

REAL-TIME PLATOONING OF MOBILE ROBOTS:

STUDY OF TRAJECTORY WITH OBSTACLE AVOIDANCE

DAVID BONG CHUNG HUA

ELECTRICAL AND ELECTRONICS ENGINEERING

UNIVERSITI TEKNOLOGI PETRONAS

JANUARY 2017

	 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Real-time Platooning of Mobile Robots: Study of
Trajectory with Obstacle Avoidance

by

David Bong Chung Hua

18427

	

	

Dissertation submitted in partial fulfilment of

the requirements for the��

Bachelor of Engineering (Hons)

(Electrical and Electronics Engineering)

JANUARY 2017

Universiti Teknologi PETRONAS
Bandar Seri Iskandar��
31750 Tronoh��
Perak Darul Ridzuan

	

	 i	

CERTIFICATION OF APPROVAL
	
	

Real-time Platooning of Mobile Robots: Study of Trajectory with Obstacle
Avoidance

by

DAVID BONG CHUNG HUA

18427

A project dissertation submitted to the

 Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONICS)

Approved by,

(Mr. Lo Hai Hiung)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

January 2017

	 ii	

CERTIFICATION OF ORIGINALITY
	
	
	
	

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgments, and

that the original work contained herein have not been undertaken or done by unspecified

sources or persons.

	

	

	

……………………………………………		

(DAVID	BONG	CHUNG	HUA)	

iii	
	

ABSTRACT
	

	

Robot platooning is a robot positioning method, whereby a few robots will be

moving in formation. Platooning has been a very commonly discussed technique

especially for its applications on vehicles. However, up until now, it still has many issues

that are preventing it from being implemented in real life and one of them is its irregular

trajectory in the maintaining phase. In this project, study will be made on the real-time

platooning trajectory in its maintaining phase under the most two common factors in real

life, which are changes in velocity and presence of obstacle. By studying its performance

under the mentioned factors, this project aims to contribute by having algorithm that can

improve the platooning trajectory during its maintaining phase.In order to do so, two

robotic cars are used as models to simulate real vehicles. The first one would act as the

leader while the second one would act as the follower. Both cars would be equipped with

a visual sensor, Pixy camera while Fuzzy logic would be used as the main controller logic

in this project due to the limited processing power of the microcontroller used, DFR0305,

Atmega 328. Data will be collected throughout the experiment so that improved algorithm

can then be developed for a better platooning performance.

	 	

iv	
		

Contents
	

CERTIFICATION OF APPROVAL	..	i	

CERTIFICATION OF ORIGINALITY	..	ii	

ABSTRACT	..	iii	

List of Figures	...	vi	

List of Tables	...	vii	

INTRODUCTION	...	1	

1.1	 BACKGROUND	..	1	

1.2	 PROBLEM STATEMENT	...	3	

1.3	 OBJECTIVES and SCOPE of STUDY	..	3	

LITERATURE REVIEW and/or THEORY	..	5	

2.1 LEADER-FOLLOWER MECHANISM	...	6	

2.2 FUZZY LOGIC CONTROLLING MECHANISM	...	6	

2.3 PAYTON AND ROSSENBLATT’S APPROACH	...	7	

METHODOLOGY/ PROJECT WORK	...	9	

3.1 FLOWCHART	..	9	

3.2 Fuzzy Logic	..	10	

3.3 HARDWARE AND SOFTWARE	...	11	

3.3.1 Hardware	..	11	

3.3.2 Software	...	11	

3.4 KEY MILESTONES	...	11	

3.5 Timeline (Gantt Chart)	...	12	

RESULTS and DISCUSSIONS	..	14	

4.1 Pixy Camera Calibration	..	14	

4.2 General Pseudocode	..	14	

4.2.1: Detecting Leader’s Indicator	...	15	

4.2.2: Reacting when Indicator is on the Left, Right or in the Middle of Camera	15	

4.3 Observations	..	17	

4.3.1:	Experiment	of	Trajectory	Performance	against	Velocity	of	Follower	17	

4.3.2:	Experiment	of	Trajectory	Performance	against	Initial	Interval	Distance	18	

4.3.3:	Experiment	of	Trajectory	Performance	against	Leader’s	Initial	Position	19	

4.4 Area of Indicator at Different Interval Distances	...	20	

v	
		

4.5 Area of Indicator at Various Positions	..	21	

4.6 Optimum Velocity of Follower	...	22	

4.7 Detectable Range of Pixy Camera	..	24	

4.8 Platooning Trajectories	...	25	

4.8.1	Straight	Line	...	26	

4.8.2	Square	..	27	

4.8.3	Circle	..	27	

4.8.4	Straight	Line	with	Obstacle	...	28	

CONCLUSION and RECOMMENDATIONS	...	29	

5.1 Conclusion	..	29	

5.2 Recommendations	...	29	

REFERENCES	..	31	

Appendix	..	33	

Appendix 1	...	33	

Appendix 2	...	37	

Appendix 3	...	43	

Appendix 4	...	45	

Appendix 5	...	47	

vi	
	

List of Figures

Figure 1:Dilemma when Avoiding Obstacles [9]	..	5	
Figure 2: Fuzzy Set Representing Concept of Distance [9]	...	7	
Figure 3: Decisions with Weighted-Priorities [9]	..	7	
Figure 4: General Flowchart of Project	...	9	
Figure 5: Overview of whole system	...	10	
Figure 6: Platoon Leader Indicator	..	14	
Figure 7: Obstacle	...	14	
Figure 8: Optimum velocity of each set of interval distances	...	22	
Figure 9:Optimum velocity for each category of leader's positions	..	23	
Figure 10: Minimum interval distance	..	24	
Figure 11: Area of block size when marker is at distance less than 4cm	24	
Figure 12: Maximum interval distance	..	25	
Figure 13: Trajectory of platooning at 20cm	...	26	
Figure 14: Trajectory of platooning at 40cm	...	26	
Figure 15: Trajectory of platooning at 60cm	...	26	
Figure 16: Platooning trajectory when moving in square	..	27	
Figure 17: Platooning trajectory when moving in circle	...	27	
Figure 18: Platooning trajectory under obstacle	..	28	
Figure 19: Data collected at 40cm	 Figure 20: Data collected at 30cm	43	
Figure 21: Data collected at 20cm	 Figure 22: Data collected at 10cm	43	
Figure 23: Data collected at 4cm	...	44	
Figure 24: Data collection method at 40cm	...	45	
Figure 25: Data collection method at 30cm	...	45	
Figure 26: Data collection method at 20cm	...	45	
Figure 27: Data collection at 10cm	...	46	
Figure 28: Data collection at 4cm	...	46	

