
STATUS OF THESIS

Title of thesis Genetic Algorithm Optimized Packet Filtering

I OKTA NURIKA

hereby allow my thesis to be placed at the information Resource Center (IRC) of
Universiti Teknologi PETRONAS (UTP) with the following conditions:

1. The thesis becomes the property of UTP

2. The IRC of UTP may make copies of the thesis for academic purposes only.

3. This thesis is classified as

Confidential

ic
Non-confidential

If the thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for

Remarks on disclosure:

years.

Signature of Author

Permanent address:

Taman Bumi Prima Blok-Cl,

BandunR, Indonesia.

Date: ^ M«^ ZelS

Endorsed by ("^

Signature of/Supervisor

Name of Supervisor

Dr. Low Tan Jung

Date: * "«<Uf ^Z
Orlow Tarn Junj
: nior Lecturer

department of Computer & Information Sciences
fniversiti Teknologi PETRONAS

UNIVERSITI TEKNOLOGI PETRONAS

GENETIC ALGORITHM OPTIMIZED PACKET FILTERING

by

OKTANURIKA

The undersigned certify that they have read, and recommend to the Postgraduate

Studies Programme for acceptance this thesis for the fulfillment of the requirements

for the degree stated.

Signature:

Main Supervisor:

Signature:

Head of Department:

Date:

q^^^tt-
Dr. Low Tan Jung

rv5

UUafreenlNnJaabr
Head

Department of Computer ft mformattwtSdences
UnWarslti Teknotofi FETRONAS
31750 Trorwn
ffrak Darul ftMtuan, MALAYSIA

Dr. JafWzal BjrrJaafar

GENETIC ALGORITHM OPTIMIZED PACKET FILTERING

by

OKTA NURIKA

A Thesis

Submitted to the Postgraduate Studies Programme

as a Requirement for the Degree of

MASTER OF SCIENCE

INFORMATION TECHNOLOGY

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SRI ISKANDAR

PERAK

APRIL 201:

DECLARATION OF THESIS

Title of thesis
Genetic Algorithm Optimized Packet Filtering

OKTA NURIKA

hereby declare that the thesis is based on my original work except for quotations and

citations which have been duly acknowledged. I also declare that it has not been

previously or concurrently submitted for any other degree atUTP orother institutions.

Signature of Author

Permanent address:

Taman Bumi Prima Blok-C 1,

Bandung, Indonesia.

Date: ^ ^^ ^1^_

IV

Witnessed by

1^

Signature of Supervisor

Name of Supervisor

Dr. Low Tan Jung

ACKNOWLEDGEMENTS

First of all, I would like to thank the Almighty God for the countless blessing

towards me so I can finish my studies. My family: my Dad (Muh. Nurhadi Sjukur),

my Mom (Farichah Dimyati), and my sisters for their marvelous moral support. I

would also thank my supervisors: Dr. Low Tan Jung, Dr. Nordin Zakaria, Dr. Anang

Hudaya, and Mr. Abdullah Sani for the precious technical support, inputs, thesis

reviews, and motivational words during my research.

I am very thankful for UTP Graduate Assistantship (GA) scheme for the valuable

scholarship and the UTP High Performance Computing (HPC) Service Center for the

decent facilities and work environment. I thank my UTPian friends and crush for the

conducive friendship and the colourful and wonderful school life I have been having

here. I cherish every second of togetherness with all of you. Let's keep protecting

each other's smile.

ABSTRACT

In our research, we present a method to optimize packet filtering by genetic

algorithm. Packet filtering in our work consists of packet capturing and firewall rules

reordering. Genetic algorithm is used to automate rules reordering and the discovery

of optimal combination of packet capture configuration, in the framework of

PF_RING platform and rules ordering. Our method has been tested in different sizes

of network traffic load. Genetic Algorithm evolves configuration based on the

recorded throughput rates; the higher the throughput the better the solution. Results

obtained indicate the effectiveness of the approach.

Keywords: PFJUNG, Packet Capture, Packet Filter, Genetic Algorithm,

Optimization, Firewall.

vi

ABSTRAK

Dalam kajian kami, kami membentangkan kaedah untuk mengoptimumkan

penapisan paket oleh algoritma genetik. Penapisan paket dalam kerja-kerja kami

terdiri daripada penerimaan paket dan penyusunan semula aturan-aturan firewall.

Algoritma genetik digunakan untuk mengautomasikan penyusunan semula aturan-

aturan dan penemuan kombinasi optimal konfigurasi penerimaan paket, dalam rangka

kerja platform PF_RING dan susunan aturan-aturarmya. Kaedah kami telah diuji

dalam pelbagai saiz beban trafik jaringan. Algoritma genetik mengembangkan

konfigurasi berdasarkan kadar keluaran paket yang direkodkan; kadar keluaran paket

yang lebih tinggi menandakan solusi yang lebih baik. Hasil-hasil yang diperolehi

menunjukkan keberkesanan pendekatan kami.

Kata Kunci: PF_RING, Penerimaan Paket, Penapisan Paket, Algoritma Genetik,

Pengoptimuman, Firewall.

vn

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the
university, the copyrightof this thesis has been reassigned by the author to the legal
entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained
in, or derived from, this thesis.

©OktaNurika,2013
Institute of Technology PETRONAS Sdn Bhd
All rights reserved.

vin

TABLE OF CONTENTS

STATUS OF THESIS i

ACKNOWLEDGEMENTS v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS ix

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1. INTRODUCTION 1

1.1. Problem Description 2
1.2. Objectives 3
1.3. Thesis Outline 3

CHAPTER 2. LITERATURE REVIEW.... 5

2.1. TCP/IP 5
2.2. Intrusions into the Network 11
2.3. Deployment of Firewall for Protection 16
2.4. The Previous Works to Precise the Firewall Rules 19
2.5. The Assisted Firewall Implementation 23
2.6. Introduction to Packet Capturing 27
2.7. Current Packet Capturing Technologies 29
2.8. HighSpeed Packet Capturing and PacketFiltering 34
2.9. Genetic Algorithm (GA) in Packet Filtering System 36
2.10. Network Penetration Testing 44
2.11. Summary - 45

CHAPTER 3. METHODOLOGY 47

3.1. Introduction to Genetic Algorithm Library 47
3.1.1. GAlib 47
3.1.2. GAlite the Minimized GAlib as The Methodology Platform 48

3.2. PacketCapture Platformto be optimized by Genetic Algorithm 49
3.3. PFRING Parameters to be optimized by Genetic Algorithm 51
3.4. PFRING Application's Representation of Chromosome 52
3.5. Summary 54

ix

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS 55

4.1. Experiment Software andHardware Environment 55
4.2. Experiment Results and Discussion 56

4.2.1. Results and Discussion of Initial Experiment 56
4.2.2. Results and Discussion of the Second Experiment 65

4.3. Summary 73j

CHAPTER 5. CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK 75

5.1. Conclusions 75
5.2. Contributions 75
5.3. Future Work 76

REFERENCES 79

PUBLICATIONS LIST 87

x

LIST OF TABLES

Table 4.1: The Chosen Best Chromosome Contents for Different Traffic Load

Levels 56

Table 4.2: Poll Duration Results 63

Table 4.3: The Chosen Best Chromosome Contents for Different Traffic Load

Levels 65

Table 4.4: Poll Duration Results 70

XI

LIST OF FIGURES

Figure 2.1: TCP/IP Stack 6

Figure 2.2: The Positioning of a Firewall 17

Figure 3.1: Genetic Algorithm Optimized Packet Filtering Framework 49

Figure 4.1: Throughput Progression from Different Traffic Loads 59

Figure 4.2: Snaplen Values from Different Traffic Loads 60

Figure 4.3: Watermark Values from Different Traffic Loads 61

Figure 4.4: Poll Duration Values from Different Traffic Loads 62

Figure 4.5: The Portion of Wait Mode (Active/Passive) Utilization 63

Figure 4.6: Cluster Mode Utilization 64

Figure 4.7: Throughput Progression from Different Traffic Loads 67

Figure 4.8: Snaplen Values from Different Traffic Loads 68

Figure 4.9: Watermark Values from Different Traffic Loads 69

Figure 4.10: Poll Duration Values from Different Traffic Loads 70

Figure 4.11: The Portion of Wait Mode (Active/Passive) Utilization 71

Figure 4.12: Cluster Mode Utilization 72

xn

AIDS

ALG

ARP

BB

BPN

DARPA

DHCP

DMA

DNS

E-R

FPA

GA

GPU

HIDS

HTTP

ICMP

IPS

JSS

L2TP

MAC

MIDS

NAPI

NIDS

NPU

OS

OSI

QAP

RAM

RARP

RX

LIST OF ABBREVIATIONS

Anomaly Intrusion Detection Systems

Application Level Gateway

Address Resolution Protocol

Branch-and-bound

Backpropagation Neural Network

Defense Advanced Research Projects Agency

Dynamic Host Configuration Protocol

Direct Memory Access

Domain Name Server

Entity Relationship

Firewall Policy Advisor

Genetic Algorithm

Graphics Processing Unit

Host-based Intrusion Detection System

Hypertext Transfer Protocol

Internet Control Management Protocol

Intrusion Prevention System

Job Shop Scheduling

Layer 2 Tunneling Protocol

Media Access Control

Misuse Intrusion Detection System

New Application Programming Interface

Network-based Intrusion Detection System

Network Process Unit

Operating System

Open Systems Interconnection

Quadratic Assignment Problem

Random Access Memory

Reverse Address Resolution Protocol

Receive

xin

SA

SNMP

SPMD

TCP/IP

TNAPI

TSP

TX

UDP

URL

VRP

WWW

Security Analysis

Simple Network Management Protocol

Single Program Multiple Data

Single Program Multiple Data

Transmission Control Protocol/Internet Protocol

Traveling Salesman Problem

Transmit

User Datagram Protocol

Universal Resource Locator

Vehicle Routing Problem

World Wide Web

xiv

CHAPTER 1

INTRODUCTION

In today's vast utilization of Internet infrastructure, the significance of connection

speed, reliability, security, data integrity, and affordability are important for the

purposes of using the network efficiently and effectively. Network analysis is often

related to the monitoring of network packet transmission quality.

In this research work, network analysis focuses on packet filtering, which consists

of packet capturing and firewall rules reordering. Network analysis tools are available

from both open source and commercial package. These tools are available as network

monitoring tool, network measurement tool, firewall, Intrusion Detection System

(IDS), Intrusion Prevention System (IPS), etc. Few of the popular brands are ntop,

Cacti, Snort, and Suricata. One of the key performance indicators of these tools is the

speed of packet processing. This is one of the research focuses.

The speed of packet capture is indicated by the number of received/captured

packets in a specific amount of time. Different packet capturing techniques might

yield different results. Majority of researches in packet capturing attempted to make

modifications to existing technologies, in order to improve the capturing speed. A part

of this research work is to optimize the packet capturing rates, by utilizing an existing

kernel patch called PFRING. PFRING kernel parameters are evolved using genetic

algorithm to find the optimum setting for different levels of traffic load.

Another feature of PFRING is the specification of firewall rules, which is the

second focus of optimization in this research. In this research, firewall rules

reordering optimization is suitable in the cases where there are more than one rules

with 'accept' action, than the ones with 'drop' action, especially when the new

network administrator is faced with existing rule sets and new rules are needed for

insertion. Therefore reordering is highly needed. This research work puts both packet

capture kernel parameters optimization and firewall rules reordering in the same

methodology framework.

1.1. Problem Description

The performance of packet filtering is influenced by hardware and software factors.

Different packet capture technologies utilized hardware in different ways which

generate various throughput rates. Packet capture rate is also "adjustable", which

means that its configuration setting determines its optimal throughput. The

configuration consists ofparameters, that if optimized, will generate better throughput

rate.

Each level of input traffic load requires different packet capture treatment. For

example, capturing network traffic with small size packet (64 bytes) needs a setting

which is not the same as for capturing traffic packet with big size (1500 bytes). Our

research utilizes genetic algorithm to find the near optimum combination of setting

the parameters for distinct network traffic streams, starting from the stream with 64

bytes upto 1536 bytes of packet size. The optimal setting is important, especially in a

case where the size of packet for transmission can bepredicted, or is indicated earlier

by the sender.

A new network administrator who is to insert new rules into an existing firewall

rule set, must reorder the rules so that the rules to accept packets are placed before the

rules to drop the packets. Thus, those rules are processed with higher priority, to

eventually accelerate packet capturing performance. In a condition where the number

of rules is high, automation of rules reordering will speed up the reordering process.

Besides optimizing packet capture parameters setting, this research also tries to tackle

this problem by using genetic algorithm to reorder the rules automatically. Both

processes are done simultaneously in one genetic algorithm.

1.2. Objectives

This research aims to achieve the following objectives:

1. Design a framework for integrated packet capture and firewall rules reordering

optimization. The current firewall rules reordering methodologies do not

collaborate packet capturing kernel parameters optimization to accelerate the

overall packet filtering (packet capturing and firewall rules reordering)

process. This research gap is a part of our objectives.

2. Integrate packet capture parameters and firewall rule set into genetic algorithm

process. The simplicity of our proposed genetic algorithm methodology will

cover both packet capture kernel parameters and firewall rule set in one

genetic algorithm application, therefore two optimizations are run

simultaneously.

3. Generate optimized combination of packet capture kernel parameters for

different levels of traffic load, based on maximum throughput rate. Different

input traffic loads require different settings of kernel parameters. The genetic

algorithm application will select the optimal combination of kernel parameters

for each input traffic load based on the recorded fitness value, which is the

throughput rate.

4. Generate optimized order of firewall rule set, based on maximum throughput

rate. A set of firewall rule in random orders is evolved in a genetic algorithm

application, with the purpose to reorder the rules so that the rules with 'accept'

action are positioned at the front row of the rule set. Therefore they are

processed faster and the network speed will be optimal.

1.3. Thesis Outline

This thesis is written for readers with no or entry knowledge of computer network

theories. Chapter 1 introduces the area of research focus and contributions. Chapter 2

informs about the basic knowledge of computer networks and previous works related

to this research focus area. Later chapters discuss about methodology, results and

analysis, conclusions, and potential future works. Our thesis consists of the following

chapters:

Chapter 1: Introduction, Problem Description, Objectives, Thesis Outline

Chapter 2: Literature Review, The TCP/IP Stack, Intrusions into the Network,

Deployment of Firewall for Protection, The Previous Works to Precise the Firewall

Rules, The Assisted Firewall Implementations, Introduction to Packet Capturing,

Current Packet Capturing Technologies, High Speed Packet Capturing and Packet

Filtering, Genetic Algorithm (GA) in Packet Filtering System, Network Penetration

Testing

Chapter 3: Methodology, Introduction to Genetic Algorithm Library, Packet Capture

Platform to be optimized by Genetic Algorithm, PFRING Parameters to be

optimized by Genetic Algorithm, PFRING Application's Representation of

Chromosome

Chapter 4: Experiments Results and Analysis, Experiment Software and Hardware

Environment, Experiment Results and Discussion

Chapter 5:, Conclusions, Contributions, and Future Work

4

CHAPTER 2

LITERATURE REVIEW

2.1. TCP/IP

TCP/IP (Transmission Control Protocol/Internet Protocol) stack is a simplification of

the seven (7) OSI (Open Systems Interconnection) layer communication standard.

However, historically speaking, TCP/IP preceded OSI seven layer in data

transmission protocol development as told by Held [1]. TCP/IP stack is also called

Internet Protocol Suite. While the seven (7) OSI layers were defined by ISO

(International Organization for Standardization), TCP/IP was created by US DARPA

(Defense Advanced Research Projects Agency). TCP/IP is a communication standard

that manages how the data is exchanged from the sender to the receiver regardless the

sender/receiver's differences in different brands, or even different machine types

(desktop computer, laptop, mobile phone, tablet, etc).

The TCP/IP standard was built in stacks, for it to be easier for the communication

experts to improve, or add new modules or technologies into the TCP/IP system.

Furthermore, it is easier for learners to understand how data is exchanged by looking

at the layer per layer basis instead of a one big chunk of communication module.

When talk about data journey or data exchange, it is usually referred to the seven

OSI layer or the TCP/IP stack. Generally it is fine because both standards consist of

the same protocols or technologies. The difference is that one categorizes the

protocols into seven (7) layers and the other classifies protocols into four (4) layers. In

fact there are other standards that define communication protocols into different

number of layers. For example Arpanet Reference Model 1982 (RFC 871) that

classifies protocols into three layers or the Juniper Networks Learning Academy that

uses five layers of data communication stack. Practically, among the network

engineers, the TCP/IP and the five layers communication stack are the most popular

ones, but since the official standard is TCP/IP, so TCP/IP is picked as a standard for

this thesis.

