
A NOVEL AUTOMATED MODEL

GENERATION ALGORITHM FOR HIGH

LEVEL FAULT MODELING OF ANALOG

CIRCUITS

MUHAMMAD UMER FAROOQ

MASTER OF SCIENCE

ELECTRICAL AND ELECTRONIC

ENGINEERING DEPARTMENT

UNIVERSITI TEKNOLOGI PETRONAS

MARCH 2013

STATUS OF THESIS

Title of thesis
A Novel Automated Model Generation Algorithm for High Level

Fault Modelling of Analog Circuits

I MUHAMMAD UMER FAROOQ

hereby allow my thesis to be placed at the Information Resource Center (IRC) of
Universiti Teknologi PETRONAS (UTP) with the following conditions:

1. The thesis becomes the property of UTP

2. The IRC of UTP may make copies of the thesis for academic purposes only.

3. This thesis is classified as

Confidential

• Non-confidential

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for

Remarks on disclosure:

i.i j ^rSignature of Author

Permanent address:

House No. 1037, Street # 41.

Sector G-10/4, Islamabad.

Pakistan .

Date: (fl 1% 1*01 Z

Signature of

Name of Supervisor
Dr. Likun Xi;t

Date : 0

years.

upervisor

DECLARATION OF THESIS

Title of thesis
A Novel Automated Model Generation Algorithm for High Level

Fault Modelling of Analog Circuits

I MUHAMMAD UMER FAROOQ

hereby declare that the thesis is based on my original work except for quotations and

citations which have been duly acknowledged. I also declare that it has not been

previously or concurrently submitted for any other degree at UTP <*r other institutions.

a.\MM
Signature of Author 0

Permanent address:

House No. 1037, Street # 41,

Sector G-10/4, Islamabad,

Pakistan

Date: D"7-02-l®{% •

IV

^t
Signature of Supervisor

Name of Supervisor
Dr. Likun Xia'

Date : oWo }/**>/^7

DEDICATION

lb myparents andteachers

ACKNOWLEDGEMENTS

I thank Allah the Almighty, for giving me the strength and opportunity to achieve

what has been done in this work. I would like to thanks my supervisor Dr. Likun Xia,

Dr. Fawnizu Azmadi Hussin and Dr. Aamir Saeed Malik for their help and

supervision in conduction this research. I greatly appreciate their care, dedication and

constructive criticism. I have truly benefited and enjoyed working with them.

I thank to the management and authorities of Universiti Teknologi PETRONAS for

the generous financial support and administrative facilities throughout my stay with

Electrical and Electronic Department.

Thanks to those with whom I have worked and during the course of my study. To my

friends in Center of Intellignet Signal and Imaging Research Lab, Wajid Mumtaz,

Junaid, Roshahslinie Ramli, Rishu Gupta, Ateeq-ur-rehman shaheen, Marwan

Shaheen, Due Lee, Due Tra, Ghazanfar. My special thanks to Rao Ahmed Rauf

Subhani and Jawad Hamayun who has been my great support during my stay in

Malaysia. I also express my sincere appreciation to all my friends and country mates

in UTP for their support during the progress of this work.

Last but not the least a very special gratitude towards my parents, my wife and all the

family members for their prayers and consistent moral support in every thick and thin.

Special thanks to my In-laws for their great moral support and timely back-up.

vi

ABSTRACT

High level modelling techniques have been used by researchers from few decades

to increase fault simulation speed of analog circuits. However, due to manual model

generation, the techniques are tedious and time consuming and unable to reduce

analog testing time. To overcome manual modelling limitation, researchers adopt

algorithmic support and start using automated model generation (AMG) methods to

generate models for high level modelling of analog circuits. AMG models

successfully perform HLFM but unfortunately fail to increase high level fault

simulation (HLFS) speed compared to full SPICE-circuit simulations. The failure is

mainly occurred due to the consumption of multiple models and computational

overhead of model switching required capturing nonlinear effects.

In this dissertation we propose a novel AMG approach termed automated model

generation using Chebyshev and Newton interpolating polynomials (AMG-CNIP).

Unlike existing white-box AMG methods that use multiple Taylor polynomial

models, AMG-CNIP generate single model by employing a fusion of Chebyshev and

Newton interpolating polynomials in nonlinear state-space (ss) model structure.

AMG-CNIP model successfully capture nonlinear effects generated by fault-free and

faulty analog circuits.

High level models are generated by translating AMG-CNIP MATLAB model into

VHDL-AMS models. High level models are evaluated at system level using

benchmark nonlinear transmission line circuits and simulation speed is compared with

full SPICE circuit simulation. Experimentation results shows that high level models

shows good accuracy at system level and achieves simulation speedup compared to

full SPICE circuit simulations.

vn

ABSTRAK

Teknik-teknik pemodelan peringkat tinggi telah digunakan oleh penyelidik sejak

beberapa dekad untuk meningkatkan kelajuan simulasi kesalahan litar analog. Walau

bagaimanapun, disebabkan oleh generasi model manual, teknik-teknik tersebut adalah

merumitkan dan memakan masa dan tidak mampu mengurangkan masa ujian analog.

Untuk mengatasi had-had model secara manual, penyelidik mengamalkan algoritma

sokongan dan mula menggunakan kaedah model generasi automatik (AMG) bagi

menjana model-model untuk pemodelan litar analog peringkat tinggi. Model AMG

berjaya melaksanakan HLFM namun gagal untuk meningkatkan kelajuan simulasi

kesalahan peringkat tinggi (HLFS) berbanding simulasi litar penuh SPICE. Kegagalan

utama yang berlaku adalah disebabkan oleh penggunaan pelbagai model dan melebihi

pengiraan yang diperlukan oleh model pensuisan untuk merakam kesan tidak linear.

Dalam disertasi ini, kita mencadangkan pendekatan baru AMG yang dipanggil

generasi model automatik menggunakan Chebyshev dan Newton interpolasi

polinomial (AMG-CNIP). Tidak seperti kaedah AMG-kotak putih yang sedia ada

yang menggunakan model polinomial berganda Taylor, AMG-CNIP menjana model

tunggal dengan menggunakan gabungan Chebyshev dan Newton interpolasi

polinomial dalam model struktur keadaan-ruang (ss) tidak linear. Model AMG-CNIP

berjaya merakam kesan tidak linear yang dijana oleh litar yang bebas kerosakan dan

litar analog yang mempunyai kerosakan.

Model tahap tinggi dihasilkan dengan menukarkan model AMG CNIP MATLAB

kepada model VHDL-AMS. Sistem model tahap tinggi dinilai dengan menggunakan

penanda aras talian penghantaran litar tidak linear dan kelajuan simulasi dibandingkan

dengan simulasi litar SPICE penuh. Keputusan eksperimen menunjukkan bahawa

model tahap tinggi menunjukkan ketepatan yang baik pada peringkat sistem dan

mencapai kecepatan simulasi berbanding simulasi litar SPICE penuh.

vm

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the
university, the copyright of this thesis has been reassigned by the author to the legal
entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained
in, or derived from, this thesis.

© Muhammad Umer Farooq, 2013
Institute of Technology PETRONAS Sdn Bhd
All rights reserved.

IX

TABLE OF CONTENTS

A NOVEL AUTOMATED MODEL GENERATION ALGORITHM FOR HIGH

LEVEL FAULT MODELING OF ANALOG CIRCUITS II

LIST OF TABLES xii

CHAPTER 1 INTRODUCTION 2

1.1 Objectives 4

1.2 Dissertation Organization 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 Classification of AMG Approaches 6

2.1.1 Linear Time Invariant (LTI) System 6

2.1.2 Linear Time Varying (LTV) System 8

2.1.3 Nonlinear Systems 8

2.2 SI AMG Approaches 9

2.2.1. SI AMG for Nonlinear Systems 10

2.3 MOR AMG Approaches 17

2.3.1. MOR AMG for Nonlinear Systems 18

CHAPTER 3 METHODOLOGY 26

3.1. Introduction 26

3.2. Automated Model Generation Algorithm Using Chebyshev and
Newton Interpolating Polynomial (AMG-CNIP) 31

3.2.1 Model generation 31

3.2.1.1. ID CN Polynomial Formulation 32

3.2.1.2. 2D CN Polynomial Formulation 32

3.2.1.3. Automatic Range Finder (ARF) 33

3.2.1.4. CN Polynomial Representation in SS 34

3.2.1.5. Automatic Polynomial Tuner (APT) 34

3.3. Model Evaluation 36

3.4. AMG-CNIP Experimentation 38

3.5. Conclusion 44

CHAPTER 4 HIGH LEVEL MODELING AND HIGH LEVEL FAULT

MODELING USING AMG-CNIP MACROMODELS 46

4.1. Introduction 46

4.2. Automatic Model Conversion (AMC) 46

4.3. AMG-CNIP Algorithm for HLM and HLFM 48

4.4. HLM Using AMG-CNIP Macromodels 50

4.5. HLFM Using AMG-CNIP Macromodels 62

4.5.1 HLFM for Short Fault at Diode Dl 62

4.5.2 HLFM for Short Fault at Diode D2 71

4.6. Conclusion 76

CHAPTER 5 CONCLUSION AND FUTURE RECOMMENDATIONS 78

5.1. Future Work and Recommendations 79

REFERENCES 82

PUBL1CA110NS 91

APPENDICES 92

Appendix A analog circuits as state space 93

Appendix B matlab code for amg-cnip algorithm 97

B.l. Main Routine 98

B.2. AMG-CNIP Model Generation Routine 99

B.2.1 Simulate Circuit Routine 99

B. 2.1.1 Nltxline Routine 100

B.2.2 ARF Routine 101

B.2.3 ID CN Polynomial Routine 102

B.2.3.1 1DNDD Routine 102

B.2.4 2D CN Polynomial Routine 103

B.2.4.1. 2D NDD Routine 103

B.2.5 APT Routine 104

B.3. AMG-CNIP Model Evaluation Routine 108

B.4. Automatic Model Conversion (AMC) Routine 109

B.5. Plotting Routines„„,....,,.., 111

XI

LIST OF TABLES

Table 3-1: Algorithm for Automatic Polynomial Tuner (APT) 36

Table 3-2: AMG-CNIP algorithm for model generation and simulation 38

Table 4-1: AMG-CNIP algorithm for model generation, HLM and HLFM 49

Table 4-2: Configurations for AMG-CNIP HLM Testing 53

Table 4-3: Summary of simulation speed up and accuracy for AMG-CNIP HLM 61

Table 4-4: Configurations for AMG-CNIP HLFM testing (short fault at Dl) 62

Table 4-5: Summary of simulation speed up and accuracy for AMG-CNIP HLFM
(fault at diode Dl) 70

Table 4-6: Configurations for AMG-CNIP HLFM testing (short fault at D2) 71

Table 4-7: Summary of simulation speed up and accuracy for AMG-CNIP HLFM
(short fault at diode D2) 75

xn

LIST OF FIGURES

Figure 2-1: Classification of AMG techniques 7

Figure 2-2: Linear Time Invariant (LTI) block [1] 8

Figure 2-3: Linear Time Varying (LTV) 8

Figure 2-4: NLARX model structure, see equation (2-1) [17] 10

Figure 2-5: Hammerstein-Wiener (H-W) model [17] 11

Figure 3-1: Multiple models using Taylor polynomials 27

Figure 3-2: Comparison of convergence properties of Taylor and Chebyshev
polynomials 28

Figure 3-3: Generation of the linearized models along a trajectory of nonlinear system
in two-dimension ss 29

Figure 3-4: AMG-CNIP model generation and evaluation flow 36

Figure 3-5: Schematic of transmission line circuit (N=5 nodes) with
icl(x) = exp(40x)-\ 38

Figure 3-6: Training input waveform 39

Figure 3-7: Transient response of ID polynomial macromodels for input amplitude
±2.0A and mndomfreq and 6 40

Figure 3-8: Transient response of ID polynomial macromodels for input amplitude
±5.0A that is ±2.5A greater than training input amplitude 41

Figure 3-9: Transient response of 2D polynomial macromodels for input amplitude
±2.0A and randomfreq and 6 42

Figure 3-10: Transient response of 2D polynomial macromodels for input amplitude
±5.0A that is±2.5A greater than training input amplitude 43

Figure 4-1: An example of VHDL-AMS behavioral model for nonlinear transmission
line circuit 47

Figure 4-2: Complete picture of AMG-CNIP model generation and performing HLM
and HLFM 48

Figure 4-3: Nonlinear transmission line circuit wit nonlinear current function (fx)
from SPICE2G6 in SystemVision 50

Figure 4-4: 3-stage cascaded nonlinear transmission line circuit 50

Figure 4-5: MMGSD and AMG-CNIP response for fault-free NLTx line circuit 51

Figure 4-6: MMGSD and AMG-CNIP response for fault-free NLTx circuit
(ignoring initial 150us response) 52

xni

Figure 4-7: Transient response of MMGSD and AMG-CNIP for Configl circuit 54

Figure 4-8: Transient response of AMG-CNIP HLM for Config2 56

Figure 4-9: Transient response of AMG-CNIP HLM for Config3 (node 5) 57

Figure 4-10: Transient response of AMG-CNIP HLM for Config3 (node 11) 57

Figure 4-11: Transient response of AMG-CNIP HLM for Config4
(nodes 11, 12 and 13) 58

Figure 4-12: Transient response of AMG-CNIP HLM for Config5 59

Figure 4-13: Transient response of AMG-CNIP HLM for Config6 (nodes land 5)...60

Figure 4-14: NLTx circuit with short fault at Dl 62

Figure 4-15: MMGSD and AMG-CNIP response for NLTx line faulty circuit 63

Figure 4-16: Transient response of AMG-CNIP HLM and HLFM for Configl
(nodes 1, 2 and 3) simulation result 65

Figure 4-17: Transient response of AMG-CNIP HLFM for Config2 (nodes 5 and 6)66

Figure 4-18: Transient response of AMG-CNIP HLFM for
Config3 (nodes 10 and 11) 67

Figure 4-19: AMG-CNIP HLFM Config4 (nodes 11 and 12) simulation result 68

Figure 4-20: Transient response of AMG-CNIP HLFM for
Config5 (nodes 5, 6 and 11) 69

Figure 4-21: Transient response of AMG-CNIP HLFM for Config6 (nodes 10 and 11)
70

Figure 4-22: NLTx circuit with short fault at D2 71

Figure 4-23: MMGSD and AMG-CNIP response for Configl fault at D2 72

Figure 4-24: Transient response of AMG-CNIP HLM and HLFM for Configl
(node 2) with fault at D2 72

Figure 4-25: Transient response of AMG-CNIP HLFM for
Config2 (nodes 2 and 6) with fault at D2 73

Figure 4-26: Transient response of AMG-CNIP HLFM for
Config3 (nodes 7 and 11) with fault at D2 73

Figure 4-27: Transient response of AMG-CNIP HLFM for
Config4 (node 12) with fault at D2 74

Figure 4-28: Transient response of AMG-CNIP HLFM for
Config5 (nodes 2, 7 and 11) with fault at D2 74

Figure 4-29: Transient response of AMG-CNIP HLFM for
Config6 (nodes 1, 6 and 11) with fault at D2 75

xiv

AMG

HLM

HLFM

HLS

HLFS

TLM

TLFM

TLS

TLFS

LIST OF ABBREVIATIONS

Automated Model Generation

High Level Model(ing)

High Level Fault Model(ing)

High Level Simulation

High Level Fault Simulation

Transistor Level Model

Transistor Level Fault Model

Transistor Level Simulation

Transistor Level Fault Simulation

MOR Model Order Reduction

SI System Identification

CN Chebyshev and Newton

DAE Differential and Algebraic Equation

AMG-CNIP Automated Model Generation algorithm using CN polynomials

WNS Weakly Nonlinear System

SNS Strongly Nonlinear System

LTI Linear and Time Invariant

LTV Linear and Time Varying

ss State-space

ID One Dimensional

2D Two Dimensional

ARF Automatic Range Finder

APT Automatic Polynomial Tuner

AMC Automatic Model Conversion

NLTx Nonlinear Transmission

MMGSD Multiple Model Generation System using Delta Operator

xv

CHAPTER 1

INTRODUCTION

The progress in silicon fabrication processes drastically reduces feature size and

allows more transistors on a die enabling larger chip and more complicated

functionality out of a single chip. Meanwhile, fabrication industry lacks of providing

efficient facilities to build circuits on chips. This may result in higher possibility of

manufacture defects. Therefore, it is vital to test circuits before going to the

production stage.

Generally analog and mixed signal (AMS) r.irr.iiit testing is performed at. two stages:

initially at design stage and then after chip manufacture. Once design is finalized,

faults are injected in the circuit and simulate to determine the possible responses to a

giventest in the presence of fault. The faulty responses are stored and a fault library is

generated. To detect faults after chip manufacture, one tries to match the actual results

of test experiment with one of the pre-computed expected results stored in library.

In this dissertation we are concerned with the testing of circuits at design stage as it is

more critical, expensive and time consuming.

Several mature methods exist for digital circuits testing, e.g., Design for Testability

(DFT) [1] and Built-in-Self-Test (BIST) [2] etc. and can be easily applied to all

circuits. Unfortunately, in analogue domain, these techniques can only be employed

for certain classes of circuits [3], [4]. Analogue test is very time consuming and

expensive, its costs dominate approximately 90% of the whole testing cost in modern

AMS ICs [1],[2]. Analogue test suffers from a lack of automated test pattern

generation (ATPG) algorithms, long testing time and unknown test quality [7], [8].

Analog testing strongly influences time-to-market and time-to-profit and

unfortunately still a major bottleneck in developing mixed-signal ICs.

Traditional analog faulty circuit simulation use SPICE-like simulators that works at

the device level, with full scale device models, resulting in extensive simulation run

times [9]. It is well known that transistor is a basic building block of modern

2

semiconductor devices. Therefore, transistor level simulation (TLS) plays a major role

in fault modeling and simulation. To test faults in transistor level circuit, one need to

inject fault in each transistor and run transistor level fault simulation (TLFS)

separately for each fault. To test a modern analog and mixed signal circuit containing

millions of transistors, TLFS may take unpractically long time to complete.

During the last few years, high level modeling (HLM) and high level fault modeling

(HLFM) techniques have been proposed for testing and verification of modern

complex AMS design due to its high speed [10-14] . High level fault-free modeling

may simply indicate (linear or nonlinear) behavior of a fault-free circuit, but it is not

able to cope with faulty conditions (that can also be linear or nonlinear). The only way

to model faulty circuit at high level is to employ HLFM.

To perform HLM and HLFM macromodel of an anlog circuit is required. Macrmodel

is simplified representation of the original transistor level circuit that capture the

important behaviour of the circuit while discarding the redundant information.

Macromodel can be generated manually or automatically. For the former approach,

macromodel generation is a tedious process and often fails to capture critical

nonlinear effects stemming from unanticipated interactions between blocks, or from

second order phenomena in device models. It is in this context that people start

seeking possibilities of automated model generation (AMG). AMG techniques take a

detailed description of a block - for example a SPICE-level netlist - and generate, via

an automated computational procedure, a much simpler macromodel [15].

A number of AMG approaches have proposed, which can roughly be divided into two

branches: the fitting approaches and the constructive approaches [16]. The fitting

approaches are also know as "black-box" modeling, which treat the system being

modeled as a black-box, a prametric model is pre-selected and only the input/output

data (from SPICE-level simulations) is used to fit model parameters [17-19]. Typical

parametric models that can be adopted include, e.g., lookup tables [20], radial basis

functions (RBF) [21], artificial neural networks (ANN) [22], [23] and its derivations

such as fuzzy logic (FL) [24] and neural-fuzzy network (NF) [25], and regression

[20],[21]. The constructive approaches are completely opposite, which start from

detailed SPICE-level descriptions and abstract macromodel automatically via

mathematical algorithms in a bottom-up fashion, with no manual knowledge of

underlying internal circuit structure or operation required. Compared with black-box

counterparts, one of the advantages of such methods is that nonlinearities and

dynamics from increasingly sophisticated device models can be naturally and

automatically abstracted into the macromodels. However, white-box AMG may

produce high order models of excessive complexity (e.g., [28-30]), in which case

model order reduction (MOR) techniques are required [31]. A survey paper [32]

discusses MOR techniques with respect to various model types, and in a variety of

contexts: LTI MOR [33], LTV MOR [34], [35] and weakly nonlinear methods

including polynomial-based [36], trajectory piecewise linear (TPWL) [37], piecewise

polynomial (PWP) [38], scalable trajectory piecewise linear (STPWL) [39] and

transfer function trajectory (TFT) [40].

Unfortunately, there are not many papers describing the use of AMG approaches for

HLFM at a system level. For straightforward system simulation relatively simple

models may be adequate, but they can prove inadequate during HLFM and HLFS.

The accuracy and speedup of existing models may be doubted when fault simulation

is implemented because faulty behavior may force (non-faulty) subsystems into

highly nonlinear regions of operation, which may not be covered by fault-free models.

Authors in [18] first time use AMG approach called multiple model generation system

using detal operator (MMGSD) to perform HLM and HLFM at system level.

Unfortunately, authors fail to achieve simulation speedup at system level due to

computational overhead of model switching for which high level simulator is not

optimized.

The general aim of this study is to prove that models generated using automated

model generation can be employed to implement HLFM and a simulation speedup at

system level can be achieve compared to full SPICE-level circuit simulations.

1.1 Objectives

The objectives of this dissertation are summarized as follows.

1. To develop an AMG algorithm for macromodeling of linear and nonlinear

analog circuits.

2. To perform HLM and HLFM at system level and achieve simulation speedup

compared to standard SPICE circuit simulations.

4

1.2 Dissertation Organization

The remaining of the thesis is organized as follows.

• Literature Review: Chapter 2 reviews nonlinear AMG approaches for black-

box and white-box types. The approaches are discussed in the context of

HLM.

• AMG-CNIP approach: Chapter 3 introduces the major contribution of this

dissertation, the AMG algorithm termed automated model generation using

Cheybshev and Newton interpolating polynomials (AMG-CNIP). AMG-CNIP

generates single model for a given analog circuit (faulty or fault-free) and

avoid model switching problem that is the main hurdle in achieving simulation

speedup at system level.

