Preliminary Study on the Potential of Harvesting Energy from Malaysian Road Pavement

By

Wan Muhammad Aiman Bin Wan Abdullah Sani

19281

Dissertation Submitted in partial fulfilment of

the requirement for the

Bachelor of Engineering (Hons)

(Civil)

SEPTEMBER 2017

Universiti Teknologi PETRONAS,

Bandar Seri Iskandar,

32610 ,Tronoh,

Perak Darul Ridzuan.

CERTIFICATION OF APPROVAL

Preliminary Study on the Potential of Harvesting Energy from Malaysian Road Pavement

By

Wan Muhammad Aiman Bin Wan Abdullah Sani

19281

A project dissertation submitted to the

Civil Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(CIVIL)

Approved by,

(Dr Muslich Hartadi Sutanto)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

September 2017

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

WAN MUHAMMAD AIMAN BIN WAN ABDULLAH SANI

ABSTRACT

Unused energy occurred at the pavement in the form of solar radiation, vibration and stress have the potential to be converted into more useful energy mainly into electrical energy. It is an alternative way to produce renewable energy source for electricity generation in order to replace the depleting non-renewable energy resources. This paper is to review and evaluate different methods of harvesting energy from road pavement as well as to identify the most promising method to be used for Malaysia road. Evaluation on the efficiency and cost-analysis are done based on the information of current harvesting energy technologies which are piezoelectric and photovoltaic energy harvesters. Secondary data such as average daily traffic (ADT) in Malaysia expressways and average annual solar radiation in Malaysia are collected in order to identify the real potential of harvesting energy from Malaysia pavement. It is found that harvesting energy by photovoltaic noise barrier (PVNB) can produce the highest potential amount of energy which is about 0.614 kWh per m² per day compared to other embedded photovoltaic system and piezoelectric system. Levelised cost of electricity for PVNB is also much lower compare to others which is about RM2.22/kWh. This preliminary study have determine the potential of generating electricity from Malaysia pavement and further investigation as well as testing on the real application of each system should be carried out.

ACKNOWLEDGEMENT

Firstly, I am grateful to the Creator for the good health and wellbeing throughout the project to ensure that I could complete my research project. I am very glad and thankful to Universiti Teknologi PETRONAS (UTP) especially the Department of Civil and Environmental Engineering for providing me a great place to complete my degree study in civil engineering.

I would like to express my deepest appreciation to my supervisor, Dr. Muslich Hartadi Suntato for his valuable guidance, passion, full time support and continuous encouragement toward me from the beginning until the project is complete. He always provides new information as well as shares his knowledge and experience in order to improve my research project.

My thanks and appreciations to the entire department faculty members for their cooperation and assistance while doing my research project. Not to forget for my partner, Mohd Hakim who had done his project together with me and always ready to exchange information as well as data while comparing the result. I am also thankful to my family and all my friends that always give full support to me. They keep supporting me and will be there for me for any help.

Lastly, I would like to express my sense of gratitude everyone who directly or indirectly have lent their hand to help me throughout completing this research project. Thank you very much for everything.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL
CERTIFICATION OF ORIGINALITY ii
ABSTRACTiii
ACKNOWLEDGEMENTiv
TABLE OF CONTENTS
LIST OF FIGURES vii
LIST OF TABLES vii
CHAPTER 1: INTRODUCTION1
1.1 Background1
1.2 Problem Statement2
1.3 Objective
1.4 Scope of Study
CHAPTER 2: LITERATURE REVIEW
2.1 Piezoelectric Energy Harvester4
2.2 Photovoltaic Energy Harvester
CHAPTER 3: METHODOLOGY
3.1 Research Methodology8
3.1.1 Stage 1
3.1.2 Stage 29
3.1.3 Stage 310
3.2 FYP Key Milestones11
3.2 Gantt Chart- FYP 112
3.3 Gantt Chart -FYP 213
CHAPTER 4: RESULT AND DISCUSSION14
4.1 Comparing Energy Hervesting Technologies14

4.1.1 Advantages and Disadvantages of Piezoelectric Energy
Harvester14
4.1.2 Advantages and Disadvantages of Photovoltaic Energy
Harvester15
4.2 Estimation Of Electrical Energy Generation from Malaysia
Road Pavement17
4.2.1 Potential of Energy Generation from Piezoelectric Energy
Harvester17
4.2.2 Potential of Energy Generation from Photovoltaic Energy
Harvester
4.3 Cost-effectiveness Analysis of Road Energy Harvesting
In Malaysia24
4.3.1 Cost-effective Analysis for Piezoelectric Energy Harvester24
4.3.2 Cost-effective Analysis for Photovoltaic Energy Harvester26
CHAPTER 5: CONCLUSION AND RECOMMENDATION
REFERENCES
APPENDICES