As described by Panwar et al. [2], TCP/IP stack consists of four layers, which are

(from bottom to top): Data Link layer, Network layer, Transport layer, and

Application layeras shown in Figure 2.1.

Application layer

Transport layer

Network layer

Data Link layer

Figure 2.1. TCP/IP Stack

Each of the layers serves each other back and forth. First of all, the discussion is

on what occurs within every layer as according to Panwar et al. [2], Held [1], Lammle

and Barkl [3], and Coll [4], [5], [6].

a. Application layer. This layer provides interface to bridge user application

and the formatting it needs to be forwarded by the immediate underlying

layer (Transport layer). It manages protocols for sender/receiver application

communication and regulates end user interface specifications regardless of

hardware platform, operating system, and other different features of sender

and receiver.

Some Application layer protocols include: HTTP (Hypertext Transfer

Protocol) that provides WWW (World Wide Web) service, Telnet that is

used to connect remotely to a computer host, DNS (Domain Name System)

that translates domain name to IP (Internet Protocol) addresses, SNMP

(Simple Network Management Protocol) that manages network entities

remotely and centrally, and DHCP (Dynamic Host Configuration Protocol)

that automates network addressing configuration for client computers that

connect to a gateway. Most of these protocols are for client/server

application. The client shall hold the data that need to be transferred.

b. Transport layer. It provides data transport service for the Application

layer. It manages the protocols to deliver the level of transmission quality

whether reliable (connection oriented with error checking and delivery

acknowledgement) or unreliable data transfer (connectionless oriented

without error checking and no delivery acknowledgement). Importantly, it

covers the upper layer (Application) from the complexities of the network.

Two main protocols at this layer are:

1) TCP (Transmission Control Protocol): TCP provides reliable and

connection-oriented transmission of data over the IP (Internet Protocol)

network. It fragments large data from application into segments, then it

. _ ^.i- _j- .ii-
gives iiumucis iu caxni segment su uiai nicy cue 111 acqucnec. ncnec, uic

destination node can reassemble the segments into proper order. The

receiver will send acknowledgement for every segment accepted. The

unacknowledged segments will be resent by the sender that keeps a timer

for acknowledgement of each segment.

TCP will establish connection first before sending process begins. The

sender's TCP will contact the receiver's TCP to establish a virtual circuit

which is why TCP is known as connection oriented protocol. Then both

parties shall agree on certain parameters such as the amount of information

that will be sent before the receiver sends an acknowledgement. Once the

TCP session is established, the Application layer can use the established

session to transmit information. It should be mentioned here that additional

packet header information that TCP adds to every segment that would take

up additional bandwidth, so these information should be used only in

transmission where accuracy and reliability are highly desirable.

2) UDP (User Datagram Protocol): It is a connectionless transport protocol

hence it does not warrant proper and accurate transmission. On the other

hand, for its least-featured and simplicity, it transmits information much

faster than TCP, making it suitable for speed-conscious applications like

video or audio streaming. It does have few similarities like TCP, for

instance it may break information into segments and gives them number,

but it does not sequence the segments and does not give attention in what

order the segments arrive at the recipient, and it does not even support

acknowledgement of segment arrival.

Furthermore, UDP does not build or establish virtual circuit before

sending information. It just sends the information without wanting to know

whether the receiver is ready to accept the information or not. Therefore, it

is considered as connectionless transport protocol.

Network layer. This layer provides routing service to each packet in order

to deliver it to the final destination by assigning each host an IP address. It

is also the most talked about layer among the network engineers since it

takes advantage of some popular and most used routing protocols e.g. RIP

(Routing Information Protocol, OSPF (Open Shortest Path First), and IS-IS

(Intermediate System to Intermediate System). IP is the main protocol

within this layer, while the other protocols exist to support it. Below

discussion involves some most popular protocols within the Network layer.

1) IP (Internet Protocol): IP inspects packet header's IP address to decide

the best path or which next node it should send packet to based on the

information in the routing table. To accomplish its job, IP needs to know

which network nodes are on by looking at these nodes' IP addresses

(logical) and what their IDs are on each of their networks by inspecting the

physical addresses or hardware addresses or the MAC (Media Access

Control) addresses. These MAC addresses are actually their real addresses

since it is unique for each device.

IP accepts segments from the Transport layer and then fragments them

into datagrams or packets. Each datagram is assigned an IP address of the

source/sender and the destination node. There are two (2) pairs of IP

addresses that each datagram will have. First pair is the network address

8

which consists of the original sender and destination node's IP address.

This pair of addresses will not be altered along the route by the transit

nodes and it will be checked with the routing table to determine the next

best path to reach the destination. The second pair of addresses is called

the link address which consists of the previous source hop or path's IP

address and the next hop or the best path's IP address that is determined by

the transit node based on its routing table. This pair of link addresses is

always altered by the transit node until the segment reaches its final

destination.

Therefore, the journey of datagram or packet is described as mentioned

below:

• The sender sends datagram to the best transit node based on

+:,, „ +..U1 -
lUUllllg LclUlC.

• The transit node checks the pair of network address to inspect

the destination address and makes routing decision and sticks

an additional pair of address called the link address that

consists of source address which is its own IP address and the

next hop address which is the IP address of the next transit

node.

• The next transit node that receives this datagram will inspect

the network address then makes routing decision and then

alters the pair of link address, so now the link address consists

of this current transit node's IP address as the source address

and the next hop's IP address which is derived from its routing

table as the destination address.

This process of the pair of link address alteration will goes on until the

datagram reaches its final destination, which is the destination IP address

that is labeled on its pair of network address. On the receiving side, IP

reassembles the datagrams received back into segments in an orderly

manner.

2) ARP (Address Resolution Protocol): It is a protocol used to resolve

computer's physical/MAC address (real address) based on its assigned IP

address (logical).

When IP is about to send a datagram, it has been informed about the

destination's IP address. However the lower layer which is Data Link does

not look at IP address. Instead it looks at the real address (physical/MAC

address) of the destination. Therefore IP needs to add the destination's

MAC address too. IP utilizes ARP to do this. ARP will broadcast request

to inquire about which node has specific IP address, and the respective

node will reply by telling its MAC address. Information about which node

has which IP and MAC address is stored in ARP table.

3) RARP (Reverse Address Resolution Protocol): RARP is activated when

a destination has no capability to initially know its IP address. Therefore a

RARP request containing the destination's MAC address will be

broadcasted, so that a chosen RARP server will reply with an information

about what IP address is assigned to that destination node.

4) ICMP (Internet Control Management Protocol): This protocol is the

most commonly used protocol to test network reachability. A popular

utility that makes use of ICMP packets is 'ping'. Ping transmits a series of

echo messages to a destination node address. If the host is reachable and

permits ICMP reply then it shall reply with a series of echo reply

messages, the round-trip time it takes for every echo message sent and the

arrival of its echo reply will be computed by the sending node that sets a

timer. In other words, the round-trip time can be said as the delay.

Finally, ICMP provides facility to control communication message and

report the errors. ICMP is used by network entities (switches, routers,

10

firewalls) and computer nodes to test the network or send datagram

problems back to the datagram originator.

d. Data Link layer. Data Link layer manages hardware/MAC addressing and

provides protocols for the physical transmission of the data. Main processes

that occur within this layer are:

1) Convert IP datagram into a series of bits for physical transmission. This

series of bits make up a frame.

2) Specify the physical/MAC address.

3) Make sure that the series of bits of a frame has been properly received by

the destination node by calculating CRC (Cyclic Redundancy Checksum).

4) Specifying the Data Link technology, for example it can be Ethernet

(FCFS-based; First Come First Served), Token Ring (the node that owns

the token will send first), and etc.

5) Specifying the physical attributes such as the media (cable or wireless),

connectors (RJ-45, RJ-11, etc), electrical signaling, timing rule, and so on.

2.2. Intrusions into the Network

The network operation could be disturbed by the following items according to

Canavan [7] and Vacca [8]:

1) Threats. A threat is "anything that can disrupt the operations, functions,

integrity, or availability of a network or system". It can exist in various forms

including an act of nature. Aissa et al. [9] further classifies threat into three

types that are threats on communication protocols, threats on operating

systems, and threats on the information.

2) Vulnerabilities. A vulnerability is "an inherent weakness in the design,

configuration, implementation, or management of a network or system that

renders it susceptible to a threat".

11

3) Intrusions/Attacks. An intrusion is "an unauthorized penetration of a

computer in your enterprise or an address in your assigned domain". There are

loads of types of attacks, but generally it is classified into two general

categories of passive or active attack. Passive attack mainly deals with

monitoring and recording activity such as packet sniffing and traffic analysis;

a popular tool for this is Wireshark (previously named Ethereal). While active

attack involves dynamic activities to bring down the network e.g. Denial of

Service and brute force attack.

A weakly configured network could be exposed to unauthorized access or

intrusions. The known types of intrusion per each TCP/IP stack layer plus Physical

layer as consolidated from Canavan [7], Dunsmore et al. [10], Toxen [11], Maiwald

[12], Garfinkel [13], Lockhart [14], and Gheorghe [15] are:

a. Physical and Data Link Layer Intrusions:

The Physical and Data Link layer can be breached by one of the

following methods.

1) Physical: gaining access by taking opportunity when the workstation

is unmanned and logged-on or by stealing the workstation. Physical

attack can also be in the form of cable cuts, high voltage applied on

copper cables, wireless links jamming, electromagnetic brought near

copper cables

2) Social Engineering: a social trick to bring a person who holds some

information about a network to tell the information without any

concern that it might be dangerous.

3) Eavesdropping: an attempt to listen to a conversation between two

parties by tapping the communication line.

4) Snooping: a process of searching useful information by going through

papers or text files on a computer.

12

5) MAC Flooding: flooding a MAC table of a switch with invalid source

MAC addresses hence the switch will broadcast incoming packets out

of all ports.

6) DHCP Attack: an attacker accomplish this by broadcasting numerous

DHCP requests using falsified MAC addresses, so the DHCP server

will have no more IP addresses to allocate to the legitimate users.

7) ARP Attack: a typical Denial of Service attack by broadcasting ARP

messages with falsified MAC or IP addresses.

8) VLAN (Virtual Local Area Network) Hopping: attacker utilizes the

VLAN trunking feature that is enabled by default on some switches,

therefore the attacker can tag their packet with the target's VLAN ID

to create communication.

9) Network Loop: Network loop easily occurs by connecting two ports

on the same switch with the same VLAN ID using a cross cable, this

loop brings infinite packet journey within that switch that could crash

the processor chip.

10)STP (Spanning Tree Protocol) Manipulation: attacker broadcasts

topology change BPDU (Bridge Protocol Data Units) to force STP

topology to be recalculated and since the recalculation takes around

half minute hence it could bring up Denial of Service.

b. Network Layer Intrusions:

The invasions via Network layer can be done in several ways as

mentioned below.

1) Scanning: a process of discovering a network topology by sending

request message such as ping, traceroute, or netstat.

2) Denial of Service: an activity to overwhelm the processing capacity of

a networked computer or server, hence the services it provides will

halt.

13

3) Distributed Denial of Service: a simultaneous attack from a group of

computer hosts to overwhelm the target host.

4) Sniffing/Man in the Middle: an action to monitor and record

information flowing between the sender and receiver.

5) IP Address Spoofing: an act to gain access to the network by using

permitted IP address so that the attacker appears asa legitimate client.

6) Ping of Death: a typical Denial of Service attack which the attacker

sends huge ICMP echo message to overwhelm the target machine.

7) Smurf Attack: attacker sends an ICMP echo request to the broadcast

address of a network with the return address of a target host, all

computers inside that network group will flood the innocent target host

with ICMP echo reply messages (this requires IP reachability from that

network group to the target host).

8) Routing Protocol Attack: it utilizes the misconfiguration of dynamic

routing protocols of a router to inject false routes in order to create a

Denial of Service.

9) Teardrop Attack: the attacker sends fragmented IP packets with their

offset values altered so that the target host cannot reassemble the

packets which eventually causes kernel panic in Linux or blue screen

in Windows.

c. Transport Layer Intrusions:

The exposures of Transport layer by an intruder might affect the

services and privacy of the data. The below methods are possibilities to

evade the network via Transport layer.

1) Session Hijacking/Man in The Middle/Interception: an act of taking

over a connection session, usually by gaining access to the gateway

router and it mostly involves IP spoofing too.

14

2) Sequence Number Spoofing: an unencrypted TCP/IP network

connection can be hijacked by an attacker who includes himself into

the connection by using the next expected sequence number. The

sequence numbers are used to maintain the connection.

3) Replay Attack: an interception and storage of a transmission between

sender and receiver then retransmit it later. This can lead to Denial of

Service.

4) SYN Flooding: another kind of Denial of Service attack where the

attacker sends TCP establishment request (SYN message) to the target

host but with invalid return IP address so that the SYN ACK message

from the target host will reach nowhere. Numerous SYN messages

with invalid return IP address could crash the target host.

5) UDP Flooding: sending loads of UDP packets to any ports that shall

crash the target host because the host will keep determining which

UDP port addresses which application.

6) Port Scanning: a process of finding which ports are opened, therefore

running applications could be discovered and exploited.

d. Application Layer Intrusions:

The easiest intrusions to do are done through the Application layer.

Many softwares are available to perform mischief at this level. The

fallowings are some of the common techniques.

1) DNS (Domain Name Server) Poisoning: a mischief to alter the DNS

table contents so it will direct the URL (Universal Resource Locator)

name to a false or malicious website's IP address.

2) Password Cracking: a procedure to find a password by comparing a

dictionary-based password file where each word is encrypted with a

stolen official password file that contains legitimate password words

that are encrypted with the same algorithm as the attacker's.

15

3) War Dialing: a series of action to dial a range of a company's phone

extension numbers and once it hits a modem, the modem log will be

learned and the attacker could gain access by taking over the computer

that is connected to the modem.

4) Spamming: Flooding a target's email server by sending numerous

emails that might contain falsified return address, hence the email

server and the return address could crash or freeze.

5) Buffer Overflow: loading a malicious code or huge amount of data

into the memory buffer of an application.

6) Server Vulnerability Attack: exploitation on a flaw or an

undocumented command in a server to gain access.

7) Web Server: attacker attempts to harm the web server by trying to

upload malicious scripts into the web server.

The above described intrusions can be blocked by deploying a module

called a firewall which can be implemented in the form of software or

hardware. Firewall is discussed in the next section.

2.3. Deployment of Firewall for Protection

Firewall is a form of protection that allows a local network to connect to external

network with certain level of security policies as told by Zwicky et al. [16]. Bernstein

[17] includes firewall as a part of IT (Information Technology) Management

Infrastructure. The firewall is placed as a separator between the internal and external

network (or the Internet) as shown in Figure 2.2.

16

Mail Server

Figure 2.2 The Positioning of a Firewall

Firewall is interpreted differently according to the way it filters the packets within

a network. Firewall can be in the form of software-based packet filtering, route-

filtering, proxy server, stateless packet filtering, stateful packet filtering, and even

IDS (Intrusion Detection and Prevention Systems). Therefore, firewall can inspect

packets from Network layerup to Application layer.

Generally, firewall serves to achieve some purposes as mentioned below by

Zwicky et al. [16]:

1. To prevent people to gainaccess to certainnodes or subnets.

2. To prevent people to reach other area of networkdefense.

3. To prevent people to leave the network at a controlled pointof network.

4. To performNAT (Network Address Translation).

Types of firewall that generally known by network engineers and described by

Canavan [7], Ziegler [18], and Ogletree [19] are:

17

a. Static/Stateless Packet-Filtering Firewall: a packet filtering process based

on simple if-then rules. Generally it filter packets based on Network layer

information such as source address, destination address, source port, and

destination port. The respective firewall rules do not change over time unless

firewall is reconfigured.

b. Dynamic/Stateful Packet-Filtering Firewall: this kind of firewall maintains

the TCP connection and is informed about every packet type (SYN, ACK, etc)

and can terminate the connection if unexpected packet type exists. It is called

dynamic because the firewall canreact to abnormal message type.

c. ALG (Application Level Gateway): ALG stands in the middle between the

client and the server and it knows what application that it mediates. It inspects

the Application layer's payload to ensure data integrity.

A research by Govaerts et al. [20] realized the highly increasing need of firewall

as there were numerous reported network security incidents. They proposed a new

technique of setting the appropriate rules in firewall packet filtering, called formal

logic that based on Entity Relationship (E-R) between network packet attributes such

as source address (sa), destination address (da), destination port (dp), protocol (p), and

action (a) that was either accept or deny. The formulation of this firewall ruling was:

rule(a, sa, da, dp, p). This formulation would then be implemented using Linux-based

packet filter software IPChains and Cisco firewall device named Cisco PIX.