• HLM and HLFM using AMG-CNIP: Chapter 4 presents high level modeling

(HLM and HLFM) using models generated in last chapter. Two benchmark

circuits: nonlinear transmission line circuit and a 3-stage cascaded nonlinear

transmission line circuits are used to perform HLM and HLFM at system

level.

• Conclusion and Future Recommendations: Chapter 5 concludes this

dissertation and provides several suggestions for future improvement of

AMG-CNIP.

CHAPTER 2

LITERATURE REVIEW

It is known that a model of a system (also called macromodel) can be generated

manually or automatically. This thesis mainly focuses on the latter, i.e., development

of an AMG approach for analog circuits. The aim of this chapter is to review some

model generation approaches for HLM of nonlinear analog circuits.

2.1 Classification of AMG Approaches

Depending on the amount of information available for modeling analog circuit, either

black-box or white-box techniques can be employed. If only system input/output data

is available then one can only employ black-box AMG. If system detailed schematic

is available and information about internal node voltages and branch currents, then

white-box AMG can be used. In this chapter we review System Identification (SI)

based black-box AMG and Model Order Reduction (MOR) based white-box AMG.

A fundamental decision in selecting an AMG approach is to choose the right model

structure. These model structures are selected according to the type of the circuit or

system being analyzed. The main system types include [32]: Linear Time Invariant

(LTI), Linear Time Varying (LTV) and nonlinear systems. Once the system type is

analyzed, the macromodel can be generated using any model structure, e.g. ss (in

form of differential and algebraic equations (DAEs)), transfer function and

polynomials etc. Figure 2-1 illustrates the taxonomy of various AMG techniques in

pyramid form. A brief description of system types of analog circuits is given in next

subsections.

2.1.1 Linear Time Invariant (LTI) System

LTI systems are widely used in electronics design and the AMG techniques developed

for them are mature e.g. [8],[9]. The basic structure of a LTI block for mixed signal

6

circuits is illustrated in figure 2-2, where u(t) and y(t) represent inputs, and outputs to

the system in the time domain, respectively. Correspondingly, U(s) and Y(s) represent

u(t) andy(t) in the Laplace domain.

Figure 2-1: Classification of AMG techniques

An LTI system can be characterized by convolution of the input with an impulse

response h(t) in the time-domain, which transforms in the frequency/Laplace domain

into a multiplication relationship, i.e., the input-output relationship can be expressed

by partial differential equations (PDEs) or ordinary differential equations (ODEs).

These models can be implemented using HDLs such as VHDL-AMS or Verilog-

AMS. Examples of LTI systems include RLC interconnects circuits generated by

parasitic extractors of digital circuits and linear amplifiers, etc.

u(t)/U(s)
Impulse response/;(/)

ODEs/PDEs

Transfer function H(s)

y(t)/Y(s)

Figure 2-2: Linear Time

Invariant (LTI) block [1]

u(t)/U(s)
Impulse response h(t,tau)

T-V ODEs/PDEs

Transfer function H(t,s)

y(t)/Y(s)
•

Figure 2-3: Linear Time Varying (LTV)

2.1.2 Linear Time Varying (LTV) System

LTV systems are used in practice because most real-world systems are time-varying

as a result of system parameters changing as a function of time. LTV systems can be

described by impulse responses in the time domain or transfer functions in the

frequency/Laplace domain. The basic structure of an LTV system is depicted in figure

2-3, where u(t) and y(t) represent the inputs and outputs of the system in the time

domain, respectively. U(s) and Y(s) are the corresponding signals in the Laplace

domain. .

The main difference between LTV and LTI systems is that the latter follow the rule

that if there is a time-shift in the input, the same time-shift also occurs in output,

which does not necessarily occur in LTV systems. LTV systems are able to efficiently

model variations with time using the ss form and thus the modeling of LTV systems

can be formulated as problems of nonlinear systems, which obey the scalability

property, but do not obey the time shift property. More details on nonlinear systems

are provided in the next subsection. Examples of LTV systems may include RF

mixers, switched capacitors, and sampling circuits.

2.1.3 Nonlinear Systems

Essentially circuits that contain semiconductor devices are nonlinear, most obviously

for devices such as diodes and silicon controlled rectifiers where the I-V

characteristics change abruptly. Transistors can be modeled as a linear device for

small signals, but for large signals they are significantly nonlinear.

A nonlinear circuit or system can be divided into weakly nonlinear system (WNS) or

strongly nonlinear system (SNS). The former can be approximated using linearization

techniques or modeled using simple nonlinear approximation methods such as Taylor

and Volterra series. Strongly nonlinear circuits cannot be modeled using simple series

approaches because the useful information lies not only in low order derivatives, but

also in high order derivatives that are existed in strong nonlinear effects [42]. Some

examples of strong nonlinear effects include the responses generated by high speed

digital logic gates, switches, comparators and so on, where rapid switching occurs

between two states. Though the switching behavior is inherent in digital systems, the

same behavior is also observed in analog circuits such as sampling circuits, switching

mixers, analog-to-digital converters (ADC), digital-to-analog converter (DAC) etc.

Unlike linear systems, no technique has been developed yet that can be confidently

adopted to capture the characteristics of all kind of nonlinear systems [2]. This is

mainly because of extremely complex dynamical behavior in nonlinear systems.

During the last decade significant efforts have been put for developing nonlinear

AMG. Unfortunately, the majority of these techniques [43-47] are application

specific. In next subsections SI and MOR AMG approaches for nonlinear circuits and

systems are discussed.

2.2 SI AMG Approaches

SI is the art and science of generating mathematical models from the descriptions of a

dynamical system [48]. In general, SI AMG methods generate models using three

major steps:

1. Collect data, either from experimentation or simulation of the original system;

dividing the data into two parts, one for model generation and the other for

model verification.

2. Choose a model set.

3. Pick the 'best' model from the set.

It is quite likely that the first model obtained will not pass model validation tests. In

which case the identification process in continued until the model is validated [49-

51]. Successful model generation requires suitable stimulus inputs that can excite all

the possible states of the system.

A number of SI approaches exist for the modeling of linear systems [52-54]. Details

on modeling of nonlinear circuits and systems using nonlinear AMG is given in next

section.

2.2.1. SI AMG for Nonlinear Systems

Transfer function modeling techniques of linear systems can be extended for AMG of

WNS. One example is nonlinear ARX (NLARX) [27], whose model structure is

shown in (2-1).

y(t) = F(y(t-l),...,y(t-na),u(t)Mt-l),-Mt-nb)) (2-1)

The function F depends on a finite number of previous inputs u and outputs y, na, m

represent the number of delayed output and input values that are used for the

prediction of the current output. The model structure is shown in block form in figure

2-4.

Nonlinearity Estimator

u Nonlinear

Function

_Y

u(t), u(t-1),y(t-1),...
>— —•

—•

Linear Funciion

Figure 2-4: NLARX model structure, see equation (2-1) [17]

F is a nonlinear function and the inputs to F are model regressors, composed of

delayed input and output values, u(t),u(t-l),...,u(t-nb) y(t-l),...,y(t-na)-

The first block in figure 2-4 is a regressor block that computes the regressor on the

basis of the current and past input and output values. The second block is a

nonlinearity estimator. This block implements two functions, one a linear function

and the other a nonlinear function. The outputs from the regressor block are mapped

to the model output^ using these functions. The combined function F(x) implemented

by nonlinearity estimator is shown in (2-2).

F(x) = L'\x-r) +d + g(Q(x-r)) (2-2)

where x is a regressor vector. Ll (x) is the output of the linear function block and

g(Q(x-r)) is the output of nonlinear function block. Examples of nonlinear estimators

used in the nonlinear function block include sigmoid networks, tree partitions,

wavelet networks and neural networks [27].

10

Another approach to decomposing a system into linear and nonlinear functions

involves the dynamics of the system being controlled through linear functions, with

the nonlinear behavior captured through functions consuming the inputs and outputs

of a linear block. The Hammerstein-Wiener (H-W) model [55] shown in figure 2-5 is

an example of this configuration. Nonlinearity in both input and output is treated in

separate blocks with a linear block connecting them.

u(t) Input Nonlinearity

(f)

w(t)
Linear Block

x(t) Output Nonlinearity

(h)

y(t)

Figure 2-5: Hammerstein-Wiener (H-W) model [17]

where

• Block 1 implements nonlinear function (f) on input u(t) and generates output

w(t);

• Block 2 implements a linear transfer function between nonlinear input w(t)

and linear output x(t);

• Block 3 implements nonlinear function (h) and generates nonlinear output y(t)

by consuming inputs x(t)fxom linear block.

As the block 1 takes care of nonlinearities in input, the function/is called the input

nonlinearity. Similarly, function h (block 3) is called the output nonlinearity. If the

model structure contains only block 1 for nonlinearity, i.e., treating nonlinearities only

in input, then it is called a Hammerstein model. Similarly, if the model structure treats

nonlinearities only in the output; it is a Wiener model. The combination of both

nonlinearities in a single model is called an H-W model. Several algorithms are

available for nonlinearity estimators / and h, such as piecewise linear, one layer,

sigmoid network, wavelet network, saturation and dead zone [27].

Partitioning of a nonlinear system in to linear and nonlinear blocks in an H-W model

generates better output than the NLARX model [17]. However, due to lack of

feedback, the model may become unstable for larger systems. An inherent

shortcoming in this model structure is that a H-W model considers nonlinearity as a

"static" characteristic of a system, which is usually the case with control systems.

11

However, in modern mixed signal electronic circuits, nonlinear behavior is highly

dynamic (nonlinearity changes with time), e.g., nonlinear effects generated by cross

talk, noise, and intermodulation phenomena etc. The H-W model is also discrete time

like NLARX and uses the same nonlinear functions, such as sigmoidnet, wavenet etc.,

for nonlinearity estimation.

We start investigation for the development of AMG using NLARXand H-W AMGs.

According to the results [19], [56], [57] it is clear that both AMGs are able to capture

weak nonlinear effects, but become computationally expensive when run at system

level after conversion into VHDL-AMS behavioral models. Furthermore, both AMG

approaches perform HLM with poor accuracy, and high level simulation (HLS) speed

is significantly slower than standard transistor level SPICE circuit simulation (gold

reference).

To deal with dynamical nonlinear behavior, Simeu et al. [58] propose another

approach teuned as Situation Dependent ARX (sDARX) model. SDARX extends the

idea of the general nonlinear ARX (NARX) (given in equation 2-3) by adding

situation dependent coefficients in the regressor term r(t) of the model, shown in (2-

4), where,cj)tXy(t)),(t>* (y(t))\M<.n an^fi'(y(t))\l<i<„ are the data dependent coefficients of the

model. A Radial Basis Function (RBF) method is used to estimate these situation

dependent coefficients. The main idea of the SDARX approach is to divide the

parameter search space into two subspaces: linear weight subspace and nonlinear

parameter subspace.

y(t) = f(y(t-\),...,y(t-n),u(t-l),.:,u{t-nu)) + v{t) (2-3)

y(t) = f(y(t))+v(t)

y(t) =t0 (r(0) +£ tf(r(t))y(t - 0+£ V! (r(OMt -o +e(t)
(2-4)

Then a search is made for the best model from these search spaces, applying

optimization techniques to get accurate results. To avoid computational overhead,

optimization is applied only to the linear subspace. SDARX models weak dynamical

nonlinear behavior with good accuracy. Unfortunately, this approach is

computationally complex and hence may become unsuitable for HLM, as it may not

12

be able to increase HLS speed. In addition the SDARX model is only applicable to

SISO systems.

SI AMG approaches discussed above are only able to capture weak nonlinear effects.

To model strong nonlinear circuits and systems based on input/output data, more

powerful identification AMGs are required. There are several techniques available for

SI based AMG for SNS. Two recently proposed techniques are discussed: Compact

Modeling (CM) [17] and Multiple Model Generation System using Delta operator

(MMGSD) [18].

In CM, the model identification procedure is based on minimizing the model error

over a given training data set subject to an incremental stability constraint, which is

formulated as a semidefinite optimization problem [17]. Initially the system of

implicit form seen in (2-5) is linearized to get a linearized output error upper bound r

over the training data set X.

F(v[t],...,v[t-m],u[t],...,u[t-k]) = 0,

G(y[t],v[t]) = 0

where vftj 6 RN is a vector of internal variables, yftj GRNy is the output, u[t] GRNu is

the input, F £ R is a dynamical relationship between the internal variables and the

input, and G ERNy is the static relationship between internal variables and output.

Then a stability constraint is enforced on the system through the use of a storage

function H.

The formulations that enforce both stability and accuracy on the linearized output

error upper bound r at the same time are shown in (2-6).

min rFGH2_, iri subject to

r/+2(5;^(A) +2|JG/(5o,^)-|̂ |2 +/?(_,(A-)-A,(A+)>0 V/,A,£ (2-6)

where rt output error upper bound is a function of training data set

X[t] = (y[t],V[t],U[t])given byr, = r(y[t],V[t],U[t]), F and G are dynamical and static

relationships of input and outputs represented respectively byFl(A) =F(V[t],U[t], A),

G, =G(y[t],v[t],80,§) ,Aand£ represents the incremental variables used for

incremental stability. ht is the storage function that depends on internal stateVand

incremental variable A, given by fy_,(A-) =/z(K-,A-), and hl(A+) =h(V-,A-) [17].

13

All functions F, G, H and r in equation (2-6) are unknowns. Estimation of these

unknowns can be treated as an optimization problem and can be converted into

semidefinite program (SDP) by allowing the unknown functions F, G, H and r to be

chosen as linear combinations of a finite set of basis function 0, given in (2-7), where

0F, 0G, 0H ,0r, g cp, and ccF, aG, aH, d are the free variables solved through SDP.

H=Z *»> <t?(n r=Z jeNrCcW(y, V, U) (2-7)

A SDP is a problem whose objective function is linear and whose constraints require

matrices which are positive semidefinite (PSD)[17]. SDP is a special case of convex

optimization concerned with the optimization of a linear objective function subject to

the constraint that the affine combination of symmetric matrices is positive

semidefinite. Such a constraint is nonlinear, or not smooth, but convex in nature.

Hence, SDP is consideied to be a special case of convex optimization. A general form

of SDP that minimizes a linear function of a variable xgRm subject to a matrix

inequality is shown in equation (2-8), where F(x) =F0 +]T™ xlFi.

Minimize C x

Subject to F(x)>0 (2-8)

The SDP problem data in (11) are the vector CeR'" and m+1 symmetric matrices

Fo,...,FmeRn ". F(x) > Omeans that F(x) is positive semidefinite, i.e., z F(x)z > 0 for

allzetf".

The benefit of formulating the optimization problem (2-6) as an SDP (2-8) is that it

can be solved efficiently using readily available software routines [59-61]. However,

the complexity of the optimization problem (2-7) depends heavily on the choice of the

basis function 0 for the unknowns F, G, H and r. Therefore, the selection of the basis

is critical to obtain a feasible solution [18]. CM utilizes a polynomial basis to

efficiently solve the optimization problem. This allows CM to identify a system as a

rational model structure. However, only models that are linear in unknown state

variables are considered. To achieve compactness in the identified rational model,

reduction of states for larger systems are attained through conventional projection

methods and further reduction of polynomial basis is obtained through a fitting

procedure.

14

The model generated by CM very closely resembles the original system [62] and

guarantees stability in the generated compact model. For example, in [17] a compact

model of a Micro Electro-Mechanical Systems (MEMS) device of order 400 is

generated. Simulation results for its nonlinear behavior show good accuracy

indicating that CM is able to generate stable reduced models for originally high order

systems.

Another AMG for SNS targeted HLM and HLFM of analogue circuits has been

proposed by Xia et al. [18]. The algorithm, termed multiple model generation system

(MMGS) consists of two parts: the Automated Model Estimator (AME) and the

Automated Model Predictor (AMP). The AME implements the model generation

process using Recursive Maximum Likelihood (RML) [27] method and AMP uses

these models to predict signals in the simulation [63], The AME comprises three

stages: pre-analysis, estimator and post-analysis. In pre-analysis stage initial

conditions of MMGS are setup e.g., input range and the number of submodels. This

step is only performed once in MMGS. The estimator implements RML and provides

output responses and error measures. The post-analysis step implements the model

generation process.

MMGS produces a new model for different nonlinear regions error against input

voltage. The model structure used by MMGS for these regions is shown in (2-9) [63].

X0 =-aly(t-l)-a2y(t-2)-.. anj{t-n4+b{i4t-l)+hzi<(t-2)+.. bnjit-nb) (2-9)

The model is calculated using the linear regression in (2-10), where 6 is the parameter

vector shown in (2-11), <p(f) is the regression vector displayed in (2-12).

y(t) = cpT(t)9 (2-10)

6 = [a\ a2 ... amb] b2 ... bnhf (2-11)

(pT(t) = [-y(t-\).,,-y(t-na) u(t-l)...u(t-nb)] (2-12)

MMGS generates discrete time models that are able to accurately model faults for low

frequency circuits. However, these models get contaminated with the effects of

aliasing and severe phase shift for high frequency circuits [64].

The shortcomings in MMGS are improved by introducing a delta operator (8) in

MMGS model structure that leads to the development of MMGSD which handles

15

nonlinearity over time. An attractive property of the delta operator is that it produces

model coefficients that approximate the discrete time models as continuous time

models.

To present the model structure in continuous time, the inverse Laplace transform of

the transfer function shown in (2-13).

GW=iw =v+».'-;'+-».';
U(s) sm +a,sm-x +...ams°

It can be used if the sampling interval is sufficiently short [26]. The resulting equation

in time domain with the delta operator can be presented as equation (2-14) [63].

y(t) b0S"+blS-'+...b„S° (2.14)
u(t) S'" +aiS'"-i+...am8°

After arranging terms in (2-14), the system in (2-15) is obtained.

y(t)Sm =-(ax5m~[+... + am)y(t) + (b05" +... + bn)u(t) (2-15)

System in equation (2-15) is solved using RML appropriately modified using the delta

operator [63]. Unlike in [17], [37], [65], Xia et al. use single training data to excite all

possible states by superimposing pseudorandom binary sequence (PRBS) signal on a

linear waveform . In addition, HLM and high level fault modelling (HLFM) are

performed by converting the MMGSD model into a VHDL-AMS model through a

process called multiple model conversion system using a delta operator (MMCSD).

MMCSD loads MMGSD model parameters and generates HLM and HLFM

implemented in VHDL-AMS. Accurate simulation results are achieved.

Unfortunately, simulation speed up in high level fault simulation (HLFS) is not

achieved compared with transistor level fault simulation (TLFS) because of

computational overhead in the HDL simulation. The overhead is mainly due to the

fact that the MMGSD has to discretely switch between multiple models for a single

fault during simulation. Speed can be improved by implementation of fault collapsing,

to prevent repetition of effort, and by optimizing the number of models generated to

prevent unnecessary model switching from consuming computational effort.

Intelligent setting of thresholds for model switching during MMGSD may achieve

this.

16

In conclusion SI AMG approaches are able to capture nonlinear effects generated by

analogue circuits based on only input/output data of system. However, based on

existing literature and through our experimentation results in [19], [56], [57], SI AMG

approaches are not efficient for performing HLM at system level because:

• Majority of available SI AMGs are discrete time, whereas analogue circuits

are continuous time in nature, hence continues time model structures are more

suitable for their modeling.

• Since no circuit internal information is used during modeling process, AMG

has to make its own guess and increase model order in order to accurately

capture nonlinear effects resulting in computational overhead.

• HLM and HLFM generated using SI AMG becomes computationally

expensive and are unable to achieve simulation speedup as compared to

standard SPICE circuit simulation.

2.3 MOR AMG Approaches

When circuit internal information (node voltages, branch currents etc.) are available

during macromodeling process, then white-box MOR AMG approaches can be used.

A MOR AMG approach mainly captures circuit internal information through a ss

model structure shown in equation (2-16) for macromodeling of linear systems.

Ex = Ax(t) + Bu(t), (2-16)

y(t) = CTx(t) + Du(t)

wherex(t) e R" is the internal state variable consists of node voltages and branch

currents, u(t)<=Rmand y(t)eRparQ the input and output waveforms. Matrices

A e Rnxn,E e Rmn,Be Rnxm, and C e Rpw are constants.

First equation in (2-16) is called 'state equation' and second equation is called 'output

equation', where output y(t) is a linear combination of states x(t).

Since ss captures complete circuit internal information, the order (dimensions) of

resulting state variable x is high. It is inefficient to simulate macromodel in its original

form as it is computationally expensive due to high model order. Therefore, model

17

order reduction (MOR) methods are applied. MOR methods projects original ss to a

lower dimension subspace that capture only critical information of the circuit and

confiscate redundant information. Therefore, task of a MOR method is to produce a

model of lower order whose response matches with original system response with

good accuracy. Also, the reduced model should maintain the desired properties of the

original system with minimum computational overhead, less memory requirements

and shortest evaluation time.

There are two types of MOR techniques for linear systems: projection based and non-

projection based techniques. Projection methods reduce model order (n) by projecting

original ss (of dimension n) to lower dimension ss (of dimension q) by using

projection matrices U and V. The most widely used approaches are Proper Orthogonal

Decomposition (POD) methods [66-69], Krylov-subspace and shifted Krylov-

subspace methods [70-74], and Balancing-based methods [75-77]. Non-projection

methods do not employ projection matrices to reduce ss dimensions. Instead these

methods directly approximate lower order ss from original higher order ss by applying

fitting and optimization methods etc. Some of the examples of non-projection

methods includes Hankel optimal model reduction [78], singular perturbation method

[79], and various optimization-based methods.

In the next subsection MOR approaches for nonlinear systems are reviewed.

2.3.1. MOR AMG for Nonlinear Systems

If a circuit contains nonlinear components such as diodes, transistors etc. then the linear ss

models structure shown in equation (2-16) cannot be used for macromodeling of nonlinear

analogcircuits. A standard nonlinear system formation shown in (2-17) is needed based

on a set of nonlinear differential-algebraic equations (DAEs).

q(x(t)) = f(x(t)) + bu(t)

y(t) = cTx(t)

where x £ R", n is the order of matrices, x(t) represents the state vector that can

represent node voltages and branch currents, y(t) is the vectors of outputs that can be

again node voltages and branch currents, u(f) is the input to the circuit, q(.) and/(.) are

nonlinear vector functions. Function q(x(ty) represents nonlinear charge contribution

in the circuit that is a function of state vector x(t) and function f(x(t)) represents

18

nonlinear current in the circuit that is also a function of state variablex(i). b and c are

the constant input and output matrices, respectively.