vii	
	

List of Tables
	

Table 1: Fuel Consumption of Leading Truck and Its Platoon [5]	...	2	
Table 2:Fuzzy Logic Table for Leader-follower System	...	10	
Table 3: FYP1 and FYP2 Gantt Chart	...	12	
Table 4: Values of x for respective positions of block	..	16	
Table 5: Trajectory Performance of Platooning at Different Velocities	17	
Table 6: Trajectory Performance of Platooning with Varied Initial Position of the Leader	18	
Table 7: Trajectory Performance at Different Leader's Position	...	19	
Table 8: Area of Indicator at different interval distance	..	20	
Table 9: Fuzzy logic for each interval distance	...	21	
Table 10: Area of Indicator at different leader’s position	...	21	
Table 11: Pixy Camera's Detectable Range	...	25	
	

	

1	
	

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

	

Ever since automobiles are invented, vehicles have been driven manually by a driver

with the purpose of reaching the intended destination [1]. By having land

transportation as the main commuting media nowadays, the increasing traffic and

soaring energy costs has never been greater. In fact, about 60% of all surface freight

transportation is done on roads [2]. Despite land transportation’s significant role in

the global trade as well as world economy, crucial challenges such as increasing fuel

prices and the need to reduce greenhouse gas emissions have made man realizes the

potential benefits of cooperative driving especially for freight transportation [1,2].

Platooning is formation movements of a group of vehicle in coordination and have

since been studied for several decades [1,3]. Vehicles platooning can improve the

capacity of the road by allowing more vehicles to use a given length of road [1,3,4].

According to [5, Table 1], it also improves energy efficiency, thus reducing fuel

consumption by reducing aerodynamic drag [1, 3,5]. The reason is simple because the

smaller inter-vehicle distance reduces the aerodynamic drag, thus leads to a higher

energy efficiency.

2	
	

	

In addition, as smaller inter-vehicle distance tends to increase the risk of accidents,

platooning would be crucial. With automated control, a small inter-vehicle distance

can still be maintained even when vehicles are moving in high speed as safety is now

ensured [2].

Due to the dynamic characteristics of vehicle platooning in natural environment, it is

important that obstacle avoidance be taken into consideration [6]. This not only

ensures the platooning performance, but also greatly increases its safety by

eliminating what is unknown.

The two main approaches used in vehicles platooning are catch-up strategy or slow-

down strategy. In catch-up strategy, the platoon follower speeds up to catch up with

its leading platoon whereas in slow-down strategy, platoon leader slows down to allow

the following platoon to catch up [7]. In both strategies, manipulation of velocity is

essential in order to maintain the platoon formation [3]. Therefore, it is crucial that

the effect of platoons’ velocity on the performance of platooning be taken into

consideration.

Lastly, study shows that platoon formation could be delayed up to 20% even on

moderate traffic density [3]. Since traffic is unavoidable in real-life transportation, the

performance of platooning when avoiding obstacle as well as changing velocity has

to be observed in order to ensure a robust and safe platoon formation.

Table 1: Fuel Consumption of Leading Truck and
Its Platoon [5]

3	
	

1.2 PROBLEM STATEMENT

	

1.3 OBJECTIVES and SCOPE of STUDY

	

How will the performance of the platoon follower be
affected when avoiding obstacles?

How will the velocity of the robots affect the
platooning performance?

How can we improve the platooning performance?

Observation
• Measure the trajectories of a platoon follower

during the presence of obstacles and when under
different velocities

Algorithm • Improve platooning algorithm to improve
platooning trajectories

Proof • Demonstrate the improved implementation

4	
	

Vehicles platooning consists of three main phases as shown in Figure 1 [7]. The focus

of this project would be on the second phase, which is the maintaining phase. In phase

two, vehicles ought to make sure a certain separation from their preceding vehicle.

In this project, a monocular camera, CMUcam5 Pixy is used as the main sensor of the

mobile robots. A total of two mobile robots would be used in order to show the

platooning formation. In order to get accurate measurements on the platooning

performance as well as to obtain the improvement in platooning trajectories through

the improvement in algorithm, multiple experiments will be conducted with different

platoon velocity, and presence of obstacles. From the experiment, performance data

before and after the platooning algorithm improvement are obtained and tabulated.

Moreover, demonstration would also be done in order to prove the obstacle avoidance

capability during platooning.

This project is thus relevant, given all the mentioned advantages of platoon formation

mentioned in background.

5	
	

CHAPTER 2

LITERATURE REVIEW and/or THEORY

There will be two focus in this project, which are the ability to follow its leader and the

ability to avoid obstacles while following its obstacles. Leader-follower mechanism [8]

together with fuzzy logic would be used in order to achieve the main requirement of this

project which is maintaining the platoon formation.

As for the second focus of this project, fuzzy logic controlling mechanism would be

applied in order to have a robust obstacles avoiding system despite the dynamic

characteristics of natural environment [9,10,11].

In spite of the robot’s capability to follow its leader as well as avoiding obstacles, dilemma

arises when following robot does not know whether turning to the right or left would be

a better option so as to maintain the performance of platooning. This problem is illustrated

in [9, Figure 1] below.

Figure 1:Dilemma when Avoiding Obstacles [9]

6	
	

In order to maintain a robust performance of platoon formation even when the changing

of velocity when avoiding obstacles, Payton and Rossenblatt’s approach is used so as to

set the priority right [9].

2.1 LEADER-FOLLOWER MECHANISM
	
This approach is commonly used to enable multiple robots moving in a formation, which

is in our case to maintain the platoon formation. In leader-follower approach, only one

robot will act as the leader of the platoon at a time. This leader robot is the only platoon

which has the information for the reference path while the other robots in the platoon

would simply follow the reference trajectory by the leader [8].

However, as there are more than two robots in a platoon, problem arises when there is

only one robot acting as the leader. As a result, a simple extension of the leader-follower

mechanism, that involves a simple cascaded system is created. In this system, the leader

follower mechanism will be in a straight line whereby the first robot would be the leader

to the following robot while the following robot will then be the leader to its next robot

[8, 12].