Govaerts et al. [20] also suggested that the default action or the action that should

be applied for the undefined packet in the rule was deny because this would reduce

the complexity of the firewall rule and decrease the security holes. Their formal logic

approach managed to tackle packet matching problems such as shadowing,

correlation, generalization, redundancy, and irrelevance. These problems were also

recognized by Alfaro et al. [21].

However, the firewall implementation approach by Govaerts et al. [20] requires

new installation of firewall device either using a specific computer installed with

IPChains or a dedicated proprietary firewall which in this case is Cisco PIX.

Moreover, Govaerts et al. [20] did not proceed into equipping the firewall with IDS

18

feature which is highly comprehensive to detect latest kinds of intrusions depending

on the IDS attack database content.

2.4. The Previous Works to Precise the Firewall Rules

The body of firewall rules generally contains a set of if-then construct which matches

packets based on source/destination address, source/destination port, and protocol

type with action applied as either accept or deny. This set of firewall rules eventually

has a default action (accept or deny) that is defined at the very last rule line. Each

firewall interface represents a Local Area Network (LAN). The interfaces that have

similar security requirements are grouped in the same security zone. Eventually, each

set of firewall rule is applied within every interzone firewalling rule.

Anomalies mav occur if a racket that is meant to match a rule also matches the

previous rule hence it creates a conflict. If a rule does not match any packet or so

called useless, and if the source and destination address belongs to the same security

zone, then the packet will not go through a firewall.

Alfaro et al. [21] proposed a method to eliminate above anomalies by creating

intra-component algorithms that allows administrators to rewrite firewall rules by

generating a firewall rule set that contains only deny actions if the default rule is

accept or generating a firewall rule set that contains only accept action if the default

rule is deny. Therefore we can bring up two hypotheses related to these patterns.

The first hypothesis is to allowpackets from known good source and dropping the

others and the second is dropping packets from known bad source and allowing the

others. This research by Alfaro [19] et al. did not implement the resulted firewall rule

set. They only created and optimized the firewall rule set without implementing or

testing it within a firewall. A simulationor emulation could have been done to test the

firewall rule set against data packet traffic.

Al-Shaer and Hamed [22] made a comprehensive research to clean-up firewall

rule-sets that contain anomalies for both inter-firewall and intra-firewall rule sets.

Each rule-set row consists of protocol type, source IP address, source port number,

19

destination IP address, destination port number, and action. Every row is destined to

take action on distinct type of traffic. The anomalies for intra-firewall rule-sets are

described below:

1. Shadowing anomaly: This happens when a preceding rule matches the
respective rule, which in this case the respective rule will never be triggered.

2. Correlation anomaly: This occurs when some packets that are supposed to
match the first rule, also match the second rule and vice versa, but the first
rule and the second rule have different actions.

j.

j.

Generalization anomaly: A respective rule is a generalization of another rule
if it specifies a more general subnet but with different filtering action.

4. Redundancy anomaly: A rule is a redundant to another rule if it gives the
same treatment on the same packets with another rule. Even the firewall
policy will not be affected if the redundant rule is removed. Usually the
redundant rule is in the subset form.

5. Irrelevance anomaly: A rule is irrelevant if the source and destination
address of the packet does not match any reachable network subnet of the
firewall.

While the anomalies for inter-firewall rule-sets are similar but with different

perceptions and some distinct anomalies are:

1. Shadowing anomaly: This is when a packet is denied by the upstream
firewall, but actuallyaccepted by the downstream firewall.

2. Spuriousness anomaly: It happens when a packet is accepted by the upstream
firewall, but later denied by the downstream firewall.

Redundancy anomaly: A redundant rule might exist in the downstream
firewall if it rejects a packet which isalready denied by the upstream firewall.

4. Correlation anomaly: If some packets meant to match the upstream firewall
also match the downstream firewall, or vice versa but with different filtering
action, then the rules in the upstream and the downstream firewall are
correlated.

The above anomalies can be detected by a tool created by Al-Shaer and Hamed

[22] called "Firewall Policy Advisor" or FPA in brief. This Java-based software

implements Anomaly Discovery Algorithm for both intra-firewall and inter-firewall

20

rule-sets, which can detect the previously mentioned anomalies and warn the

administrator who will then decide the action to be taken based on his discretion. The

rule of thumb is that a rule that is a subset of another rule must have smaller order

number, or in other words, it goes in the rule set before its superset pair.

For intra-firewall anomaly discovery process, the algorithm compares each field

in rule Ry (subsequent rule after Rx), sequentially protocol type, source address and

source port, and then destination address and destination port. If found that a field of

Ry is within the subnet range of Rx with the same action handling, then Ry is redundant

to Rx. Or if the action of Ry differs from Rx then it means Ry is covered or deactivated

by Rx. Reversely, if a field of Ry is the superset or equals to a field of Rx with same

action handling, then it means Rx is the one redundant to Ry. If the action is different,

then Ry is the general form of Rx

Another case is when several fields of Kx equal or are subsets of Ry, and the rest of

the fields of Rx are the superset of Ry but the action of Rx and Ry are different, then it

means Rx and Ry are correlated which is another anomaly that must be tackled.

Basically, every rule must be guaranteed to be disjoint to each other. The anomaly

discovery algorithm can be found in a paper by Al-Shaer and Hamed [81].

In an environment where multiple connected firewalls exist, the rules comparisons

are represented by Ru (a rule in the upstream firewall) and Rd (a rule in the

downstream firewall). Sequentially in the same manner as in intra-firewall anomaly

discovery algorithm, every field of Rdis compared to its corresponding field of Ru. If

Ru inclusively matches Rd with the same action which is "accept", then it means Rd is

shadowed or covered by Ru. Or if the action of Rd is "deny" then upstream will keep

forwarding packets that Rd will eventually drop, which in this case it is a spurious

traffic towards Rd.

The inter-firewall anomaly discovery process is executed among the firewalls that

are connected to separate domains which have connectivity to each other. First in the

process, all firewall rule sets that fence separate domains are aggregated. Then the

algorithm will capture the network routes between domains as an input, and determine

21

which firewalls stand-in between each path. And then, each firewall is cleaned from

intraor inneranomalies, by running the intra-firewall anomaly discovery algorithm.

After every firewall is cleaned from inner anomalies, for each path (one source,

one destination), the policy tree is created for the most upstream firewall (nearest to

the source domain). After that, the rules from the other following firewalls are added

to this policy tree, and the rules that match the respective path are taken into account.

Finally, after every path is evaluated, all resulting rules that might create anomalies

are reported. While the unselected rules are reported as irrelevant as they do not

belong to any path in any domain. Based on these reports, the network administrator

will decide which rules should be rewritten or even removed. Al-Shaer and Hamed

[23] details the algorithmto build the policytree.

The test-bed itself for intra-firewall anomaly discovery consisted of four rule sets

to be compared to each other. Set 1 was a set of rules that were distinct in destination

address. Set 2 builds up rules with distinct source addresses. Set 3 describes eachrule

as a superset match of the preceding rule (worst case), and lastly the set 4 that

consisted of the random mixture of rules from set 1, 2, and 3. On each set, Al-Shaer

and Hamed [22] gave variations of rule amount ranging from 10-90 rules each set.

The fastest computation time for this anomaly discovery recorded was for set 1,

the second fastest time was captured for set 2. Set 3 hadthe longest computation time,

while set 4 had longer processing time than set 2 but were faster to process than set 3.

These results are considered reasonable, logical, and acceptable. Even for the worst

case, the computation time ranging from 20 ms to 240 ms (10 - 90 rules).

Additionally, the approximate increase in time for every one rule addition is around

2.1 - 2.8 ms. This amount is an acceptable load for the processor.

The second test-bed for the inter-firewall anomaly discovery process involved

distributed firewalls across four networks, with the following hierarchy for each

network: (1) 2-2-2, (2) 3-2-2, (3) 3-3-2, (4) 4-3-3. The first number indicates the

amount of branches that the root or top node has. The second number represents the

amount of branches that each node of level 2 has. The third number shows the amount

of branches that every node of level 3 has.

22

The FPA software then took input of the above hierarchical topology and was run

for every network with variations of the number of rules ranging from 10-50 rules

for every single firewall. The resulted computation times were linear to the rule

complexity and the amount of domains (more domains bring up more network

routes). The more complex and or more domains involved then the longer its

computation time. In details, for network 1 (8 domains) and network 2 (12 domains),

the computation times ranged from 3-40 seconds. While for network 3(18 domains)

and network4 (27 domains), the computation times ranged from 11 - 180 seconds.

The use of FPA software implemented with anomaly discovery algorithms had

been proven to be an influential assistant, specifically to optimize the on-field

accuracy of the network security policy. However, there are other things that

influence the performance of the network packet filtering, such as the hardware

specifications and the speed of the in-kernel packet capturing software module itself.

The hardware capabilities canbe fully utilized if the kernel module knows how to

use the hardware in the best way possible. In this case there are some parameters that

can be adjusted. For example the memory assignment management, and how the

incoming packets are queued and processed.

Our research tries to simplify the approach, by optimizing the accuracy of the

firewall rules and the kernel module parameters at the same time. Genetic algorithm is

chosen to be the research element, because of its generic and extendable properties,

making it applicable for different permutation cases. In this research, genetic

algorithm is applicable to both firewall rules andpacket capturing optimization.

2.5. The Assisted Firewall Implementations

Original firewall does not detect the payload of the packet as told by Sourour et al.

[24]. The thing is that even though the packet comes from permitted source address

and source port, it may contain malicious codes. In other words, attacks may come

from Intra network which is actually the major source of attack found by Sourour et

al. [24].

Therefore, Sourour et al. [24] proposed a heterogeneous network security

infrastructure that included IPS (Intrusion Preventon System), VS (Vulnerability

Scanner), and honeypot along with firewall to strengthen the packet filtering

infrastructure.

IPS is an advancement of IDS, where IDS detects intrusion by looking at the

packet's payload and sends an alert to the administrator, but does not terminate the
attack progress. The termination ofmalicious network connection can be done by IPS

according to Sourour et al. [24]. Sourour et al. [24] proposed IPS implementation by

using Snort-inline inpeering mode (active-active) that consisted ofsix IPS servers. So

if one server is updating its attack database and shall reboot to finish the database

update, then the other IPS servers will take over the filtering load.

Sourour et al. [24] tried two combinations ofsecurity infrastructures. First was the

collaboration of honeypot and firewall. The second was the collaboration of honeypot

and IPS. Honeypot is a flexible network security tool that isplaced inthe network as a

decoy to attract attackers and monitor the attack processes or techniques as described

by Prathapani et al. [25], where the attack characteristics can be learned.

In honeypot-firewall collaboration, the firewall modified its rule set depending on

the new attack information provided by the honeypot, while in honeypot-IPS

collaboration, the IPS servers would filter three types of packets that were identified

as legitimate, intrusive, and unknown. The legitimate would be accepted, the intrusive

would be dropped, and the unknown ones would be forwarded to honeypot for further

analysis for further action.

Sourour et al. [24] succeeded in building a dynamic security infrastructure that

can adapt to new attacks by utilizing honeypot. Unfortunately they did not integrate

firewall and IPS. Furthermore, their proposed IPS implementation required new

installation of newhardware/computers to be placed in front of the network, and they

also did not discuss about the implementation of heterogeneous security system

within the existing network that had routers before the Internet. Additionally, Sourour

et al. [24] could have deployed comprehensive traffic penetration using various types

24

of packet injection, instead of only relying on ping packet injection to test their

security framework.

Cai et al. [26] identifies two types of IDS which are MIDS (Misuse Intrusion

Detection System) and AIDS (Anomaly Intrusion Detection Systems) based on the

detection technique. MIDS detect the pattern of known attacks while AIDS detects

intrusion based on calculating the standard deviation between the current packet and

the known normal patterns.

Sheikhan et al. [27] classifies AIDS and MIDS into three classes which are

statistical-based, knowledge-based, and machine learning.

Another IDS classification is made by Jin et al. [28] that groups IDS into two

types which are Host-based IDS (HIDS) and Network-based IDS (NIDS) according to

thf qmrrrp of Hptprterl Hata HTDS works by recording internal data such as the

integrity of file systems, audit logs, network events, and the sequence of system calls.

On the other hand, NIDS operates by analyzing captured network traffic to detect

intrusions. The most popular NIDS is Snort which is an open source light NIDS that

utilizes Misuse-based Intrusion Detection or MIDS according to Zulkernine et al.

[29].

Zulkernine et al. [29] modified Snort so that it could contain context information

in its msg option, this was helpful to tackle more complicated and multi step attack

scenarios. For example it would not rise alert for an attack that was not meant for the

respective operating system. However this approach has not been tested in firewall in

an enterprise telecommunication network environment.

Folino et al. [30] informed a new kind of NIDS called Distributed Intrusion

Detection System (dIDS) which is a group of IDS installed over a large

geographically separated network that communicates with each other to monitor the

network in enhanced way, analyze the security incidents, and provide quick attack

database.

In a distributed environment where IDSs are placed in several subnets or points of

the networks, the centralization of IDS management becomes an issue since it will

25

affect the time to finish configuring or updating the IDS software. This issue was

studied by Jin et al. [28] that came with a VMM-based IDS that utilized a Virtual

Machine Monitor (VMM) using VMFence concept that monitored all the VM

instances that were installed in the privileged VM of the enterprise cloud network.

Therefore packets that go through each VM instance could be monitored and filtered

by the single monitoring IDS VM instance, this was made possible because every VM

instance communicated with each other via a virtual bridge.

The above centralized IDS management has inspired researchers to implement a

central management IDS for the physically distributed IDSs in a distributed enterprise

network environment with multiple external interfaces that are vulnerable to attacks.

The management of distributed IDSs is highly important to speed-up the

configuration of each IDS software so that the duration of vulnerability can be

reduced.

Naveed et al. [31] introduced a hybrid approach to create and update access list

on the existing network device, in this case, a Cisco 2691 router. A Linux Fedora

computer connected to the Cisco router was installed with Snort as an IDS application

and Snort would log the alert to the MySQL database immediately after it recognized

an intrusion. A web-based application was built to automatically query the attackalert

everytime newentry came into theMySQL database and then it would use the alert to

generate Cisco Access List new rule settobeexecuted onthe connected Cisco router.

The above approach by Naveed et al. [31] was quite affordable for the enterprise

company, but somehow it needs additional budget to setup the computer that acts as

an IDS sensor. The activation of new access list rule set goes through two phases.

First is the intrusion detection and database insertion at the IDS sensor computer, and

second is the access list insertion at the Cisco router. This is not appropriate if the

router acts as the gateway to the external network especially the Internet because the

traffic will go straightly into the router. Hence the router will have more detection

concerns than the IDS sensor computer. The efficiency of this two-host intrusion

prevention cycle could be further accelerated, if the Snort IDS is integrated with

PF RING kernel module, which will be discussed in the later section.

26

Regarding the detection techniques implemented by Naveed et al. [31] , the packet

filtering process only blocks the packets coming from known malicious IP addresses.

This becomes a drawback if the attacker uses dynamic IP address. Therefore the

database update and its transfer to the connected router will happen frequently which

might create vulnerable time slots. The lack of port number filtering within the access

list testing conducted by Naveed et al. [31] made the true performance speed of this

framework undiscovered, therefore deeper testing regarding access list completeness

and its performance needs to be assessed.

2.6. Introduction to Packet Capturing

Packet capture is a method that enables computer to capture and examine the contents

of the data packets that go into it through network card (SonicWALL [32]). These

packets consist of data and addressing or routing information as mentioned below by

SonicWALL [32]:

Interface ID

MAC address

Ethernet type

Internet Protocol (IP) type of service

Source IP address

Destination IP address

Source port number

Destination port number

Layer 2 Tunneling Protocol (L2TP) payload details

Point to Point Protocol (PPP) negotiations details

27

Packetcapturing is useful to know what is happening in the network and to secure

and assist in network troubleshooting. A popular network sniffing tool called

Wireshark details the purposes of packet capturing in their official website (Wireshark

Purposes [33]) as follows:

• To troubleshoot network problems

• To examine network security issues

• To debug protocols deployments

• To study the mechanism of networkprotocols

The captured packets from the kernel can be forwarded to application layer space

for further processing depending on the application type that uses them. For example

is the integration of kernel packet capture acceleration module named PFRING with

a popular Intrusion Detection Systems (IDS) software called Snort. However, the

Snort is modified so that it works in inline mode, which makes it capable to modify or

drop packets in real time when the respective packets match a rule of denial. Inline

Snort can also send reset connection signal towards a matched packet (Inline Snort

Final [34]). Thus, an inline Snort is categorized as Intrusion Prevention System (IPS)

for its capability to drop packets, compared to an IDS where it is only capable to

detect and alert without being able to drop the packets (Inline Snort [35]).