In the systems where charge (and capacitance) is considered to be linear, the nonlinear ss

representation (2-17) is reduced to the form shown in equation (2-18), where E is a constant

matrix.

E—x(t) = f(x(t)) + bu(t)
dt (2-18)

y(t) = cTx(t)

Critical task in macromodeling of nonlinear circuits using equation (2-17) is the

representation of nonlinear functions q(.) and/(.) in ss. Conventional approach is to expand

the functions using Taylor polynomials as shown in equation (2-19).

—(q(x0)^G](x-x0)+G2(x-x0)®(x-x0)+---Gl(x-xQf)) =
dt

f(x0) +Ai(x-x0)+A1(x-x0)<S>(x-x0)+---Aj(x-xoyi)+bi(t)
(2-19)

where <8> is the Kronecker tensor product operator and G, and A, are the i,h order

derivative of nonlinear functions q(x) and/(x) respectively and are given as:

A l d'fA -
i\ dx'

gR"x"' , q _ 1&q
i\ dx'

x—xt.

nxn

It is important to notice here that nonlinear functions q(.) and/(.) in equation (2-17)

do not have explicit formulations, instead these terms come directly from circuit

simulator. Basically MOR AMG methods use standard SPICE circuit simulation data

to obtain training information for macromodel generation. SPICE linearizes nonlinear

components of the circuit using Taylor polynomial in its Newton Raphson loop [80].

MOR AMG methods directly extract Taylor polynomial terms from SPICE simulator

and use as linearization information in nonlinear ss form shown in equation (2-19) for

macromodel generation.

Once a nonlinear system is linearized, linear MOR techniques (projection or non-

projection based) mentioned earlier can be applied to reduce the system order.

19

As discussed earlier in section 2.1.3 nonlinear analog circuit can be classified as

WNS or SNS. If a system response can be approximated using single Taylor

polynomial, then the system is considered as WNS. If a system response cannot be

captured with single polynomial then the system is considered as SNS. For later case,

piecewise linearization (PWL) approach is used. PWL linearizes a nonlinear system at

different operating points using Taylor polynomials and the final model is a

combination of different linearized models.

The basic idea behind macromodeling a WNS is to approximate a nonlinear system

with Taylor polynomial such that MOR methods for linear system can be utilized. As

long as higher order terms are in Taylor polynomial, the system cannot be consider as

linear. Therefore, authors in [81] and [82] apply perturbation and relaxation

approaches to realize Taylor polynomial system as a linear system. Basically these

methods consider each term in Taylor polynomial as a separate linear system in which

Lhe input of current system is the output of preceding system. However, the authors do

not suggest method for the model order reduction of resulting system. To solve this

shortcoming, Roychowdhury et al. [83] improve the relaxation approach by applying

a separate projection basis at each stage to obtain a reduced model. Although authors

achieve good accuracy for reduced model, but resulting model is still not reduced as

the final model is the union of separate reduced models. Li et al. [36] combine and

extend Volterra and projection approaches above using a method termed NORM

(Nonlinear Model Order Reduction Method) to achieve reduced model size. Instead of

generating separate projection basis for each stage, NORM generate a single

projection basis for all stages to reduce the system shown in equation (2-19) as

proposed in [36]. Compared with existing projection based reduction models, such

as[34][84], it provides a significant reduction in model size.

The polynomial based techniques mentioned above attempt to linearize the nonlinear

part of a system and then apply model reduction [83],[36],[85]. Other techniques

perform the nonlinear model reduction process using various approaches by splitting a

system into linear and nonlinear parts, then a reduction technique is applied only to

the linear part. After that the linear part is stitched back with the untreated nonlinear

part to get the overall reduced nonlinear model [86],[87]. However, these approaches

20

suppose less number of nonlinear elements in the circuits that is not a practical

assumption for modern semiconductor nonlinear analogue and mixed signal circuits.

It is known that strong nonlinear effects often appear in higher order derivatives [38].

Unfortunately, the MOR based AMG techniques for WNS are only able to capture

nonlinear effects that lie within low order derivatives of a system transfer function. To

overcome the issue above , other methods such as piecewise approximation [15] can

be used to achieve better solutions. The simplest approach is to represent a nonlinear

system using PWL approach. Each small region in the nonlinear response is readily

linearized, and a combination of these linear pieces can approximate an overall

nonlinear system. However, a major shortcoming is that the number of pieces

(regions) increases drastically for strong nonlinear systems in order to achieve

sufficient accuracy, which will result in longcomputation process.

To overcome this problem of explosion of regions, Rewienski et al. [27] developed an

approach termed trajectory piecewise-linear (TPWL). Initially they select multiple

points along a trajectory in the ss of a nonlinear system to generate an equal number

of linear approximations. These points are called "center points" and are generated

using application specific training inputs. A model is generated if the current state

point x is 'close enough' to the last linearized point x„ i.e., |jx - xi\\ <s, which means

that x lies within a circle of radius of e and centered at x,. Each of the linearized

models takes the form shown in (2-20), with expansions around states xo ,..., xs-i,

where/(.) evaluated at states x,. x0 is the initial state of the system and At are the

Jacobians evaluated at x,.

dx
— = /(*,-) + 4 O -*,•) + Bu (2-20)

A Krylov subspace projection method is then required to reduce the order of the linear

model within each piecewise region. Rewienski et al. then combine all s linear models

according to a weighting equation in (2-21), where w,(x)are the weights depending

on state x.

dx ,s~1 s~l
— =£w,(x)/(x,) +£ wi(x)Al(x-xi)+Bu (2-21)
"' ;=0 i=0

21

I
Rewienski et al. state that TPWL is more suitable for circuits that exhibit strong

nonlinear effects such as comparators. They also prove that TPWL is more efficient

than PWL with respect to the regions explosion problem. They employ application

specific training inputs for macromodel generation, which implies that the

macromodel covers only those ss trajectories that are generated through specific

inputs. TPWL macromodels are able to model strongly nonlinear systems, but the

capability to model weak nonlinear systems is limited due to poor approximation

properties of linearized models for higher order derivatives. Also such macromodels

may be unable to generate correct responses for inputs not covered by training stimuli.

Moreover, the computational cost involved in generating reduced macromodels for

SNS is high.

To improve this, Vasileyev et al. [88] introduce a two-step hybrid reduction method

called TBR-TPWL model reduction. Initially they reduce the ss matrices dimension

using a conventional Krylov subspace method and further reduction is achieved

through use of TBR projection. Simulation of macromodels generated using TPWL-

TBR provides better accuracy than models generated using only the Krylov subspace

method. Also, computational cost is significantly reduced, but unfortunately it does

not guarantee stability.

TPWL and its variants discussed above can model SNS with good accuracy, but they

have poor approximation properties for WNS. The major reason of failure is that they

use only first order term of Taylor polynomial in each region which limits the scope

of macromodel local to an operating region. In other words, local approximation

properties of Taylor polynomials are proved to be poor due to consumption of pure

linear model in each piecewise region. Therefore Dong et al. [65],[38] proposed a

piecewise polynomial (PWP) extension of TPWL. This is a combination of

polynomial model reduction with the trajectory piecewise linear method. PWP uses

higher order Taylor polynomial in each piece wise region. It is able to improve TPWL

by dividing the nonlinear ss into several regions that are approximated with a high

order Taylor polynomial model around the center expansion point. A training

simulation employing DC sweeps can be used to generate these expansion points. The

resulting model is gradually developed by introducing new regions until the desired

accuracy is achieved. Firstly a polynomial function is expanded into many points, and

22

then simplified through approximation of the nonlinear functions in each region to

obtain much smaller size models. The resulting models are then combined as a single

model. A scalar weight function is used to ensure fast and flat switching from one

region to another.

PWP is implemented in [44] for extracting broadly applicable general-purpose

macromodels from SPICE netlists in which the PWP model is able to model different

nonlinear behaviors such as loading effects, simultaneous switching noise (SSN),

crosstalk noise and so on. A simulation speed up of eight times is reported [89].

One of the major advantages of PWP is that it can model not only weakly nonlinear

effects (such as distortion and inter-modulation) but also strongly nonlinear system

dynamics (such as clipping and slewing). Moreover, fidelity in large-swing and large-

signal analysis can be retained. However, a combination of several training data is

used to excite different operating regions.

Authors in [39] focus on the interpolation properties of TPWL models and propose an

algorithm called scalable trajectory piecewise linear (STPWL). Original TPWL

macromodel extract linearization information from circuit simulator in the form of

Taylor polynomials using application specific training inputs. During evaluation

process macromodel interpolate between excited and non-excited states. Tiwary et al.

show that interpolation properties of existing TPWL method are poor and propose a

scalable architecture using Gaussian Mixture Models (GMM). The GMM method

increases the likelihood of generating unreachable states in the ss that were not

excited during model training. Tiwary et al. also propose the implementation of

STPWL models in commercial SPICE3f5 [90] simulator as a voltage controlled

voltage source (VCVS) SPICE component, which means that macromodel can be

simulated at system level with other SPICE components. Their method shows a

simulation speed up (-3.8JQ at system-level.

Dimitri et al. [40] further improve scalability property of TWPL macromodels and

propose a method called Transfer Function Trajectory (TFT). TFT transforms state

linearization matrices (obtained through training trajectories) into frequency domain

and cast the problem of finding non-reachable states as a regression fitting problem.

They use vector fitting (VF) algorithms to construct model for non-reachable states in

frequency domain. The authors also translate macromodels into VHDL-AMS

23

behavioral models and achieve speed up to 10.3 X to 110 X compared to existing

TPWL approaches. However, both authors in [39] and [40] perform system level

simulation under fault-free conditions and fault-modeling for faulty-analog circuits is

not performed. Further survey on development of trajectory based MOR methods for

nonlinear circuits and systems can be seen in a recent paper [91].

Overall review reviles that the white-box nonlinear AMG approaches use Taylor

polynomial as their foundation for linearization of nonlinear elements in the ss. The

authors target to improve properties of Taylor polynomials macromodels somehow by

proposing different methodologies/architecture on the top of basic Taylor

implementation. This implies that root problem cause still exists in all techniques

discussed. Therefore, a more proficient way is to replace Taylor polynomial with an

efficient one that has good interpolation/approximation properties and enable

macromodel to run at higher speed. It is also noticed that except in few cases the

existing AMG approaches only show speedup in MATLAB environment, and

macromodels are not actually translated to HLM to run at system level and show

simulation speed up at system level as compared to standard SPICE circuit

simulations. Similarly except for few authors [18] , none of the technique is

practically used to perform HLFM at system level.

We propose a novel AMG method in which multiple Taylor polynomials macromodel

is replace with single polynomial macromodel. Polynomial is generated through a

fusion of Chebyshev and Newton interpolating polynomial. Resulting macromodel is

then employed in nonlinear ss model structure to linearize all nonlinear components in

the circuit. The proposed macromodeling process is discussed in the next chapter and

then HLM and HLFM will be performed at system level using proposed AMG

macromodels.

24

CHAPTER 3

METHODOLOGY

3.1. Introduction

In this chapter we introduce the methodology termed automated model generation

using Chebyshev Newton interpolating polynomials (AMG-CNIP). It is the fusion of

Chebyshev and Newton (CN) interpolating polynomials (CNIP).

It is discussed in chapter 2 that white-box AMG use multiple Taylor polynomial

models in each region to capture nonlinear behavior. Intuitively an efficient solution

to avoid model switching can be to use single high order Taylor polynomial.

However, it is known that Taylor polynomial has poor convergence properties due to

non-uniform approximation error distribution [92]. Approximation error is less as

long as input stays close to expansion point, but increases rapidly as input moves

away from expansion point. This means that for inputs far from training inputs, even

higher order Taylor polynomials cannot predict the accurate response [93].

The situation depicted in figure 3-1 shows why Taylor polynomial based macromodel

require multiple models to model compete circuit response. Solid line (above) is

circuit input and solid line (below) is the circuit response. Both input and output are

shown on same (time vs. amplitude) axes. To approximate complete circuit response,

Taylor polynomial macromodel require multiple models generated at multiple

linearization points (black dots in figure 3-1). A Taylor polynomial linearized model

generated around a linearization point (black dots in figure 3-1) can be considered as

linear in that region and is valid only for that region. Outside the region, this model

cannot predict response of other region and new linearized model is required to be

generated for next region with new linearization point. This means that macromodel

generated using Taylor polynomial cannot efficiently interpolate between excited and

non-excited states in ss with single linearzed Taylor model.

26

It can be deduced here that if a polynomial has good approximation properties also for

large magnitude inputs, then macromodel can efficiently interpolate between different

states to predict correct response with a single model. Hence we cast the state

prediction problem as an interpolation problem. This implies that macromodel

response for non-excited states mainly depends on the interpolation properties of a

polynomial used for the linearization of nonlinear components in the circuit. And in

turn interpolation properties depend on the approximation properties of a polynomial.

Time

Circuit response

Macromodel

response

Linearization points

Response of each
linearized model

Figure 3-1: Multiple models using Taylor polynomials

27

To clarify the rationale here, we explain the problem through a numerical example.

Consider a nonlinear functiony(x) = x~ exp ;sin(27ix), which is evaluated at 100

points of x = -2.5:0.05:2.5, shown in blue with circles in figure 3-2. To approximate

this function with Taylor polynomial, Taylor series expansions of different orders are

performed around the origin. One can observe from figure 3-2 that as long as input x

is small (within the range of (-1, 1)), fit for all Taylor polynomials is good. As input

value x become larger, Taylor polynomials response start diverging from the solution

and although Taylor polynomial of order 45 fit the complete response but it is

impractical to use such high order polynomial in ss to model an analog circuit. This

clearly shows that Taylor polynomials are effective only for inputs have small

magnitude and their approximation is poor for input signal having large magnitude.

Taylorand Chebyshev Approximations of f(x)=(x2*exp(-x2/2)/(sqrt(2"pi))) +x*sin!2,pl*x);

Figure 3-2: Comparison of convergence properties of Taylor and Chebyshev
polynomials

28

To further demonstrate approximation properties of Taylor polynomial in ss, consider

an example illustrated in figure 3-3 [94].

Figure 3-3: Generation of the linearized models along a trajectory of nonlinear
system in two-dimension ss

Nine linearization points (Ti to Tg) are generated along a training trajectory^ using

Taylor polynomials. Other trajectories (B, C, D, and E) are generated using inputs

different than training input for trajectory^. Trajectories B and C are generated for

inputs that are closer in magnitude to the input for training trajectory A which means

the difference in inputs magnitudes for trajectory A and trajectories B and C is small.

Whereas trajectories D and E are generated using the inputs that are far or larger in

magnitude than training input for trajectory A. The balls represent the region of

convergence of Taylor polynomials. It is clear from figure 3-3 that as long as input

magnitude is closer to training input magnitude, the resulting trajectories will fall into

29

the region of convergence of Taylor polynomial and macromodel can suitably

approximate original nonlinear system response (i.e. can predict correct B and C

trajectories in figure 3-3). On the other hand, if input is far or larger in magnitude than

the training input magnitude, then trajectories D and E do not fall in these balls and

macromodel will not be able to accurately predict D and E trajectories. It should be

stressed here that the shape of inputs that generate trajectory A can be totally different

from the inputs that generate trajectories B and E e.g. training trajectory A can be

generated using a step function whereas B and E can be generated using square and

sawtooth inputs etc. The important point to notice here is that input magnitude scale

(e.g. amplitude of input voltage) actually affects the macromodel response. The poor

approximation property of Taylor polynomial is the major cause of using multiple

linearization models in ss.

It is clear from the above discussion that an efficient polynomial is required that has

better approximation as well as interpolation properties and can predict correct

response for the inputs that are larger/ far from the training input. Furthermore, to

avoid model switching, there should be single polynomial in the ss that can

approximate response for the complete trajectory.

A number of interpolating polynomials exists in literature, e.g., Chebyshev

polynomials, Newton polynomials, Lagrange polynomials, Hermite polynomials etc.

It is demonstrated in [92][95] that Chebyshev polynomials have shown good

interpolation and approximation properties due to their discrete orthogonality property

and minimax approximation of a function. Therefore, in this work we replace Taylor

polynomials with Chebyshev polynomials in nonlinear ss model structure. A

comparison of Taylor and Chebyshev polynomial approximation properties can be

seen from figure 3-2. Single Chebyshev polynomial of order 20 fit the complete

curve, which shows that single Chebyshev polynomial can be employed in ss to

approximate complete trajectory with single model. Similarly it is also clear that

single Chebyshev polynomial is effective for large input magnitudes as well.

30

3.2. Automated Model Generation Algorithm Using Chebyshev and Newton

Interpolating Polynomial (AMG-CNIP)

The AMG-CNIP methodology consists of two steps: model generation and model

evaluation. The application of MOR methods at AMG-CNIP macromodels is outside

the scope of this dissertation.

3.2.1 Model generation

We use a fusion of CN interpolating polynomial for nonlinear function f(x) in ss

model structure shown in chapter 1, repeated in (3-1).

Ex =f(x(t)) +bu(t), (3_1}
y = Cx

CN polynomial generation is a three step procedure described below.

1. Obtain a set of input data points (call \tx'k) for nonlinear function using

Chebyshev node formulas.

2. Obtain a set of target points (call itf(x'k)) by using Chebyshev nodes

calculated above and input to original nonlinear function/(.).

3. Obtain final interpolating polynomial by employing Newton divided

difference (NDD) method on data set (x'k ,f(x[)).

Nonlinear function/fx) represents current through nonlinear components (e.g. diodes,

transistors etc.) in the circuit. To generate CN polynomial original nonlinear function

equation is required. Original nonlinear function (e.g. nonlinear diode current

equation or nonlinear transistor drain current equation) can be obtained from SPICE-

like simulators e.g. [96]. In our case we obtain nonlinear current equation/xj from

SystemVision software that run SPICE2G6 simulation engine [97].

The nonlinear current /(x) can be a function of either single node voltage (when

nonlinear component is connected to single node and other end is grounded) or a

function of two node voltages (when nonlinear component is connected to two

different nodes) in the circuit. This means that we need one dimensional (ID) and two

dimensional (2D) mathematical formulations to obtain CN polynomials. All nonlinear

31

I

components are classified as ID and 2D according to their node connections and then

single ID CN polynomial is calculated for all ID components and single 2D CN

polynomial is calculated for all 2D components. Please note that unlike existing

AMGs that store multiple linearization information (multiple Taylor polynomial

models) for each nonlinear component in the circuit, we only store two polynomials:

one CN polynomial for ID components and one CN polynomial for 2D components.

Thus our methodology is also memory storage efficient.

3.2.1.1. ID CN Polynomial Formulation

To obtain ID CN polynomial three-step procedure shown below can be used.

1. Simulate original circuit and measure the maximum and minimum magnitude range

[a,b] (amplitude of current) of nonlinear function f(x) between which it swings. Then

use Chebyshev node formula given in equation (3-2) [95].

, b-a 2N + l-2k a + b
x. cos 71 + (3-2)

2 2(N + l) 2

where a is the lower limit and b is the upper limit of the range [a,b]. k=0,l,2, ...,Nand

N is the number of nodes to generate and also the degree ofpolynomial.

2. Use Chebyshev nodes x[obtained in the last step as inputs to original nonlinear

function and calculate corresponding target points f(x[). Thus obtain a set of

interpolation points (x[, f(x[)).

3. Using a set of interpolation points (x[,f(x'k)) obtained above, apply ID NDD

method [95] to obtain polynomial in the form shown in equation (3-3).

nN(x) = a0+a^x-x'Q) +a2(x-x'0)(x-x[) + ...+an(x-x'0)...^c-x'N) (3-3)

where a0,al ,...,aN are coefficients of the polynomial calculated using NDD and x[are

the Chebyshev nodes calculated in step 1.

3.2.1.2. 2D CN Polynomial Formulation

If f(.) is function of two node voltages, e.g., for variables x and y, then 2D CN

polynomial can be obtained using three-step procedure shown below.

32

1. Simulate original circuit and measure the range off(.). Calculate Chebyshev nodes

(x'k,y'k) for two voltages (x,y) using equation (3-4).

, b-a (2N +\-2k ^
7tx, = COS

k 2 2(N + \)

a + b , b-a 2N + \-2k
H ; yk= cos n
2*2 1 2CV +1)

A

+ -
a + b

(3-4)

2. Calculate target nodes using set of Chebyshev nodes (x'k,y'k) as input to nonlinear

function/^ and obtain a set of interpolation points ((x'k,y'k),f(x>k,y'k)) to obtain CN

polynomial.

3. Using a set of interpolation points obtained in the last step; apply 2D NDD [98]

method to obtain 2D CN polynomial of the form shown in equation (3-5).

n n - i

nN (x,y) =IZ aijx,iy'J (3-5)
;=0 7 = 0

3.2.1.3. Automatic Range Finder (ARF)

We can apply the heuristic approach to manually set the range [a, b] for generating CN

polynomial. However, an efficient way is to automatically measure the range [a,b] for

nonlinear function/(x). To automatically measure the range a simple procedure called

automatic range finder (ARF) can be applied.

1. Simulate original circuit with training input and store state vector x(t).

2. Simulate nonlinear current function/fxff)J with state vector x(t) as its input.

3. Find maximum and minimum value of currentf(x(t)) and apply as [a,b] range

for both ID and 2D formulation given in subsections 3.2.1.1 and 3.2.1.2.

Suitable setting of range [a, b] is critical to get accurate macromodel response.

Incorrect settings can badly affect the macromodel response. The value a here

represents the minimum current value calculated for all nonlinear component and b

represent maximum value for all nonlinear components. The generation of CN

polynomial based on these extreme values will automatically cover lower value cases

for all nonlinear components in the circuit. In this way we do not need to compute

different CN polynomial for each nonlinear component and single CN polynomial can

be used for linearization of all nonlinear components in ss.

33

3.2.1.4. CN Polynomial Representation in SS

Once CN polynomial model for nonlinear functionf(x) is generated using three-step

procedure described above, CN polynomial can be employed, in the nonlinear ss

model structure, as shown in equation (3-6).