2.2 FUZZY LOGIC CONTROLLING MECHANISM

	
Fuzzy logic is invented by A.Zadeh. It is developed as many concepts in the real word

cannot be accurately represented by defined definition such as true or false and 1 or 0 [9].

As a result, fuzzy logic is often used to control autonomous robots in natural environments

[10, 12]. The theory behind fuzzy logic enables vague concepts to be defined in term of

partial membership function [9]. [9, Figure 2] below illustrates how fuzzy logic is used to

define distance.

7	
	

In Figure 2, d represents the interval distance between obstacle and robot in centimetre

(cm) while µ represents the membership of the fuzzy set; Near with, 1 representing a full

membership of Near and 0 representing zero membership of Near. As shown in Figure 2,

100cm away from the robot is represented by approximately the membership value of 0.4

while interval distances below 20cm are represented by a full membership value of 1. The

ability of capturing vague concepts using fuzzy sets instead of the exact interval distance

reduces the processing load for the microcontroller but most importantly, improves the

robustness of the obstacle avoidance system by reducing the effect of sensor noise. This

is because sensor noise can only affect the Near fuzzy membership degree slightly.

2.3 PAYTON AND ROSSENBLATT’S APPROACH
	

Payton and Rossenblatt’s (P&R) approach is developed by David Payton, Ken Rosenblatt

and David Keirsey. They invented this technique as they realize loss of information

Figure 2: Fuzzy Set Representing Concept of Distance [9]

Figure 3: Decisions with Weighted-Priorities [9]

Near

8	
	

usually happens whenever two or more decisions are made based on fixed-priority [9]. As

a result, they have come up with a decision making technique based on weighted priorities

as shown in [9, Figure 3].

In P&R method, each options available is arranged in a set of nodes for easier decision

making as shown in Figure 3. The white color of the node represents a negative activation

while the black color represents a positive activation; with the bigger the node in the figure,

the higher the priority of the behavior. For instance, higher desirable positive activation

is given to both hard left and hard right, and a large negative activation given to moving

straight ahead when meeting an obstacle. The final control chosen when the platoon

follower meets an obstacle while having its leader at the left is a hard left. Similar

decisions can be made by using the same P & R approach if the leader is on the right, or

when the leader used to be on the right or left while it temporarily misses its leader when

avoiding obstacle.

	

9	
	

CHAPTER 3

METHODOLOGY/ PROJECT WORK
	

3.1 FLOWCHART

	

Figure 4: General Flowchart of Project

	

	

	

	

10	
	

3.2 Fuzzy Logic

Deviation angle, ! = tan&' ()

Table 2:Fuzzy Logic Table for Leader-follower System

Angle, !

Large

Negative

Small

Negative

Zero Small

Positive

Large

Positive

Far Left fast,

Right

reverse

Left fast,

Right stop

Left Right,

Fast

Left Stop,

Right fast

Left stop,

Right

reverse Close Left Right,

Medium

Very Close Left Right,

Maintain

Slow

Table 2 shows the rotation of both left and right wheels of robot given the interval distance

of the follower robot from the leader robot as well as the deviation angle of the leader

platoon from the following platoon. According to the logic deduced from Figure 3 through

P & R approach, the rotation of both wheels when obstacle exists can be derived.

Depending on the deviation angle, !, the following platoon should make a hard right if !

is positive but a hard left if ! is negative. If ! is zero, only a soft left or right is needed.

Note that obstacle avoidance is only triggered if the distance of the obstacle falls within

ᶿ

x	

y	

d	

Leader	

Follower	

Figure 5: Overview of whole system

Distance, d

11	
	

close range. After successfully avoiding the obstacle, the fuzzy logic given in Table 2 is

applied again until the appearance of the next obstacle.

In contrary, if leader is no way to be located, following robot is set to rotate statically in

the same position until the leader is located. The logic in Table 2 is then applied once the

leading robot is located. Lastly, the performance of platooning will be recorded by using

a video camera and analyzed accordingly.

3.3 HARDWARE AND SOFTWARE

3.3.1 Hardware
	

Ø CMU Cam5 Pixy Camera

Ø DFR0305 Romeo BLE (Arduino Compatible Atmega 328)

	

3.3.2 Software
	

Ø Arduino

Ø Pixymon

Ø Matlab

	

3.4 KEY MILESTONES

	

Start	programming	
based	on	Table	2

Observe	
platooning	

trajectory	without	
obstacles

Observe	
platooning	

trajectory	with	
obstacles

Algorithm	
Improvement	and	
Data	analysis

Troubleshootings	
and	improvements

12	
	

3.5 Timeline (Gantt Chart)

Table 3: FYP1 and FYP2 Gantt Chart

Week FYP1 FYP2

2 4 6 8 10 12 14 2 4 6 8 10 12 14

Testing hardware

(cameras and

motors)

Studying on fuzzy

logic controller

and pixy camera

Studying factors

affecting the

trajectory

performance of

platooning

Determining the

right fuzzy sets of

logic

Implementation

in Arduino,

Testing and

Algorithm

Troubleshooting

Introducing

obstacles, Testing

13	
	

and Algorithm

Improvements

Data Analysis

Project Reporting

14	
	

CHAPTER 4

RESULTS and DISCUSSIONS
	

4.1 Pixy Camera Calibration

The indicator is detected as Signature 1 while the obstacle is detected as Signature 2 for
the follower.

4.2 General Pseudocode
	

The pseudocode would be divided into two parts. The first part will be detecting leader’s

indicator, while the second part would be deciding how to react based on the position of

the leader’s indicator. Both parts would then contribute towards leader following.

Figure 6: Platoon Leader Indicator Figure 7: Obstacle

15	
	

4.2.1: Detecting Leader’s Indicator

	

if detected blocks,

{calculate the area of all the detected blocks;

only retain the largest one;}

if Maximum Area < 1500 pixels2,

{ignore;

do nothing;}

else

Indicator detected = true;

As PIXY camera detects objects based on only the colour parameter, there would be

multiple blocks being detected other than the real indicator of the platoon leader. In order

to remove all the noises or invalid blocks, only the block with the biggest size will be

taken into consideration.

However, there is an issue when the size of the real indicator gets smaller than the size of

the invalid blocks. In order to solve this issue, it is decided that the real indicator would

declared as out of sight or invalid as its size gets smaller than 1500pixels2. This value is

obtained through numerous test and trials. As there are no valid blocks within the sight of

Pixy camera, the robot is set to do nothing.