Ricciulli and Covel [36] integrated PFRING with Inline Snort to accelerate the

packet filtering process. PFRING is a ring buffer inside the kernel to eliminate the

need of copying packets from kernel to application space memory. Therefore, the

Inline Snort can directly access this PFRTNG buffer to process the packets without

copying those packets to its memory space. The further discussion about PFRING

will be done in the later chapter.

Moreover, other applications can also benefit from the packet capture

optimization. Another IDS named Suricata has also been ported to PFRING. A

network monitoring tool called Ntop natively utilizes PFRING to accelerate its

functions. In the future, more and more applications that require network packets can

be modified to collaborate with PF_RING.

28

2.7. Current Packet Capturing Technologies

Braun et al. [37] made a comprehensive comparison study of different packet

capturing solutions involving distinct hardware platform and operating systems

(Linux and FreeBSD). They also made a modification on traditional Linux

PFPACKET packet capturing kernel module. They focused more on the

improvements of software stack of packet capturing hierarchy to reduce packet loss.

Braun et al. [37] utilized commodity hardware since the recent hardware

capability can capture packets at near wire speed within 1GE network. The significant

hardware advancements consist of high speed bus system, multi-core processor, and

network card with multi receiver (RX) queues. However, the hardware performance

depends greatly on the software stack configuration. The software stack includes the

network card driver, the packet capture module at the kernel, and the monitoring

application at the user space. An example is given by comparison experiment done by

Schneider et al. [38] who found AMD Opteron performed better than Intel Xeon in

capturing packets, due to its distinct memory management and bus contention

handling mechanism.

In initial packet capturing technology, the packets captured at the network card

must be copied to the kernel buffer before they are further processed. The user space

application that wants to use or analyze these packets must copy them to its memory

space first. This mechanism in Linux is known as PFPACKET system, while in

FreeBSD, it is called BPF (Berkeley Packet Filtering).

However in Linux, the packets transfer from the kernel buffer to the application

memory is done packet by packet, while in FreeBSD, it is accomplished by

exchanging buffers contents; user space application reads packets from HOLD buffer,

while the kernel uses STORE buffer to keep incoming packets. When HOLD buffer is

empty, the STORE buffer will transfer its contents to it. Schneider et al. [38]

recommend very big buffer size for these two buffers to reach decent packet capturing

rate. An improvement to this is named ZCBPF (Zero Copy BPF); it implements

memory mapping between both buffers, hence copying is not needed. However,

29

Braun et al. [37] did not find significant performance differences between FreeBSD

BPF and ZCBPF.

On the Linux side's improvement, Deri [39] and Dashtbozorgi and Azgomi [40]

proposed a complement to PFPACKET called PFRING, which will be discussed in

more details in the later section since this is the choice of our packet capturing

platform.

The traditional packet capturing is that for every incoming packet in the network

card, it will ignite hardware interrupt that will ask the kernel to take and process that

packet. When the system gets overloaded with incoming packets, the kernel will be

busy with issuing interrupts (interrupt storm), instead ofcopying the packets to kernel

buffer. Related to interrupt storm, Schneider et al. [38] and Deri [39] have observed

that capturing a 1GE stream with big sized packet (1500 bytes) is a lot easier than

capturing it with small sized packet (64 bytes). This makes sense because smaller

sized packet will generate more number of packets, therefore it will trigger more

interrupts.

A solution to interrupt storm is to deploy device polling as researched by Mogul et

al. [41], Kim et al. [42], and Rizzo [43]. Basically it is a scheduling approach to set a

specific timer to when the interrupt should be generated to collect accumulated

packets from the network card. In Rizzo [43] case, it also involves a scheduling to

manage the sharing of CPU time between kernel and user space application. The

optimization of device polling is also a part of our research topic, as the duration of

polling is a part of our research parameters.

Specifically, Schneider et al. [38] compared the performance of device polling,

between Linux and FreeBSD on AMD and Intel processor environment. He found out

that Linux performed better packet capturing than FreeBSD by efficiently reducing

the kernel's CPU time. Instead on FreeBSD, device polling decreased the packet

capturing performance, even more it made the system unstable. To tackle this

drawback, they recommend activating the network card's interrupt moderation.

Furthermore, when they switched from device polling to traditional BPF, FreeBSD

performed better, compared to Linux with traditional PFPACKET plus device

polling activated.

Another comparative experiment was accomplished by Deri [39] to validate his

packet capturing method called PFRING which was mentioned earlier. The

experiment compared PFRING with traditional Linux's PFPACKET plus libpcap-

mmap activated. The result showed that PF_RING method managed to improve the

capture of small packets in the size of 64 bytes, and moderate packets in the size of

512 bytes. Additionally, this result was regenerated by Cascallana and Lizarrondo

[44].

A later research by Deri and Fusco [45] combined PFRING with TNAPI

(Threaded-NAPI). TNAPI provides dedicated kernel thread for every receiving queue

of the network card, thus it will not interfere with kernel threads for user space

appuecuiun. mis cApciimciii was piuvcil iu uc auic iu eapiuic a sucain ui ivjc small

packets at wire-speed (1.488 million packets).

Braun et al. [37] evaluated the performance of Linux packet capturing in

multicore processor environment, which is involving a PC with two Intel Xeon

2.8GHz clock speed, and another one with AMD Athlon 64 X2 5200+ 2.7GHz clock

speed.They generated the input packets in a stream of 1GE traffic with 1.27 million

packets per second (pps) that could be reached. This input stream was run for 100

seconds as much as five times. They did the experiments under Linux Ubuntu 9.04

with kernel version 2.6.32 and FreeBSD 8.0 operating system alternately.

Braun et al. [37] tells the drawback of running packet capture monitoring

application's processes on two cores, which is the synchronization of memory

between the two threads. This synchronization adds additional time load.

A part of Braun et al. [37] research was to compare the performances of the

packet capture monitoring application under three different treatments; first treatment

was if the kernel thread and the monitoring application were processed on the same

core, the second was to run them on different cores, and the last was to let them

automatically scheduled by the operating system's scheduler.

31

The result was that the most packets were captured when the kernel thread and the

user space application were processed on the same core, with the condition that the

input packet rates were low (around 550Kpps and below). While for the higher input

packet rates, the performance was better when the kernel thread and the user space

application's process were run on separate cores. And the worst performance occurred

when the operating system's scheduler took place. Therefore, Braun et al. [37]

concludes that both Linux and FreeBSD's scheduler are not accurate.

Another objective by Braun et al. [37] research was to compare packet capturing

methods under low application load. They compared the traditional Linux

PFPACKET against PF_RING in transparent mode 2 (dedicated PF RING capture),

with the penetrating traffic at 1GE speed (±1 million packets/sec) over 100 seconds

per run. They found out that increasing the size of the ring buffer (capture length),

after a specific boundary did not improve packet capturing significantly. However,

this finding is opposite to what is found by Schneider et al. [38]. Braun et al. [37]

reaffirm that if the user space application cannot process the packets fast enough, then

big buffer will even reduce the packet capturing performance. On the other hand, if

the user space application is fast enough to process the packets, then big buffer will

help to handle burst packets traffic.

The experiment results of Braun et al. [37] conclude that PFRING outperformed

PFPACKET on both Intel Xeon and AMD Athlon 64 X2 5200+. Further analysis

showed that PFRING on this AMD platform performed better than when it ran on

Intel Xeon.

Moreover, Braun et al. [37] also discovered that FreeBSD BPF performed better

than Linux PFPACKET, on both mentioned Intel and AMD platform. This finding

confirms the claims of Schneider et al. ([38] and [46]).

In their next experiment, Braun et al. [37] compared the multi packet capturing

applications among FreeBSD BPF, Linux PFPACKET, and Linux with PFRING.

The Linux with PFRING came as a winner as it had the best packet capturing

performance, while FreeBSD BPF came at second and Linux PFPACKET at the

third. This discovery strengthens the results of Deri [39] and Cascallana and

Lizarrondo [44].

Braun et al. [37] further added compression to the captured packets in their next

experiment which consisted of two parts, by using packzip software. The compression

level ranged from 0 (no compression) to 9, the higher compression level brings

heavier application load.

The first part of experiment with compression compared FreeBSD and

PFPACKET on the mentioned AMD platform at both 256 and 512 bytes packet size

stream. The results showed that at 256, and 512 bytes packet size stream,

PFPACKET performed better, with all capturing rates decreasing according to the

increasing level of packets compression, which led to insufficient CPU time.

The second part of Braun et al. [37]'s experiment with compression involved

comparison between FreeBSD, PF_PACKET and PFRING at 64 bytes packet size

stream, along with the previous compression when packets received. The results told

that FreeBSD performed constant at all compression levels, but its performances were

below PFPACKET and PFRING. PF_RLNG itself performed better than

PFPACKET at compression level 0 until 5, while at compression level 6 to 9,

PFPACKET came at first. However, packets compression is not a common practice

in packet capturing applications, but this experiment result is to inform us what will

happen if compression takes place.

At last, Braun et al. [37] give a significant contribution by proposing a signaling

modification to PFPACKET. They improve the device polling signaling mechanism

of PFPACKET. Therefore, instead of estimating a proper time-out, packets in the

network card will only be collected when one of the below conditions occurs:

1. Specified number of packets are accumulated

2. Specified timer (microseconds) has been reached

The modified signaling mechanism of PFPACKET by Braun et al. [37] managed

to reduce system calls (kernel interrupt generations) shown by an experiment that

used a stream of 64 bytes sized packets, which directly increased twice the rate of

packets captured with no compression.

At their very last experiment, Braun et al. [37] combined TNAPI technology into

PF_PACKET, their modified PFPACKET, and PFRING, and then compared them

against each other. PFRING combined with TNAPI produced the best packet

capturing performance, followed by modified PFPACKET combined with TNAPI,

and the last came TNAPI combined plain PFPACKET.

Finally, from all of the above comparative researches among packet capturing

methods, we conclude that the configuration of packet capturing module has

significant impact on the number of packets captured. This configuration setting

should be adjusted according to the rate of incoming traffic, different load of traffic

requires different treatment or setting.

We pick up PFRING as a decent choice for our research platform, for its great

performance as shown by the previous mentioned comparative studies, and its open

source code availability. Thus, it is possible for us to integrate it with our

methodology, which we will discuss in the laterchapter.

2.8. High Speed Packet Capturing and Packet Filtering

Packet filtering canbedone in several layers. Very commonly it occurs in Application

layer or user space. The popular one for IDS application on Linux systems is Snort

that resides at the Application layer. However, the way Application layer's IDS

software works is by copying all network traffic from kernel to its memory then starts

the filtering process as told by Deri [47].

Procedurally, the process of packet capturing by IDS at the Application layer is

explained by Dashtbozorgi and Azgomi [40]as mentioned below:

1) When the packet arrives, the network card's firmware copies it into the
memory called DMA (Direct Memory Access) then invokes the ISR (Interrupt
Service Routine) that is implemented in the network card's driver, and then

this ISR removes the packet from the DMA memory and inserts it into the

processing queue of a softirq.

2) The softirq (kernel) takes the packet from the processing queue and processes

it.

3) The respective user application program will get the copy of the packet and

then processes it.

The above system has some time duration issues related to the accomplishment

speed of packet filtering. Those durations are:

1) Time required to invoke the interrupt

2) Time required to switch between the kernel space and IDS application

3) Time required to allocate memory

4) Time required to copy packet from the kernel space to the application space

5) Time required to process the packet's header

To reduce the above durations, Deri [39] and Dashtbozorgi and Azgomi [40]

proposed PF_RING which is a network socket that bypasses the overhead processes

in kernel level and captures the packets directly from the network card firmware and

then copies the packets into a ring buffer inside the kernel. The IDS application then

accesses this ring buffer via mmap (memory mapped) file I/O system call. However,

there is still copying of packets from the network card to the ring buffer. This issue is

then tackled by the implementation of nCap and DMA ring as explained by

Dashtbozorgi and Azgomi [40].

nCap and DMA ring can connect directly the IDS application from the user space

to the network card firmware. nCap is a network capture library based on kernel

version 2.6 and Intel lGbps network card, while DMA ring is a wait-free queue

structure of a DMA controller processor (DMA Ring [48]) which is based on 2.4

kernel version and 3COM 100Mbps network card. Therefore both nCap and DMA

ring are not flexible methods since they are designed for specific kernel and network

cards.

The research by Deri [47] explained that the packet filtering process can be

accelerated by executing the filtering phase straightly at the kernel level. BPF

(Berkeley Packet Filter) was recommended by his research to accelerate packet

filtering since it inspects network packets that go through within the kernel.

Furthermore, additional filtering can be added by installing another filtering

application at the Application layer or user space level such as Snort, so that Snort

will only handle potentially interesting packets because initial filtering will be done

by BPF as explained by Deri [47].

The recent high speed network intrusion detection technique informed by

Okamoto [49] is called "Virus Throttle" that stops fast worms with no affect on the

normal network traffic.

2.9. Genetic Algorithm (GA) in Packet Filtering System

Genetic algorithm is a search method to find near optimum solution to a

permutational problem, based on evolutionary natural selection process and genetics

(Sastry et al. [50]). As in the definition, it implements on population or group of

chromosomes of potential solutions which apply Charles Darwin's theory of survival

of the fittest. This algorithm shall generate the best combination of solution for

specific problem. For every set ofgeneration, itwill create anew set ofestimations by

selecting chromosomes depending on their level of fitness, and then these

chromosomes will be bred using genetic operators that are inspired by natural

genetics. This evolution is consequently expected to lead to better population.

The genetic operators are mentioned below according to description by Sastry et

al. [50] and Shrivastava and Hardikar [51]:

1. Reproduction: It is an operator to make copies of better chromosomes in a
new population, and it used to be the first operator implemented on a
population. It chooses good chromosomes in a population to form a mating
pool. It plays beneficial role to inherit the best ofchromosomes ofthe previous
population, thus the quality of the new population can be maintained or
improved.

36

2. Crossover: An operator to recombine two chromosomes to get a better breed.
The chromosomes are recombined by exchanging information which then new
chromosomes are created based on this information, hence a hybrid could

appear. However, the newly created hybrid may have either reduced or
improved quality, thus to preserve some good chromosomes, not all of them
are used in this crossover process.

3. Mutation: In this process, new information is added randomly to the search
process. It maintains the diversity of population because of intensive operation
of reproduction and crossover operator. It occurs at the bit level when the bits
are being copied from the current to the new individual.

4. Selection Method: A method to assign more copies of solutions with better
fitness values, in order to give them higher probabilityto survive. Generally, it
consists of two categories, which are Fitness Proportionate Selection and
Ordinal Selection. In our genetic algorithm process, we utilize Tournament
Selection method that is a part of Ordinal Selection.

Note: Standard genetic algorithm pseudo-code can be found in Shrivastava and

Hardikar [51].

The implementations of genetic algorithm have been proven to have a bright

future in several engineering design cases as stated by El-Alfy [52]. He gives some

examples where genetic algorithm was successfully implemented to tackle

combinatorial optimization cases, in the Traveling Salesman Problem (TSP),

Quadratic Assignment Problem (QAP), Job Shop Scheduling (JSS), and Vehicle

Routing Problem (VRP). Specifically on the paper by Shrivastava and Hardikar [51]

the utilization of genetic algorithm in IDS scheme to decrease the percentage of false

positive and false negative, and additionally to maximize the automatic response to

attack, were described comprehensively.

Shrivastava and Hardikar [51] also inform that genetic algorithm can be used to

analyze application patterns to assist IDS techniques, such as anomaly detection and

misuse detection method. Shrivastava and Hardikar [51] report that the accuracy of

genetic algorithm within IDS filtering is in average above 70% for data size ranging

from 50 to 250 byte (50, 100, 150, 200, and 250). The accuracy results are in random

pattern, which means the bigger the data size does not necessarily have lower or

bigger accuracy.

37

Shrivastava and Hardikar [51] also prove that genetic algorithm consumes less

computer memory compared to another search technique which is backpropagation

neural network (BPN). This efficiency comparison results apply in all data sizes

ranging from 50 to 250 byte (50, 100, 150, 200, and 250) with the average memory

utilization in 32MB. With the maximum usable RAM (Random Access Memory) for

a 32 bit system is 4GB. Thus, genetic algorithm process is considered safe for the

computer memory resources.

Another genetic algorithm implementation within the network security is by El-

Alfy [52] who used genetic algorithm to optimize the firewall rules accuracy. The

goal of his research was to decrease the average number of comparisons against the

firewall rule set, while at the same time preserving the precedence relationship among

the rules. Firewall rules can create problem if a packet matches more than one rule.

Thus, it is necessary to reorder the rules because a packet will be taken care based on

the first action match. One rule precedes another. For example if we want to drop all

UDP packets except from 192.168.113/24 subnet, then the rule that permits this

subnet must be inserted before the wildcard rule that blocks all UDP traffics.