E—x(t) - nN (x(ty)+ bu(t)
dt

y(t) = cTx(t) (3-6)

The critical task in model generation process is the tuning of order (N) for CN

polynomial because unnecessarily high order can affect the simulation speed. Order

can be tuned by simulating model (3-6) with different training inputs and measure the

output error (the difference between model output and original circuit output). There

are two ways to tune the order. Either we can manually assign best guess to the order

and test for different training data to achieve best output.—Other way is to

automatically tune the model order. A simple procedure called automatic polynomial

tuner (APT) can automatically tune the polynomial order based on training inputs.

3.2.1.5. Automatic Polynomial Tuner (APT)

Given original circuit output y(t) for a set of training inputs and a pre-defined error

tolerance y, following simple algorithm (Table 3-1) can be implemented to tune N.

34

Table 3-1: Algorithm for Automatic Polynomial Tuner (APT)

Algorithm 1: Algorithm for Automatic Polynomial Tuner (APT)

4. Start with arbitrary order N. The initial value is usually set in range of 1 to 3.

5. Select training input waveform

6. for each transient time step do

7. Compute input u(t) for current time t.

8. Calculate macromodel output (call it/(f)) using (3-6)).

9. Measure absolute error s =\y'(t) - y(t)\

10. If s>y

11. N = N+1

12. Apply three-step procedure (sec 3.2.1.1 and 3.2.1.2) with new N to re

calculate CN polynomial for ID and 2D.

13. else

14. If transient time finish

15. Exit

16. else

17. Increment transient time step t and go to step 4.

18. end if

19. end if

20. end for

Please notice that APT tune order for ID and 2D CN polynomials at the same time.

Once polynomial order (N) is tuned, macromodel coefficients (matrices E, B, C and

CN polynomial coefficients (a0,al,...,aN) for ID and 2D) are used for model

evaluation with evaluation input waveforms.

35

3.3. Model Evaluation

In model evaluation process the polynomial coefficients calculated after model tuning

are obtained from model generation process and the model is simulated with different

input waveforms than the training input. During model evaluation the macromodel

interpolate between excited and non-excite states that appear due to different

evaluation inputs. The macromodel is expected to output the same response for

evaluation input as the response generated by original system for the evaluation input.

The situation is depicted in figure 3-4.

Training
inputs

Evaluation

inputs

-Training inputs-

circuit

SPICE

-training tnputsH
responses—

SPICE evaluation

inputs responses

•evaluation inputs-

AMG-CNIP

fodel generation

Model

Parameters

CN Polynomial
coefficients,
Matrix E.B, C

AMG-CNIP

Model evaluation

AMG-CNIP

response

Compare SPICE and AMG-CNIP response for
Evaluation inputs

Figure 3-4: AMG-CNIP model generation and evaluation flow

To conclude this section, we provide full algorithm details for macromodel generation

and evaluation through AMG-CNIP in the Table 3-2

36

.Table 3-2: AMG-CNIP algorithm for model generation and simulation

Algorithm 2 AMG-CNIP algorithm for model generation and simulation

1. Model Generation

2. Formulate circuit KCL equations in ss form (3-1) (Appendix A).

3. Simulate original circuit with training input and automatically measure range (to use

for CN polynomial generation) using ARF (section 3.2.1.3)

4. for all ID nonlinear component do

5. Apply ID formulation to obtain single CN polynomial for all single ended

nonlinear components (sec 3.2.1.1)

6. end for

7. for all 2D nonlinear components do

8. Apply 2D formulation to obtain single CN polynomial for all nonlinear

components with two node connection (sec 3.2.1.2)

9. end for

10. Employ ID and 2D CN polynomials in ss to obtain AMG-CNIP model (equ. 3-6)

11. Given training input, simulate AMG-CNIP model (3-6) and tune CN polynomial

order (N) using algorithm 3 (sec. 3.2.1.5)

12. Model Evaluation

13. Given an evaluation input waveform and AMG-CNIP model parameters

14. for all time steps do

15. Interpolate CN polynomial in ss

16. Solve ss equations to obtain output y

17. end for

Complete MATLAB code for model generation and model evaluation of AMG-CNIP
algorithm is given in Appendix B.

37

3.4. AMG-CNIP Experimentation

To prove that our proposed AMG-CNIP has better approximation and interpolation

properties compared to Taylor polynomial macromodel, we carry out an

experimentation in which we generate macromodels for AMG-CNIP and white-box

AMG that use single CN and Taylor polynomial respectively. A nonlinear

transmission line circuit is employed shown in figure 3-5.

f'S

u(t)=i(t) (f)

i,i(x2) Uxf> ijxj)
PI

A; x., A,I

-in- h>

itf(xt)— £- c - c

ijxs)

'VVV
X4 A\-

c

Figure 3-5: Schematic of transmission line circuit (N=5 nodes) with
/d(x) = exp(40x)-l

It consists of resistors, capacitors and diodes with simplified current model

id (x)= exp(40x) -1 . All resistors and capacitors have unit value, i.e., i?=C=l. The

single input is the current source entering node 1, u(t) = i(t); the single output is the

voltage at node TV, y(t) = xN(t).

First consider simple case of ID polynomial. For ID case, there is only one diode,

resistor and capacitor in the circuit. As one end of diode is connected to ground, diode

current/fx) is a function of only one node voltage across it. We generate training input

of the form shown in equation (3-7).

u(t) -]jT Ampi. s'm(27r.freq, X+0i) (3-7)

For this experimentation the training input is generated by adding 5 waveforms. The

value of amplitude (Amp) varies randomly between ±2.5A. Similarly random values

of frequency (freq) are chosen from 1Hz to 100 Hz; and random values of phase (6j)

38

are used. Using these parameter values training input waveform generated is shown in

figure 3-6.

Figure 3-6: Training input waveform

Macromodel is simulated with the training input (figure 3-3) and ARF find the range

[-0.8, 1.5797]. APT tunes CN polynomial order to 6 with error tolerance ^=1.0e-3.

For comparison we also generate ID Taylor polynomial macromodel oforder 6.

To evaluate AMG-CNIP and Taylor polynomial macromodel, an evaluation input

signal is generated by combining two waveform of the form (3-7) whose parameters

are randomly selected different than training input parameters such that input current

swings between ±2.0A. A transient simulation of 400msec is run and simulation result

is shown in figure 3-7.

Simulation result shows that both marcomodel show good accuracy, however AMG-

CNIP response is indistinguishable from original system response. Both macromodels

are tested for maximum input amplitude ±2.0A that is ±0.5A less than maximum

training input amplitude of ±2.5A. Therefore, both are able to successfully interpolate

between excited and non-excited states in the ss.

39

-0.016

-0.017

-0.018

-0.019

2" -0.02 -
o

~ -0.021 h
3
Q.

= -0.022
O

-0.023

-0.024

-0.025

-0.026

-^—Original Output-Evaluation

o Chebyshev -EvaIuation(Order (

♦ Taylor -Evaluation(Order 6)

J^ o Original Output-Evaluation

o Chebyshev -Evaluation(Order 6)
• Taylor -Evaluation(Order 6)[....:. '. ^ ' •

\ / _

/X

^ i

%... 1
is
V i

fc

7

r

"% 1 "
\

'i *
A

::.::::::::::::\ i " "

p'

i i i i i III!!

0.265 0.27 0.275 0.28 0.285 0,29 0,295 0,3 0.305 0,31 0,315

Time (sec)

Figure 3-7: Transient response of ID polynomial macromodels for input amplitude
±2.0A and randomfreq and 6

/Vnoiner Minuiauun ia iuii vvim uipui ampiiiuuc ±j.\jrs. wmi i aimviiijreq anu u. iNuw

evaluation input amplitude (±5.0A) exceeds maximum training input maximum

amplitude (±2.5A) by an amount ±2.5A. The simulation result is shown in figure 3-8.

40

0.06

0.04

Original Output-Evaluation
o Chebyshev -Evaluation(Order 6)

•— Taylor -Evaluatlon(Order 6)

0.15 0.2 0.25

Time (sec)
.4

Figure 3-8: Transient response of ID polynomial macromodels for input amplitude
±5.0A that is ±2.5A greater than training input amplitude

Since amplitude of evaluation input is larger than the training input maximum

amplitude, the large input pushes the ss to the regions that falls outside the region of

convergence of Taylor polynomial (as discussed in sec. 3.1). Therefore, Taylor

polynomial macromodel response (dotted line in figure 3-8) diverges from original

system response (solid line). On the other hand, AMG-CNIP response (circled line)

shows good accuracy due to its better approximation and interpolation properties.

In next experimentation, there are five nodes in the circuit shown in figure 3-5 and

resulting ss equation is shown in equation (3-6). Here ID formulation is used only for

nonlinear current function id(xi) for first diode whose one end is connected to ground.

2D formulation is used for remaining diodes current functions [id(xi) 1^x3) id(x4)

id(xs)]. APT tunes the CN polynomial order to 10. CN polynomial order is high in

this case as there are more diodes in the circuit and they significantly contribute to

nonlinear behavior of circuit. For comparison, we also generate a Taylor polynomial

macromodel with order 10. Similar training input of form (3-7) is generated as for ID

experimentation. The output is voltage is taken at node 5 i.e. N=5.

A transient simulation of 3 seconds is run with input ±2.0A and simulation result is

shown in figure 3-9.
41

-0.2

-0.4

-0.6*

IT-0,8

1
O

>

a-1-2
+-•

O -1-4

-1.6

-1.8

x10

-Original-Evaluation (node 5)
AMG-CNIP (Order 10)-Evaluation (node 5)
Taylor (Order 10) -Evaluation (node 5)

"•[••"'
-T.

r •• 1— —r i""" !' T

g ..******». .»*********.

'♦ \ •25 **
*

V (fc <£ "*" •, ^ f:
* jL jp ** **% $*

''•% f: i/
* \ » * i. $.

* <• * %
* % ' * **-\, $ *

* 7 $ * ** %f
*« *, ^L

>& *

%**-^***' **••*+y

i I t i i I I \ i !

2.82 2.84 2.86 2.88 2.9 2.92 2.94 2.96 2.98 3

Time(sec)

Figure 3-9: Transient response of 2D polynomial macromodels for input amplitude
±2.0A and randomfreq and 6

Zoomed portion of last 100ms shows that accuracy of AMG-CNIP macromodel is

better than Taylor polynomial macromodel. Another transient simulation is run for 1.5

42

seconds with input amplitude ±5.0A. Simulation result is shown in figure 3-10.

,x10

-2-

-2.5

& -3.5

|

Sr -4
3

o

-4.5

-5.5

/

7
X

1.25 1.3

• • Original-Evaluation (node 5)
— Chebyshev(Order 10)-Evaluation (node 5)
+ Taylor (Order 10) -Evaluation (node 5)

.... Original-Evaluation (node 5)
ChebyshevjOrder 10)-Evaluation (node 5)

* Taylor (Order 10) -Evaluation (node 5)

*

1

1.35 1.4

Time (sec)

X

./.?..

\ /-

1.45 1.5

Figure 3-10: Transient response of 2D polynomial macromodels for input amplitude
±5.0A that is ±2.5A greater than training input amplitude

Again Taylor macromodel response diverges from original solution and become

straight line (dotted line), whereas AMG-CNIP response follows the original output

43

due to its good interpolation properties. The accuracy of AMG-CNIP macromodel in

this case can be easily improved by increasing CN polynomial order.

Another important conclusion is that from the situation of large amplitude evaluation

input that macromodel with CN polynomial proves to be stable than Taylor

polynomial macromodel. Authors in [37][65][39] do not guarantee the stability of

macromodels generated using Taylor polynomials.

3.5. Conclusion

In this chapter we present an automated model generation algorithm called AMG-

CNIP that employs a fusion of Chebyshev and Newton interpolating polynomial for

linearization of nonlinear components in analog circuits. It employs single polynomial

for complete training input as compared to existing Taylor polynomial macromodel

tl~.n± /-, r\ v. n 1 , w. n r\ «-^>i 1 1-f , ^. I {* ll'v,Qfi^!r,a/l V*-./-, ^-1a 1o A Art t v> r-vI 1****,/~vO O .-, "P thlf r> P\ O wf£>V 1C +1~\ OnfMUlieu vuii3Uhi^l5 rrrenxxprt nntonzA^nnuuCT^ ivlain jjuipwoC 0± tiii^> vnttpi-vi ro ro alio W

that CN polynomial has advantages than Taylor polynomial in terms of approximation

and interpolation properties. The single linearized model can be used to model

nonlinear analog circuits as compared to multiple linearized models. Simulation

results show better accuracy than Taylor polynomial macromodels for single model

assumption.

44

I

CHAPTER 4

HIGH LEVEL MODELING AND HIGH LEVEL FAULT MODELING

USING AMG-CNIP MACROMODELS

4.1. Introduction

In this chapter we perform HLM and HLFM of analog circuits using AMG-CNIP

algorithm proposed in chapter 3. Section 4.2 details a routine called Automatic Model

Conversion (AMC) that converts an AMG-CNIP MATLB model into a VHDL-AMS

behavioral model. Tn Br.r.tinn A3 mmplftp rWqilt: nf AMO-fMTP algorithm are.

provided to perform HLM and HLFM. In section 4.4 HLM is performed at system

level based on AMG-CNIP fault-free macromodels using benchmark nonlinear

transmission line circuit. Similarly, in section 4.5 HLFM is performed at system level

using AMG-CNIP faulty macromodels using nonlinear transmission line circuit.

Finally a conclusion is drawn in section 4.6.

4.2. Automatic Model Conversion (AMC)

To practically utilize AMG-CNIP macromodel in electronic domain and simulate at

system level (integrated with SPICE circuit blocks) one needs to translate AMG-

CNIP mathematical macromodel into an electrical circuit. Verilog-AMS and VHDL-

AMS are general choices of language to model mathematical models as electrical

circuits.

In this work we use VHDL-AMS language for translating AMG-CNIP MATLAB

macromodel into electronic domain behavioral model to simulate at system level.

VHDL-AMS is an extension of standard VHDL language used for modeling of digital

circuits and systems. AMS (analog and mixed signal) extension in language is

provided to model analog and mixed signal systems. To simulate a hybrid of VHDL-

46

AMS model and SPICE circuit blocks, we use system level simulator from Mentor

Graphics called SystemVision [97],

Macromodel generated by AMG-CNIP is in the form of differential equations that

contain CN polynomial coefficients (ID and 2D), ss matrices A, B and C. AMC

routine loads CN polynomial coefficients (and ss matrices) from MATLAB and code

differential equation using VHDL-AMS built-in attribute 'integ' [99]. Attribute

'integ' apply numerical integration on differential equation and the desired result (e.g.

voltage) is output to the terminal. In this dissertation we use nonlinear transmission

line circuit (figure 3-2 in sec. 3.3) to perform HLM and HLFM. An example of

VHDL-AMS model for fault-free nonlinear transmission line circuit is shown in

figure 4-1.

library IEEE;

use ieee.math_real.ail;

use IEEE.electrical_systems.alI;

entity nltxline_Cheb is

port (

terminal U_t,vl_hlm,v2_hlm,v3_hlm,v4_hlm,v5_hlm,g : electrical);

end entity nltxline_Cheb;

Ideal Architecture

architecture ideal of n!tx!ine_Cheb is

— Declare Branch Quantities

quantity vi across i in through u_t to g;

quantity vl across i_outI through vl_h!m tog;

quantity v2 across i_out2 through v2_hlm to g;

quantity v3 across i_out3 through v3__hlm to g;

quantity v4 across i_out4 through v4_hlm to g;

quantity v5 across i_out5 through v5_hlrn to g;

quantity tempi: real;

quantity temp2: real;

quantity temp3: real;

quantity temp4: real;

quantity temp5: real;

—CN polynomial parameters

constant a_ld_l : real :=5.571831423275393e-09;

constant a_ld_2 : real :=3.353644694695958e-10;

constant a_ld_3 : real :=7.2?3126596624195e-l6;

begin

tempi ==(-((a_ld_I*vI**2)+(a_ld_2*vl) + a_ld_3)- (a_ld_l *(vl-v2)**2) + ((a_ld_2*(vl-v2)) + a_ld_3) - (2.0*vl)+v2 + i_in);

vl = tempi'integ;

temp2 = (((a_ld_l*(vl~v2)**2) + (a_ld_2*(vl-v2)) + a_ld_3) - ((a_ld_l*(v2-v3)**2) + (ajd_2*(v2-v3)) + a_ld_3)+ vl- (2.0*v2)+ v3);

v2 = temp2'integ;

temp3 = (((a_ld_1 *(v2-v3)**2) + (a_l d_2*(v2-v3)) + a_l d_3) - ((a_ld_l*(v3-v4)**2) + (a_ld_2*(v3-v4)) + a_l d_3)+ v2- (2.0*v3) + v4);

v3 == temp3'integ;

temp4 = (((a_l d_I *(v3-v4)**2) + (a_l d_2*(v3-v4)) + a_ld_3) - ((a_ld_l*(v4-v5)**2) + (a_ld_2*(v4-v5)) + a_l d_3)+ v3- (2.0*v4) + v5);

v4 = temp4'integ;

temp5 =(((a_ld_l*(v4-v5)**2)+ (a_ld_2*(v4-v5))+ a_ld_3)-rv4- v5);

v5 = temp5'integ;

end architecture ideal;

Figure 4-1: An example of VHDL-AMS behavioral model for nonlinear transmission
line circuit

Please notice that same CN polynomial coefficients (ald_l to ald_3) are used for

each nonlinear component (each diode current) in all differential equations as

compared to existing white box AMG approaches that use different Taylor

polynomial coefficients for each nonlinear component.

MATLAB code for AMC routine is given in Appendix B.

4.3. AMG-CNIP Algorithm for HLM and HLFM

A complete picture of performing HLM and HLFM using AMG-CNIP is shown in

figure 4-2.

AMG-CNIP (MATLAB)

f~
I

Training inputs I I
Training
inputs

Evaluation

inputs

SPICE

circuit

SPICE

-training inputs
responses

SPICE evaluation

inputs responses

-Evaluation inputs-

Systemjevel simulations (SjrStemVU>ion)

AMG-CNIP

Model

Generation

Model Parameter;

CN Polynomial
coefficients,
Matrix E,B, C

AMG-CNIP

Model

evaluation

AMG-CNI

respond

Automatic Model

Conversion

(MATLAB to VHDL-AMS
Conversion)

VHDL-AMS

\ r models

Compare
SPICE and

AMG-CNIP

response

for

Evaluation

inputs

Figure 4-2: Complete picture of AMG-CNIP model generation and performing HLM
and HLFM

48

AMG-CNIP algorithm for performing HLM and HLFM using AMG-CNIP

macromodels is given in Table 4-1.

Table 4-1: AMG-CNIP algorithm for model generation, HLM and HLFM

Algorithm 3 AMG-CNIP algorithm for model generation, HLM and HLFM

1. Model Generation

2. Formulate circuit KCL equations in ss form (3-1) (Appendix A)

3. Simulate original circuit with training input and automatically measure range (to use

for CN polynomial generation) using ARF (sec. 3.2.1.3)

4. for all ID nonlinear component do

5. Apply ID formulation to obtain single CN polynomial for all singleended nonlinear

components (sec 3.2.1.1)

6. end for

7. for all 2D nonlinear components do

8. Apply 2D formulation to obtain single CN polynomial for all nonlinear components

with two node connection (sec 3.2.1.2)

9. end for

10. Employ ID and 2D CN polynomials in ss to obtain AMG-CNIP model (equ. 3-6)

11. Given training input, simulate AMG-CNIP model (3-6) and tune CN polynomial

order (N) using algorithm 3 (sec. 3.2.1.5)

12. Model Evaluation

13. Given an evaluation input waveform and AMG-CNIP model parameters

14. for all time steps do

15. Interpolate CN polynomial in ss

16. Solve ss equations to obtain output j;

17. end for

18. HLM and HLFM using AMG-CNIP

19. Given AMG-CNIP parameters for fault-free and faulty circuit; use AMC to generate

VHDL-AMS behavioral models (sec. 4.2) i.e. HLM and HLFM.

20. Simulate HLM and HLFM at system level using SystemVision and compare with

SPICE circuit simulations (sec. 4.4).

49

4.4. HLM Using AMG-CNIP Macromodels

To perform HLM, two benchmark circuits are used. Nonlinear transmission line

circuit (NLTx) shown in figure 4-3 is same circuit as shown in figure 3-5 but use

nonlinear diode current function f(x) obtained from SPICE2G6 [97], instead of

simplified diode current model described in section 3.4.

i<t(v) ia(v) i/v) idfv)

1AAA^Vw^-**'

u(t)=i(t)(\

r

C

N

c

Figure 4-3: Nonlinear transmission line circuit wit nonlinear current function (fx)
from SPICE2G6 in SystemVision

Figure 4-4: 3-stage cascaded nonlinear transmission line circuit

The circuit in figure 4-4 is a 3-stage cascaded NLTx circuit where each stage consists

of NLTx line circuit displayed in figure 4-3.

In this work we also implement an AMG from literature called Multiple Model

Generation using Delta Operator (MMGSD) [100] for comparison of AMGs

performance for multiple model versus single model assumption. Both AMGs (AMG-

CNIP and MMGSD) are initially evaluated in MATLAB for accuracy and speed up

comparison usingNLTx line circuit in figure 4-4 and then HLM is performed.

For macromodel generation a similartraining input (given in equation 3-7, sec 3.3) is

50

used to generate MMGSD and AMG-CNIP macromodels. MMGSD use 3 models to

achieve reasonable accuracy at output. APT module tunes polynomial order N to 3.

ARF find range for nonlinear function f(x) to be [-0.003, 0.008]. A transient

simulation is performed for 10ms with evaluation input generated by combining

sinusoidal of random amplitudes, frequencies and phases. Simulation result is shown

in figure 4-5.

-3
x 10

2 2.5
Time (sec)

X10

Figure 4-5: MMGSD and AMG-CNIP response for fault-free NLTx line circuit

51

Figure 4-5 shows that MMGSD macromodel consume approximately 150us to start

predicting the correct response. During this time, response tends towards infinity

(output voltage is ~ 7xl02 volts). Hence computational overhead involved here for

MMGSD is to attain stable state due to model switching until best model is selected.