4.2.2: Reacting when Indicator is on the Left, Right or in the Middle of Camera

	

if indicator=True

 { if block is in the middle

 full speed ahead;

 else if block is on the left

 move to the left;

 else if block is on the right

 move to the right; }

16	
	

In order to locate the position of the block, pixy.blocks().x function can be used. This

function can tell the x position of the block within the camera view.

After numerous test and trials, it is decided that as long as the x values reside within 100

to 220, the indicator is considered as in the center while as the value gets smaller than 100,

it means the indicator is now on the left. On the other hand, as the x values get larger than

220, this indicates the object is on the right. These data is tabulated as shown in Table 3

below. Platoon follower is set to move accordingly to the position of the indicator in order

to keep following the indicator.

Table 4: Values of x for respective positions of block

Postion of indicator Values of pixy.blocks().x

Centre 100<= x <=220

Left x<100

Right x>220

Note that, the above pseudocode is limited to just the ability to follow the detected object.

It is the first attempt on the project. Fuzzy Logic as well as obstacle avoidance sets will

then be included. Since the project is only focusing on the maintaining phase of platooning,

the ability to keep track of the leader is set as the first priority. Full C code will be provided

in the Appendix 1.

According to observation, the main disadvantage of using this code is the maximum

distance of the indicator from the pixy camera can only be 20cm, limited by the size of

1500 pixels, further than that, it will be treated as an invalid block. This is unacceptable

considering 20cm is a very short distance, and instead of doing nothing, the robot should

move forward to the indicator.

Other than that, by using the maximum block size method, there are still possibilities that

blocks other than the real indicator being detected. This happens as some of the object of

the same colour that falls within the sight of the camera might be bigger than the real

indicator.

17	
	

4.3 Observations
	

4.3.1:	Experiment	of	Trajectory	Performance	against	Velocity	of	Follower	
	

In order to measure the effect of velocity on the trajectory performance, an experiment,

with the below variables, is done. Note that in this experiment, the leader is set to move

in a fixed pattern, a circle.

Controlled Variables: Velocity of the Leader, Test Environment, Start-off distance and
position of leader from the follower

Manipulated Variables: Velocity of the Follower

Responding Variable: Trajectory Performance of Platooning

Velocity of Leader = 100cm/s, Start-off Distance = 5cm, Start-off position: Centre

Table 5: Trajectory Performance of Platooning at Different Velocities

Velocity of Follower (cm/s) Observation
50 The follower often misses the leader after

attempting to follow it.
70 The follower is able to follow the leader.
200 The follower often knocks and pushes the

leader away from its trajectory.

Table 5 shows that the follower can follow the leader properly only if they have the same

velocity. When it is half the velocity of the leader, the follower often misses the leader as

the leader is now moving too fast for the follower to follow. The leader tends to go out of

the viewing angle of the follower. To solve this, a modification has been done on the code,

as shown in Appendix 2. With this modification, the follower is now able to predict the

position of the leader when the leader first leaves its viewing range.

From Table 5, it is observed that trajectory performance differs as velocity of follower

changes. Therefore, it can be concluded that velocity plays a very important role in the

trajectory performance of platooning.

18	
	

4.3.2:	Experiment	of	Trajectory	Performance	against	Initial	Interval	Distance	
	

Experiment 4.3.2 is conducted to investigate the effect of the starting interval distance

between leader and follower against the trajectory performance of platooning. Similar to

experiment 4.3.1, the leader moves in a fixed circle. Below shows the variables of this

experiment:-

Controlled Variables: Velocity of the Leader and Follower, Test Environment, Start-
off position of leader from the follower

Manipulated Variables: Starting Interval Distance

Responding Variable: Trajectory Performance of Platooning

Velocity of Leader and Follower = 100cm/s, Start-off position: Centre

Table 6: Trajectory Performance of Platooning with Varied Initial Position of the Leader

Starting Interval Distance Observation
2cm The follower often knocks and pushes the

leader away from its trajectory
5cm The follower is able to follow the leader.
10cm The follower often misses the leader

during platooning.

Results in Table 6 show that when the speed of both the follower and leader maintain the

same, initial interval distance between the follower and the leader affects greatly the

platooning performance of the follower. From Table 6, it can be seen that, even though it

is found out that the follower can only follow the leader properly when they are of the

same velocity from experiment 4.3.1, this conclusion does not yield truth when anymore

when the starting interval distance changes from 5cm.

As a result, velocity of the follower has to be adjusted accordingly to the interval distance

between the follower and the leader in order to maintain a good platooning performance.

19	
	

4.3.3:	Experiment	of	Trajectory	Performance	against	Leader’s	Initial	Position	
	

Experiment 4.3.3 is conducted to investigate the effect of the leader’s initial position

against the performance of the platooning. This experiment would be similar to

experiment 4.3.1 and 4.3.2 above except in this one, both velocity and initial interval

distance would be remained constant. Variables of this experiment are as shown below:-

Controlled Variables: Velocity of the Leader and Follower, Test Environment, Start-
off distance

Manipulated Variables: Leader’s Initial Position

Responding Variable: Trajectory Performance of Platooning

Velocity of Leader and Follower = 100cm/s, Start-off Distance = 5cm

Table 7: Trajectory Performance at Different Leader's Position

Leader’s Position Observation
Left (30°) The follower experiences difficulty in

following the leader.
Center The follower is able to follow the leader.
Right (30°) The follower experiences difficulty in

following the leader.

From both experiment 4.3.1 and 4.3.2, supposedly the follower platoon would not

experience any difficulty in following its leader given it is having the same speed as the

leader and having a start-off distance of 5cm. However, the results in Table 7 indicates

this is not always the case. When the leader is position on the left or right of the follower,

the follower starts to experience difficulty with following the leader. This is simply

because if the leader is only slight left or right from the follower, by maintaining the same

speed, the follower might overshoot instead of making sure that the leader always

maintains at its center.

Thus, it can be concluded from experiment 4.3.3 that leader’s position would also affect

the platooning performance other than the two factors mentioned in both experiment 4.2.1

and 4.2.2.

20	
	

From experiment 4.2.1, 4.2.2 and 4.2.3, it can be clearly seen that velocity of the follower

needs to be adjusted accordingly not only to the interval distance between the follower

and the leader but also to the leader’s position from the follower’s point of view. Therefore,

this clearly indicates that interval distance and leader’s position has to be fuzzified as

inputs in order to determine the correct velocity needed for the follower in order to

maintain a smooth platooning performance.