El-Alfy [52] also implicitly states that genetic algorithm is fast to deploy because

it is flexible for global optimization, and does not require the programmer to have the

understanding of problem specific knowledge to find an acceptable solution. El-Alfy

[52] compared genetic algorithm against other two firewall optimization method

namely branch-and-bound (BB) method that is an exact solution approach, and the

sorting method that uses an approximate approach. These all three methods were

tested under four probability distribution techniques which were Eq, Unif Zipf and r-

Zipf. Ten rules with several precedence relationships were provided to go through the

tests of maintaining the precedences and examining the average number of

comparisons.

The above comparisons results by El-Alfy [52] concluded that genetic algorithm

and BB method performed the best improvement (less average number of rule

comparisons) under uniform distribution {Unif and r-Zipf) environment compared to

the sorting method, with the r-Zipf environment gave the higher percentage of

improvement than Unif

38

Special for genetic algorithm technique, besides the ten rules used, within the

reproduction process it also used crossover operator with single point and 0.8

probability out of 1. Another operator used was the swap mutation operator with 0.1

mutation probability out of 1. These parameters values are commonly used in genetic

algorithm experiments with good outcomes as told by El-Alfy [52].

On the other hand, the two other comparison experiments each with complete/full

precedence relationships and no precedence relationships showed that the three

optimization techniques (BB, genetic algorithm, and sorting) performed in the same

level with the same average number of rule comparisons. For the case with

complete/full precedence relationships, the average number of rule comparisons is

7.78 for all three optimization techniques and the original non-optimized one. In other

words, optimization does not make sense. However, for the case with no precedence

at all, the average number of rule comparisons is 3.2160 for all three optimization

techniques and for the original non-optimized one is 7.7840. Therefore, optimization

is worth doing. Overall, the research by El-Alfy [52] concluded that genetic algorithm

was proven to be a decent choice to optimize the rewriting of firewall rules in the

environments where the precedence relationships exist either partially or completely.

One more distinct genetic algorithm related research was by Nottingham and

Irwin [53]. They made an effort to accelerate packet classification in parallel manner

by taking advantage of the parallel computation capability of the current commodity

GPU (Graphics Processing Unit). The meaning of packet classification itself is to

classify a packet based on the header information and then pin-point it to the correct

receiving application in real time. The exploitation of the GPU parallel computation

itself is synchronized with the parallel behavior of the genetic algorithm, specifically

they used General Processing (GP-GPU) genetic algorithm.

The research objective of Nottingham and Irwin [53] is to "produce contextually

optimized filter permutation in order to reduce redundancy and improve the per-

packet throughput rate of the resultant filter program." The need for genetic algorithm

in filter permutation optimization rises from the limitation of permutation

optimization using adaptive pattern matching algorithm. This limitation occurs when

the number of filters grows large (above 20) as stated by Tongaonkar [54].

39

While the mechanism of packet classification by Nottingham and Irwin [53] itself

is to compare a subset of packet header information to a set of static values, to

determine the type of the respective packet, hence it can be forwarded to the

destination application. Anyway, just like in firewall rule matching redundancy

problem, packet classification filter rules might also match a packet with more than

one rule, thus the order of filters is significant.

The effectiveness of permutation optimization is limited if the filter rule grows in

size. Nottingham and Irwin [53] bred a near-optimal permutation of filter rules

utilizing a generation confined, GP-GPU based genetic algorithm. They utilized

OpenCL as the GPU programming language for its parallelism and wide portability

with GPU card architectures and processor types. The respective genetic algorithm

was purposely created to improve permutations of filter, so that it can minimize the

control flow graph for the network context, hence the packet classification process

duration can be as brief as possible.

As mentioned above that Nottinghamand Irwin [53] utilized the parallelismof the

GPU, thus they executed the experiment over multiple GPU cores using a Single

Program Multiple Data (SPMD) setting. A chosen parameter was the number of

individual nodes of the filter tree in the resultant control flow graph, because it

reflects the shortest path. The packet classification itselfran by recording the sliding

window of recent network flow. They determined which chromosome of the

permutations that caused the shortest control flow graph structures for specific

network context. After the best chromosomes or factors had been found, then they

bred these in parallel permutations, and finally select the permutation with the best

performance to use as the classifier. This process was executed multiple times at

given intervals to adjust to the ever changing network characteristics without user

interaction required. The run duration for this breeding phase depends on the

chromosome population size and the number of generations created (the frequency of

evolution).

The first set of tests by Nottingham and Irwin [53] involved ten randomly

generated filter programs with every filter program consisting of 20 different filters,

and this test's population size was 100 chromosomes that were run for 200

40

generations. The results were awesome with 2.5 times up to 10 times of node count

reduction from unoptimized packet classification, and fast processing time ranging

from 36 to 78 seconds.

The second test set involved six randomly generated filter programs with each

filter program containing 50 different filters, the chromosome population was 250

which were run for 500 generations. The results generated showed significant

reduction of node count ranging from 9 to 12 times from the unoptimized packet

classification. However, the processing durations were quite high ranging from 1744

to 2115 seconds, but this can be further decreased by taking advantage of the GPU

parallel computation (Nottingham and Irwin [53]).

Another research by Nottingham and Irwin [55] was trying to optimize packet

filtering that classifies packets based on arbitrary packet header information, thus the

packets can match their desired destinations. They used genetic algorithm approach to

optimize filter permutation and to eliminate redundant codes, so that the average path

length of the filter control flow graph can be reduced. The permutation optimization

matters since the overlapping of rules comparison is highly possible. Thus

Nottingham and Irwin [55] conclude that the discovery of optimum filter permutation

is equivalent to the discovery of directed acyclic control flow graph.

The simulation steps taken by Nottingham and Irwin [55] are listed below:

1. Construct simple abstract control flow graph generator that accepts arbitrary

permutation of a set of filters. The predicates or attributes of these filters are set up
with occurrence percentage value to make sure some packets will match these

filters.

2. Convert the permutation of filters to a control flow graph.

3. Reduce the control flow graph length by applying predicate assertion propagation

and static predicate prediction. Predicate assertion propagation works by

evaluating an edge of predecessor's dominator node. If it points to the

subsequent's node predicate whose result can be determined by the predecessor's

dominator set, then it means the subsequent filter's predicate node is a redundant,

because the edge of predecessor filter's node can directly reach the child node of

the subsequent filter. While static predicate prediction complements this by taking

41

the implicit converse of predicate assertion propagation's result, therefore any
opposite or false predicate match will beremoved from the path.

The fitness value of each chromosome (filter permutation) itself is determined

based-on the number of eliminated nodes (higher better).

However, the best performers are not automatically selected since the selection

method used is Roulette Wheel selection. It divides a wheel into areas of

chromosomes. The size that it allocates to each chromosome (filter permutation)

reflects their fitness values. It will randomly pick up a value between zero and the

grand total fitness value from all chromosomes to decide which chromosome to

select. Roulette Wheel method is chosen to both achieve near optimal solution and

to explore the solution space.

4. Do crossover to create one or two child chromosomes. However, it might be
profitable to reserve some parent chromosomes from intact, therefore the
percentage of crossover occurrence can be specified. In this case, Nottingham and
Irwin [55] applied 70% of crossover occurrence.

The formula of their crossover is described below:

a. Copy the first part of - of the first parent to the first child's first part of -

chromosome, then copy the remaining of the first parent's chromosome to the
first child in the order they appear in the second parent.

b. For the creation of the second child, the order of parents is reversed.

5. Apply the probability of mutation which is the alteration of chromosome genes. It
is done by swapping one random gene index with another random gene index
from a different chromosome.

6. Compare the node count (attributes/predicates) of two filter permutations (control
flow graphs) from the same set of filters. One of the filter permutations is
generated by genetic algorithm.

The above procedure was applied to three unique test beds; the first test bed

involved ten filters, each filter consists of five to ten predicates with the condition that

80%o chance a filter predicate will contain "2==K". This test bed was executed ten

times with population size of 100 and 200 generations. The result is that the genetic

algorithm managed to reduce the node count by 20%.

42

The second test bed involved fifty filters with ten to twenty predicates per filter,

population size of 100 and number of generations of 200, additionally with 80%

chance that a filter predicate will contain "2==K". This test bed was executed six

times with the significant result of node count reduction by 40% in average. However,

it generated increased computation time as the effect of more number of filters.

The last test bed included implicit node count redundancies with fifty filters, ten

to fifteen predicates per filter, population size of 250, number of generations of 500,

and pure random probability of predicates contents. This test bed was executed six

times with the best result compared to the previous two. The percentage of node count

reduction reaches 50% in average with highest computational time compared to

previous sets.

From the overall experiment by Nottingham and Irwin [55], we can see that

genetic algorithm is highly ettective in tackling permutation case with the node couni

reduction ranging from 20% up to 50%. The effectiveness of genetic algorithm in this

case is linear to the number and complexity of the filters, the number of population,

and the number of generation. The trade-off comes from the increased computational

time that results from the increasing complexity, number of filters, also the population

size and number of generation.

However, the research simulation by Nottingham and Irwin [55] still has some

rooms for potential improvements; the content of the predicate can be extended from

the simple string e.g. "2==K" to become more realistic, even reflecting the real

firewall rule content, for example, protocol type or source IP address. The experiment

may also be brought into real environment instead of mere simulation program.

Furthermore, their work can be extended by further accelerating the filter optimization

process. This can be accomplished by fine tuning the packet classifier or the packet

capture's software module, thus an accelerated packet capture's module shall

automatically speed up the filter optimization process.

43

From the above discussed results, we can conclude that genetic algorithm has

potent impact towards the packet classification or in general term, it will perform well

in packet capturing area.

2.10. Network Penetration Testing

Network penetration testing is an act to generate flow of packets towards the packet

receiver. The packet receiver itself is a computer system able to capture and analyze

the packets. As discussed in the previous sections, it consists of hardware and

software stack. The hardware includes the network card and the processor, while the

software stack is the kernel level packet processing.

In this research, penetration testing is meant to measure the fitness values of our

genetic algorithm optimized packet filtering framework. The penetration testing that

we use in our research is ping test. It is sufficient for us, because we focus on packet

capturing, instead of packet filtering. We deploy different levels of ping load, which

is based on its packet size. Our packet capturing framework will try to reach the near

optimum packet capture setting, towards the different loads of penetrating traffic. The

measurement is so far based on the calculated packet throughput. The throughput is

calculated after every seven seconds of packet capturing process. Seven seconds of

duration is chosen because the common network card speed nowadays is 100Mbps.

Hence for seven seconds, the rough packet size captured is 700Mb, which equals to

87.5 MB. In real packettransmission, it reflects a small to medium sized file, which is

suitable for a kick-start point in this research.

Another purpose of the penetration testing is to examine the security of the

network. Security testing needs to be conducted to check whether the security policies

are working properly and whether new attack techniques canbe detected or not. Chen

and Laih [56] define penetration testing as a live test over an enterprise network.

Penetration testing is conducted by a Security Auditor (SA) while real intrusions

are launched by hackers. The techniques and tools are mostprobably the same, but the

purposes are different. Chen and Laih [56] were concerned about the identification to

44

separate penetration packets coming from the auditors and from the malicious

hackers. To solve this identification problem, they proposed a new IDS function

called IDSIC that stands for Intrusion Detection System with Identification

Capability.

Chen and Laih [56] add fingerprint information to the penetration packets. Two

fingerprint components would work to accomplish the fingerprint evaluation, those

two components were fingerprint adder and fingerprint checker. The fingerprint adder

will hash the packet message, encrypt the hash value, and then concatenate this hash

to the message. After that, the fingerprint adder will add this modified message into

the packet meant for penetration testing.

When IDSIC-based receiver receives the penetration packet with fingerprint, its

fingerprint checker will validate the fingerprint, and then it will verify the hash value.

If the hash value is correct, then this packet is categorized as penetration testing by

Security Auditor, therefore alert will not be triggered. Or if the hash does not match,

then it will generate an intrusion alert.

In order to do penetration testing, packet can be crafted to model hidden attacks

(metamorphic and polymorphic shellcodes) using engines such as those identified by

Okamoto [49], which are AMDmutate, CLET, alpha mixed, alpha upper, call4 dword

xor, contextcpuid, count-down, fnstenv mov, jmp call additive, and shikata ga nai.

Metamorphic shellcode is a malicious shellcode that is disguised by an encoder while

polymorphic shellcode is a malicious shellcode that is hidden by an encryption

(Okamoto [49]).

2.11. Summary

In this chapter, we have given a fundamental of computer networks principles and its

security problems and mitigations (firewall rules and IDS). We have also reasoned

our choice for PFRING as packet filtering module for this research. Braun et al. [37],

Schneider et al. [38], Deri [39], Dashtbozorgi anf Azgomi [40], Cascallana and

Lizarrondo [44], and Deri and Fusco [45] have found the reliability of PFRING in

45

their researches. The uses of genetic algorithm in computer networks area have been

found useful in packet filtering research by Shrivastava and Hardikar [51] and

Nottingham and Irwin [55], in firewall rules accuracy research by El-Alfy [52], and in

packet classification research by Nottingham and Irwin [53]. To measure our

proposed packet filtering framework, we utilize ping traffic test, which is a part of

penetration testing techniques. Ping test can go sequentially from small packet size

(64 bytes) to the big packet size, for example in Ethernet standard, the Maximum

Transmission Unit (MTU) is 1500 bytes. This is useful to discover the specific

treatments for every traffic load. The other penetration technique is crafted packet

penetration test, which is beneficial to evaluate the security policy of the network

gateway e. g. a firewall. The security policy includes firewall rules and IDS content

filtering.

46

CHAPTER 3

METHODOLOGY

3.1. Introduction to Genetic Algorithm Library

3.1.1 GAlib

Sastry et al. [50] recommend using existing genetic algorithm for initial

implementation, because it is fast and there are also ready-to-use genetic algorithms

library, which can be found on the Internet. GAlib is one recommended by them.

GAlib written by Matthew Wall of Massachusetts Institute of Technology (MIT)

is a free set of C++ genetic algorithm objects (GAlib [57]). It contains functions

utilizing genetic algorithms to optimize any C++ application. It is capable to provide

most problem representations and genetic operators. GAlib can be compiled on

various UNIX-based operating systems and Windows.

GAlib's capabilities include:

1. Generation of random number as a base for gene's randomized value. The one

being used is the generation of random number within the range 0-1.

2. Ability to evolve populations and/or chromosomes in parallel by utilizing
multiple processors.

3. The parameters to become the genes can be set in a text file, from a command

line argument, or in another code file.

4. Support overlapping and non-overlapping populations.

5. Customizable genetic algorithm techniques and attributes, such as

initialization method, mutation method and probability, crossover method,
comparison method, termination method, speciation method, elitism,

replacement strategy, selection method, and statistics recording.

47

3.1.2 GAlite the Minimized GAlib as The Methodology Platform

Our research focuses on the methodology to optimize packet capturing. We do not

emphasize on the genetic algorithm itself. A simple existing genetic algorithm library

would be enough to kick start our experiment, to evaluate the effectiveness of our

methodology or framework. Therefore, we utilized a minimized version of GAlib

called GAlite (GAlite [58]).

We started the GAlite implementation with 50 population size, 50 generations, 0.2

probability of mutation, 0.4 probability of crossover, and tournament selection

method. In this tournament selection, two chromosomes are picked up randomly, then

their fitness values are compared, and after that the winner is chosen to be the next

individual. This process repeats until the specified number of population is achieved

(Sastry et al. [50]).

We modified a sample GAlite application which is adjusted to our permutation

case, i.e. to optimize the configuration and firewall rules ordering of our modified

PFRING application. This GAlite sample application is simply named ga.

Our permutation case is based on PFRING parameters, which are discussed in

section 3.3 later. These parameters are permutated inside our GAlite application. Each

permutation of PFRING parameters is a chromosome/individual. And then, the

parameter values generated will become the inputs of our PFRING application. Our

PFRING application will run for 7 seconds with every chromosome, and then

generates a fitness value based on the total number of packets captured (throughput

rate). This process repeats according to GAlite's algorithm and attributes (number of

generations, population size, etc).

Finally, the best chromosome is obtained from each generation, which are then

compared to eachother to selectthe best chromosome. The selected best chromosome

is the near optimum combination of PFRING configuration and its firewall rules

ordering.