Moreover, it is clear from figure 4-5 that AMG-CNIP response is settled from the

start of transient simulation. The reason for settling time comparison is that

macromodel response for first cycle of evaluation input waveform is important, since

same response is repeated for remaining waveform cycles. Therefore, an AMG that

leads in start predicting correct response during first input waveform cycle is

considered to be computationally efficient and fast. As clear from above

experimentation, MMGSD takes 150us to stabilize and predict correct response

whereas AMG-CNIP response is stable from beginning.

By observing from 150us, the response for remaining time period is shown in figure

4-6.

o
>

x10

4 5 6

Time (sec)

SPICE

AMG-CNIP

MMGSD

x10"

Figure 4-6: MMGSD and AMG-CNIP response for fault-free NLTx circuit
(ignoring initial 150us response)

52

It is clear that waveforms of MMGSD and AMG-CNIP are indistinguishable from

original SPICE circuit response. For fair speed comparison we perform 30 simulation

runs for both AMGs and on average MMGSD consume approximately 155us to settle

the response. AMG-CNIP response is settled from beginning of simulation in all

simulation runs. This clearly shows that AMG-CNIP is faster to predict correct

response as compared to MMGSD.

To perform HLM, we convert AMG-CNIP and MMGSD macromodels into VHDL-

AMS behavioral models using AMC routine in section 4.2. Please notice that for

MMGSD a separate AMC routine is developed to generate VHDL-AMS behavioral

model as MMGSD model structure is different from AMG-CNIP model structure.

HLMs are tested in different configurations (Table 4-2) using circuits shown in figure

4-3 and figure 4-4.

Table 4-2: Configurations for AMG-CNIP HLM Testing

Configuration No Settings

Config 1 NLTx line

Config 2 (3-stage Cascaded) SPICE - HLM - SPICE

Config 3 (3-stage Cascaded) HLM - SPICE - HLM

Config 4 (3-stage Cascaded) SPICE - SPICE - HLM

Config 5 (3-stage Cascaded) HLM - HLM - HLM

Config 6 (3-stage Cascaded) HLM - SPICE - SPICE

In Configl, NLTx line interface with input current source only. In remaining

configurations, HLM interface with standard SPICE circuit modules to perform

system level simulations. There are total of 15 nodes in three stage cascaded nonlinear

transmission line circuit and output voltage can be taken at any node while

performing system level simulations.

In first experimentation for Configl, a transient simulation of 200 sec is run in

SystemVision. Input signal is a current sine wave with 500Hz frequency and ±2.0A

amplitude. AMG-CNIP HLM, MMGSD HLM and SPICE circuit are run

simultaneously and the simulation result is shown in figure 4-7.

53

189.983 230.080

Figure 4-7: Transient response of MMGSD and AMG-CNIP for Configl circuit

Transient response in figure 4-7 shows that MMGSD is unable to perform high level

modeling. It is clear from figure 4-7 that MMGSD HLM response (mmgsd_hlm in

figure 4-7) takes approximately 20 seconds to settle. Also, the zoomed portion of last

100ms shows that MMGSD response is significantly different from original SPICE

response (vl_spice in figure 4-7) whereas, AMG-CNIP HLM response (vl_hlm in

figure 4-7) overlaps accurately with SPICE response from start of simulation. For

54

quantitative comparison, we measure the relative error of two AMG responses w.r.t.

SPICE response. To measure relative error in percentage equation 4-1 is used, where i

is the number of samples obtained from SystemVision simulation.

z
Re I.error = —

y_SPICEi-y_AMGi

y__SPICE,

lengtk(y _SPICE)
xlOO (4-1)

Relative error percentage for AMG-CNIP for Configl circuit is 5.49e-8%, which is

almost negligible. Whereas, MMGSD relative error is calculated to be 582% that

means MMGSD failed to perform HLM.

We also observe CPU time taken by SystemVision to simulate HLM and SPICE

circuits. After the completion of transient simulation SystemVision shows CPU time

consume by simulator to solve system of equations for a given circuit.

To accurately note CPU time, we perform 30 simulation runs for each circuit

independently and calculate the mean and maximum values. On average SPICE

circuit CPU time is 15.65 sec. AMG-CNIP average CPU time is 8 sec and MMGSD

average CPU time is 240sec. The reason of high CPU time for MMGSD is that AMG

has to switch between three models during simulation and SystemVision is not

optimized for discrete switching, thereby model switching becomes a computational

overhead.

We also calculate simulation speed up achieved by AMG compared to SPICE circuit.

The simulation speedup is calculated using the formula given in equation 4-2

0 , . 0 Mean(SPlCE CPU time)
Simulation _ Speedup- ~ ~

Mean(AMG - CNIP _CPU _time) (4_2)

In this experimentation AMG-NIP achieve a simulation speedup of 1.96xcompared to

standard SPICE circuit simulation.

For system level testing, we start with Config2. In Config2, second stage of SPICE

circuit is replaced with AMG-CNIP HLM. A transient simulation of 15sec is

performed and simulation result is compared with full SPICE circuit simulation result

(all stages with SPICE modules). Both Config2 and full SPICE circuit run

simultaneously and simulation result is shown in figure 4-8. Similar input signal is

55

given to the circuit as for Configl and output voltage is taken at node 6 of 3-stage

cascaded circuit (which is first output ofHLM).

v6_spice is full SPICE circuit response and v6_hlm is Config2 circuit response. It can

be seen that AMG-CNIP achieves good accuracy with relative error of 0.72%. Mean

CPU time of full SPICE circuit for 30 runs is 28.3sec and mean CPU time of Config2

circuit for 30 runs is 25.26 sec.

> '5101

4.0 5Xi 3.0 7.0 SO 8.0 10.0 h.O 12.0 !3.0 145

Time (s)

Figure 4-8: Transient response ofAMG-CNIP HLM for Config2

Hence a simulation speed up of 1.12x is achieved compared to full SPICE circuit.

This shows that AMG-CNIP is able to increase simulation speed of a circuit at system

level with reasonable accuracy.

In Config3 circuit we replace first and last stages with AMG-CNIP HLM and perform

15sec transient simulation with same input. Output is taken at node 5 and node 11

shown in figure 4-9 and 4-10.

56

**"*»*.«».

Iv5b!as

11 V>_SpKt

Figure 4-9: Transient response of AMG-CNIP HLM for Config3 (node 5)

Figure 4-10: Transient response of AMG-CNIP HLM for Config3 (node 11)

Simulation results show that Config3 circuit with two HLMs in circuit is working

with good accuracy. The relative error (measure at node 11) is 0.71%. Average CPU

time for Config3 is 12.75sec and SPICE full circuit average simulation time is

57

28.3sec. Hence, a simulation speed up of 2.2x is achieved. This shows that with

increasing number of HLMs in the circuit, circuit simulation speed is increasing

accordingly and CPU time is decreased.

In Config4 we replace last stage of cascaded nonlinear transmission line circuit with

AMG-CNIP HLM. Output voltage is taken at nodes 11, 12 and 13. Simulation result

is shown in figure 4-11.

!>
i ~ -15.0-
. &
I Ci -2OJ0-

IP «J-

2.0-

0.0-

-2.0-

40-

y 6.0-
'"* -8.0-
0! .100-
lt)

12.0-

14.0-,

16.0.

18.0-

20.0-

22J.

0.0 10.0

imei:

•s."""^^w.

\

Jvlljia
;| vll_5pict

i<m
v)2tp&

\

Figure 4-11: Transient response of AMG-CNIP HLM for Config4
(nodes 11, 12 and 13)

Please note that output voltage at node 11 reaches to -45 volts. Similarly voltages at

node 12 and 13 reach up to -30 volts and -21 volts respectively and AMG-CNIP HLM

is able to predict accurate responses. Above response shows excellent interpolation

and approximation properties of CN polynomials because during training,
58

macromodel was trained to predict output responses that swing within the range of

millivolts. Whereas, in this configuration output voltages reach to unexpectedly high

voltage (-45 volts) and AMG-CNIP HLM can still predict response with good

accuracy. Relative error measured at node 11 is 0.0085%, at node 12 is 0.863% and

at node 13 is 1.12%. The average CPU time for Config4 circuit is 25.31sec. The

simulation speed up achieved is 1.1 lx.

In Config5, we replace all SPICE modules with AMG-CNIP HLM and compares

simulation result with full SPICE circuit. The output is taken at node 5, 10 and 15 to

show that each stage is predicting correct response even with little output error in

preceding stage. Simulation result is shown in figure 4-12.

•20,0s-

•49.0s-

«0s-

i-- -».8s-
:>
i ~ -«.os-
1 9i
: a -130*1-

•mo»-

•220*1.

0) -M-

2 -!>

-10.0-

•11.0-

""^-^

4.0 5.0 U S.0

Time (s)

Figure 4-12: Transient response of AMG-CNIP HLM for Config5
(nodes 5, 10 and 15)

59

•!|vijilsii
11 '5jfla

-| vJ5 Un
I ,, -
«nijfn

It is clear from simulation result AMG-CNIP HLM with all three stages replaced can

still show good accuracy. The relative error measured at node 5 is 8.4e-7%, at node 10

is 0.68% and at node 15 is 1.54%. Average CPU time for Config5 circuit is 17 sec and

speed up achieved is 2.62x. This is the highest simulation speed up achieved in

different HLM configurations and it shows that by using more HLMs in the circuit,

higher simulation speed up can be achieved.

In another configuration (Config6) we replace first stage with HLM. Outputs are

taken at node 1 and node 5. Simulation result is shown in figure 4-13.

o.!n-

0*,-

> -0,2m-

n .0.4*-

£
Q

tSm-

U"

Time isi
80

Figure 4-13: Transient response of AMG-CNIP HLM for Config6 (nodes land 5)

60

Mean CPU time for Config6 is 12.68 sec and simulation speedup achieved is 2.23x.

Relative error measured at node 1 is 3.7e-7 and 0.05% at node 5.

Complete summary of simulation speed up and accuracy for six different

configurations of AMG-CNIP HLM is given in Table 4-3.

Table 4-3: Summary of simulation speed up and accuracy for AMG-CNIP HLM

Configuration

Fault Free circuit

SPICE

(sec)

AMG-CNIP

HLM (sec)

Speed up
SPICE

Accuracy

Rel. error

(%)
AMG_CNIP

Mean Max Mean Max

NLTX line 15.65 30.2 8.0 30.3 1.96x 5.49e-8

SPICE HLMSPICE 28.3 52.2 25.26 45.8 1.12x 0.72

HLM_SPICE_HLM 28.3 52.2 12.75 20.6 2.2x 0.71

SPICE SPICE HLM 28.3 52.2 25.32 47.8 l.llx 1.12

HLM HLM HLM 28.3 52.2 10.8 17 2.62x 1.54

HLM_SPICE_SPICE 28.3 52.2 12.68 30 2.23x 3.7e-7

61

4.5. HLFM Using AMG-CNIP Macromodels

In this section we perform HLFM by introducing a short fault at a diode in NLTx

circuit. A short fault is introduced by manually adding a short resistor (rs) of very

small value (0.000001Q) across a diode. One fault is introduced at a time in the

circuit. In this experimentation we perform HLFM by introducing short faults at

diodes Dl and D2.

4.5.1 HLFM for Short Fault at Diode Dl

First consider a short fault is introduced at diode Dl, shown in figure 4-14.

id(x2) id(x3) id(x4)

=0.000001n

A/WfA/VV
x-2

c c

-^TJ

r

Ka/v

c

id(xs)

r

K/vv

C

Figure 4-14: NLTx circuit with short fault at Dl

HLFM is performed using circuit in figure 4-14 in six different configurations shown

in Table 4-4.

Table 4-4: Configurations for AMG-CNIP HLFM testing (short fault at Dl)

Configuration No. Settings

Config 1 NLTX line

Config 2 (3-stage Cascaded) HLFM - SPICE - SPICE

Config 3 (3-stage Cascaded) SPICE - HLFM - SPICE

Config 4 (3-stage Cascaded) SPICE - SPICE - HLFM

T_TT A A UI T7\/f CTDTr'P

Config 6 (3-stage Cascaded) HLM - HLM - HLFM

62

The experimentation started by generating AMG-CNIP and MMGSD models in

MATLAB. A 3rd order CN polynomial is generated for AMG-CNIP macromodel and

ARF find range for nonlinear function/fx) to be [-0.0001, 0.0001]. Three models are

used for MMGSD macromodel.

MMGSD again show similar behavior and on average consume ~158us to settle the

response. On the other hand AMG-CNIP response is settled from the start of

simulation. The simulation result is shown in figure 4-15.

.x1G

SPICE

•AMG-CNIP

MMGSD

0 0.001 0,002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Time (sec)

Figure 4-15: MMGSD and AMG-CNIP response for NLTx line faulty circuit

We employ AMC routine to generate AMG-CNIP and MMGSD HLFMs. An input

sine waveform is applied with 500 Hz frequency and ±2.0A current amplitude and

transient simulation of 15 sec is run.

MMGSD fails to perform HLFM and show very high relative error percentage

(>550%) and on average consume more than 300 seconds of CPU time to simulate

Configl circuit in SystemVision. The simulation result of AMG-CNIP for Configl

circuit is shown in figure 4-16.

The outputs are taken at nodes 1, 2 and 3. We also show fault-free responses at nodes

1, 2 and 3. It is very important to notice here that HLM with similar AMG-CNIP

63

settings cannot predict correct response for faulty circuit as is clear from the

difference between faulty and fault free response at respective nodes. E.g. voltage at

node 1 (figure 4-16(a)) swings between -1.2mV and 0.6mV for fault-free circuit

(lower waveform), whereas voltage at node 1 swings between -2uV and 2uV for

faulty circuit (upper waveform). Similarly, the difference in amplitudes is obvious at

node 2 and 3 (figure 4-16(a), 4-16(b)) for fault-free and faulty circuit responses. It

clearly shows that one cannot simply use HLM for faulty circuit, one need to generate

fault model while performing HLFM.

o o.Cu-

•ik-

4h-

in-

m-

0*1-

Oin-

0*-,

\i%M

i*1 .

01 2J 4.C 80 M io.o i: 0 14.0

nineis

a Transient response of AMG-CNIP HLFM for Configl at node 1

64

|vl_ftiyjpis
Ivils

vlja

wrf

b Transient response of AMG-CNIP HLFM for Configl at node 2

c Transient response of AMG-CNIP HLFM for Configl at node 3

Figure 4-16: Transient response of AMG-CNIP HLM and HLFM for Configl
(nodes 1, 2 and 3) simulation result

65

Relative error for Configl measured at node 1 is 3.4e-12, at node 2 is 1.28e-6% and at

node 3 is 4.21e-10 that is almost negligible. Average CPU time (for 30 runs) of

AMG-CNIP HLFM is 7.3 seconds and average CPU time of SPICE circuit is 16.1

seconds. Simulation speed up achieved is 2.2x.

In Config2 we replace first stage with HLFM and compare with full SPICE 3-stage

cascaded NLTx line circuit whose first stage is SPICE faulty block. Simulation result

for Config2 is shown in figure 4-17 and the output voltage is taken at node 5 and 6.

Good response at node 6 shows that first stage of Configl generates less error and

correct behavior is propagated to next stage.

M(-

•IMf

•1M(-

„ -».oH
a:

' -»0f

•4)%

•»(

•SMj-

•»0f

•4HU...

0

\

\

'is

Mi

'Asm Mb

Figure 4-17: Transient response ofAMG-CNIP HLFM for Config2 (nodes 5 and 6)

66

Percentage of relative error measured at node 5 is 3.8e-7 and at node 2 is 3.02e-7 that

is negligible. HLFM average CPU time is 12.1 seconds. Average CPU time for full

SPICE faulty circuit is 32.7 seconds and a simulation speed up of 2.7x is achieved.

In Config3 and Config4 we replace middle and last stage with AMG-CNIP HLFMs

respectively. A transient simulation of 15 seconds is performed and output is taken at

nodes 10 and 11 for Config3 and at nodes 11 and 12 for Config4. Simulation results

are shown in figure 4-18 and figure 4-19 respectively.

Figure 4-18: Transient response of AMG-CNIP HLFM for
Config3 (nodes 10 and 11)

67

«.0s-

•30,0i-

>

•;o,os-

mm-

•Ms-

•tipt -

\

\

1 11.1*1
-!i_;p.-'_filiH

| 'I.MUn.

Time (3)

Figure 4-19: AMG-CNIP HLFM Config4 (nodes 11 and 12) simulation result

Speedup achieved for Config3 is 1.09xand speed up achieved for Config4 is 1.08x as

compared to full SPICE faulty circuits. It is important to note that simulation speed up

achieved in Config2 (i.e. 2.7x) is larger than in latter two cases (Config3 and Config4)

i.e. 1.09x and 1.08x, although single stage is replaced in all cases (Config2, Config3

and Config4). Config2 and Configl show almost similar speedup. In Config2 HLFM

come across with similar operating conditions as Configl (i.e. both directly interface

with input current source and configuration is similar to training configuration)

whereas in Config3 and Config4, operating conditions are different for HLFM as they

are interfaced with SPICE circuit instead of input current source. Therefore, HLFMs

are evaluated more rigorously in these configurations and thus show less speedup with

showing reasonable accuracy.

In Config5 we replace first stage with HLM and second stage with HLFM and last

68

stage remains SPICE circuit. Outputs are taken at node 5, 6 and 11. Simulation result

is shown in figure 4-20.

J Oj—

.'0,-,

" '/Ol-

C M Uu—•
ft
a •«*

> -tftOu
•W.Oi

•«.0s

«.0l~>

•220*.

KOs-

COw

«(h-

;-. -«COO —

" •ISMn-
J)

O .»(!-,
Si

| «.0i-
> -3Mi

•J50.0«.

•m.o«.

•aMs_

2CSi-

Clli-i-

•2CIIJ-

•«i-

- <ilt-

'. i fli-

ii ir-fj-.

r W0J-.

r -Oi-

ty us-

UOu-

jOj-

IvSlUHl
Iv5_spice

(*Bin
illS[(V fait"

'l!_!)!(Mli\

Figure 4-20: Transient response of AMG-CNIP HLFM for
Config5 (nodes 5, 6 and 11)

Relative error measured at node 5 is 1.518e-6, at node 6 is 0.0 l%o and at node 11 is

0.09%) and simulation speedup achieved is 1.78x. A little more speedup is achieved in

this case (compared to previous cases) as we replace first two stages with HLM and

HLFM respectively as compared to single stage replacement in Configl, Cong2 and

Config3.

In Config6 first two stages are replaced with HLM and last stage is replaced with

HLFM. The purpose of this experiment is to test if more speedup can be achieved by

using more HLMs in circuit at system level. The output is taken at node 10 (HLM

output) and node 11 (HLFM output). Simulation result is shown in figure 4-21.
69

>
^' -30 On

p

-SOOra-

SOOn.

-JOOm-

^*».

^

;|?!Ojtbti
-1viO_spke

| vl IJtcfm
Vll_{p!i>_fjdtj

.*!)«-

: >
; "'•• -eO.Gy-

""-\

: 4 -SO.Oa™
•*-..

-100.0a-

\

•1*1)3- "*"\
-1$0.0«„ I . , , | ! 1 I . ; • i ! 1 . . . | - , . , j . • . - | ! > 1 - ! • . - . | 1 . i , > , , {, . T~'r'"~" : • .-^-r-y

Time (s)

Figure 4-21: Transient response of AMG-CNIP HLFM for Config6 (nodes 10 and 11)

Relative error percentage measure at node 11 is 0.01% and a simulation speed up of

2.85x is achieved. This shows that replacing circuit with more HLMs can achieve

greater simulation speed up compared to full SPICE circuit.

A summary of simulation speed up and relative error percentages for six

configurations is given in Table 4-5.

Table 4-5: Summary of simulation speed up and accuracy for AMG-CNIP HLFM
(fault at diode Dl)

Configuration

Dl Faulty

SPICE

(sec)

AMG-CNIP

HLFM (sec)

Speed up
SPICE

Accuracy

Rel. error

(%)
AMG_CNIP

Mean Max Mean Max

NLTX line 16.1 20.5 7.3 11.8 2.2x 3.4e-12

HLFM SPICESPICE 32.7 36.3 12.1 25.6 2.7x 3.8e-7

SPICEJHLFMSPICE 29.96 33.5 27.3 31.7 1.09x 0.001

SPICE_SPICE_HLFM 30.2 38 27.5 36.6 1.08x 0.01

HLMHLFMSPICE 29.96 33.5 12.1 16.8 1.78x 0.09

HLM_HLM_HLFM 30.2 38 10.59 16.1 2.85x 0.01

70

4.5.2 HLFM for Short Fault at Diode D2

In second experimentation we introduce a fault at diode D2 shown in figure 4-22 and

test HLFM in different six configurations shown in Table 4-6.

rs=0. oooooin

id(x3) id(x4) id(x5)

Figure 4-22: NLTx circuit with short fault at D2

Again we start by generating AMG-CNIP macromodel and MMGSD macromodel in

MATLAB. AMG-CNIP use 3rd order CN polynomial; with ARF range for nonlinear

function/fx) to be [-le-6, le-6].

Table 4-6: Configurations for AMG-CNIP HLFM testing (short fault at D2)

Configuration No. Settings

Config 1 NLTx line

Config 2 (3-stage Cascaded) HLFM - SPICE - SPICE

Config 3 (3-stage Cascaded) SPICE - HLFM - SPICE

Config 4 (3-stage Cascaded) SPICE - SPICE - HLFM

Config 5 (3-stage Cascaded) HLM - HLFM - SPICE

Config 6 (3-stage Cascaded) HLM - HLM - HLFM

MMGSD has approximately 154us of settling time and AMG-CNIP macromodel

response is settled from beginning. Ignoring initial 155us, the response of AMG-

CNIP and MMGSD for evaluation input is shown in figure 4-23.

HLFS results for 6 configurations (in Table 4-6) with fault at diode D2 are shown in

figure 4-24 through figure 4-29. Again notice the difference between fault-free and

faulty circuit response in figure 4-24 at node 2.

71

.x10"

0
1

SPICE

•-AMG-CNIP

'MMGSD

8 10
Time (sec) ^j^

Figure 4-23: MMGSD and AMG-CNIP response for Configl fault at D2

$wmm>MMiz®
• IS) &..