LIST OF FIGURES

Figure 1- Comparison chart of the output power of energy harvesting technologies4
Figure 2- Different type of PVNB structure design7
Figure 3- Major stage of research methodology
Figure 4- Average of potential energy generated by piezoelectric road energy
harvester for major roadways in Malaysia18
Figure 5- Average of potential energy generated by 1km of 2 400m ² area
piezoelectric road energy harvester for major roadways in Malaysia19
Figure 6- Average energy output of the regions generated by road embedded
photovoltaic and PVNB in Malaysia
Figure 7- Potential energy generated by 1km of 14 000m ² embedded photovoltaic
energy harvester for major roadways in Malaysia22
Figure 8- Potential energy generated by 1km of 2 000m ² photovoltaic noise barrier
energy harvester for major roadways in Malaysia23
Figure 9- Average LCOE from piezoelectric system with service life of 5 to 10
years25

LIST OF TABLES

Table 1 –	Summary of comparison between advantages and disadvantages of energy
	harvesting technologies16
Table 2 –	Total potential energy output by road embedded photovoltaic and PVNB in
	Malaysia based on 2012 average annual solar radiation21
Table 3 –	Summary of evaluation for piezoelectric, embedded photovoltaic and
	PVNB system

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Highway is the infrastructure that helps people and goods to move or commute from one place to another. It acts as a significant role to provide connection between the places and people as well as act as linkage of transportation for the daily activities. Highway pavements have the potential to be the alternative source for energy harvesting. The pavement is exposed to energy in the form of vehicle vibrations, traffic loading deformation, and solar or thermal gradients that could be potentially converted into some usable sorts of energy such as electric power.

Andriopoulou (2012) proposed energy harvesting procedures involve there steps which consist of capturing the energy, storage of energy and use of energy. Capturing the unused energy from the road pavement is the major and the most challenging aspect in energy harvesting process. Different methods were developed and studied by the researchers to capture each type of energies from the road pavement. The most famous technique is using piezoelectric transducer (PZT). This system generates electricity from the vibration and vertical loading stress caused by vehicles movement along the road as PZT are embedded in the road pavement. Factors such as pavement thickness, traffic speed, volume and load affect the output voltage from the system.

Besides, photovoltaic (PV) or solar cell technologies are also being applied to capture the thermal energy from the road pavement. Kang-Won et al. (2010) from Korea had investigated the feasibility photovoltaic technology as a harvesting solar energy system and claimed this technology currently is having difficulty to sustain through rough conditions in road pavement due to variation of environmental condition as well as excessive loading from the traffic. Malaysia naturally has

bountiful of sunlight and solar radiation as it is located near the equator. The natural climate is a humid tropical that obtain much sunlight during day time which is suitable to be harvested.

Various studies were done related to the harvesting energy from the roadways. To identify what are the potential of harvesting energy from Malaysia road pavement, two type of energy harvesting methods are being reviewed and compared. By using these road energy harvesters to the real application on the road, the wasted energies can be fully utilized to create a better sustainable transportation system.

1.2 PROBLEM STATEMENT

Majority countries of the world currently depend on non-renewable energy sources such as coal, oil, and natural gases as an energy source. However, in order to be a developing country, we are facing problem with these non-renewable sources as the consumption is greater than production which eventually will lead to depletion of non-renewable energy. In Malaysia, demand for electricity over the past decade has increased, almost doubling alongside population growth, reaching 134billion kWh in 2012 according to data from the Malaysia Energy Information Hub (MEIH). The use of non-renewable energy sources has a variety of harmful effects to the environment while in contrast with renewable energy resources such as wind, water and solar, they have the tendency to become regenerative energy with endless supply yet have no consequence of environmental damage. Therefore, numerous researchers are working on the innovation potential in harnessing renewable resources and exploring to increase the energy harvesting efficiency to make it likely to be more competitive in the future.

Road pavement is one of the resources for renewable energy. It receives huge amount of solar or heat energy during the day time and movement of vehicle on the road surface provide mechanical stress or deformation to the pavement. These unused energies should be harvested to produce new energy or for any suitable usage.