Our overall packet capturing optimization and firewall rules reordering

methodology framework is depicted in the below flowchart:

48

f" ihi- i ! f '.< 5- t

I rti' «',i I iron al

(- 1.1 1 ,

i

e 1 t 1

hi f

1 ?* 1 r n

1 f If

t Number of
0 1 1 "» - (I

tG<®rmration

/ s

f r f

>

1 3 t f r

,- ^F. -J 1 r 1 ^ ^ m :rn Pff ^
(

G^r »• 1 «f j

i

1

1- 't,

t- (•

I 1 t* 111- c-n-r, i J

" PiM 1 1 ir 1 1-

1 i' 1 it > I ruin ' r

itr 11 1 t * [r 1 '

The Trigger of pfcotj-'t p")~jr,in

• l-'n j 1r >«n

Generated Fitness Value based

on Throughput Rate

Sending of Fitness Value so /
picount Program £_

Figure 3.1. Genetic Algorithm Optimized Packet Filtering Framework

n Number erf

Population

3.2 Packet Capture Platform to be Optimized by Genetic Algorithm

A PF_RING definition by TNAPI [59] states that "PFRING is a Linux kernel patch

that allows packet capture to be improved". This packet capture improvement is

accomplished by bypassing some kernel network layers and replacing system calls

such as read() with DMA.

PFRING is the selected packet filtering acceleration module for this research

because it does not depend on specific network card type (hardware independent).

Thus, it is easier to integrate into the operating system compared to nCap and DMA

ring. The reason of its independence over hardware is because it resides in the kernel

at the bottom of networking stack above NAPI (New API). NAPI is a linux kernel

feature to reduce the number of interrupts requested and to decrease the latency. It

disables interrupts in high traffic and the packets are collected by polling to decrease

the system load created from interrupts processing, and while the traffic load is low

then the interrupt scheme activates again to minimize the latency from the pooling

waiting process (Leitao [60]). NAPI was firstly built for linux kernel version 2.6 and

was subsequently made compatible with kernel version 2.4.20.

49

PF_RING supports libpcap to integrate existing pcap-based applications. It can

also filter the packets by inspecting the header and or the payload contents in addition

to BPF. Plugins may be added for advanced packet parsing and content filtering

(NTOP PF_RING [61]). Moreover, PFRING is able to work in transparent mode as

explained by PFRING Transparent Mode [62]. Three modes can be chosen if
transparent mode is activated. First is when transparentmode = 0, which means

packets are sent to PF_RING with standard kernel procedure where the packets are
also sent to other kernel components. Second is when transparentmode = 1, where

the packets are delivered to PFRING by the NIC driver. The packets are also sent to

other kernel components but it would be faster since it skips traditional kernel

processing. The last mode is when transparentmode = 2, it is similar to the previous

mode except that packets are not forwarded to other kernel components. Thus this

mode performs best in term of speed. The packets are then discarded after being

captured and analyzed.

Below are types of PFRING module variations with their advantages and

drawbacks.

a. PF_RING DNA (Direct NIC Access): It is a scheme to map NIC memory

and registers to application layer, where the copying of packets from the NIC

to DMA ring is accomplished byNIC NPU (Network Process Unit) instead of

NAPI-based CPU. Therefore the CPU cycles are reduced (PFRING DNA

[63]). Additionally, the DNA driver requires a license (paid) which is based on

the driver speed ofeither 1Gbit or 10Gbit.

b. PF_RING TNAPI (Threaded NAPI): TNAPI scheme complements the

MSI-X technology of current Ethernet cards that partitions the incoming RX

(receive) queue into several RX queues according to the number of CPU

cores (one RX queue per core) (TNAPI [59]). The traffic management will

balance the flows according to which core they initially belong to, thus each

packet from the same flow will be forwarded to the same core instead of going

in round-robin manner. This mechanism is made possible by utilizing RSS

(Receive Side Scaling) and is only applicable to RSS-enabled network cards

(RSS [64]).

50

Furthermore, TNAPI [59] concludes that for its efficient traffic flow

distribution, TNAPI module is considered to be scalable because the more

CPU cores the more RX queues it can accommodate and the speed of packet

capture itself will improve since the packets are fetched simultaneously from

every RX queue. Moreover, it collaborates with PFRING to bridge the RX

queues to application layer/user space, so that an application can spawn one

thread for every queue.

3.3. PFRING Parameters to be Optimized by Genetic Algorithm

We modify an existing PFRING based application named pfcount to activate and

monitor the packet capturing process. The permutations on PFRING parameters

which we have chosen, based on the official PFRING manual by NTOP [65] are

coded in pfcount application. Those parameters are listed below:

1. caplen or snaplen = the size of packet capture length. The range is between 64

bytes upto the size of Maximum Transmission Unit (MTU) of the layer 2

protocol. In this research, the protocol is Ethernet with its MTU of 1500 bytes.

But in our algorithm, the maximum MTU is 1536 bytes to accommodate the

increase of MTU for every 64 bytes, and also helps to simplify the rounding of

result.

2. active_wait = ingress packet wait mode whether passive (poll) or active wait.

When active wait takes place, every packet will activate kernel interrupt. While

in passive wait, packets will be polled based on timer before kernel interrupt is

invoked to process the packets. Integer 0 represents active wait and 1 represents

passive mode as coded in PFRING application.

3. watermark = packet poll watermark whether to make it low (reduce latency of

poll but increase the number of poll calls) or make it high (increase the packet

latency but reduce the number of poll calls). The range is 1 byte (check

everytime for packet) until 50% of the maximum ring buffer size. In this

research, the maximum ring buffer size is 4096 bytes, thus the maximum

watermark value is 2048 bytes.

51

4. cluster_type = cluster type whether is per-flow or round-robin. In per-flow

cluster type, each part of a packet transmission flow will go to the same cluster

of the buffer. While in round-robin cluster type, the parts of a packet

transmission flow might go to the differentcluster of the buffer.

5. poll_duration = poll timeout in msec that takes care of data structures

synchronization. According to Dovrolis et al. [66], an acceptable clock interrupt

delay for real time applications is around 100 ms to 200 ms. Additionally, Linux

Hardware Interrupt [67] explains that the Linux system timer is programmed to

generate a hardware interrupt 100 times inevery second, which means that each

hardware interrupt will take placeevery 10 ms. This concept has been affirmed

by Timing in the Linux Kernel [68] that system timer ticks every 10 ms.

Therefore, when passive wait is chosen, the appropriate range of poll duration

is 10 ms - 200 ms with escalation every 10 ms.

6. Firewall rule set = a set of firewall rules in this research consists of 13 rules.

Each rule will be given a randomly generated priority value. This firewall rules

ordering mechanism applies in condition where there are more rules to accept

packets than the rules to drop them, since the only fitness value used is

throughput rate. It is also a good method to reorder the rules, if the network

administrator is faced with loads of existing firewall rules. The rules indexed in

the chromosome start from 5-18.

3.4. PFRING Application's Representation of Chromosome

Every chosen parameter is part of a chromosome which is indexed starting from zero

(0). In other words, each parameter is a gene. In standard genetic algorithm, every

gene contains a float range value from 0-1 that will be randomly generated. Thus,

specific formula for each parameter must be created to accommodate their real values

from minimum to maximum. Below are the formulas based on C programming

syntax, where gene(x) is the float random number generator ranging from 0-1:

1. snaplen = (gene(0) x 23) x 64 + 64

2. active_wait = (gene(l) > 0.5) ? 1 : 0

52

3. watermark = (gene(2) x 89) x 23 + 1

4. clustertype = (gene(3) x > 0.5) ? "cluster_round robin" : "cluster_per_flow"

5. po!l_duration = (gene(4) x 19) x 10 + 10

6. firewall rule [] priority = gene(5)

However, due to 7 significant digits of C++ float data type of gene(x), the

generated value of the above mentioned parameters might exceed their specified

limit. If this occured, then a specified maximum value has to be taken.

The above mentioned parameters are the input files for a PFRING based

application called pfcount to count the number of packets received by PFRING

kernel module. Importantly, the fitness value to evaluate every chromosome is the

throughput or the total number of packets received. The higher the fitness value

the better it is.

The pseudo code of pfcount represents the mechanism of PFRING itself,

especially where the above chosen parameters take place. The pseudo code is

listed below.

Read snaplen input;

Read wait mode input {

If (0)

Active wait (Read poll duration = 0);

If (1)

Passive wait (Read poll duration from input; }

Read watermark input;

Read poll duration input {

If (Active wait)

Poll duration = 0;

Else

Poll duration = input;

Read cluster type input;

Read firewall rules order input;

PF_RING Socket Initialization;

While (true) {

If (watermark = watermark input)

Read incoming packets;

Process incoming packets;

Filter Incoming Packets;

Count received packets;

Generate throughput value;

Else (poll duration times out)

Read incoming packets;

Process incoming packets;

Filter Incoming Packets;

Count received packets;

Generate throughput value; }

3.5. Summary

This chapter discusses about our genetic algorithm optimized packet filtering

methodology which covers GAlite (minimized GAlib) as our chosen genetic

algorithm library and PFPJNG as ourpacket filtering platform. The PFRING kernel

parameters andfirewall rules are genes that make up a chromosome, with each gene's

value (kernel parameters) is generated based on their assigned formula, while the

firewall rules orders are evolved. The GAlite application will call/trigger PFRING

application 'pfcount'. The generated PFRING kernel parameters and firewall rules

ordering by GAlite application are the inputs for pfcount. pfcount will be penetrated

by different loads of ping traffic, which after that, it produces throughput rate. This

throughput rate is sent to GAlite application to be used as fitness value. At the end,

the best chromosome from every generation is generated. Each of these chromosomes

are the optimal PFRING kernel parameters and firewall rules ordering.

54

CHAPTER 4

EXPERIMENTS RESULTS AND ANALYSIS

4.1. Experiment Software and Hardware Environment

The experiment was conducted based on the following hardware and software

environment:

1. Virtual Box 4.1.6

2. CPU: AMD Athlon Neo X2 Dual Core Processor L335 1.60GHz

3. Number of Virtual CPU: 1

4. Acceleration: AMD-V Hardware Virtualization with nested paging enabled

5. Base Random Access Memory: 512MB

6. Network adapter: Realtek PCIe GBE Family Controller lGbps

7. Linux Kernel version: 2.6.32

8. OS: Debian 6.0.4

9. PFRING 5.4.5

The above specification uses moderate hardwares so we can stress it out, in order

to measure the optimal configurations. The chosen Linux platform and kernel version

are the ones compatible and stable to be used with the then stable PFRING 5.4.5.

The packet capturing framework was measured against twenty-four levels of ping

traffic load according to the size of each packet injected (increment every 64 bytes),

which are from 64 up to 1536 bytes. These are considered low, medium, to high

network traffic load.

The initial genetic algorithm properties itself generates 50 of population size, 50

generations, 0.2 of mutation probability, 0.4 of crossover probability, and tournament

selection method. In tournament selection, two chromosomes are picked up randomly,

then their fitness values will be compared. After which the winner will be chosen to

55

be the next individual. This process repeats until the specified number of population is

achieved (Sastry et al. [50]).

The second experiment involves genetic algorithm properties that evolve around

100 population size, 100 generations, 0.4 of mutation probability, 0.5 of crossover

probability, and tournament selection method as inthe initial experiment.

The procedure related to the above mentioned genetic algorithm properties has

been explained previously in section 3.1.2.

4.2. Experiment Results and Discussion

4.2.1. Results and Discussion of Initial Experiment

The best chromosomes were determined from every traffic load. Below are the graphs

and table showing the throughput progression for each load, and the patterns of the

selected PFRING parameters.

Table 4.1 The Chosen Best Chromosome Contents for Different Traffic
Levels

Load

No. Input
Packet

Size

(bytes)

Best

Chromosome

Throughput

(bytes/7 sec)

Snaplen
(bytes)

Active/

Passive

Wait

Watermark

Value

(bytes)

Cluster

Type
Poll

Duration

(ms)

Firewall

Rules

Order

1. 64 4435.92 192
Active

wait
1703 Per flow 10

5-1-8-9-

13-3-7-

10-12-2-

4-11-6

2. 128 6457.92 384
Active

wait
2920 Per flow 350

11-8-7-3-

12-2-6-

13-1-9-5-

4-10

3. 192 8640 1664
Active

wait
990

Round

robin
210

12-9-6-2-

3-11-5-4-

8-1-10-

13-7

4. 256 10353.2 192
Active

wait
1864 Per flow 90

12-10-1-

5-3-13-

11-4-2-9-

7-8-6

5. 320 11975 512
Passive

wait
2644 Per flow 210

5-8-7-3-9-

4-1-6-2-

13-12-10-

11

6. 384 13465 1728 Active 1864 Per flow 170 13-1-7-3-

56

wait 8-12-2-6-

5-9-4-lO-

ll

7. 448 15139.5 384
Active

wait
942 Per flow 100

3-1-12-

10-7-13-

2-6-9-11-

8-4-5

8. 512 17259.4 1088
Active

wait
114 Per flow 150

7-1-9-2-3-

13-5-10-

4-12-6-

11-8

9. 576 19172.2 2304
Active

wait
183 Per flow 30

4-6-1-10-

13-9-2-8-

5-3-12-

11-7

10. 640 21226.7 2048
Active

wait
714 Per flow- 100

11-2-4-5-

9-12-7-6-

8-13-10-

3-1

11. 704 22433.3 3840
Active

wait
574

Round

robin
90

10-6-13-

9-5-4-7-

11-12-8-

1-3-2

12-10-11-

12. 768 24713.9 640
wait

369 Per flow 110
4-6-2-1-8-

3

13. 832 26786.2 2432
Active

wait
1588

Round

robin
230

6-12-11-

1-4-10-8-

5-2-7-13-

3-9

14. 896 28549.3 2240
Active

wait
921 Per flow 280

2-12-3-8-

13-11-10-

6-7-5-1-4-

9

15. 960 31112 1088
Active

wait
760 Per flow 110

3-1-10-6-

9-2-11-

12-13-4-

8-5-7

16. 1024 33081 192
Passive

wait
1816 Per flow 130

12-6-7-3-

13-9-1-

11-5-4-8-

10-2

17. 1088 34655 1920
Active

wait
1519 Per flow 150

2-9-1-13-

11-5-12-

3-4-7-10-

6-8

18. 1152 36421 704
Passive

wait
3426 Per flow 70

3-1-13-6-

11-12-2-

9-8-7-5-4-

10

19. 1216 40131 2560
Active

wait
829 Per flow 40

2-4-6-12-

9-3-11-

10-7-8-1-

5-13

20. 1280 40461.1 2432
Passive

wait
1103 Per flow 120

4-2-13-8-

12-3-6-5-

7-10-9-1-

11

57

21. 1344 42172.2 576
Passive

wait
3081 Per flow 10

9-10-13-

11-4-2-3-

5-6-8-1-7-

12

22. 1408 46237.6 64
Passive

wait
369

Round

robin
90

6-8-10-9-

1-4-11-

12-5-7-

13-3-2

23. 1472 47368.8 384
Active

wait
1496 Per flow 200

9-8-6-7-

11-10-5-

2-12-3-1-

4-13

24. 1536 50485.1 448
Active

wait
1034

Round

robin
80

11-12-10-

6-3-9-8-2-

7-4-5-1-

13

The above Table 4.1 displays the best chromosome generated from every ping

traffic penetration load. It includes the highest recorded throughput captured, the best

selected PFRING kernel parameters values, and the firewall rules ordering. The

description of PFRING parameters have been given in section 3.3. We can take for

example, in the first row for input traffic 64 bytes with highest throughput 4435.92

bytes/7 sec, the best PFRING configuration (chromosome) recorded states that the

best snaplen (capture length) size is 192 bytes with active wait used (no device

polling), the watermark value is 1703 bytes, per flow cluster type, and poll duration

10ms (unapplied because polling is only for passive wait mode). While the firewall

rules ordering for this input traffic sequentially puts 5-1-8-9-13-3-7-10-12-2-4-11-6 in

the order. For some other input traffics, passive wait (device polling) is used, hence

poll duration is activated.

58

:60o00 ;

(.4

-128

192

;?0000 v->?&-

3:o

3S4

44S

:40O00 : M2

^"6

64u

"04

30000 ; "68

S32

S°6

20000 ! 1024

lltSR

1152

10000

1216

12 SO

1344

1-lnS :

14"2 ;

0 I- ^ [
Best Gene's Throughput based on Packet Size

Figure 4.1 Throughput Progression from Different Traffic Loads

Figure 4.1 and Table 4.1 show the sequential throughput rate from ping traffic

penetration, starting from 64 until 1536 bytes of packet size. The throughput rate

progression is stable from 64 until 1152 bytes of packet size with moderately constant

progression. But starting from 1216 until 1536 bytes of packet size, the throughput

rate started to progress with more unstable varieties in progression. This shows that

optimization is mostly needed within this range. The former stability affirms the

research result by Deri [39] that claims PFRING performs consistent at low packet

sizes. In Figure 4.2, 4.3, and 4.4 below; the snaplen size, watermark value, and poll

duration for each packet size have high significant difference. However, they do not

block the consistency of PFRING.

59

j 4500

• 64

» 128
i 4ui.ii.) •

W2

1256

1 3-00 - } >u

j 384 ;

5-44N

j 3000 5; -12

-76 ;

: 64U

1 2500 7n4 !

