x2 f 

0 0 0 0 1 

1 0 0 1 0 

2 0 1 0 0 

3 0 1 1 1 

4 1 0 0 0 

5 1 0 1 1 

6 1 1 0 0 

7 1 1 1 1 

 

 

As an example of how the MRF logic circuit is designed, consider 2-input 

AND gate: 

 

i. All possible states with valid states correspond to f = 1 and invalid 

states, f = 0 was listed in logic compatibility function table as shown 

in Table 4.3. 

ii. For each valid state, its minterm was written down as shown in Table 

4.6. 
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Table 4.6: 2-input AND gate logic compatibility function with only valid states 

 

States Inputs Output Validity 

i x0 x1 x2 f 

0 0 0 0 1 

2 0 1 0 1 

4 1 0 0 1 

7 1 1 1 1 

 

 

For state: 

 

 i = 0, 

 x0 = 0, x1 = 0, x2 = 0, 

 minterm for 000 = x0’ x1’ x2’ 

 i = 2, 

 x0 = 0, x1 = 1, x2 = 0, 

 minterm for 010 = x0’ x1 x2’ 

 i = 4, 

 x0 = 1, x1 = 0, x2 = 0, 

 minterm for 100 = x0 x1’ x2’ 

 i = 7, 

 x0 = 1, x1 = 1, x2 = 1, 

 minterm for 111 = x0 x1 x2 

 

iii. Then, the bistable element network, consisting of NAND or AND 

gates was designed according to the minterms as shown below: 
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Figure 4.13: Bistable element network of 2-input MRF AND gate 

 

 

iv. Next, the complex feedback network, consisting of NOR or OR gates 

was designed based on the minterms as shown below: 

 

 

Figure 4.14: Feedback network of 2-input MRF AND gate 

 

 

v. Lastly, the MRF-implemented circuit was checked for validity using 

all the possible states. 

x0 

x0’ 

x1 x2 

x2’ 

x1’ 

x0’  x1’ x2’ 

x0’  x1 x2’ 

x0  x1’ x2’ 

x0  x1 x2 

x0’ x1 x1’ x2 x2’ x0 
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The state probability for each logic gate can be found using Markov Random 

Field. The state probabilities for NOT and NAND gates are shown below: 

 

i. NOT gate 

 

From Table 4.1, the minterms are: 

 

01  = 
1

'

0 xx  

  = (1 - x0) x1 

  = x1 - x0 x1 

 

 10 = '

10 xx
 

  = x0 (1 - x1) 

  = x0 - x0 x1 

 

So the clique energy, U becomes, 

U  = -[x1 - x0 x1 + (x0 - x0 x1)] 

 = -[x1 - x0 x1 + x0 - x0 x1] 

 = 2 x0 x1 - x0 - x1 

 

Partition function, Z, 

Z =                   (19) 

 

w = (x0, x1) or all possible states 

 

Therefore the partition function, Z becomes, 

Z =                 
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=  

 

=  

=                 (20) 

 

  The output probability, 

  p(x1) =  

=  

=  

=  

=                  (21) 

 

ii. NAND gate 

 

The clique energy, U, 

U = -[(1 - x0)(1 - x1)x2 + (1 - x0)x1x2 + x0(1 - x1)x2 + x0 x1(1 - x2)] 

 = -[x2 + x0 x1 - 2 x0 x1 x2] 

 = -x2 - x0 x1 + 2 x0 x1 x2                (22) 

 

Partition function, Z, 

Z =  

 

w = (x0, x1, x2) or all possible states 
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Therefore, the partition function, Z becomes, 

Z =  

 =  

 =                 (23) 

 

The output probability, 

p(x2) =  

=  

=  

 =  

 =  

=                  (24) 

 

The expression of the state probability for the remaining basic logic gates, 

AND, NOR and OR were derived in the same way. The beauty of MRF 

implementation is that this output probability which corresponds to correct logic 

operation is maximized through two requirements: 

 

i. Bistable storage element 

ii. Feedback network 
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CHAPTER 5 

 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

 

In MRF design of logic gates, the logical computation is embedded directly in 

a network with immunity to noise. The key advantage of the MRF approach is that its 

operation does not depend on perfect devices or connections. Achieving the correct 

state configuration in the network corresponds to propagating state values through the 

network and updating each node assignment with a node state having the maximum 

probability. Successful operation only requires that the joint energy of correct states 

be lower than the energy of errors (or the probability is maximum when the total 

clique energy is a minimum), thus fault tolerance is built in. 

 

 

5.2 Recommendation 

 

Probabilistic circuit with MRF implementation proves to be a promising 

solution to the problem of random and dynamic failure due to thermal noise in 

nanoscale devices. However, there is still a lot of work need to be done. As a 

recommendation for further research, MRF-implemented logic circuit need to 

demonstrate its signal fault tolerance, using the architecture presented in this project. 
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APPENDIX A 

 

MATLAB Code of Square Wave Signal Corrupted by AWGN (SNR 

10 dB) 

 

>> fs = 100; 

>> t = 0:1/fs:5; 

>> x = square(pi*t); 

>> y = awgn(x,10); 

>> plot(t,x,t,y), axis([0 5 -2 2]) 

>> legend ('Original signal','Signal with AWGN') 
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APPENDIX B 

 

MATLAB Code of Marginalized Inverter Output Distribution 

Function Plot for Various Values of kbT 

 

>> x=0:0.1:1; 

>> T1=0.5; 

>> T2=0.25; 

>> T3=0.1; 

>> p1=(exp(x/T1)+exp((1-x)/T1))/(2*(1+exp(1/T1))); 

>> p2=(exp(x/T2)+exp((1-x)/T2))/(2*(1+exp(1/T2))); 

>> p3=(exp(x/T3)+exp((1-x)/T3))/(2*(1+exp(1/T3))); 

>> plot(x,p1,'-'), axis([0 1 0 1]) 

>> hold on 

>> plot(x,p2,'-.'), axis([0 1 0 1]) 

>> hold on 

>> plot(x,p3,':'), axis([0 1 0 1]) 

>> legend('T=0.5','T=0.25','T=0.1') 

>> xlabel('X') 

>> ylabel('p(X)') 

>> title('Graph of probability of an inverter output as a function of T') 
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