1.3 OBJECTIVE

The objective of this paper is to review the available methods of harvesting potentials energy from road pavement which are by piezoelectric and photovoltaic technologies as well as to evaluate their reliability to harvest energy from pavement. Overview from previous studies and result from the tests as well as comparison of different energy harvesting methods are provided in the paper. The most suitable and promising method will be refined and proposed to be used for Malaysia road pavement.

1.4 SCOPE OF STUDY

The scope of this study is to review the current research literature on the methods of harvesting energy from road pavement. This paper covers how the mechanism of the system works and to what extends it helps to utilize the wasted energy for different usage. The methods that had been developed are being reviewed in this study which consists of harvesting system using piezoelectric transducer (PZT) and photovoltaic cell (embedded photovoltaic cell as well as photovoltaic noise barrier). The climate and type of road pavement in Malaysia are studied in order to evaluate and identify the suitable method of harvesting energy to be applied. The analysis of traffic data in certain part of Malaysia will help to indicate the effectiveness of harvesting methods available towards Malaysia road pavement.

CHAPTER 2

LITERATURE REVIEW

Voigt et al. (2005) studied on several energy harvesting technologies which are thermoelectric, electromagnetic, photovoltaic and piezoelectric. The results of the study in term of power density for each technology is compared and summarised as in Figure 1. They found out photovoltaic is capable to generate highest power density compare to others. However, they claimed that piezoelectric energy harvesting is also effective as energy productivity by photovoltaic will be varies and highly depended on climate of certain area.

Figure 1: Comparison chart of the output power of energy harvesting technologies (Voigt et al., 2005)

2.1 PIEZOELECTRIC ENERGY HARVESTER

Most of the researchers currently are working on the piezoelectric material as a road energy harvester. It is the most popular type in the area of energy harvesting to generate electricity for low energy consuming devices. The system produces an electric voltage as there is deformation of their dimensions that is caused by the vibration and stress from the road pavement. A piezoelectric harvesting system with multiple cylindrical piezoelectric produced by Xiong (2014) cited in Papagiannakis et al. (2016) able to generate voltage of 400 to 700V and electric current ranges from 0.2 to 0.35mA with traffic volume of 4,000 vehicle per day (167 vehicles/hour).

Wang et al. (2014) claimed that advantage of piezoelectric is compactness of the design but it only can produce small amount of voltage in order of μ W. However, according to Zhang (2015), an Israel company, Innowattech had developed a series of piezoelectric transducer at a depth of 5 cm beneath the road's upper asphalt layer and they claimed that with average traffic condition, it can generate about 250 kW power in 1 km road under traffic volume of 600 vehicles per hour. According to Xiong (2016), the power generation of all piezoelectric energy harvesters that he had studied at Troutville weight station reduced significantly after one year installation of the system. The degrading of energy output was identified and observed from Innowattech product as the researches from Virgina Tech conducted tests and demonstration on the system. It was found that the energy production is less than as Innowattech claimed (about 80-140kwh) after about 6 months operation.

Many piezoelectric harvesting systems had developed and tested in the roadways for the small scale application using various approach. However, Guo et al. (2017) claim that the results vary significantly due to the calculation conditions differ to each other such as the transducer material, traffic loading pattern and electric rectification design. With consistency of result from some researchers can produce 40mW of electric power, they estimated that from each single-wheel load, 0.00103 J of electricity can be generated by one PZT. They claimed that the output from the transducer is highly depending on velocity of vehicles, position of the transducer, foundation condition, and the position of the moving load. High vehicle velocity, rigid pavement with smaller rotation angles at transducer ends, moving load passes directly through the transducer will lead to high voltage and power output.

Study done by Papagiannakis et al. (2016) stated that California Energy Commission (CEC) had evaluated the piezoelectric technologies produced by different vendors and the energy output results from these vendors are considered different with respect to the assumption made for the number of sensors involved as well as the traffic level. CEC recommended a standardized way to be practiced for the report of energy output by piezoelectric unit surface that referred as energy density or power (W/unit area).

2.2 PHOTOVOLTAIC ENERGY HARVESTER

Photovoltaic (PV) or solar cell is another type of road energy harvester that draws attention of the researcher to investigate on its feasibility to generate energy from the road pavement. In general, when the sunlight hits the surface of a photovoltaic cell, the electric field that is formed by two different materials of the cell will supply the momentum as well as direction in order to stimulate electrons thus produce current flow. The energy productivity is highly depending on the surface area and period of exposure to direct sunlight which is limited under low sun radiation due to the weather condition or structure obstruction.