76X :

S32 ;
j 2000

Rl>6

1 1 500
• JuM !

luS8 |

1132 ;

1 1000 1216 |
12X0

1344 !
509 - 14U8 |

1472 !

: 1536]

Rest Genes Snaplens

Figure4.2 SnaplenValues from Different Traffic Loads

Referring to Figure 4.2 and Table 4.1, it is observed that 62.5% of all traffic loads

(15 out of 24) have snaplen sizes, which are bigger than their packet size. From here,

we can conclude that there is a relation between the size of snaplen and the packet

capture rate. The snaplen size must be bigger than the size of each packet of the input

traffic, which is logical (snaplen size must accommodate at least one packet). This

practice (proper snaplen size) will prevent segmentation that consumes CPU cycle,

which eventually makes the network analysis process longer, since the fragmented

segments have to be reassembled at the receiving application.

The most significant improvements (compared to previous input traffic's

recorded throughput rate) are seen at ping traffics with 768, 960, 1216, 1408, and

1536 bytes of packet size. These particular significant improvements of PFRING

have strengthened the claim by Schneider et al. [38] and Deri [39], who noticed that

60

capturing a 1Gb Ethernet stream with big sized packet was much easier than capturing

it with small sized packet (64 bytes).

4000

3500

WOO

2000

1 500

[000

. n-s1 Watermarks

4- n4

1"2

- 3 20

3N4

• 448

« 512

576

V 640

7<>4

7oS

S3 2

wot/-;

'•'fiO

1<>24

ln88

1152

1216

1280

1344

1408

1472

1536

Figure4.3 Watermark Values from Different Traffic Loads

Figure 4.3 shows the watermark values for all traffic loads. The highest

watermark value is 3426 bytes and the lowest is 114 bytes. The 3426 value actually

exceeds the specified limit that is 2048 bytes, which was caused by the 7 significant

digits of C++ float data type. However, there are only 4 watermark values that exceed

2048 bytes. Analysis from this figure generates 17 out of 24 or 70.83% of all traffic

loads have watermark values which are less than half of the highest recorded

watermark value. This reflects that the recommended general watermark value is at

most half of the specified maximum limit, although PFRING will still perform well

61

even if it exceeds that half of specified maximum limit. The optimal value of

watermark allows the network application not to wait too long (overflown network

card capture buffermight occur) before receiving the packets.

400

• 128

350 J • 1"2

UJO

200

150

100

Piest Genes' TVII Durntion:-

132(i

13!S4

1448

8512

1576

1640

1704

1768

IS32

1806

960

1024

liiSS

1 1-2

1216

12SO

1344

1408

1472

1536

Figure 4.4 Poll Duration Values from Different Traffic Loads

Figure 4.4 displays the poll duration for every traffic load. The analysis was made

for three categories. First is for traffic loads that have poll duration equal or below

halfof highest specified duration (200 ms). Second is for traffic loads that exceed half

of highest specified duration (200 ms), and the last is for traffic loads that equal or

exceed highest specified duration (200 ms). The results are listed in belowtable.

62

Table 4.2 Poll Duration Categories Results

Poll Duration Category Number of Traffic Load

Duration < = 100ms 11

100ms < Duration < 200ms 7

Duration > = 200ms 6

There are eleven traffic loads (45.83%) in the first category, which are 64, 256,

448, 576, 640, 704, 1152, 1216, 1344, 1408, and 1536 bytes. The second category has

seven traffic loads (29.17%), each 384, 512, 768, 960, 1024, 1088, and 1280 bytes.

Finally the third category includes 6 traffic loads (25%), namely 128, 192, 320, 832,

896, and 1472. Within all the categories, the traffic loads vary from low/small,

moderate/medium, up to high. Additionally, the first category dominates with the

most number of trafflr loads From this analysis, it can be interpreted that it is

generally suggested to deploy poll duration that is ranging from 10 until 100 ms, for

the mentioned traffic load range (64-1536 bytes). 10 until 100ms of poll duration are

considered safe and ideal (not too brief, not too long).

Wait Mode

85Active Wait

CD Passive Wait

Figure 4.5. The Portion of Wait Mode (Active/Passive) Utilization

Looking at Figure 4.5, it can be seen that 75% or 18 out of 24 traffic loads were

treated with Active Wait (no device polling). Based on Table 4.1, for traffic loads of

64-512 bytes, there is only one traffic load (320 bytes) or 12.5% of this range that

uses Passive Wait (device polling). It means that within this range, the use of Active

Wait (kernel interrupt for every packet) costs cheaper than device polling. Next, for

traffic loads of 576-1024 bytes, there is also only one traffic load (1024 bytes) or

12.5% of this range using Passive Wait. This says that within this range (576-1024

bytes) of traffic load, Active Wait deliberately performs better. The analysis of Wait

Mode for traffic load ranging from 1088 to 1536 bytes of packet size shows that there

are four traffic loads (1152, 1280, 1344, and 1408 bytes) or 50% of this range that

activated Passive Wait. It can be concluded that for this higher load of traffic range,

the utilization of device polling delivers high impact (higher throughout rate).

ss Per Flow Cluster

O Round Robin

Figure 4.6 Cluster Mode Utilization

Figure 4.6 describes the Cluster Mode utilized by all traffic loads. There are 19

traffic loads (79.17%) utilizing Per Flow cluster, while the rest (5 traffic loads) or

(20.83%) use Round Robin cluster. Table 4.1 tells that Round Robin cluster only

applies on traffic load of 192, 704, 832, 1408, and 1536 bytes. Onthe other hand, Per

Flow cluster applies on majority of traffic loads ranging from small, medium, to high

traffic loads. These findings show that Per Flow cluster gives better packet capturing

rate, in general, as compared to Round Robin mode. This is suitable when only one

network application takes place and where there is no sharing of packets among

multiple applications. Therefore the single application will only take care on its own

buffer, and it will get all partsof a transmission flow without the need to reassemble if

those parts are separated.

64

Table 4.1 also depicts the contents of the selected best chromosome of PFRFNG

configuration and its firewall rules ordering for 24 different traffic loads (64-1536

bytes). There are 13 rules excluding the default 'deny' rule at the end of the set, which

is not included in reordering process. Analysis from the firewall rules ordering

column of Table 4.1, it can be observed that 14 out of 24 chromosomes (58.33%) put

rule no. 13, which has 'accept' action as the front line of the rule set. The

chromosomes with this characteristic are for traffic load of 64, 256, 384, 448, 512,

576, 704, 768, 896, 1024, 1088, 1152, 1280, and 1344 bytes for each packet size. The

traffic loads with this anomaly range from small up to high traffic loads. Thus, it can

be concluded that our genetic algorithm approach works well in ordering or

reordering the firewall rules. Especially where the rule set tends to have more rules to

accept packets than to drop them. This is useful when the new administrator is facing

the challenge of inserting and reordering new rules into the existing rule set.

4.2.2. Results and Discussion of the Second Experiment

The second experiment was conducted to justify the findings in the first experiment;

we increase the number of population, the number of generation, the probability of

mutation, and the probability of crossover to see if the patterns change, which might

show the unjustified results from the first experiment. The tables and graphs that

depict the results of the second experimentare shown below.

Table 4.3 The Chosen Best Chromosome Contents for Different Traffic
Levels

Load

No. Packet

Size

(bytes)

Best

Chromosome

Throughput
(bytes/7 sec)

Snaplen
(bytes)

Active/

Passive

Wait

Watermark

Value

(bytes)

Cluster

Type
Poll

Duration

(ms)

Firewall

Rules

Order

1. 64 4397.64 768
Active

wait
829

Round

robin
310

11-4-1-

10-9-7-

13-5-6-8-

2-3-12

2. 128 6627.26 128
Active

wait
2276

Round

robin
60

11-8-5-

12-4-13-

10-1-3-6-

7-9-2

3. 192 8120 1856
Active

wait
1701 Per flow 50

6-4-12-7-

2-13-5-8-

11-1-3-

10-9

4. 256 10181.1 640 Active 1 Per flow no 3-2-13-

65

wait 10-5-1-6-

8-7-11-

12-9-4

5. 320 11559.2 2048
Passive

wait
24 Per flow 160

5-13-7-8-

3-4-2-9-6-

11-12-10-

1

6. 384 13164.3 192
Active

wait
1425 Per flow 150

8-3-11-2-

12-13-9-

10-7-5-1-

4-6

7. 448 16779 2368
Active

wait
2071 Per flow 150

3-11-6-1-

13-7-8-4-

5-2-9-12-

10

8. 512 17157.8 2752
Passive

wait
4371 Per flow 190

4-7-2-11-

13-5-3-

10-8-12-

6-9-1

9. 576 18991.1 896
Active

wait
24 Per flow 150

7-3-5-13-

12-1-6-

10-11-9-

4-2-8

10. 640 20667.4 192
Active

wait
5105 Per flow 380

3-7-11-

13-1-4-

12-6-10-

8-9-5-2

11. 704 23455.3 2304
Active

wait
2000 Per flow 130

7-10-3-

11-6-8-2-

4-1-13-9-

5-12

12. 768 24655.4 64
Active

wait
1402

Round

robin
30

3-1-2-5-4-

12-10-6-

11-13-7-

9-8

13. 832 26637.7 704
Active

wait
1496 Per flow 270

4-1-10-

13-11-3-

5-12-9-2-

7-6-8

14. 896 30003.3 576
Active

wait
1954 Per flow 500

8-3-10-6-

2-11-5-

12-13-1-

9-4-7

15. 960 30642.9 1728
Active

wait
1264 Per flow 80

6-10-13-

12-7-9-5-

11-4-2-8-

3-1

16. 1024 32990.2 2112
Active

wait
1126 Per flow 210

5-7-3-12-

9-10-2-1-

4-8-6-11-

13

17. 1088 34105 1984
Active

wait
275 Per flow- 120

10-12-7-

4-3-8-2-

11-1-13-

9-6-5

18. 1152 36118.6 2496
Passive

wait
390

Round

robin
180

11-9-8-

13-5-1-2-

6-7-12-3-

10-4

19. 1216 38321.9 3200
Passive

wait
1542 Per flow 120

10-4-5-6-

9-13-3-2-

8-1-11-7-

12

20. 1280 40026.2 1472 Active 1448 Round 370 7-10-8-9-

66

wait robin 12-4-6-

13-3-1-

11-5-2

21. 1344 43994.8 640
Active

wait
24

Round

robin
240

1-9-3-13-

12-7-8-4-

6-2-11-5-

10

22. 1408 44122.3 768
Passive

wait
461 Per flow 30

4-7-2-12-

9-6-10-8-

11-1-13-

5-3

23. 1472 45288 640
Passive

wait
2506

Round

robin
10

4-10-8-

11-12-2-

7-5-13-1-

9-6-3

24. 1536 49178.6 128
Active

wait
760 Per flow 270

5-11-13-

1-3-12-7-

10-8-4-6-

2-9

60000

i.-nOOOO

40000

:oooo

10000

Best Genes' TliroughpuLs based on Packet Size

Figure 4.7 Throughput Progression from Different Traffic Loads

67

i64

I128

102

I2^t>

•3 2 o

3S4

44b'

r51 2

5 76

>640

704

768

S3 2

«N°6

960

:1U24

lo88

1152

12 16

1280

1344

1408

1472

15 36

Table 4.3 and Figure 4.7 show the similar increasing pattern as in Table 4.1 and in

Figure 4.1. This justified the findings in the initial experiment, because there is no

change of fitness pattern. It reflects that our first experiment is sufficient with 50

populations, 50 generations, 0.2 of mutation probability, and 0.4 of crossover

probability.

5500

UHJO

2OU0

1000

M.)0

Ho4

• 128

ll»2

320

3S4

2500 i 448

iJ512

576

*(>40

704

768

N32

1500 4 . S"6

°o0

1024

lo8S

11^2

1216

1280

1344

i U40S

1472

1536

Best Genes' Snaplens

Figure 4.8 Snaplen Values from DifferentTraffic Loads

From Figure 4.8 and Table 4.3, they show exactly the same amount of traffic

loads with snaplen size bigger than their packet size as in the first experiment, that is,

62.5%o of all traffic loads or 15 out of 24 traffics. This again justifies the results and

analysis from the first experiment.

Again, it is found that the most significant improvements are in ping traffic with

big sized packet (448, 704, 896, 1024, 1344, and 1536 bytes). This conforms to the

findings in the initial experiment.

68

6000

• 64

• 128

102

5000 ••; C2^6

320

3S4

448

4000 ; • 51 2

^76

- 640

7o4

3000 J 7&S

X32

806

OOO

2000 : i"2^

I08S

1000

I • 1 renes' Watermarks

1152

1216

1280

1344

1408

1472

1536

Figure 4.9 Watermark Values from Different Traffic Loads

In Figure 4.9, the highest watermark value is 5105 bytes and the lowest is 1 byte.

The 5105 value goes beyond the specified limit of 2048 bytes caused by the 7

significant digits of C++ float data type. But, there are only 5 watermark values that

exceed 2048 bytes. These are almost the same as in the first experiment that has 4 of

them. Figure 4.9 shows 22 out of 24 or 91.67% of traffic loads have watermark values

less than half of the highest recorded watermark value (5105). This also strengthens

the analysis of watermark values from the first experiment.

69

; 600

• 64 1

• 12S

• 192 I
__,,-,- :

1 M>0 -

• 384

I! 448

1 400 X M2

>7n

n 64o

•7H4

1 300 7(-vs

\32

,V>o

1

! 200 - l"24 1

lnxs 1

11^2 !

1216 |

I 100

1 o" ••

1280 |

1344 I

14o8 j
1472

1536 1

Best Genes' Poll Durations

Figure 4.10 PollDuration Values from Different Traffic Loads

Figure 4.10 displays the poll duration for every traffic load. As in the first

experiment, the analysis isbased onthree categories as depicted inbelow table.

Table 4.4 Poll Duration Results

Poll Duration Category Number of Traffic Load

Duration <= 100ms 6

100ms < Duration < 200ms 10

Duration > = 200ms 8

70

Depicted by Table 4.4, there are 6 traffic loads (25%) in the first category, which

include 128, 192, 768, 960, 1408, and 1472 bytes. The second category consists of 10

traffic loads (41.67%), which are 256, 320, 384, 448, 512, 576, 704, 1088, 1152, and

1216 bytes. The third category has 8 traffic loads (33.33%), each 64, 640, 832, 896,

1024, 1280, 1344, and 1536. This experiment shows the domination of the second

category. It is different from the first experiment, hence it can be concluded that the

setting of poll duration is effective and stable in the range of 10 until less than 200 ms,

for the experimented traffic load range (64-1536 bytes).

^ Ar-tive Wait

n Passive Wait

Wait Mode]

Figure 4.11. The Portion of Wait Mode (Active/Passive) Utilization

Referring to Figure 4.11, it shows that 75% or 18 out of 24 traffic loads were

treated with Active Wait (no device polling). In Table 4.3, for range of traffic loads of

64-512 bytes, there are 6 traffic loads with Active Wait (75%>), which means that

within this range, the use of Active Wait is better. This conclusion is the same as in

the first experiment. For traffic loads from 576 until 1024 bytes, all of the traffic

loads utilize Active Wait. This also supports the analysis in the first experiment. At

traffic loads ranging from 1088 to 1536 bytes of packet size, there are 4 traffic loads

(50%>) with Active Wait and 4 traffic loads (50%) with Passive, which show the same

statistics as in the first experiment. This infers that for higher load of traffic, the need

of device polling is becoming important.

71

Cluster Mode

^ Per Flow Cluster

m Round Robin

Figure 4.12 Cluster Mode Utilization

Based on Figure 4.12, there are 17 traffic loads (70.83%) deploying Per Flow

cluster, while the other 7 (29.17%) utilize Round Robin cluster, which occurs at

traffic loads with 64, 128, 768, 1152, 1280, 1344, and 1472 bytes of packet size. This

finding also conforms to the finding in the first experiment, where Per Flow cluster

mode drives better packet capturing rate in average against Round Robin mode.

The part about firewall rules reordering in the second experiment is shown in

Table 4.3. It can be seen that 16 out of 24 chromosomes (66.66%) put rule no. 13 with

'accept' action at the front line of the rule set. Those chromosomes are for traffic load

64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 832, 960, 1152, 1216, 1344, and

1536 bytes of each packet size. The traffic loads with this property cover small up to

high traffic loads. This result is slightly increased from the first experiment (which

has 14 chromosomes) with 'accept' action at the front line.

Overall, the results of the first and the second experiment are almost identical.

Therefore, it is concluded that the first experiment with genetic algorithm properties

of 50 generations, 50 populations, mutation probability of 0.2, and crossover

probability of 0.4 is sufficient to generate optimized packet filtering solution.