4.4 Area of Indicator at Different Interval Distances

Table 8: Area of Indicator at different interval distance

Interval Distance (cm) Range of Area (pixels2)

40 0-460

30 461-858

20 859-2000

10 2001-5000

4 >5000

			

The data collected in Table 8 is important so as to improve the accuracy of the pixy camera

in determining the interval distance between the follower and leader. Besides that, this

range of area determine can be used as fuzzy sets of logic for determining the speed of

the follower.

40cm will be considered as “Very Far”, 30cm as “Far”, 20cm as “Near”, 10cm as “Very

Near” while 4cm as “Stop” as shown in Table 9 below. Full data together with

methodology to collect the data above are shown in Appendix 3 and Appendix 4

respectively. Note that all measurements are taken when the indicator is at the center of

the viewing angle of the follower.

21	
	

Table 9: Fuzzy logic for each interval distance

Fuzzy Sets Interval Distance (cm)

Very Far 40

Far 30

Near 20

Very Near 10

Stop 4

4.5 Area of Indicator at Various Positions
	

The outcomes produced by pixy.blocks[i].x fall within the range between 0 to 319 [13].

As mentioned in section 4.2, this function provides Arduino with the position of the

indicator within the view of the Pixy camera. From this, theoretically, 5 sects of category,

such as Left, Slight Left, Center, Slight Right, and Right, can be determined.

Calculations:	
Range of each position sets:

+ + -./
0 = 1-. 3 ≅ 1-	(6789:;:	:7<9	=>	6=9?;	@=997A	;B@;;:>	319)

Table 10 below shows the range values of pixy.blocks().x for each indicator’s position
sets.

Table 10: Area of Indicator at different leader’s position

Fuzzy Sets Position of Indicator

(°)

Values of pixy.blocks().x

 Left -60 0 - 63

Slight Left -30 64-127

Center 0 128-191

Slight Right 30 192-255

Right 60 256-319

22	
	

The range calculated in Table 10 is important so as to determine the fuzzy sets for

indicator position. By having both sets of fuzzy logic determined in both section 4.4 and

section 4.5, an optimum velocity can now be determined for each condition.

4.6 Optimum Velocity of Follower

	

By using fuzzy sets determined in section 4.4 and 4.5, optimum velocity for each logic

set are plotted as shown in Figure 8 and Figure 9 below.

	

Figure 8: Optimum velocity of each set of interval distances

	

0 20 40 60 80 100 120 140

Very Far

Far

Near

Very Near

Stop

Velocity (cm/s)

Graph of Velocity Against Interval Distance

Right Wheel Left Wheel

23	
	

	

Figure 9:Optimum velocity for each category of leader's positions

	

Optimum velocities in Figure 8 and Figure 9 are obtained after numerous test and trials.

Note that the follower will first adjust itself based on the velocity given in Figure 9 until

the leader is at its center before proceeding towards moving according to the velocities

given in Figure 8. Both of these fuzzy sets of logic make up the fundamental of the

algorithm used in this project for platooning.

From Figure 9, when indicator falls within the slight left and left category, left wheel will

be stopped, causing the follower to move to the left. However, as shown, the velocity of

the right wheel in slight left category is lower than the one in left category. The reason is

so that the car could adjust slowly if the indicator is just slight left while faster if the

indicator is further left. Same concept applies to the right.

The full Arduino program is shown in Appendix 5.

0 0

45 45
50

0

10

20

30

40

50

60

Left Slight	Left	 Center	 Slight	Right	 Right	

Ve
lo
ci
ty
	(c
m
/s
)

Graph of Velocity Against Leader’s
Position

Left	Wheel Right	Wheel

24	
	

4.7 Detectable Range of Pixy Camera

	

	

	

From experiment as shown in Figure 10, it is found that the minimum distance required

for the initial starting position is 4cm. Less than that, it is found that the follower starts to

behave oddly and even begin to move towards the leader, even though it should have

stopped immediately when it reaches the “Stop” category. The value of the block size

returned by the pixy camera is as shown in the Figure 11 below:-

	

Figure 11: Area of block size when marker is at distance less than 4cm

As shown in Figure 11, the block size returned is very inconsistent as some of them

dropped until 1073 pixels2 or 340 pixels2. As only area larger than 5000 pixels2 falls

within the “Stop” category, the car continues to move forward even though it is already

less than 4cm from the leader in front.

Figure 10: Minimum interval distance

25	
	

	

Figure 12: Maximum interval distance

Figure 12 shows the maximum interval distance recorded in this experiment is limited by

the length of the controlled environment, which is 120 cm. At 120cm, the follower

performs normally without any problem.

According to datasheet of Pixy camera, as long as the object falls within its view, the

object will be detected. For an image of the size 4 pixels2,Pixy camera can detect it as

long as the object is not further than 304.8cm away. Therefore, the maximum distance

detectable by Pixy camera depends on the size of the image as well.

Table 11 below shows the maximum and minimum distance Pixy camera can detect an
object.

Table 11: Pixy Camera's Detectable Range

	 Maximum	 Minimum	

Detectable Range Greater	than	
120cm	

4cm	

	

	

4.8 Platooning Trajectories

	

After obtaining the right velocity for each fuzzy condition, platooning algorithm used in

section 4.3 is then improved and implemented. Below shows platooning trajectories under

different sets of movements:-

26	
	

4.8.1	Straight	Line	
	

The straight-line trajectories are recorded in different distances such as 20cm, 40cm and

60cm as shown below.

• 20cm

• 40cm

• 60cm

From Figure 13, 14 and 15, it is observed that the follower’s performance maintains as
long as the leader falls within the detectable range as mention in section 4.7.

Figure 13: Trajectory of platooning at 20cm

Figure 14: Trajectory of platooning at 40cm

Figure 15: Trajectory of platooning at 60cm

27	
	

4.8.2	Square	
	

	

	

Figure 16 shows that follower is able to follow the leader properly even at the four right-

angled corners of a square. As the leader is making a turn, the follower slows down and

waits until the leader is moving further away from it.

4.8.3	Circle	

Figure 16: Platooning trajectory when moving in square

Figure 17: Platooning trajectory when moving in circle

28	
	

Figure 17 shows that as the leader is moving in a circle with small radius, the follower

tends to stay in the middle, while adjusting its direction accordingly to follow the leader.