*>jg-

30 §0

lime (5)

*1

I -W

Figure 4-24: Transient response ofAMG-CNIP HLM and HLFM for Configl
(node 2) with fault at D2

72

itafKfesseawt,~. ...

' .2OQ.0u-

; 4 -2M-0u-

! -3CO.0u-

•SO,0m-

-lOO-Om-

--1310m-

COm-

-2C.0ift~

-30.0m-

- '«,0m-

-K.Om-

•SC.Oso-

•?Ofliri~

•SO.Obi-

•Klflrri-

•HOJOra-

0) -25.0 ~

-15.0 -

1 \ •;pr-

Figure 4-25: Transient response of AMG-CNIP HLFM for
Config2 (nodes 2 and 6) with fault at D2

*N,

X

Figure 4-26: Transient response of AMG-CNIP HLFM for
Config3 (nodes 7 and 11) with fault at D2

73

1 v2_S])ict_fadly

k*Ll*'
(i spu ira.1/

1vl_Mfm

IWijpiM
i vlljpMj&iitlj

DUOu-

COrr.-

•W.0n>-

4J.Sro-

; > -itM~
-SC.Orn-

I OS -10C.0ET.-.

a -mam-

;^ -m.Qn<~
-1gCUm-

• ISO,0m-

•230.0m-

Figure 4-27: Transient response ofAMG-CNIP HLFM for
Config4 (node 12) with fault at D2

*0-

10-
_ „. „ . . . _ . . ,

*0- •-

100—

3J t5ii~(

8> In(Tj jll-

> -40.0-
.45,0-

•W.0-1

-S50-

•60-0-

Figure 4-28: Transient response of AMG-CNIP HLFM for
Config5 (nodes 2, 7 and 11) with fault at D2

74

JvSJikn
v2jft%jf

1/' LliK

| viljpxr
viljtt«Jitil';

,..., •100-

®> so-

(.in,

Figure 4-29: Transient response of AMG-CNIP HLFM for
Config6 (nodes 1, 6 and 11) with fault at D2

Table 4-7: Summary of simulation speed up and accuracy for AMG-CNIP HLFM
(short fault at diode D2)

Configuration

D2 Faulty

SPICE

(sec)

AMG-CNIP

HLFM (sec)

Speed up

SPICE

Accuracy

Rel. error

(%)
Mean Max Mean Max

AMG_CNIP

NLTX line 17.2 21 12.4 20.6 1.38x 3.75e-10

HLFM_SPICE_SPICE 34.5 38.9 20.5 25.6 1.68x 2.656e-7

SPICE_HLFM_SPICE 50.9 57.3 50.1 56 0.9x 0.005

SPICESPICEJHLFM 40.1 47.2 37.5 46.1 1.06x 0.013

HLM_HLFM__SPICE 48.9 54 22.8 27.6 2.14x 0.005

HLM HLM_HLFM 40.1 47.2 17.6 30.1 2.26x 0.007

One should note that voltage at node 12 in Config4 (figure 4-25) reaches to -40 volts

and AMG-CNIP HLFM is able to predict correct response with relative error

percentage of 0.013% and a simulation speed up of 1.06x.

A summary of simulation speed up and accuracy measure for fault at diode D2 in six

75

configurations is given in Table 4-7. Again replacing all stages in cascaded

configuration (Config6) with behavioral models, highest speedup of 2.26x is

achieved.

4.6. Conclusion

In this chapter we perform HLM and HLFM using AMG-CNIP macromodels. A

MATLAB routine called AMC is developed for translation of AMG-CNIP MATLAB

macromodel to VHDL-AMS behavioral model. HLM and HLFM are performed using

two nonlinear transmission line circuits, and tested in different configurations.

Simulation results show that simulation speed up from 0.9x to 2.85x is achieved

compared to full SPICE circuit simulation with a sensible accuracy (overall

percentage relative error < 2%). In cases where relative percentage error is slightly

high, accuracy ran he easily improved by increasing CN polynomial order.

It is important to notice that the number of nonlinear components used in the circuits

is moderate and HLM and HLFM show reasonable simulation speed up. It is expected

that by using circuits having large number of nonlinear components, higher simulation

speedup can be achieved.

76

CHAPTER 5

CONCLUSION AND FUTURE RECOMMENDATIONS

In this dissertation, we studied the problem of generating efficient and accurate

models for nonlinear analog circuits and systems with particular emphasis on

applications related to the domain of simulation of fault-free and faulty analog

circuits. Analog circuits provide a unique set of challenges in circuit design. Although

typically analog circuits are much smaller than their digital counterparts; the circuits

are extremely nonlinear.

A fault is defect in an analogue circuit that is undesirable and can take other parts of a

circuit out of their normal operating regions. Modeling and simulation of faulty circuit

is a challenging task compared to fault free circuits.

Our approach to handling the problem by generating efficient simulation models for

fault-free and faulty analog circuits is based on white-box ss model structure. Existing

methods model nonlinear components of an analogue circuit through Taylor

polynomials in nonlinear ss model structure. Multiple linearized Taylor polynomial

models are obtained at different operating points to achieve best accuracy at output.

Existing methods show good accuracy to model weak as well as strongly nonlinear

behavior. However, main focus is on generating models for fault-free analog circuit

and very little attention is given by researchers to generate faulty model and test at

system level for simulation speedup compared to standard SPICE circuit simulations.

Few cases, e.g., Xia et. al. [18] actually implements fault-free and faulty circuit

models in electronic domain to perform HLM and HLFM. Unfortunately to date, none

of the authors show simulation speedup at system level while performing HLFM.

In this dissertation we develop a novel AMG algorithm termed AMG-CNIP that

focuses on the objectives of achieving simulation speedup at system level while

performing HLM and HLFM. The novelty in the work is to linearize nonlinear

components in the circuit using single polynomial generated through a fusion of

Chebyshev and Newton interpolating polynomials instead of using multiple Taylor

78

polynomial models. Our work in AMG development mainly focuses on following

aspects of generating/using a macromodel:

• Computational Efficiency: Single CN polynomial is used to linearize all

nonlinear components in the ss. Single model macromodel avoids model

switching that consumes significant time during simulation and become

computational overhead. Hence, with single CN polynomial approach,

speedups are achieved at system level for fault-free and faulty analog circuit

simulations compared to standard SPICE fault-free and faulty circuit

simulations.

• Modeling Accuracy: CN polynomial is introduced in the ss with the fact

keeping in mind that AMG-CNIP macromodel will be evaluated at system

level by performing HLM and HLFM and model may come across with

unexpected operating conditions that are not covered during model training.

Best approximation/ interpolation properties of CN polynomial enable HLM

and HLFM to achieve good accuracy.

As a demonstration of our proposed methodology, we generate AMG-CNIP

macromodels for nonlinear transmission line circuit problem. Initially macromodels

are validated in MATLAB and then translated into VHDL-AMS behavioral models to

perform HLM and HLFM at system level in different configurations. Simulation

results show that overall speedup of 0.98x to 2.8x is achieved as compared to full

SPICE circuit simulations. It is also seen that good accuracy is obtained at system

level with relative error percentage less than -2% in all cases. In some cases where

relative error is slightly high, accuracy can be easily improved by increase CN

polynomial order.

5.1.Future Work and Recommendations

Our proposed algorithm successfully achieved the objectives of the project of

achieving simulation speedup at system level with reasonable accuracy. However,

there are many potential areas that require further development in the AMG-CNIP

algorithm.

• Immediate development in AMG-CNIP is to extend the algorithm for

modeling of analog circuits containing transistors, e.g., MOSFET (level 1, 2,
79

I

3, BSIM1, BSIM2, BSIM3 etc). In our current implementation charge (or

capacitance) i.e., nonlinear function q(x) is taken as linear function of state

variable x, whereas in transistors charge (capacitance) is a nonlinear function

of state variable x. Similar procedure of obtaining CN polynomial for

nonlinear function/(x) can be applied to obtain another CN polynomial for

nonlinear function q(x). One would need to apply numerical integration

method along with Newton-Raphson iterative method to solve set of nonlinear

differential equations of AMG-CNIP macromodel.

The extended algorithm can be implemented to perform HLM and HLFM of

transistor level circuits. Since modern circuits consists of MOSFET as their

basic building block, so it is critical to evaluate the AMG-CNIP algorithm for

transistor level circuit, perform HLM and HLFM of transistor circuits and

check for simulation speed up at system level.

An important development is to invent a technique for muiti-dimensionai

multivariate interpolating polynomial. This is the core of our algorithmthat we

expect to break through in the field of modeling. Existing interpolation

methods are only multivariate, not multidimensional. Here multidimensional

means that a polynomial interpolates between more than one nonlinear

functions simultaneously, e.g., inour current implementation a diode works in

its single operating region and we generate CN interpolating polynomial only

for one nonlinear current function. For devices like MOSFET, switching

between different operating regions (e.g., sub-threshold, linear, saturation

regions etc.) there is separate nonlinear current function for each region. To

generate single polynomial for all regions, one would need to generate a

polynomial that interpolates between different nonlinear functions

simultaneously. Similar multidimensional interpolating polynomial will be

required for nonlinear charge (capacitance) function.

Another important development is the application of MOR methods on AMG-

CNIP macromodels. Current MOR methods are applicable for Taylor based

macromodels, whereas to reduce order of AMG-CNIP macromodel, one

would need to develop MOR technique for CN polynomial.

In our current implementation, there are moderate numbers of nonlinear

80

components in the circuit and small numbers of speedup are shown. One can

test the algorithm with large number of nonlinear components to check for

higher number of speedup achievement.

AMG-CNIP shows stable response compared to existing algorithms, but a

stronger mathematical formulation is required for stability preserving analysis

of CN polynomial based AMG-CNIP macromodels.

81

REFERENCES

[1] C. Wang, F, Digital Circuit Testing: A Guide to DFTand Other Techniques.

Academic Press, 1991.

[2] S. D. Dasnurkar and J. a. Abraham, "Real-time dynamic hybrid BiST solution

for Very-Low-Cost ATE production testing of A/D converters with controlled

DPPM," in 2010 11th International Symposium on Quality Electronic Design

(ISQED), 2010, pp. 562-569.

[3] S. J. Spinks, Fault simulation for structural testing of analogue integrated

circuits. Hull Univ. (United Kingdom), 1998.

[4] S. SUNTER and M. GRAPHICS, "Essential principles for practical analog

BIST," Electronic Design News, 2010.

[5] J. A. Abraham and M. Soma, "Mixed-Signal Test-Tutorial C," in The

European Design and Test Conference (ED&TC), 1995.

[6] K. Arabi, "Special session 6C: New topic mixed-signal test impact to SoC

commercialization," in VLSI Test Symposium (VTS), 2010 28th, 2010, pp. 212-

212.

[7] E. K. Bartsch, "Improved Analogue Fault Simulation Through High Level

Modeling," University of Hull, 1999.

[8] P. Kalpana and K. Gunavathi, "Test-generation-based fault detection in analog

VLSI circuits using neural networks," ETRIjournal, vol. 31, no. 2, pp. 209-

214, Apr. 2009.

[9] B. a. a. Antao and F. M. El-Turky, "Automatic Analog Model Generation For

Behavioral Simulation," Proceedings of the IEEE Custom Integrated Circuits

Conference, pp. 12.2.1-12.2.4, 1992.

[10] P. R. Wilson, Y. Kilic, J. N. Ross, M. Zwolinski, and A. D. Brown,

"Behavioural modelling of operational amplifier faults using analogue

hardware description languages," in Proceedings of the Fifth IEEE

International Workshop on Behavioral Modeling and Simulation. BMAS 2001

(CatN0.OITH86OI), pp. 106-112.

[11] Y. Kilic and M. Zwolinski, "Behavioral Fault Modeling and Simulation Using

VHDL-AMS to Speed-Up Analog Fault Simulation," Analog Integrated

circuits and signal processing, vol. 39, no. 2, pp. 177-190, 2004.

82

[12] Y. Joannon, V. Beroulle, C. Robach, S. Tedjini, and J.-L. Carbonero, "Choice

of a High-Level Fault Model for the Optimization of Validation Test Set

Reused for Manufacturing Test," VLSI Design, vol. 2008, pp. 1-10, 2008.

[13] G. Gronthoud and H. G. Kerkhoff, "Reducing analogue fault-simulation time

by using high -level modelling in dotss for an industrial design," IEEE

European Test Workshop, 2001., pp. 61-67, 2001.

[14] E.K.Bartsch and I. Bell, "High Level Analogue fault simulation using linear

and non linear models," RadioengineeringJournal, vol. 8, pp. 32-34, 1999.

[15] J. Roychowdhury, "Algorithmic macromodelling methods for mixed-signal

systems," 17th International Conference on VLSI Design. Proceedings., pp.

141-147,2004.

[16] N. Dong, "Automated nonlinear macromodeling for fast analog circuit

simulation," University of Minnesota, 2006.

[17] B. N. Bond, Z. Mahmood, Y. Li, R. Sredojevi, A. Megretski, V. Stojanovi, Y.

Avniel, and L. Daniel, "Compact Modeling of Nonlinear Analog Circuits

Using System Identification Via Semidefinite Programming and Incremental

Stability Certification," IEEE Trans, on Computer-Aided Design of Int.

Circuits and Systems, vol. 29, no. 8, pp. 1149-1162, 2010.

[18] L. Xia, I. M. Bell, and A. J. Wilkinson, "Automated Model Generation

Algorithm for High-Level Fault Modeling," IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 29, no. 7, pp. 1140—

1145, Jul. 2010.

[19] M. U. Farooq, L. Xia, F. A. Hussin, and A. S. Malik, "Fault Modeling of

Analog Circuits Using System Identification Automated Model Generation

Approaches from SPICE level Descriptions," Advanced Science Letters (ASL),

vol. 19, no. 5, pp. 1276-1280, 2013.

[20] B. Yang and B. Mcgaughy, "An Essentially Non-Oscillatory (ENO) High-

Order Accurate Adaptive Table Model for Device Modeling," in Design

Automation Conference, 2004, pp. 864-867.

[21] M. Swaminathan, B. Mutnury, and J. Libous, "Macro-modelling of non-linear

I/O drivers using spline functions and finite time difference approximation," in

Electrical Performance ofElectronic Packaging, 2003, pp. 273-276.

83

[22] E. Davalo and P. Nairn, Neural Networks. Macmillan Education Ltd., 1991.

[23] Q. J. Zhang and K. C. Gupta, Neural Networks for RF andMicrowave Design.

Boston: Artech House, 2000.

[24] H. B. Verbruggen and R. Babuska, Fuzzy Logic Control: Advances in

Applications. World Scientific Publishing Company, 1999.

[25] F. J. Uppal and R.J. Patton, "Neuro-fuzzy uncertainty de-coupling: a multiple-

model paradigm for fault detection and isolation," INTERNATIONAL

JOURNAL OF ADAPTIVE CONTROL AND SLGNAL PROCESSING, vol. 19,

no. 4, pp. 281-304, 2005.

[26] R. . Middleton and G. . Goodwin, Digital Control and Estimation - A Unified

Approach. Prentice-Hall, 1990.

[27] L. Ljung, System Identification Theoryfor User. Upper Saddle River: Prentice

HallPTR, 1999.

T2S] C. S. Gathercole and H. a. Mantooth, "•Modeling nonlinear dynamics in analog

circuits via root localization," IEEE Transactions on Computer-Aided Design

ofIntegrated Circuits and Systems, vol. 22, no. 7, pp. 895-907, Jul. 2003.

[29] S. X.-D. Tanand C.-J. R. Shi, "Efficient DDD-based term generation algorithm

for analog circuit behavioral modeling," in Proceedings of the ASP-DAC Asia

andSouth Pacific Design Automation Conference, 2003., 2003, pp. 789-794.

[30] Y. Wei and A. Doboli, "Systematic Development of Nonlinear Analog Circuit

Macromodels through Successive Operator Composition and Nonlinear Model

Decoupling," in Design, 2006, pp. 1023-1028.

[31] G. Gielen, T. McConaghy, and T. Eeckelaert, "Performance space modeling for

hierarchical synthesis of analog integrated circuits," Proceedings of the 42nd

annual..., pp. 881-886,2005.

[32] J. Roychowdhury, "Automated Macromodel Generation for Electronic

Systems," inBehavioral Modeling and Simulation (BMAS), 2003, pp. 11-16.

[33] L. T. Pillage and R. A. Rohrer, "Asymptotic Waveform Evaluation for timing

analysis," IEEE Trans, on Computer -Aided Design, vol. 9, no. 4, pp. 352-366,

1990.

[34] J. R. Phillips, "Model reduction of time-varying linear systems using

approximate multipoint Krylov-subspace projectors," in 1998 IEEE/ACM

84

International Conference on Computer-Aided Design. Digest of Technical

Papers (IEEE Cat. No.98CB36287), 1998, pp. 96-102.

[35] J. Roychowdhury, "Reduced-order modeling of time-varying systems,"

Circuits and Systems II: Analog and Digital Signal Processing, IEEE

Transactions on, vol. 46, no. 10, pp. 1273-1288, 1999.

[36] P. Li and L. T. Pileggi, "NORM : Compact Model Order Reduction of Weakly

Nonlinear Systems," in Order A Journal On The Theory Of Ordered Sets And

Its Applications, 2003, pp. 1-6.

[37] M. Rewienski and J. White, "A trajectory piecewise-linear approach to model

order reduction and fast simulation of nonlinear circuits and micromachined

devices," IEEE Transactions on Computer-Aided Design ofIntegratedCircuits

and Systems, vol. 22, no. 2, pp. 155-170, Feb. 2003.

[38] J. Roychowdhury, "Piecewise polynomial nonlinear model reduction," in

Proceedings 2003. Design Automation Conference (IEEE Cat.

No.03CH37451), 2003, pp. 484-489.

[39] S. K.Tiwary and R. A. Rutenbar, "Scalable trajectory methods for on-demand

analog macromodel extraction," in Proceedings of the 42nd annual Design and

Automation, 2005, pp. 403-408.

[40] D. De Jonghe and G. Gielen, "Characterization of Analog Circuits Using

Transfer Function Trajectories," IEEE Transcation on Circuits and Systems I,

vol. 59, no. 8, pp. 1796-1804, Aug. 2012.

[41] E. . Grimme, "Krylov projection methods for model reduction," University of

Illinios Urbana-Champaign, 1997.

[42] J. Roychowdhury, "Algorithmic methods for bottom-up generation of system-

level RF macromodels," in Control, Communications and Signal Processing,

2004. First International Symposium on, 2004, pp. 57-62.

[43] A. Odabasioglu, M. Celik, and L. T. Pileggi, "PRIMA: passive reduced-order

interconnect macromodeling algorithm," Proceedings of IEEE International

Conference on Computer AidedDesign (ICCAD) ICCAD-97, pp. 58-65, 1997.

[44] N. Dong and J. Roychowdhury, "Automated extraction of broadly applicable

nonlinear analog macromodels from spice-level descriptions," in Custom

85

Integrated Circuits Conference, 2004. Proceedings of the IEEE 2004, 2004, pp.

117-120.

[45] R. W. Freund, "SPRIM: structure-preserving reduced-order interconnect

macromodeling," IEEE/ACM International Conference on Computer Aided

Design, 2004.1CCAD-2004., pp. 80-87, 2005.

[46] B. N. Bond and L. Daniel, "A Piecewise-Linear Moment-Matching Approach

to Parameterized Model-Order Reduction for Highly Nonlinear Systems,"

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 26, no. 12, pp. 2116-2129, Dec. 2007.

[47] Z. Mahmood, B. Bond, T. Moselhy, A. Megretski, and L. Daniel, "Passive

reduced order modeling of multiport interconnects via semidefinite

programming," in Proceedings of the Conference on Design, Automation and

Test in Europe, 2010, pp. 622-625.

[48] L. Ljung, "Perspectives on system identification," Annual Reviews in Control,

vol. 34, no. 1, pp. 1-12, Apr. 2010.

[49] K. J. Astrom, "Lectures on the identification problem- the least square

method," Division of Automatic Control. Lund Institute of Technology. Lund.

Sweden, 1968.

[50] T. C. Hsia, System identification: least-squares methods, no. x. Lexington

Books, Lexington.: , 1977.

[51] J. M. Mendel, Discrete techniques ofparameter estimation: the equation error

formulation. Marcel Dekker, Newyork:, 1973.

[52] T. Soderstron, P. Stoica, and T. Soderstrom, System Identification. Englewood

Cliffs: Prentice-Hall, 1989.

[53] R. Pintelon and J. Schoukens, System Identification: A Frequency Domain

Approach. Picataway: IEEE Press, 2001.

[54] V. Overschee and B. DeMoor, N4SID subspace algorithms for the

identification of combined deterministic-stochastic systems, vol. 10, no. 2-3.

1994, pp. 75-93.

[55] "Identifying Nonlinear ARX Models Nonlinear Black-Box Model

Identification (System Identification Toolbox1)." .

86

[56] M. U. Farooq, L. Xia, F. Hussin, and A. Malik, "Performance Evaluation Of

Nonlinear Automated Model Generation Approaches For High Level Fault

Modeling," in 7th IEEE Conference on Industrial Electronics andApplications

(ICIAS), 2012, pp. 1842-1846.

[57] M. U. Farooq, L. Xia, F. A. Hussin, and A. S. Malik, "High level fault

modeling and fault propagation in analog circuits using NLARX automated

model generation technique," in 2072 4th International Conference on

Intelligent andAdvanced Systems (ICIAS2012), 2012, pp. 846-850.

[58] E. Simeu and S. Mir, "Diagnosis in Linear and Nonlinear Mixed-Signal

Systems : a Parameter IdentificationBased Technique," 2005,

[59] "STINS A Matlab tool for Stable Identification of Nonlinear systems via

Semidefinite programming." .

[60] "SPOT: Syst. Polynomial Optimization Toolbox [Online]. Available:

http://web.mit.edu/ameg/wwvv/." .

[61] J. F. Sturm, "Using SeDuMi 1 . 02 , a MATLAB toolbox for optimization over

symmetric cones 1 Introduction to SeDuMi," Online, pp. 1-24, 1998.

[62] B. N. Bond and L. Daniel, "Automated Compact Dynamical Modeling: An

Enabling Tool for Analog Designers," in Computer-Aided Design, 2010, pp.

415-420.