72

4.3. Summary

This chapter covers the results and findings of this research's experiments. The

experiment was conducted twice with different genetic algorithm properties to justify

the findings. Results were analyzed to find the specific patterns which were related to

PFRING kernel parameters and firewall rules ordering. These patterns gave clue of

how those kernel parameters were adjusted in specific situation (different loads of

input traffic). The firewall rules ordering were observed to evaluate its effectiveness.

The analysis of two experiments showed that the objective to optimize packet

filtering using genetic algorithm method was achieved.

74

CHAPTER 5

CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK

5.1. Conclusions

Genetic algorithm methodology can optimize both PFRING kernel parameters and

firewall rules ordering, in order to make up an optimized packet filtering framework.

The GAlite program in this research can perform the genetic algorithm process, based

on the packet capture kernel module (PFRING) kernel parameters and its firewall

rules. The results and their analysis show that the proposed method is suitable for

different levels of traffic load. Different input load requires particular packet capture

setting of kernel parameters. However, the firewall rules reordering does not depend

on the size of traffic load. Proper rules ordering maximizes the throughput rate

regardless of the size of traffic load.

This optimization framework will assist an administrator in setting the optimal

packet filter or merely packet capture configuration when specific network packet

transmission, for example a file transfer is about to occur, especially when the traffic

input rate can be estimated.

Finally, the overall network analysis process and objectives as mentioned in

Chapter 2 can be accelerated with optimized packet capturing.

5.2. Contributions

This research's contributions lie at the optimization of network packet filtering using

genetic algorithm methodology. The accomplished optimized packet filtering itself

consists of two processes, which are packet capturing and packet filtering using

75

firewall rules. The contribution towards packetcapturing is located at the optimization

of PFRING kernel parameters for different input traffic loads (different load requires

different treatment). Optimized packet capturing will automatically accelerate the

packet filtering phase which in this case is using firewall rules. Another contribution

is made in packet filtering scope by optimizing the firewall rules ordering. The

optimization of firewall rules ordering relates to the automatic reordering of rules,

especially when new rules are to be inserted into the existing rule set. Both the

optimized kernel parameters and firewall rules ordering deliver a whole optimized

packet filtering framework.

Overall, this research patches the previous packet capturing methods that do not

adjust (optimized) to specific input traffic loads. Furthermore, this research also adds

acceleration to previous packet filtering methods which only focus on the reordering

of firewall rules without considering the optimized acceleration of packet capturing

beneath it.

This research's constraint is the isolation of the specified load of input traffic

when we run the experiment, in order to find the optimal packet filtering

configuration. To conduct an accurate experiment, the measured input traffic is

preferred to be sourced from local network and it must be isolated and not be mixed

with other network stream e. g. Internet traffic. The failure to isolate input traffic will

increase the intended size of input traffic load, because the Internet packets will add

up to the stream. On the other hand, the isolation of input traffic might cause an

Internet service to be unavailable, hence it is suggested to conduct the experiment at

the hour where the Internet service is least accessed, for example: at midnight.

5.3. Future Work

In the future, our framework can be applied in other prospective open source packet

capturing and/or filtering module. Thus, it can become a generic packet filtering

optimization method. Energy measurement can also be added to develop a green

packet filtering framework based on the power consumption for specific configuration

of packet filtering parameters. The filtering technique can also be modified. Another

76

filtering technique other than firewall rules is for instance: BPF. Furthermore, a

change in PFRING transparent mode is worth trying as well. This research can also

be deeper explored using higher performance network card, for example is using

network card with lOGbps speed. Moreover, this research may be repeated under

different variances of operating system e. g. Red Hat based Linux distributions,

FreeBSD, or even Sun Solaris.

77

78

REFERENCES

[1] G. Held, "The TCP/IP Protocol Suite," in Ethernet Networks, 4th ed. West Sussex,

UK: Wiley, 2003, ch. 5, sec. 4, pp. 244-277.

[2] S. Panwar et al, "TCP/IP Overview," in TCP/IP Essentials: A Lab-Based

Approach. Cambridge, UK: Cambridge University Press, 2004, ch. 0, sec. 2, pp.

2-8.

[3] T. Lammle and A. Barkl, "Network Protocols," in CCDA: Cisco Certified Design

Associate Study Guide, 2nd ed. California: Sybex, 2003, ch. 3, sec. 1, pp. 120-131.

[4] E. Coll, (2008, April 12). Fundamentals of Datacom and Networking [Video].

Available: http:// www.teracomtraining.com

[5] E. Coll (2008, April 12). Understanding Networking 1 [Video]. Available: http://

www.teracomtraining.com

[6] E. Coll (2008, April 12). Understanding Networking 2 [Video]. Available: http://

www.teracomtraining.com

[7] J. E. Canavan, "Threats, Vulnerabilities, and Attacks," in Fundamentals of

Network Security, Norwood: Artech House, 2001, ch. 2, pp. 25-47.

[8] J. A. Vacca, "Preventing System Intrusions," in Network and System Security.

Burlington: Syngress, 2010, ch. 3, pp. 60-81.

[9] A. B. Aissa, R K. Abercrombie, F. T. Sheldon and A. Mili. (2010, Mar.).

Quantifying security threats and their potential impacts: a case study. Innovations

in Systems and Software Engineering [Paper]. 6(4), pp. 269-281.

[10] B. Dunsmore et al, "Securing Your Internetwork," in Mission Critical Internet

Security. Rockland: Syngress, 2001, ch. 1, pp. 6-40.

79

[11] B. Toxen, "Common Hacker Attacks," in Real World Linux© Security: Intrusion

Prevention, Detection, and Recovery, 2nd ed. New Jersey: Prentice Hall, 2002, ch.

5, pp. 236-257.

[12] E. Maiwald, "Types of Attacks," in Network Security: a Beginner's Guide. New

York: McGraw-Hill, 2001, ch. 2, pp. 15-26.

[13] S. Garfinkel et al, "TCP/IP Networks," in Practical Unix &Internet Security, 3rd
ed. Sebastopol: O'Reilly, 2003, ch. 11.

[14] A. Lockhart, "Network Security," in Network Security Hacks, 2nd ed. Sebastopol:
O'Reilly, 2006, ch. 6.

[15] L. Gheorghe, "Security Threats," in Designing and Implementing Linux

Firewalls and QoS using netfilter, iproute2, NAT, and L7-filter. Birmingham,

UK: Packt Publishing, 2006, ch. 2, pp. 42-55.

[16] E. D. Zwicky, S. Cooper and D. B. Chapman, "Why Internet Firewalls?," in

Building Internet Firewalls, 2nd ed. Sebastopol: O'Reilly, 2000, ch. 1, pp. 9-27.

[17] L. Bernstein (2007, Oct.). Network Management Isn't Dying, It's Just Fading

Away. Journal of Network and Systems Management [Paper]. 15(4), pp. 419-

424.

[18] R. L. Ziegler, "Packet-Filtering Concepts," in Linux Firewalls, 2" ed.
Indianapolis: New Riders, 2001, ch. 2, pp. 27-79.

[19] T. W. Ogletree, "Packet Filtering," in Practical Firewalls, 1st ed. Que, 2000, ch.

5, pp. 65-76.

[20] J. Govaerts, A. Bandara and K. Curran. (2009, Nov.). Aformal logic approach to

firewall packet filtering analysis and generation. Artificial Intelligence Review

[Paper]. 29(3-4), pp. 223-248.

[21] J. G. Alfaro, N. Boulahia-Cuppens and F. Cuppens. (2007, Oct.). Complete

analysis of configuration rules to guarantee reliable network security policies.

International Journal of Information Security [Paper]. 7(2), pp. 103-122.

80

[22] E. S. Al-Shaer and H. H. Hamed (2004, Mar.). Discovery of policy anomalies in

distributed firewalls. Proceedings of the 23' Annual Joint Conference of the

IEEE Computer and Communications Societies. 4, pp. 2605-2616.

[23] E. S. Al-Shaer and H. H. Hamed (2002). Design and Implementation of Firewall

Policy Advisor Tools. Technical Report CTI-techrep0801 .pp. 1-21.

[24] M. Sourour, B. Adel and A. Tarek. (2009, Mar.). Ensuring security in depth

based on heterogeneous network security technologies. International Journal of

Information Security [Paper]. 8(4), pp. 233-246.

[25] A. Prathapani, L. Santhanam and D. P. Agrawal. (2011, Jan.). Detection of

blackhole attack in a Wireless Mesh Network using intelligent honeypot agents.

The Journal of Supercomputing [Online]. Available:

http://www.springerlink.com/content/t0w30t95j0901234/fulltext.pdf

[26] L. Z. Cai, J. Chen, Y. Ke, T. Chen and Z. G. Li. (2010, Jan.). A new data

normalization method for unsupervised anomaly intrusion detection. Journal of

Zhejiang University-SCIENCE C (Computers & Electronics) [Paper]. 11(10), pp.

778-784.

[27] M. Sheikhan, Z. Jadidi and A. Farrokhi. (2010, Nov.). Intrusion detection using

reduced-size RNN based on feature grouping. Neural Computing & Applications

[Online]. Available:

http://www.springerlink.com/content/b6603nklx8373h68/fulltext.pdf

[28] H. Jin, G. Xiang, D. Zou, S. Wu, F. Zhao, M. Li and W. Zheng. (2011, Apr.). A

VMM-based intrusion prevention system in cloud computing environment. The

Journal of Supercomputing [Online]. Available:

http://www.springerlink.com/content/633jql233k94pnu6/fulltext.pdf

[29] M. Zulkernine, M. Graves and M. U. A. Khan. (2007, May). Integrating software

specifications into intrusion detection. International Journal of Information

Security [Paper]. 6(5), pp. 345-357.

81

[30] G. Folino, C. Pizzuti, and G. Spezzano. (2010, Feb.). An ensemble-based

evolutionary framework for coping with distributed intrusion detection. Genetic

Programming andEvolvable Machines [Paper]. 11(2), pp. 131-146.

[31] M. Naveed, S. Nihar and M. I. Babar. (2010, Nov.). Network Intrusion

Prevention by Configuring ACLs on the Routers, based on Snort IDS alerts.

Proceedings ofthe 2010 6th International Conference on Emerging Technologies

(ICET) [Paper], pp. 234-239.

[32] SonicWALL. SonicOS Enhanced 4.0: Packet Capture.

[33] Wireshark Purposes.

http://www.wireshark.Org/docs/wsug_html_chunked/ChapterIntroduction.html#C

hlntroPurposes

[34] Inline SnortFinal, http://openmaniak.com/inline_final.php

[35] Inline Snort, http://openmaniak.com/inline.php

[36] L. Ricciulli and T. Covel (2011, Sept.). Inline Snort multiprocessing with

PFRING. Snort Setup Guides.

[37] L. Braun, A. Didebulidze, N. Kammenhuber and G. Carle (2010, Nov.).

Comparing and Improving Current Packet Capturing Solutions based on

Commodity Hardware. Proceedings of the 10th ACM SIGCOMM conference on

Internet measurement, pp. 206-217.

[38] F. Schneider, J. Wallerich and A. Feldmann (2007, Apr.). Packet capture in 10-

gigabit ethernet environments using contemporary commodity hardware.

Proceedings of the 8th International Conference on Passive and Active Network

Measurement.

[39] L. Deri (2004, Oct). Improving Passive Packet Capture: Beyond Device Polling.

Proceedings of the 2004 4th International System Administration and Network

Engineering Conference [Paper], pp. 1-10.

82

[40] M. Dashtbozorgi and M. A. Azgomi (2010, Aug.). A high-performance and

scalable multi-core aware software solution for network monitoring. The Journal

ofSupercomputing [Paper]. 59(2), pp. 720-743.

[41] J. Mogul and K. K. Ramakrishnan (1997, Aug.). Eliminating receive livelock in

an interrupt-driven kernel. ACM Transactions on Computer Systems. 15(3), pp.

217-252.

[42] I. Kim, J. Moon and H. Y. Yeom (2001, Sept.). Timer-based interrupt mitigation

for high performance packet processing. Proceedings of 5th International

Conference on High-Performance Computing in the Asia-Pacific Region.

[43] L. Rizzo (2001, Nov.). Device Polling Support for FreeBSD. Proceedings of

BSDCon Europe Conference.

[44] G. A. Cascallana and b. M. Lizarrondo {2006, Sept.). Collecting packet traces at

high speed. Proceedings of Workshop on Monitoring, Attack Detection and

Mitigation (MonAM) 2006.

[45] L. Deri and F. Fusco (2009, July). Exploiting commodity multi-core systems for

network traffic analysis. Available:

http://luca.ntop.org/MulticorePacketCapture.pdf

[46] F. Schneider and J. Wallerich (2005, Oct.). Performance evaluation of packet

capturing systems for high-speed networks. Proceedings of the 2005 ACM

conference on Emerging network experiment and technology, pp. 284-285.

[47] L. Deri (2007, June). High-Speed Dynamic Packet Filtering. Journal ofNetwork

and Systems Management [Paper]. 15(3), pp. 401-415.

[48] DMA Ring, http://www.cs.ucla.edu/~kohler/class/05s-osp/notes/notesl2.html

[49] T. Okamoto (2011, Feb.). An artificial intelligence membrane to detect network

intrusion. Proceedings ofthe 15' International Symposium on Artificial Life and

Robotics [Paper]. 16, pp. 44-47.

83

[50] K. Sastry, D. Goldberg and G. Kendall, "Genetic Algorithms", in Search

Methodologies, Edited E. K. Burke and G. Kendall, Los Angeles: Springer US,

2005, ch. 4, pp.97-125

[51] A. Shrivastava and S. Hardikar (2012, July). Performance Evaluation of BPNN

and Genetic Algorithm. VSRD International Journal of CS & IT [Paper]. 2(7),

pp. 621-628.

[52] E. El-Alfy (2007, Feb.). A Heuristic Approach for Firewall Policy Optimization.

The 9th International Conference on Advanced Communication Technology

[Paper]. 5, pp. 1782-1787.

[53] A. T. Nottingham and B. Irwin (2009, Aug.). gPF: A GPU Accelerated Packet

Classification Tool. Southern Africa Telecommunication Networks and

Applications Conference [Online]. Available:

http://www.satnac.org.za/proceedings/2009/papers/software/Paper%2063.pdf

[54] A. S. Tongaonkar (2004, May). Fast Pattern-Matching Techniques for Packet

Filtering. StonyBrook University Tech. rep.

[55] A. Nottingham and B. Irwin (2009, July). Investigating the Effect of Genetic

Algorithms on Filter Optimisation within Fast Packet Classifiers. Proceedings of

the ISSA 2009 Conference, pp. 99-116.

[56] P. T. Chen and C. S. Laih (2007, June). IDSIC: an intrusion detection system

with identification capability. International Journal of Information Security

[Paper]. 7(3), pp. 185-197.

[57] GAlib. http://lancet.mit.edu/ga/

[58] GAlite. http://code.google.eom/p/galite/

[59] TNAPI. http://www.ntop.org/products/pf_ring/tnapi/

[60] B. H. Leitao (2009, July). Tuning 10Gb network cards on Linux: A basic

introduction to concepts used to tune fast network cards. Proceedings of the

Linux Symposium [Paper], pp. 169-184.

84

[61] NTOP PF_RING. http://www.ntop.org/products/pf_ring/

[62] PF_RING Transparent Mode, http://www.ntop.org/pf_ring/pf_ring-and-

transparent-mode/

[63] PF_RING DNA. http://www.ntop.org/products/pf_ring/dna/

[64] RSS. http://www.intel.com/support/network/adapter/pro 100/sb/cs-027574.htm

[65] NTOP (2012, June). PFRING User Guide. Linux High Speed Packet Capture.

[66] C. Dovrolis, B. Thayer and P. Ramanathan (2001, Oct.). HIP: Hybrid Interrupt-

Polling for the Network Interface. Proceedings of2001 ACMSIGOPS Operating

Systems Review. 35(4), pp. 50-60.

[67] Linux Hardware Interrupt, http://www.hnux-

tutorial.info/iiiodules.plip?uaiiic~MContcnt&pagcid~86

[68] Timing in the Linux Kernel.

http://www.6test.edu.en/~lujx/linux_networking/0131777203_ch021evl sec7.html

85

86

PUBLICATIONS LIST

O. Nurika, A. Hudaya, A. Sani and N. Zakaria, "Review of Various Firewall

Deployment Models," in International Conference on Computer and Information

Sciences 2012 (ICCIS2012), Kuala Lumpur, 2012, pp. 825-829.

O. Nurika, N. Zakaria and L. T. Jung, "Genetic Algorithm Optimized Packet

Filtering," International Conference on Convergence and its Application (ICCA

2013), Seoul, Apr. 2013. (Under Review)

87