In 2014, the Netherlands had built the first solar road for bike path known as SolaRoad. It replaces 70 meters of the origin tarmac bike path with embedded solar panels which are covered by 1cm thick transparent coating. Rooij (2017) stated that SolaRoad is able to produce 9,800 kWh of electricity in the first year which is likely equivalent to the average annual consumption for three Dutch houses. The project was expended further together by improving the system for a better benefits return.

While in France, a road with solar panels is invented by Colas, providing enough energy to power the street lights of the small Normandy town of Tourouvre. The 1km long road covered with 2,800 sq. meters of resin-coated solar panels also called as "Wattway" applied the combination of road construction and photovoltaic techniques to generate clean, renewable energy in the form of electricity, while allowing for all types of traffic. However, Andriopoulou (2012) stated that it is difficult to install the current thin solar cells into the pavement which take extensive load cycle by the vehicles and the solar cells also will be exposed to wear and damage due to environmental condition. Therefore, to meet these requirements, researchers are developing new type of solar cell that will be suitable for road energy harvester.

The current technology had developed photovoltaic sound or noise barrier (PVNB or PVSB) as an alternative for harvesting energy from the roadways and

railways. Grasseli et al. (2007) tested 6 PVNB sites with common constraints for road application to analyse energy performance, durability, maintainability and construction method. They found out that the maintenance of PVNB highly affects its reliability due to the factor of overheating as well as pollution from the vehicles during long life operation. The traffic dust and contamination also will reduce the efficiency of the photovoltaic panels to generate energy instead of the shading effect. However, Carder and Barker (2006) stated that rain actually help to clean the surface of photovoltaic panels effectively thus sustain the efficiency and reduce the maintenance activity.

Research done by Goetzberger et al., (1999) on the available PVNB technologies had identified several designs of PVNB structures as per Figure 2. They found out integrated PVNB structures (types 3, 4 and 5 of Figure 2) are more practical as well as cost-effective since they can generate electricity and also act as a noise barrier along the pavement.

Figure 2 : Different types of PVNB structural designs. Retrieved from Goetzlerger et al. (1999)

In economic feasibility aspect, the important factor is that the efficiency of solar cells is increasing while the cost for photovoltaic systems is decreasing as the technology improved as stated by Poe et, al (2017). Therefore, it is good to make investment on this system which can have low payback period as recent studies have estimated that the installation costs of a series of PVNBs in the U.K. could possibly be offset by the electricity generation revenue almost for 20 to 25 years.

CHAPTER 3

METHODOLOGY / PROJECT WORK

3.1 RESEARCH METHODOLOGY

Figure 3 : Major stages of research methodology

3.1.1 Stage 1

This study is broken down into three major stages. The first stage of the project is preparation on the study which involves collection of information and understanding the main concept of the energy harvesting. During this stage, extensive literature reviews are required in order to collect enough information and understanding the matters related to the topic. The literatures are searched from online journal, books, newspaper and other internet based resources.

For piezoelectric energy harvester, there are several piezoelectric materials have been developed such as single crystalline (quartz), piezoceramics (PZT), piezoelectric semiconductor and polymer piezoelectric. Therefore, piezoceramic of lead zirconate titanate (PZT) is used in the study as its availability in many variations and is the most widely used materials for commercial products today. It is also cost effective and can be built into any shape conveniently. (Xiong, 2014) Several secondary data are gathered in order to analyse the productivity of each energy harvester for Malaysia road pavement. Malaysia traffic data is obtained through web portal of Ministry of Transport Malaysia. Data such as the average daily traffic at 63 locations in Penisular Malaysia as well as 16 locations in Sabah and Sarawak on 2006 to 2015 is used in order to calculate the efficiency of piezoelectric energy harvester on Malaysia pavement road. Amount of electricity produce by piezoelectric is highly depends on the stress of the road pavement as the vehicles pass which is come from the load as well as the velocity of the vehicles. Hence, input data from Malaysia traffic is essential to evaluate the real potential of each energy harvester.

For photovoltaic energy harvester, two types of harvesters that are being studied on this paper which are embedded solar panel and photovoltaic noise barrier. Data of average solar radiation in Malaysia is used to calculate the efficiency of the photovoltaic system to generate energy. The data is taken study done by Mekhilefa et al, (2012) on the current state and prospects of solar energy in Malaysia. "Although solar radiation is one of the largest factors in calculating photovoltaic generation potential, other factors like technology, orientation and maintenance play important roles as well," (Carl et al, 2014). The parameters to calculate the energy generated as well as the total cost are assumed based on previous research of existing photovoltaic systems.