Results obtained in Figure 13 to Figure 17 shows that the performance of platooning

improves after the implementation of the developed fuzzy-logic algorithm. Moreover, the

consistency of the performance is also observed throughout different platooning patterns.

4.8.4	Straight	Line	with	Obstacle	
	

Figure 18 shows the movement of the follower when a static obstacle is introduced into

the track. As the leader avoid the obstacle, the follower follows.

Under obstacles, it is observed that the platooning performance maintains the same,

provided that the leader will still be in sight after the follower avoids the included obstacle.

Figure 18: Platooning trajectory under obstacle

29	
	

CHAPTER 5	

CONCLUSION and RECOMMENDATIONS

5.1 Conclusion

In conclusion, cooperative driving, platooning is useful and very relevant in current

society. It is said to be the future of driving especially for freight transportation as well as

to ensure a safe extensive driving on a highway. Other than land transportation, platooning

is also advantageous in many fields like military, security, entertainment and so on.

Platooning performance is found to be greatly affected by changes in velocities. Therefore,

tests have been conducted for numerous times in order to find the optimum velocity based

on the leader’s position and distance from the follower. The results are then implemented

by using fuzzy-logic concept. After implementation, platooning performance increases

tremendously as tested with different movement patterns of the leader.

Under obstacle, it is observed that the platooning performance maintains the same,

provided that the leader is still detectable after the follower avoids the obstacle. In short,

the platooning performance has been improved through developed fuzzy logic algorithm

and has proven its consistency through different platooning patterns shown in section 4.8.

5.2 Recommendations

This project can be further enhanced by including platoon formation phase and separation

phase other than the maintaining phase in order to make this an overall more complete

platooning system.

30	
	

In addition, sensors that can function more independently of lighting condition such as

light detection and ranging (LIDAR) or infrared sensors can be added to complement the

main sensor used, CMU CAM5 Pixy. This is to ensure a more robust performance even

under poor lighting condition.

Besides that, this project can be further expanded with the inclusion of inter-robot

communication into the platooning system instead of a full dependence on a single sensor,

Pixy camera. Without inter-robot communication propagation of error could not be

avoided if any of the follower fails to follow its leader since a cascaded leader -follower

system is applied.

Lastly, for better obstacle avoidance, feedback system can be incorporated into the

algorithm. By doing so, the follower or leader can avoid obstacles of all sizes no matter if

it is placed at the most left, right or in the middle of the obstacles. This is because the

interval distance between it and the edge of the obstacle is now taken into consideration.

31	
	

REFERENCES

[1] J. Axelsson, "Safety in Vehicle Platooning: A Systematic Literature Review,"

IEEE Transactions on Intelligent Transportation Systems.

[2] A. Alam, B. Besselink, V. Turri, J. Martensson, and K. H. Johansson, "Heavy-

duty vehicle platooning for sustainable freight transportation: a cooperative

method to enhance safety and efficiency," IEEE Control Systems, vol. 35, pp.

34-56, 2015.

 [3] K.-Y. Liang, Q. Deng, J. Mårtensson, X. Ma, and K. H. Johansson, "The

influence of traffic on heavy-duty vehicle platoon formation," in 2015 IEEE

Intelligent Vehicles Symposium (IV), 2015, pp. 150-155.

[4] J. Ploeg, N. Van De Wouw, and H. Nijmeijer, "Lp string stability of cascaded

systems: Application to vehicle platooning," IEEE Transactions on Control

Systems Technology, vol. 22, pp. 786-793, 2014.

[5] A. Al Alam, A. Gattami, and K. H. Johansson, "An experimental study on the

fuel reduction potential of heavy duty vehicle platooning," in Intelligent

Transportation Systems (ITSC), 2010 13th International IEEE Conference on,

2010, pp. 306-311.

[6] T. C. Ng, J. Ibañez-Guzmán, J. Shen, Z. Gong, H. Wang, and C. Cheng,

"Vehicle following with obstacle avoidance capabilities in natural

environments," in Robotics and Automation, 2004. Proceedings. ICRA'04. 2004

IEEE International Conference on, 2004, pp. 4283-4288.

[7] M. Saeednia and M. Menendez, "A Consensus-Based Algorithm for Truck

Platooning," IEEE Transactions on Intelligent Transportation Systems.

[8] A. Loria, J. Dasdemir, and N. A. Jarquin, "Leader–Follower Formation and

Tracking Control of Mobile Robots Along Straight Paths," IEEE Transactions

on Control Systems Technology, vol. 24, pp. 727-732, 2016.

32	
	

[9] J. Yen and N. Pfluger, "A fuzzy logic based extension to Payton and

Rosenblatt's command fusion method for mobile robot navigation," IEEE

Transactions on Systems, Man, and Cybernetics, vol. 25, pp. 971-978, 1995.

[10] C.-J. Kim and D. Chwa, "Obstacle avoidance method for wheeled mobile

robots using interval type-2 fuzzy neural network," IEEE Transactions on

Fuzzy Systems, vol. 23, pp. 677-687, 2015.

[11] M. Benzaoui, H. Chekireb, M. Tadjine, and A. Boulkroune, "Trajectory

tracking with obstacle avoidance of redundant manipulator based on fuzzy

inference systems," Neurocomputing, vol. 196, pp. 23-30, 2016.

[12] S. M. Cristescu, C. M. Ionescu, B. Wyns, R. De Keyser, and I. Nascu, "Leader-

follower string formation using cascade control for mobile robots," in Control

& Automation (MED), 2012 20th Mediterranean Conference on, 2012, pp.

1092-1098.