[63] L. Xia, I. M. Bell, and A. J. Wilkinson, "A Robust approach for automated

model generation," in 4th IEEE International Conference on Design and

Technology ofIntegrated systems ofNanoscale era, 2009, pp. 281-286.

[64] L. Xia, I. M. Bell, and A. J. Wilkinson, "Automated macromodel generation for

high level modeling," 3rd International Conference on Design and Technology

ofIntegratedSystems inNanoscale Era, pp. 1-6, Mar. 2008.

[65] N. Dong and J. Roychowdhury, "General-Purpose Nonlinear Model-Order

Reduction Using Piecewise-Polynomial Representations," Computer-Aided

Design, vol. 27, no. 2, pp. 249-264, 2008.

[66] I. W. Congress, "EMPIRICAL MODEL REDUCTION OF CONTROLLED

NONLINEAR SYSTEMS Sanjay Lall , Jerrold E . Marsden , Sonja Glavav,"

World, pp. 473^78, 1999.

87

[67] K. Kunisch and S. Volkwein, "Galerkin proper orthogonal decomposition

methods for parabolic problems," Numerische Mathematik, vol. 90, no. 1, pp.

117-148, Nov. 2001.

[68] S. Volkwein, "Model reduction using proper orthogonal decomposition,"

Lecture Notes, Institute ofMathematics and Scientific Computing, University of

Graz. see http://www. uni-graz. at/imawww/volkwein/POD. pdf pp. 1-42,

2008.

[69] M. Bergmann, C. Bruneau, and A. Iollo, "Improvement of reduced order

modeling based on proper orthogonal decomposition," Methods, no. x, pp. 1-2,

2008.

[70] P. M. Vienna, I. Troch, F. Breitenecker, B. Salimbahrami, B. Lohmann, T.

Bechtold, and J. G. Korvink, "Two-sided Arnoldi Algorithm and Its

Application in Order Reduction of MEMS," Computer, vol. 2003, no.

February, pp. 1021-1028, 2003.

[71] C. Lanczos, "An Iteration Method for the Solution of the Eigenvalue Problem

of Linear Differential and Integral Operators," Journal Of Research Of The

National Bureau OfStandards, vol. 45, no. 4, pp. 255-282, 1950.

[72] R. Freund, "Krylov-subspace methods for reduced-order modeling in circuit

simulation," Journal of Computational andApplied Mathematics, vol. 123, no.

1-2, pp. 395-421, Nov. 2000.

[73] Z. Bai, "Krylov subspace techniques for reduced-order modeling of large-scale

dynamical systems," Applied Numerical Mathematics, vol. 43, no. 1-2, pp. 9-

44, Oct. 2002.

[74] Z. Bai, "Krylov Subspace Techniques for Reduced-Order Modeling of

Nonlinear Dynamical Systems Linearization method," Sciences-New York, no.

x, pp. 1-6.

[75] E. Jonckheere and L. Silverman, "A new set of invariants for linear systems-

Application to reduced order compensator design," Automatic Control, IEEE

Transactions on, vol. 28, no. 10, pp. 953-964, Oct. 1983.

[76] A. Antoulas, "A survey of balancing methods for model reduction," in Proc.

European Control Conference ECC, 2003, vol. 2, no. 2.

88

[77] D. Enns, "Model reduction with balanced realizations: An error bound and a

frequency weighted generalization," in Decision and Control, 1984. The 23rd

IEEE, 1984, no. December, pp. 127-132.

[78] K. Fujimoto and J. M. a. Scherpen, "Model reduction for nonlinear systems

based on the differential eigenstructure of Hankel operators," in Decision and

Control, 2001. Proceedings of the 40th IEEE Conference on, 2001, vol. 4, pp.

3252-3257.

[79] K. J. Astrom and T. Bohlin., "Numerical identification of linear dynamic

systems from normal operating records," in IFAC Symposium on Self-Adaptive

Systems, 1965.

[80] L. W. Nagel, "SPICE2 A Computer Program to simulate semiconductor

circuits," 1975.

[81] Martin Schetzen, The Volterra and Wiener theories of nonlinear systems. John

Wiley, 1980.

[82] A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics: Analytical,

Computational, and Experimental Methods. Wiley, 1995.

[83] J. Roychowdhury, "Reduced-order modelling of time-varying systems,"

Proceedings of the ASP-DAC '99Asia and South Pacific Design Automation

Conference 1999 (Cat. No.99EX198), vol. 46, no. 10, pp. 1273-1288, 1999.

[84] J. R. Phillips, "Automated extraction of nonlinear circuit macromodels," in

Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat.

No.00CH37044), pp. 451-454.

[85] R. Batra, P. Li, L. T. Pileggi, and Y. T. Chien, "A methodology for analog

circuit macromodeling," in Behavioral Modeling and Simulation Conference,

2004. BMAS2004. Proceedings of the 2004 IEEE International, 2004, pp. 41-

46.

[86] A. Steinbrecher and T. Stykel, "ModelOrder Reduction of Nonlinear Circuits,"

International Journal ofCircuit Theory andApplication, vol. 5, no. 9, 2012.

[87] M. Heinkenschloss and T. Reis, "Model Reduction for a Class of Nonlinear

Electrical Circuits by Reduction of Linear Subcircuits," 2010.

[88] D. Vasilyev, M. Rewienski, and J. White, "A TBR-based trajectory piecewise-

linear algorithm for generating accurate low-order models for nonlinear analog

89

circuits and MEMS," in Proceedings of the 40th conference on Design

automation - DAC '03, 2003, p. 490.

[89] N. Dong and J. Roychowdhury, "Automated Nonlinear Macromodelling of

Output Buffers for High-speed Digital Applications," in IEEE 42nd Annual

Design Automation Conference, 2005, no. 51, pp. 51-56.

[90] "http://embedded.eecs.berkeley.edu/pubs/downloads/spice/index.htm.".

[91] S. A. Nahvi and S. Janardhanan, "Trajectory based methods for nonlinear

MOR: Review and perspectives," in 2012 IEEE International Conference on

Signal Processing, Computing and Control (ISPCC), 2012, pp. 1-6.

[92] J. P. Boyd, Chebyshev and Fourier Spectrum Methods. Section 2.7, Dover

Publication, 2001.

[93] M. U. Farooq and L. Xia, "Local Approximation Improvement of Trajectory

Piecewise Linear Macromodels through Chebyshev Interpolating

i ui^nc/unais, rn~rrT7T7T^zT^jri^^

(ASP-DAC),20\3.

[94] M. J. Rewienski and J. K. White, "A Trajectory Piecewise-Linear Approach to

Model Order Reduction of Nonlinear Dynamical Systems," PhD thesis,

Massachusetts Institute of Technology, USA, 2003.

[95] W. Y. Yang, W. Cao, T. S. Chung, and J. Morris, AppliedNumericalMethods

Using MATLAB. Wiley-Interscience, 2005, p. 528.

[96] T. L.Quarles, "SPICE 3 Implementation Guide," 1989.

[97] "SystemVision SPICE reference," Mentor Graphics Corporation, 2010.

[98] D. N. Varsamis and N. P. Karampetakis, "On the Newton Multivariate

Polynomial Interpolation with Applications," in 7th International Workshop on

Multidimensional (nD) Systems (nDs), 2011, vol. 0, pp. 1-8.

[99] P. J. Ashenden, G. D. Peterson, and D. A. Teegarden, The System Designer's

Guide to VHDL-AMS. Morgan Kaufmann Publisher, 2003.

[100] L. Xia, I. M. Bell, and A. J. Wilkinson, "Approach for Automated Model

Generation," in 4th International Conference on Design and Techonology of

Integrated Systems on Nanascale Era (DTIS09), 2009, pp. 281-286.

90

PUBLICATIONS

[1] Muhammad Umer Farooq, LikunXia, "Automated Model Generation Approach to
Perform Behavioral Modeling (VHDL-AMS) in Analogue Circuits and Systems",
Patent No 12MY51.

[2] M.U.Farooq, L.Xia, F.A.Hussin,A.S.Malik,"A Novel Algorithm for Automated
Model Generation of Analog Circuits Using Chebyshev-Newton Interpolation", in
Adv. Sci. Lett. No. 5, Vol.19, pp.1520-1524, May 2013.
[3] M.U.Farooq, L.Xia, F.A.Hussin,A.S.Malik,"Fault Modeling of Analog Circuits
Using System Identification Automated Model Generation Approaches from SPICE
level Descriptions", in in Adv. Sci. Lett. No. 5, Vol.19, pp.1276-1280, May 2013.
[4] M.U.Farooq, L.Xia, F.A.Hussin, "A Critical Survey on Automated Model
Generation Techniques for High level Modeling and High level Fault Modeling", in
IEEE National Postgraduate Conference (NPC 2011), Bandar Seri Iskandar,
Universiti Teknologi PETRONAS,Malaysia, 19-20 September, 2011.
[5] M.U.Farooq, L.Xia, F.A.Hussin, A.S.Malik, "Performance Evaluation of

Nonlinear Automated Model Generation Approaches for High Level Fault Modeling",
in The 7th IEEE Conference on Industrial Electronics and Applications (ICIEA 2012),
Singapore, 18-20 July, 2012.

[6] M.U.Farooq, L.Xia, F.A.Hussin, A.S.Malik, "High Level Fault Modeling and
Fault Propagation in Analog Circuits using NLARX Automated Model Generation
Technique", in The 4th IEEE Conference on Intelligent and Advanced Systems
(ICIAS 2012), Kuala lumpur, Malaysia ,12-14 June, 2012.

[7] M.U.Farooq, L.Xia, F.A.Hussin, A.S.Malik," A Novel Algorithm for Automated
Model Generation of Analog Circuits Using Chebyshev-Newton Interpolation", in
International Conference on Advanced Electrical Engineering (ICAEE 2012), Hong
Kong , China, 4-5 September, 2012.

[8] M.U.Farooq, L.Xia, F.A.HussimA.S.Malik," Fault Modeling of Analog Circuits
Using System Identification Automated Model Generation Approaches from SPICE
level Descriptions", in International Conference on Advanced Electrical Engineering
(ICAEE 2012), Hong Kong , China, 4-5 September, 2012.
[9] M.U.Farooq, L.Xia, F.A.Hussin, A.S.Malik," Improvement of Local
Approximation of Trajectory Piecewise Linear Macromodels through Chebyshev
Interpolating Polynomials," in the IEEE/ACM 18th Asia and South Pacific Design
Automation Conference (ASP-DAC2013), Yokohama, Japan, 22-25 January 2013.
[10] M.U.Farooq, L.Xia, F.A.Hussin, A.S.Malik," Automated Model Generation of

Analog Circuits Through Modified Trajectory Piecewise Linear Approach with
Chebyshev Newton Interpolating Polynomials," in the 4th International Conference on
Intelligent Systems, Modelling and Simulation (ISMS2013),Bangkok, Thailand, 29-
31 January,2013.

91

APPENDICES

92

APPENDIX A

ANALOG CIRCUITS AS STATE SPACE

93

A fault-free or faulty analog circuit can be represented with a set of nonlinear

differential equations shown in A-l.

Ex = f(x(t)) + bu(t),

y = Cx
(A-l)

In this appendix, a simple example of an analog fault-free circuit (figure A-l) [37]

that can be cast as a set of nonlinear differential equations (A.l) is presented. The

circuit has five diodes, with a capacitor and resistor connected to each node. For

analog circuits, the state vector (x(t)) is the voltage at capacitive nodes and current

through inductors. In our case, the state vector is the voltages at capacitive node and is

of length 5, thus having five elements (x(t) = [xi(t) X2(t) x^(t) x4(t) xs(t)]). xj(t)

represents voltage at node 1, X2(t) is voltage at node 2 and so on. Consider all resistors

and capacitors have unity value and nonlinear current through a diode is denoted with

g(x).

u(t)=i(t)(]

id(x2) k(x$) id(x4) id(x5)

Xl x2
A/VY

id(xi) C

3

X3

r

AA/V

C

X4

C

x5

Figure A- 1: Schematic of transmission line circuit (N-5 nodes)

Writing Kirchhoff s Current Law (KCL) equations at node 1 to node 5 produce

following set of equations:

94

KCL at node 1:

KCL at node 2:

KCL at node 3:

dxl

dt
i(t) = C^ + g(xl-x2) + g(x1) +^ +X\ , \Xl X2) \

r r

\ J\i Ao / ^^ (AJv j
g(x, -x2) + ± J- = C— + g(x2-xi)-

r dt

\X2 X3)

\X2 X3) _ n 3
dt

g(x2-x3)+^ 3-2 =C^- +g(x3-x4) +
(x2-Xi)\[A-2)

KCL at node 4:

KCL at node 5:

/ \ , \X3 X4) s~< 4 / \ , \X4 X5)g(x3-x4) + ^ ^ = C—^ + g(x4-x5) + ^ ^
r dt r

g(x,-x5) ++^^-=C^-
r dt J

Re-arranging and re-writing these equations in matrix form, we get a set of equations

similar to equation (A-l).

d_
dt

x,

A--)

Jvn

XA

-g(*i)-g(*i ~x2) +
\X2 2xx)

r

\Ai ~~ £Jv-y ~T~ \-j I
g(x]-x2)-g(x2-x3) +

g(x2-x3)-g(x3-x4) +

g(x3-x4)-g(x4-x5)-

r

r

g(x4-x5) +
(x4-x5)

Comparing equation (A-3) with equation (A-l) we get,

95

+ /(0

(A-3)

;/(*) =

-g(x,)-g(x, -x2) +

g(xl-x2)-g(x2-x3) +

g(x2 - x3) - g(x3 -x4)

g(x3-x4)-g(x4-x5) +

1A^ £Jv1 J

r

r

(x2 - 2x3 +x4)
r

(x3 - 2x4 +x5)

g(X4-Xs)-
\X4 X51

u(t) = i(t)

Here, x represents the state vector, f(x) represents the nonlinear current function

through diodes, b is column vector describing the number of inputs (single input in

this case) and u(t) is the input to circuit. Hence, analog circuit information is

automatically abstracted into white-box ss model structure.

96

APPENDIX B

MATLAB CODE FOR AMG-CNIP ALGORITHM

97

B.l. Main Routine

%%%%%% TOP LEVEL ROUTINE -6-5-s'-o-s-6-s •£-6 %-6-6 ~o-6-6-$-s-6

% This routine is the main routine for algorithm model generation,
model evaluation and automatic model conversion.

close all

clear all

clc

%%%%%% Parameters from SPICE2G6 running in SystemVision
t0=0;tf=0.01;dt=le-5;abs_tol = le-6;
Isat = le-14;Gmin = le-12;vte = 0.02586418638;

nodes = 5; c= 1;

sim_constants=struct;
sim_constants.t0=t0;
sim_constants.tf=tf;
sim_constants.dt=dt;
sim_constants.tol=abs_tol;

spice_constants=struct;
spice_conalants.Isat=Isat;
spice_constants.Gmin=Gmin;
spice_constants.vte = vte;
spice_constants.nodes=nodes ;
spice__constants .c = c;

%%%%%%%% AMG CNIP MODEL GENERATION%%%%%%

[a_ld,a_2d,xlk,x2k,N_tuned,CKTJTrainOut,AMGCNIP_TrainOut,T] =
AMGCNIP_MODEL_GENERATION(spice_constants,sim_constants) ;

PLOT_TRAIN(CKT_TrainOut,AMGCNIP_TrainOut,T); %%% plotting trained
model outputs. Just a sanity check.

» 9- 9- 9-9- °- ;-6 "o"a "6"6 "o"6S "6 "a "6"6 "o"6"o"o"o"<

n ci rt i" cj « « & ~* •!> fl/--i /-ii -r-!~ r-^ i> «/"• T"iT"!T 7"~tT j-t\ t TT7\iTTAM 9- 9- 9~ 9" °- 9- 9" 9~ 9" 9- 9~ 9~ 9~ 9- 9~ 9" S- 9/"9" 9~ 9" 9" 9" 3t St "!'. •%%%%%%%% AMG CNiP MODEL EVALiJAl ION -s-s-s-s•«-s-s-s->>-s-s-s-&-o-s-o-5-s•» 0-0 o o o o a

[AMGCNIP_EvalOut, CKT_EvalOut,T]
AMG_CNIP_EVALUATION(a_ld,a_2d,xlk,x2k,N_tuned,spice_constants,sim_con
stants);
PLOT__EVAL(CKT_EvalOut,AMGCNIP_EvalOut,T);

r /v i 1 ii ill ^ „._..,.,.,-..-

1 , 1- -i /j i ifii k ^ r in dt -i 1 e t ii

„ , „ d^r..c ^..l^ -J—1-, u.c \.... - itoi- e 1 <- 1 c- 11 •"-' L J
drop •• in.
%%% module in system vision for performing HLM at system level
Automatic_Model_Converter('D:\Umer
Data\My Work\Chebyshev SPICE Coding\AMG_ CNJP\AMG CNIP_.HLM.vhdl ',N_tun
ed,a_ld,a_2d)

98

B.2. AMG-CNIP Model Generation Routine

function [

a_ld,a_2d,xlk,x2k,N_tuned, CKTJTrainOut, AMGCNIPJTrainOut, T] =
AMGCNIP_MODEL_GENERATION(spice_constants, sim_constants)
%AMGCNIP MODEL GENERATION: This routine generate AMG-CNIP model
according to the algorithm given in chapter 3.
%Input parameters: spice constants; to get spice parameters
% sim constants: to get timing information
%Output parameters:a Id, a 2d: CN polynomial coefficients for ID and
2D

% .n.a 1

%t iminq information j..h ± •

in i < i, circuit in MATLAB to find range

• ; .2 . 1 .3

ckt_outputs = simulate_ckt(spice_constants, sim__constants);

%%%%% Simulating nonlinear current functions with state vector
(output voltages)
%%%%% to find range [a,b] using function ARF described in section
3.2.1.3

[a,b]= ARF(ckt_outputs,spice_constants) ;
range = [a,b];

%%%%%% Generating ID Chebyshev - Newton Interpolating polynomial as
%%%%%% described in section 3.2.1.1

N = 3; %% Initiaing polynomial order with some random value
a_ld = CN__poly_lD (range, spice_constants,N) ;

%%%%%% Generating 2D Chebyshev - Newton Interpolating polynomial as

[xlk,x2k,a_2d] = CN_poly_2D (range, spice__constants ,N) ;

%%%%% Simulate ss with CN polynomial coefficients (ID and 2D) and
APT tunes

%%%%% the polynomial order N as described in section 3.2.1.5
[a_ld, a_2d, xlk, x2k, N_tuned, CKTJTrainOut, AMGCNIPJTrainOut, T] =

APT(a__ld, a_2d,xlk,x2k, range, N, spice_constants ,sim_constants) ;

end

B.2.1 Simulate Circuit Routine

function [ckt_outputs] = simulate_ckt(spice_constants,sim_constants)
% This routine simulate original circuit in ss form with original
nonlinear diode current function to obtain original circuit outputs.

% Initialization of different variables for transient simulation

99

to = sim_constants.to;
tf = sim_constants.tf;
dt = sim_constants.dt;
T = tO:dt:tf;

nodes = spice_constants.nodes;
IC = zeros(nodes,1);

ckt_outputs = zeros(1:length(T)-1,nodes) ;
flag = 1; % using the ode; routine for training

for i=l:length(T)-1
% selecting time step for transient simulation

Tspan = [T(i) T(i+1)] ;
% solving differential equations using MATLAB ode function
[Time V]

=odel5s(@(t,v)nltxline(t,v,spice_constants,flag),Tspan,IC) ;
%storing only last output value of integration step at Time=
IC = V(end,:);

ckt_outputs(i,:) = V(end,:);

end

end

B.2.1.1 Nltxline Routine

function dv = nltxline(t,v,spice_constants,flag)
% This routine simulates original circuit and is also used during

mode I

% evaluation. Flag test either to calculates training input or

evaluation

% input.

c= spice_constants.c;
if flag ==1

ut = compute_train_input(t);
else if flag == 0

ut = compute_eval_input(t);
end

end

dv = zeros(5,1);

idl = calculate_id(v(1),spice_constants);
id2 = calculate_id(v(1)-v(2),spice_constants);
id3 = calculate_id(v(2)-v(3),spice_constants);
id4 = calculate_id(v(3)-v(4),spice_constants);
id5 = calculate_id(v(4)-v(5),spice_constants);

dv(l) = (-idl-id2+v(2)-(2*v(l))+ ut)/c;
dv(2) = (v(D-(2*v(2))+v(3)+id2-id3)/c;

dv(3) = (v(2)-(2*v(3))+v(4)+id3-id4)/c;

dv(4) = (v(3)-(2*v(4))+v(5)+id4-id5)/c;

dv(5) = (v(4)-v(5)+id5)/c;

dv = dv(:);

end

100

function id = calculate_id(vd,spice_constants)
% This routine calculate orginal nonlinear current function at evs
time

by CN
% polynimial in ss by AMG-CNIP algorithm

Isat = spice_constants.Isat;
Gmin = spice_constants.Gmin;
vte = spice_constants.vte;

evd = exp(vd/vte);
id = Isat*(evd-1) + (Gmin*vd);

end

B.2.2 ARF Routine

function [a,b] = ARF (ckt_outputs,spice_constants)
A - i i - range [a,b] to calculate nodes for Chebyshev

% extracting voltages from circuit outputs

vdl = ckt_outputs(:,1);
vd2 = ckt_Output S(: ,2) ;
vd3 = ckt_outputs(:,3);
vd4 = ckt_OutputS(:,4);
vd5 = ckt_outputs(:,5);

n = length(vdl);

% simulating diode nonlinear current functions with corresponding
volt a.Qe s

for i=l:n

fxl(i) = Diode_nl_func(spice_constants,vdl(i));
fx2(i) = Diode_nl_func(spice_constants,vdl(i) -vd2(i));
fx3(i) = Diode_nl_func(spice_constants,vd2(i)-vd3(i));
fx4(i) = Diode_nl_func(spice_constants,vd3(i)-vd4(i));
fx5(i) = Diode_nl_func(spice_constants,vd4(i)-vd5(i)) ;
end