3.1.2 Stage 2

The second stage is to compare and analyse the gathered information in details. The scope of this paper will focus on harvesting potential energy from Malaysia road pavement and few available harvesting energy technologies are selected to be scrutinized which are piezoelectric and photovoltaic harvesters. Each harvester is able to generate energy by harvesting different type of wasted energy from road pavement and their advantages as well as disadvantages are further discuss in this paper.

For piezoelectric energy harvester, the electrical energy generated from each vehicle was calculated using $W = \int P dt$. Zhang et al. (2015) estimated each PZT

can generate 0.00103 J of electricity from a single wheel load and 0.0012 J from each four wheel load. Since the size of each PZT used in Zhang's study is 0.1m x 0.1m, 100 PZTs can be fit in a $1m^2$ roadway lane without stacks. With traffic volume inputs (N), total of electric energy generated can be calculated as **E** = **100** x W x N.

While for photovoltaic energy harvester, this general formula is used to calculate the potential energy generated;

$$\mathbf{E} = \mathbf{A} * \mathbf{r} * \mathbf{H} * \mathbf{PR}$$

E = Energy output (kWh/day) A = Solar panel area (m²) r = Conversion efficiency (%) H = Solar radiation for the day (kWh/m²/day) PR = Performance ratio, coefficient for losses (range between 0.5 and 0.9, default value = 0.75)

r is the yield of the solar panel given by the ratio : electrical power (in kWp) of one solar panel divided by the area of one panel.

PR is the performance of solar installation which depends on the orientation, inclination of the panel, includes all losses and shading effect.

3.1.3 Stage 3

The last stage is evaluation part of the harvesting energy technologies and to propose the most productive harvester that is suitable to be implemented in Malaysia roadways. The criteria that been assess are previous expertise, energy efficiency, prospective cost and service life. Therefore the productivity of energy harvesters (piezoelectric, embedded photovoltaic and photovoltaic noise barrier) are evaluated based on the investment cost per unit electricity generated over their lifetime and is defined as levelized cost of electricity (LCOE). The general formula for LCOE is expressed as;

$$LCOE = \frac{sum \ of \ costs \ over \ lifetime}{sum \ of \ electrical \ energy \ produced \ over \ lifetime}$$

3.2 FYP KEY MILESTONES

Detail		Week												
		FYP 1												
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Selection of FYP title														
Approval of FYP title														
Submission of Extended														
Proposal														
Proposal Defence														
Submission of Draft Interim														
Report														
Submission of Interim														
Report														
			•		•		F	YP 2	2		•		•	
Submission of Draft														
Progress Report														
Submission of Progress														
Report														
PreSEDEX														
Submission of Draft Final														
Report														
Submission of Dissertation														
(soft bound)														
Submission of Technical														
Paper														
Viva														
Submission of Project														
Dissertation (hard bound)														

3.3 GANTT CHART FOR FYP 1

Detail		Week												
		2	3	4	5	6	7	8	9	10	11	12	13	14
Preliminary research on														
possible FYP title														
Selection of FYP title														
Approval title by Supervisor														
and Coordinator														
Collection of Information														
For Research														
Preparation for Extended						*								
Proposal														
Discussion with Supervisor														
Conduct Research														
Preparation for Proposal									*					
Defence Presentation														
Preparation and Research													*	*_
for Interim Draft Report														

3.4 GANTT CHART FOR FYP 2

Detail		Week													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Preparation on Progress							*								
Report															
Gathering and Analysis															
Data															
Discussion with															
Supervisor															
Poster Preparation for Pre-											*				
SEDEX															
Preparation of Final															
Report and Technical												*			
Paper															
Preparation for Viva														*	
Preparation of Project															*
Dissertation (hard bound)															

CHAPTER 4

RESULT AND DISCUSSION

4.1 COMPARING ENERGY HERVESTING TECHNOLOGIES

Main sources of energy at road pavement surface can be in solar radiation from the sun and stress or mechanical energy from the traffic flow. This part of study compares the advantages and disadvantages of each energy harvesters for Malaysia road pavement.

4.1.1 Advantages and Disadvantages of Piezoelectric Energy Harvester

The electricity produced by piezoelectric generator will be collected and stored in a storage system before the accumulated energy to be used to power the street lamps, traffic lights or routed into the power grid. Although one unit of piezoelectric transducer can generate small amount of electric current, it has high frequency response towards the rapid stress changes.