[13] J. P. Lang. (2011): CMUcam5 Pixy [Online]. Available:

http://cmucam.org/projects/cmucam5/wiki/Hooking_up_Pixy_to_a_Microcontr

oller_like_an_Arduino

	

	

	 	

33	
	

Appendix
	

Appendix 1
	

//

#include <SPI.h>

#include <Pixy.h>

//Fuzzy

#include <FuzzyRule.h>

#include <FuzzyComposition.h>

#include <Fuzzy.h>

#include <FuzzyRuleConsequent.h>

#include <FuzzyOutput.h>

#include <FuzzyInput.h>

#include <FuzzyIO.h>

#include <FuzzySet.h>

#include <FuzzyRuleAntecedent.h>

#define dirRight 4 //Motor 2= Right Motor

#define pwmRight 5

#define dirLeft 7 //Motor 1= Left Motor

#define pwmLeft 6

Pixy pixy; //Declare a pixy global

void setup() {

 // pinMode(pwmLeft,OUTPUT);

 pinMode(pwmRight,OUTPUT);

 pinMode(dirLeft,OUTPUT);

34	
	

 pinMode(dirRight,OUTPUT);

 pixy.init(); //initialize pixy global

 Serial.begin(9600);

}

 uint16_t blocks;

 int j, area, maxArea, maxJ;

 char buf[32];

void loop()

{

 maxArea=0;

 blocks= pixy.getBlocks();

 if (blocks) // if there were any recognized objects

 {

 //finds the largest object that fits the
signature

 for (j = 0; j < blocks; j++)

 {

 area = pixy.blocks[j].width *
pixy.blocks[j].height;

 if (area > maxArea) //save the new
largest obj

 {

 maxArea= area;

 maxJ = j;

 }

 }

35	
	

 Serial.print ("Max area is ");

 Serial.println (maxArea);

 if (maxArea < 1500)

 {

 digitalWrite(dirRight, LOW);

 analogWrite(pwmRight, 0);

 digitalWrite(dirLeft, LOW);

 analogWrite(pwmLeft, 0);

 }

 else

 {

 sprintf(buf, " block %d: ", maxJ);

 Serial.print(buf);

 pixy.blocks[maxJ].print();

 //Making sure object is in the middle of
camera.

 if (pixy.blocks[maxJ].x >= 100 &&
pixy.blocks[maxJ].x <= 220)

 {

 digitalWrite(dirRight, HIGH);

 analogWrite(pwmRight, 100);

 digitalWrite(dirLeft, HIGH);

 analogWrite(pwmLeft,100);

 }

 else

 {

 if (pixy.blocks[maxJ].x < 100)

 {

36	
	

 digitalWrite(dirLeft,LOW);

 analogWrite(pwmLeft,0);

 digitalWrite(dirRight,HIGH);

 analogWrite(pwmRight,100);

 }

 if (pixy.blocks[maxJ].x > 220)

 {

 digitalWrite(dirRight,LOW);

 analogWrite(pwmRight,0);

 digitalWrite(dirLeft,HIGH);

 analogWrite(pwmLeft,100);

 }

 }

///

 }

 }

 delay (200);

}

	

	 	

37	
	

Appendix 2
	

//Pixy

#include <SPI.h>

#include <Pixy.h>

//Fuzzy

#include <FuzzyRule.h>

#include <FuzzyComposition.h>

#include <Fuzzy.h>

#include <FuzzyRuleConsequent.h>

#include <FuzzyOutput.h>

#include <FuzzyInput.h>

#include <FuzzyIO.h>

#include <FuzzySet.h>

#include <FuzzyRuleAntecedent.h>

#define dirRight 4 //Motor 2= Right Motor

#define pwmRight 5

#define dirLeft 7 //Motor 1= Left Motor

#define pwmLeft 6

Pixy pixy; //Declare a pixy global

int maxJ;

char dirCheck = ' ';

void setup()

{

 pinMode(pwmLeft, OUTPUT);

 pinMode(pwmRight, OUTPUT);

 pinMode(dirLeft, OUTPUT);

38	
	

 pinMode(dirRight, OUTPUT);

 pixy.init(); //initialize pixy global

 Serial.begin(9600);

}

/*

 Car Movements

*/

void front() {

 //Serial.println("Go Front");

 digitalWrite(dirRight, HIGH);

 analogWrite(pwmRight, 75);

 digitalWrite(dirLeft, HIGH);

 analogWrite(pwmLeft, 75);

}

void back() {

 //Serial.println("Go Round Back");

 digitalWrite(dirRight, HIGH);

 analogWrite(pwmRight, 50);

 digitalWrite(dirLeft, LOW);

 analogWrite(pwmLeft, 50);

}

void right() {

 //Serial.println("Go Right");

 digitalWrite(dirRight, HIGH);

 analogWrite(pwmRight, 50);

 digitalWrite(dirLeft, HIGH);

 analogWrite(pwmLeft, 75);

}

void left() {

39	
	

 //Serial.println("Go Left");

 digitalWrite(dirRight, HIGH);

 analogWrite(pwmRight, 75);

 digitalWrite(dirLeft, HIGH);

 analogWrite(pwmLeft, 50);

}

void no_move() {

 //Serial.println("No Move");

 digitalWrite(dirRight, LOW);

 analogWrite(pwmRight, 0);

 digitalWrite(dirLeft, LOW);

 analogWrite(pwmLeft, 0);

}

/*

 FInding blocks with maximum size

*/

int find_maximum_size(int blocks)

{

 int j, maxArea = 0, area;

 char buf[32];

 maxJ = 0;

 for (j = 0; j < blocks; j++)

 {

 area = pixy.blocks[j].width * pixy.blocks[j].height;

 if (area > maxArea) //save the new largest obj

 {

 maxArea = area;

 maxJ = j;

40	
	

 }

 }

 return maxArea;

}

/*

 Control movement of the car

*/

void control_movement(int blockSize) {

 int x = 0;

 x = pixy.blocks[maxJ].x;

 //pixy.blocks[maxJ].print();

 // if (blockSize > 100)

 // {

 // no_move();

 // delay (1000);

 // }

 // else if (blockSize <= 100)

 // {

 switch (x)

 {

 case 70 ... 275:

 front();

 break;

 case 0 ... 69:

 dirCheck = 'l';

 left();

 break;

41	
	

 case 276 ... 319:

 dirCheck = 'r';

 right();

 break;

 }

 delay(50);

}

/*

 Main Program

*/

void loop()

{

 static int i = 0;

 static int k = 0;

 int blockSize;

 uint16_t blocks;

 char buf[32];

 // grab blocks!

 blocks = pixy.getBlocks();

 if (blocks > 0)

 {

 k = 0;

 i++;

 // do this (print) every 50 frames because printing
every

 // frame would bog down the Arduino

 if (i % 20 == 0)

42	
	

 {

 //Serial.println("Blocks detected.");

 i = 0; //to control the value limit of i

 blockSize = find_maximum_size(blocks);

 control_movement(blockSize);

 }

 }

 else

 {

 k++;

 if (k % 500 == 0) //this is important so that it does
not stop intermittently. Making sure the block is 0 because
there is really no object, not because of hardware scanning
issue.