% find minimum value of each nonlinear function, also find maximun

nonlinear functions so that we do not need to c ;

polynomial for each nonlinear function.
al = min(fxl); bl=max(fxl);

a2 = min(fx2); b2=max(fx2);

a3 = min(fx3); b3=max(fx3);

a4 = min(fx4); b4=max(fx4);

a5 = min(fx5); b5=max(fx5);

aa = [al,a2,a3,a4,a5];

bb = [bl,b2,b3,b4,b5];

a = min(aa);% minmum from all nonlinear functions
b = max(bb);% maximum from all nonlinear functions

101

end

function [fx] = Diode_nl_func(spice_constants,vd)

evd_t = exp(vd/spice_constants.vte);
fx = (spice_constants.Isat*(evd_t-l)+ (spice_constants .Gmin*vd));

end

B.2.3 ID CN Polynomial Routine

function [a_ld] = CN_poly_lD(range,spice_constants,n)
i calculates CN polynomial for ID components
>se one end is grounded and other end is

.e Chebyshev nodes

iters to use durign calculation of Chebyshev

coetricients calculated ubiny—ID Newton

1

% initializing range [a,b] for calculating Chebyshev nodes

a = range(1); b = range(2);

% Three-step procedure for obtaining CN polynomial

for i=l:n

% Stepl: Obtaining input nodes using Cos formula as descrubed in
section 3.2.1,2

xk(i) = ((a+b)/2)+ ((b-a)/2)*cos((((2*n)+1-(2*i))*pi)/(2*n+2)) ;
evd = exp(xk(i)/spice_constants .vte) ;
% Steo 2: obtaining output nodes usina nonlinear function from

yk(i) =(spice_constants.Isat*(evd-1) + (spice_constants.Gmin*xk (i)))

end

%step3: calculating CN polynomial coefficients using NDD method from

%.interpilation points calculated in step 2.

a_ld = newtonld(xk,yk);

end

B.2.3.1 ID NDD Routine

function [n,DD] = newtonld(x,y)

%Input : x [xO xl ... xN]

%Output: n = Newton polynomial coefficien

N = length(x)-1;

102

DD = zeros(N + 1,N + 1);

DD(1:N + 1,1) = y';

for k = 2:N + 1

for m = 1: N+2 -k %Divided Difference Table

DD(m,k) = (DD(m + l,k - 1) - DD(m,k - l))/(x(m + k - 1)- x(m));
end

end

a = DD(1,:); %Eq.(3.2.6) in book "Applied numerical methods using

n = a(N+l); %Begin with Eq. (3.2.7)
for k = N:-1:1 %Eq. (3.2.7)
n = [n a(k)] - [0 n*x(k)]; %n(x)*(x - x(k l)!+a_k - 1
end

B.2.4 2D CN Polynomial Routine

function [xlk,x2k,a_2d] = CN_poly_2D(range,spice_constants,n)
%CN POLY 2D: Generates 2D CN polynomial for components both sides

1 i - t ^^ 1 __l

i i > i of 1 p hebyshev nodes
j ,r 1 t h used in nonlinear function

- i,_ and number of interpolating points

t, i /*. i <- n points for 2D CN polynomial
r i ,r i 1 coefficients

a = range(l); b = range(2);% initilizd
formulation, xlk represents first% Obtaining Chebvshev nodes

% variable and x2k represents 2nd variable for formu

for i=l:n

xlk(i) = ((a+b)/2)+ ((b-a)/2)*cos((((2*n)+1-(2*i))*pi)/(2*n+2));
x2k(i) = ((a+b)/2)+ ((b-a)/2)*cos((((2*n)+1-(2*i))*pi)/(2*n+2));
end

% obtaining output points using nonlinear function and input
interpolation

for i=l:n

for j=l:n
evd = exp ((xlk (i)-x2k (j))/spice___constants .vte) ;
fxk(j,i) =(spice_constants.Isat*(evd-1) +

(spice_constants.Gmin*(xlk(i)-x2k(j)))) ;
end

end

% obtaining coefficients for 2D CN polynomial using 2D NDD method
a 2d = newton2d(xlk,x2k,fxk);% 2D coefficients

end

B. 2.4.1. 2D NDD Routine

function A = newton2d(x,y,g)

%% 2D method mathematical details are taken from, the paper

%% D. N. Varsamis and N. P. Karampetakis, "On the Newton Multivariat
%% Polynomial Interpolation with Applications," in 7th Internationa]

103

%% Workshop on Multidimensional (nD) Systems (nDs), 2011, vol. 0, pp.

n = length(x);

DD = zeros(n,n,n);

for i=l:n

for j=1:n
if j > n+l-i

DD(j,i,l) =0;
else

DD(j,i,1) = g(j,i);

end

end

end

% Creating k=2 to n order tables
for k=2:n

for i=l:n

for j=l:n
if j>n+l-i

DD(j,i,k)=0;
else

DD (j ,i,k)—- DP (j ,i, k-1) ; % this is assignment of ol<
table values in new tables, values that passed on directly without
any calculation

if j<= k-1 && i > k-1 % these are three conditions to
calcuate enteries in each table based on i,j,k indecies

DD(j,i,k) = (DD(j,i,k-l) - DD(j,i-1,k-1)) / (x(i)
- x(i-k+l));

else

if i<= k-1 && j>k-l
DD(j,i,k) = (DD(j,i,k-l)- DD(j-1,i,k-1)) /

(y(j)-y(j-k+D) ;
else

if j>k-l && (i+j-1) <= n
DD(j,i,k) = (DD(j,i,k-l) + DD(j-1,i-1,k-

1) - DD(j-l,i,k-l) - DD(j,i-l,k-l)) /((x(i)-x(i-k+1)) * (y(j) - y(j-
k+D)) ;

end

end

end

end

end

end

end

A = DD(:,:,n); % Returning last table enteries as polynomial

%end

B.2.5 APT Routine

function [a_ld,a_2d,xlk,x2k,N_tuned, CKTJTrainOut, AMGCNIPJTrainOut, T]
= APT(a_ld,a_2d,xlk,x2k,range,N, spice_constants,sim_constants)

104

%APT: This routine tunes the order N of polynomial based on outp
^VTOY

% Initialization of difterent variables lor transient simulation

tO = sim_constants.tO;
tf = sim_constants.tf;
dt = sim_constants.dt;
T = 10 :dt :t f ;

nodes = spice_constants.nodes;
IC = zeros(nodes,1);

ICJcheb = zeros(nodes,1);
ckt_outputs = zeros(1:length(T)-1,nodes) ;
ss_cheb_outputs = zeros(1:length(T)-1,nodes) ;
flag = 1; % using ode routines for training inputs
N_tuned = N;% Initializing Ntuned with N

% Main loop, simulating original circuit and ss with CN polynomial at
same

% time to calculate output error at each time step and tune
polynomial
% order

for i=l:length(T)-1

Tspan =[T(i) T(i+1)] ;
[Time V]

=odel5s(@(t,v)nltxline (t, v, spice_constants ,flag) ,Tspan,IC) ;
[T_cheb V_cheb]

=odel5s (@(t_cheb_train,v_cheb__train)SS_CN_poly(t_cheb_train,v_cheb_tr
ain,a_ld,a_2d,xlk,x2k, spice_constants, flag) ,Tspan, ICJcheb) ;%
Approximation of training trajectory through Chebyshev-Newton
polynomials used in state space

IC = V(end,:);

IC_cheb = V_cheb(end, :);
ckt_outputs(i, :) = V(end, :) ;
ss_cheb_outputs(i, :)= V_cheb(end, :);

%%%%%%%% polynomial, tuner check to increase order N based on
condition

if abs(ckt_outputs (i, 1) - ss_cheb_outputs(i,1)) >
sim_constants.tol

N_tuned = NJtuned + 1;
a_ld = CN_poly_lD (range, spice_constants,N_tuned) ;
[xlk,x2k,a_2d] = CN_poly_2D (range, spice_constants ,N_tuned) ;

end

end

CKTJTrainOut = ckt_outputs;
AMGCNIP_TrainOut = ss_cheb_outputs ;

end

B.2.5.1. CN Polynomial SS Simulation Routine

function [dv] =
SS_CN_poly (t, v, a_ld, a_2d, xlk, x2k, spice_constants, flag)
%SS_CN POLYJTEAIN : In this routine we replace also use ID
coefficients for

%2D functions by taking difference of two voltages and make it single

105

-tage. Complete code for 2u ss calculation is also gi
comments

%below and output same response.

c= spice_constants.c;
dv = zeros(5,1);

if flag ==1
ut = compute_train_input(t);
else if flag == 0

ut = compute_eval_input(t) ;
end

end

P_ld = polyval(a_ld,v(l))
vl2 = v(l) - v(2);

Pl_2d = polyval(a_ld,vl2);
v23 = v(2) - v(3);

P2_2d = polyval(a_ld,v23);
v34 = v(3) - v(4);

P3_2d = polyval(a_ld,v34);
v4 5 = v(4) - v (5) ;

P4_2d = polyval(a_ld,v45);

dv(l)= (-P_ld - Pl_2d+ v(2) - (2*v(D) + ut)/c;
dv(2)= (Pl_2d - P2_2d + v(l) - (2*v(2)) + v(3))/c;
dv(3)= (P2_2d - P3_2d + v(2) - (2*v(3)) + v(4))/c;
dv(4)= (P3_2d - P4_2d + v(3) - (2*v(4)) + v(5))/c;
dv(5)= (P4_2d + v(4) - v(5))/c;

% l1 l/J) l - - U + 1<- ^ 1 s j O

% ii a 7^) l i, i i i J c iv / '
% 7 I / I ^~, i

% / s _l ' 1
% , I ! t ^

% i 7

, '2

% %% To generate 2d newton polynomials two matrices XI and X2 are

built at run time, these are generated here recursively using for

% % In each chunk of code below, separate polynomials are generate

in each chunk of code node voltages are changed. Therefore need tc

replicate this code the no. of polynomials we want to generate.

106

cl_Pl = (v!l)-xlk(:
X1_P1(i)=cl_Pl;

end

-1))* Cl PI:

::2 PI = (v(2)-x2k(i-lj) c2 PI:

PI 2d = (X2 Pl'*a 2d)*X1 :% Calculation or Newton zu poiynomiaj

••, o, o, q. o, 0, o, o, o, o, o, o. o, l>, q. o. o„ o„ o, o, c. a '.y <> a c g. g. a g. g, a o o_ o g, g. c
3 "6 "6 "o "6 "6 "6 "6 "6 "6 "o "o "o "a "c "o "a "o "o "o o s o o o o o "o "5 o o o 'o o -5 o o 1

for i=2:n

cl_P2 = (v(2)-xlk(i-l))* cl_P2;
X1_P2(i)=cl_P2;

end

c2_P2 = (v(3) x2k(i 1)5* c2_P2 ;
X2 P2(i)=c2 P2;

% P2 2d = (X2 P2'*a 2d)*X1

% '"• I P 3 •--- m7 (3) - xlk ^1 1]] * c l i::> 3 -

XI P3(i)=cl P3;

% c2_P3 = (v(4)-X2k(i-1))* c2_P3;
% X.2 P3 (i) ==c2 P3 ;

% P3 2d (X2 P3'*a 2d)*X1 P3;

% cl_P4 == (v (4)-xlk(i-l)) * cl_
% X1_P4 (i) =C.1_P4;
% end

% for 1=2:n

% c2_P4 = (v(5 5 x2k(i... 1))* c2_P4 ;
% X^2 ^4 !' i) —c2 ^:>4 *

% end

% P4 2d. (X2 P4 ' *a 2d)*X1 P4 ;

o o o a 1

1 o c, a o, . o g.g.g„<^<^ g-g.g. 2_ <i. 9„g~9~ £. y-&-S*-

%%% finally assiging polynomial values
%%% output of current integration step

% dv(2)= PI 2d - P2 2d;

107

to nodes. These values are i.,.n.e

dv= dv(:);

end

B.3. AMG-CNIP Model Evaluation Routine

function [AMG_CNIP_EvalOut, Ckt_EvalOut,T] =
AMG_CNIP__EVALUATION(a_ld,a_2d,xlk,x2k,N, spice_constants, sim_constants

)

%AMG CNIP EVALUATION: This routine loads coefficients from model

generation module and evaluate the model with evaluation input.

% i n. i u i a i i z a e i on o r

to = sim_constants.to
tf = sim_constants.tf
dt = sim constants.dt

different variables for trar

T = tO:dt:tf;

nodes = spice_constants.nodes;
IC = zeros(nodes,1);

IC_cheb = zeros(nodes,1);
ckt_outputs = zeros(1:length(T)-1,nodes);
ss_cheb_outputs = zeros(1:length(T)-1,nodes);
flag = 0; % using ode routine for evaluation inputs

for i=l:length(T)-1
Tspan = [T(i) T(i +1)] ;
[Time V]

=odel5s(@(t,v)nltxline(t,v,spice_constants,flag),Tspan,IC) ;
[T_cheb V_cheb]

=odel5s (@ (t_chebjtrain, v_cheb_train) SS_CN_poly (t_cheb_train, v_cheb_tr
ain,a_ld,a_2d,xlk,x2k,spice_constants,flag),Tspan,IC_cheb);%
Approximation traj ectory through Chebyshev-Newton
poiy.ii.omia.is Lie spa.ce

IC = V(end,:);

IC_cheb = V_cheb(end, :) ;
ckt_outputs(i, :) = V(end, :);
ss_cheb_outputs(i,:)= V_cheb(end,:);

end

AMG_CNIP_EvalOut = ss_cheb__outputs ;
Ckt_EvalOut = ckt_outputs;

end

[08

B.4. AutomaticModel Conversion (AMC) Routine

function Automatic_Model_Converter (filename,n, a_ld, a_2d)
. 0pen a file for writing signals

>fid = fopen ('d :\Hdl generat ion\vhd _g\vhd g.vhd'Jw');

fid = fopen(filename,'w');

fprintf(fid, '%s\n', 'library ieee; ');
fprintf(fid,'%s\n','use ieee.math real.all;');
fprintf(fid,'%s\n','use IEEE.electrical systems.all;');
fprintf(fid,'\n');
fprintf(fid, '%s\n', 'entity AMGCNIPJ1LM is ') ;
fprintf(fid, '%s\n ','port (') ;
fprintf(fid,'%s\n','terminal u t,vl hlm,v2 hlm,v3 hlm,v4
: electrical);');

fprintf(fid, >%s\n', 'end entity AMGCNIP_HLM;') ;
fprintf(fid,'\n');

rchitecture ideal of AMGCNIP_HLM is');
-- Declare Branch Quantities');

in

fprintf(fid,'%s\n',
fprintf(fid,'%s\n',
fprintf(fid,'%s\n',

fprintf (fid, '%s\ri.' ,

9: ') /'
fprintf(fid,'%s\n',

g;1);
fprintf(fid,'%s\n',

g;');
fprintf(fid,'%s\n',

g;') ;
fprintf(fid,'%s\n',

g;') ;
fprintf(fid,'\n');

quantity vi across i_m tni'ough u_t. to

quantity vl across i_outl through vl_hlm to

quantity v2 across i_out2 through v2_hlm to

quantity v3 across i_out3 through. v3_hlm to

quantity v4 across i_out4 through v4_hlm to

quantity v5 across i_out5 through v5__hlm to

,1) ;

for i=l:5

fprintf(fid,'\n quantity temp*
end

fprintf(fid,'\n');
for i=l:n

fprintf(fid,'\n constant a Id
end

real :=%3.3Og; ',i,a_ld(i)

fprintf(fid,'\n');
fprintf(fid, '\n') ;

fprintf(fid,'%s\n','begin');
fprintf(fid,'%s\n','vi ==1
fprintf(fid, '\n') ;

%%%%%%%%%%%% temp 1 code

fprintf(fid,'%s','tempi =

m;

);

for i=l:n-l

fprintf(fid, '(a_ld_%d*vl**%d) ',i,n-i);
fprintf(fid,'+');

end

109

fprintf(fid,'a_ld_%d)',n);

fprintf(fid,'-(');

for i=l:n-l

fprintf(fid,'(a_ld_%d*(vl-v2)**%d)',i,n-i);
fprintf(fid,'+');

end

fprintf(fid,'a_ld_%d)+ vl - (vl-v2)+i_in;',n);
fprintf(fid,'\n');
fprintf(fid,'%s\n','vl == tempi''integ;');

•%%%%%%%%%%%% temp- 2 code

fprintf(fid,'\n');

fprintf(fid,'%s','temp2 == (');

for i=l:n-l

fprintf(fid,'(a_ld %d*(vl-v2)
fprintf(fid,'+'j ;
end

fprintf(fid, a ld_%d)',n);

fprintf(fid, '-(');

',i,n-i);

for i=l:n-l

fprintf(fid,'
fprintf (fid, 'i-');
end

fprintf(fid,'a_ld_%c

Id %d*(v2-v3)**%d)',i,n-i);

(vl-v2) (v2-

fprintf(fid,'\n');
fprintf(fid,'%s\n','v2 == temp2''integ;');

fprintf(fid,'\n');

fprintf(fid,'%s','temp3 == (');

for i=l:n-l

fprintf(fid,'(a_ld_%d*(v2--
fprintf(fid,'+');
end

fprintf(fid,'a Id %a)',n);

fprintf(fid,

*%d)',i,n-i);

-%d) ',i ,n-i)

•n)

for i=l:n-l

fprintf (fid, '(a. Id %d*(v3-v4)
fprintf(fid, '+ ');

end

fprintf(fid,'a_ld_%d) + (v2-\ (v3- ,n) ;

fprintf(fid, '\n');
fprintf(fid,'%s\n','v3 temp3''integ;')

110

%• -o "5 -$ % %• %%%% -6 % temp 4 cod.e

fprintf(fid,'\n');

fprintf(fid,'%s','temp4 == (');

for i=l:n-1

fprintf(fid, '(a Id %d*(v3-v4)**%d) ',i,n-i) ;
fprintf(fid,'+'j ;
end

fprintf(fid,'a_ld_%d)',n);

fprintf(fid,'-(');

for i=l:n-l

fprintf(fid,'(a_Id %d*(v4-v5)**%d)',i,n-i);
fprintf (fid, '+']";
end

fprintf(fid,'a Id %d) + (v3-v4) - (v4-v5);',n)

fprintf(fid, '\n') ;
fprintf (fid, '%s\n ','v4 === temp4 ''integ; ');

%%%%%%%%%%%% temp 5 code

fprintf(fid,'\n');

fprintf(fid, '%s', 'temp5 == (') ;

for i=l:n-1

fprintf(fid,'(a Id %d*(v4-v5;**%d)',i,n-i);
fprintf(fid,'+'T;
end

fprintf(fid, 'a Id %d)+ (v4-v5);',n) ;

fprintf(fid,'\n');
fprintf(fid, '%s\n', 'v5 = temp5' 'integ; ') ;
fprintf(fid,'\n');

fprintf(fid, '%s\n ','end architecture ideal;

B.5. Plotting Routines

function PLOTJTRAIN (CKTJTrainOut, AMGCNIPJTrainOut, T)
%PLOT_TRAIN : Plot training circuit output and AMG-CNIP trained mod
%output s

figure

plot(T(l:end-l) ,CKT_TrainOut(:,l),'o-',T(l :end-
1),AMGCNIP_TrainOut(:,1),'.-')

111

legend ('CIRCUIT-TRAIN-OUTPUT (node 1) ','AMGCNIP-TRAIN-OUTPUT (node

grid

figure
plot(T(l:end-1),CKTJTrainOut(:,2),'o-',T(l:end-
1),AMGCNIPJTrainOut(:,2),'.-')
legend('CIRCUIT-TRAIN-OUTPUT (node 2)','AMGCNIP-TRAIN-OUTPUT (node
2) ')

grid

figure
plot(T(1:end-1),CKTJTrainOut(:,3),'o-',T(1:end-
1),AMGCNIPJTrainOut(:,3),'.-')
legend ('CIRCUIT-TRAIN-OUTPUT (node 3) ', 'AMGCNIP-TRAIN-OUTPUT (node
3) ')

grid

figure
plot(T(1:end-1),CKTJTrainOut(:,4),'o-',T(1:end-
1) ,AMGCNIPJTrainOut(: ,4) , ' .-')
legend('CIRCUIT-TRAIN-OUTPUT (node 4)','AMGCNIP-TRAIN-OUTPUT (node
4) ')

grid

figure
plot(T(l:end-1) ,CKTJTrainOut(:,5) ,'o-',T(l:end-
1) ,AMGCNIPJTrainOut(:,5) ,' .-')
legend('CIRCUIT-TRAIN-OUTPUT (node 5)','AMGCNIP-TRAIN-OUTPUT (node
5) ')

grid

end

function PLOT_EVAL(CKT_EvalOut,AMGCNIP_EvalOut,T)
%PLOT TRAIN :Plot evaluation, circuit outputs and. AMG-CNIP model

evaluation outputs

figure

plot(T(l:end-1) ,CKT_EvalOut(: ,1) ,'o-',T(l:end-
1) ,AMGCNIP_EvalOut(: ,1) ,'.-')
legend('CIRCUIT-EVAL-OUTPUT (node 1)','AMGCNIP-EVAL-OUTPUT (node 1)')
grid

figure

plot(T(l:end-1),CKT_EvalOut(:,2),'o-',T(l:end-
1) ,AMGCNIP_EvalOut(: ,2) ,'.-')
legend('CIRCUIT EVAL OUTPUT (node 2)','AMGCNIP-EVAL OUTPUT (node 2)')
grid

figure

plot(T(1:end-1),CKT^EvalOut(:,3),'o-',T(1:end-
1),AMGCNIP_EvalOut(:,3),'.-')
legend('CIRCUIT-EVAL-OUTPUT (node 3)','AMGCNIP-EVAL-OUTPUT (node 3)')
grid

112

figure
plot(T(1:end-1),CKT_EvalOut(:,4) , ' o- ' ,T(1:end-
1),AMGCNIP_EvalOut(:,4),'.-')
legend('CIRCUIT-EVAL-OUTPUT (node 4) «,'AMGCNIP-EVAL-OUTPUT (node 4)')
grid

figure

plot(T(l:end-1) ,CKT_EvalOut(:,5) , 'o-',T(l:end-
1),AMGCNIP_EvalOut(:,5),'.-')
legend('CIRCUIT-EVAL-OUTPUT (node 5) ', 'AMGCNIP-EVAL-OUTPUT (node 5) ')
grid

end

113