 {

 switch (dirCheck)

 {

 case 'l':

 left();

 break;

 case 'r':

 right();

 break;

 default:

 back();

 }

 i = 0;

 }

 }

}

43	
	

Appendix 3
	

Figure 19: Data collected at 40cm Figure 20: Data collected at 30cm

Figure 21: Data collected at 20cm Figure 22: Data collected at 10cm

	

44	
	

	

Figure 23: Data collected at 4cm
	

	 	

45	
	

Appendix 4
	

Figure 24: Data collection method at 40cm

	
Figure 25: Data collection method at 30cm
	

	
Figure 26: Data collection method at 20cm

46	
	

	
Figure 27: Data collection at 10cm
	

	
Figure 28: Data collection at 4cm
	

	

	 	

47	
	

Appendix 5
	

//Pixy

#include <SPI.h>

#include <Pixy.h>

//Fuzzy

#include <FuzzyRule.h>

#include <FuzzyComposition.h>

#include <Fuzzy.h>

#include <FuzzyRuleConsequent.h>

#include <FuzzyOutput.h>

#include <FuzzyInput.h>

#include <FuzzyIO.h>

#include <FuzzySet.h>

#include <FuzzyRuleAntecedent.h>

#define dirRight 4 //Motor 2= Right Motor

#define pwmRight 5

#define dirLeft 7 //Motor 1= Left Motor

#define pwmLeft 6

Pixy pixy; //Declare a pixy global

int maxJ;

char dirCheck = ' ';

int fspeed = 0;

int lspeed = 0;

int rspeed = 0;

void setup()

{

 pinMode(pwmLeft, OUTPUT);

48	
	

 pinMode(pwmRight, OUTPUT);

 pinMode(dirLeft, OUTPUT);

 pinMode(dirRight, OUTPUT);

 pixy.init(); //initialize pixy global

 Serial.begin(9600);

}

/*

 Car Movements

*/

void front() {

 //Serial.print("Fspeed: ");

 //Serial.println(fspeed);

 //Serial.println("Go Front");

 digitalWrite(dirRight, HIGH);

 analogWrite(pwmRight, fspeed);

 digitalWrite(dirLeft, HIGH);

 analogWrite(pwmLeft, fspeed);

}

void back() {

 //Serial.println("Go Round Back");

 digitalWrite(dirRight, HIGH);

 analogWrite(pwmRight, 0);

 digitalWrite(dirLeft, LOW);

 analogWrite(pwmLeft, 43);

}

void right() {

 //Serial.println("Go Right");

49	
	

 digitalWrite(dirRight, LOW);

 analogWrite(pwmRight, rspeed);

 digitalWrite(dirLeft, HIGH);

 analogWrite(pwmLeft, lspeed);

}

void left() {

 //Serial.println("Go Left");

 digitalWrite(dirRight, HIGH);

 analogWrite(pwmRight, rspeed);

 digitalWrite(dirLeft, HIGH);

 analogWrite(pwmLeft, lspeed);

}

/*

 FInding blocks with maximum size

*/

int find_maximum_size(int blocks)

{

 int j, maxArea = 0, area;

 char buf[32];

 maxJ = 0;

 for (j = 0; j < blocks; j++)

 {

 area = pixy.blocks[j].width * pixy.blocks[j].height;

 if (area > maxArea) //save the new largest obj

 {

 maxArea = area;

 maxJ = j;

 }

50	
	

 }

 return maxArea;

}

/*

 Checking Interval Distance VF, F, N, VN, S
{40cm,30cm,20cm,10cm,4cm}

 and change front speed accordingly

*/

void interval_distance_checking (int blockSize)

{

 Serial.print ("Block Size: ");

 Serial.println (blockSize);

 if (blockSize >= 0 && blockSize <= 460) //VF

 {

 fspeed = 120;

 }

 else if (460 < blockSize && blockSize <= 858) //F

 {

 fspeed = 100;

 }

 else if (858 < blockSize && blockSize <= 2000) //N

 {

 fspeed = 70;

 }

 else if (2000 < blockSize && blockSize <= 5000) //VN

 {

 fspeed = 50;

 }

 else if (blockSize > 5000) //S

 {

51	
	

 fspeed = 0;

 }

}

/*

 Control movement of the car

*/

void control_movement(int blockSize) {

 int x = 0;

 x = pixy.blocks[maxJ].x;

 interval_distance_checking (blockSize);

 switch (x)

 {

 case 256 ... 319: //Right

 //Serial.println("Right");

 dirCheck = 'r';

 lspeed = 50;

 rspeed = 0;

 right();

 break;

 case 192 ... 255: //SlightRight

 // Serial.println("Slight Right");

 dirCheck = 'r';

 lspeed = 45;

 rspeed = 0;

 right();

 break;

 case 128 ... 191: //Center

 //Serial.println("Center");

52	
	

 dirCheck = 'c';

 front();

 break;

 case 64 ... 127: //SlightLeft

 //Serial.println("Slight Left");

 dirCheck = 'l';

 rspeed = 45;

 lspeed = 0;

 left();

 break;

 case 0 ... 63: //Left

 //Serial.println("Left");

 dirCheck = 'l';

 rspeed = 50;

 lspeed = 0;

 left();

 break;

 }

 delay(50);

}

/*

 Main Program

*/

void loop()

{

 static int i = 0;

 static int k = 0;

 int blockSize;

 uint16_t blocks;

53	
	

 char buf[32];

 // grab blocks!

 blocks = pixy.getBlocks();

 if (blocks > 0)

 {

 k = 0;

 i++;

 // do this (print) every 50 frames because printing
every

 // frame would bog down the Arduino

 if (i % 20 == 0)

 {

 //Serial.println("Blocks detected.");

 i = 0; //to control the value limit of i

 blockSize = find_maximum_size(blocks);

 control_movement(blockSize);

 }

 }

 else

 {

 k++;

 if (k % 500 == 0) //this is important so that it does
not stop intermittently. Making sure the block is 0 because
there is really no object, not because of hardware scanning
issue.

 {

 Serial.println(dirCheck);

 switch (dirCheck)

 {

 case 'l':

 left();

 break;

54	
	

 case 'r':

 right();

 break;

 default:

 back();

 }

 i = 0;

 }

 }

}