Roshani et al. (2015) evaluate the effects of external factors such as pavement thickness, traffic speed, volume and load on the output energy. Based on the study, piezoelectric energy harvester is best to be place on the road with high traffic speed, volume and load as these parameters will generate more electrical energy. Furthermore, the power generation can be significantly increased by arranging the piezoelectric in stacks arrangement. However, piezoelectric energy harvester require regular and constant inspections for moderate the effects of heavy traffic load. Process of installation the new system to replace the existing infrastructure requires huge cost and expertise. Therefore, large scale energy harvesting using piezoelectric is not appropriate.

4.1.2 Advantages and Disadvantages of Photovoltaic Energy Harvester

The efficiency of this system is mainly depends on the duration of the exposure towards sunlight. Malaysia can be described a country that having a typical tropical climate with 2 seasons which are dry and rainy season. Therefore, abundance sunlight exposure from the pavement can be utilised using photovoltaic technology. By using photovoltaic panels embedded on surface of the pavement, it can help to control pavement's temperature as well as protect pavement layers from deformation thus increase the pavement life. Besides, the technologies nowadays are going to develop solar road that contain LED lights that can act as road lines and warning signs which are built into the road itself. However, using normal thin film solar cells are difficult to be implemented in road surface that receives lots of mechanical load cycles and environmental condition which leads to wear as well as damaged. Therefore, repairing and maintaining the solar panel will be more expensive compare to normal asphalt pavement. In addition, the safety of solar panel as pavement surface is still not proven suitable for vehicles' tires.

Photovoltaic sound or noise barrier (PVNB or PVSB) had been developed as the alternative of embedded photovoltaic on pavement surface. This technology use photovoltaic panels as a noise barrier along the road or highways. It will help to improve the efficiency of harvesting solar energy to be much higher as it can be tilted to a certain angle in order to obtained maximum sun radiation while able to reduce the noise pollution from the road. PVNB also reduce the issue of low durability of photovoltaic cell but it is still exposed to contamination from the vehicles and weathering action after a long time operation.

The major drawback of photovoltaic is its cost. As for now, cost for manufacturing the solar panels is huge and according to the Missouri department of transport (MoDOT), the small 12ft-by-20ft (3.6m x 6.1m) patch of solar road will cost \$100,000 (RM 427 00) to install. However, most solar company claims that even though the roads would be very expensive to install, the savings in the long run would be beneficial as solar roadways require less maintenance compared to normal pavement. Table 1 below summarise the advantages and disadvantages of each energy harvester.

Table 1: Summary of comparison between advantages and disadvantages of energy harvesting
technologies

Energy Harvester	Advantages	Disadvantages
Piezoelectric	Exploitation of waste	Regular and constant inspection
	stress energy	due to heavy traffic loads
	High efficiency for busy	High cost and good expertise
	road	require for the installation
	No significant changes	
	on pavement surface	
Embedded Solar	 High efficiency due to 	 High manufacturing cost
Panel	Malaysia climate	Low illumination during high
	Lower pavement	volume traffic
	temperature and increase	Fragile materials
	pavement life	
PV-Noise	 Higher efficiency with 	 High manufacturing cost
Barrier	maximum solar exposure	Exposed to contamination from
	 Not affect the condition 	vehicle
	of pavement	

4.2 ESTIMATION OF ELECTRICAL ENERGY GENERATION FROM MALAYSIA ROAD PAVEMENT

4.2.1 Potential of Energy Generation from Piezoelectric Energy Harvester

Based on Zhang et al, (2015), he estimated that each PZT can supply around 0.0012 J ($3.3x10^{-7}$ kWh) from a vehicle with a constant speed of 30 m/s (108 km/hr) and distributed load of 0.267 MPa. The PZTs are placed at the placed under the trajectory path of wheels in order to get the maximum output which is known as four wheels load in their study. Total electrical energy generated can be calculated by multiplying electrical energy for one unit PZT with average daily traffic (ADT) of that road. The size of each PZT used in that study is 0.1m x 0.1m, and 100 PZTs can be fitted in $1m^2$ of a road area without stacking.

For an example, the highest average daily traffic (ADT) based on Malaysia Transportation Statistic 2015 is from Kuala Lumpur which is along Kuala Lumpur-Seremban Expressway with 221 066 vehicles per day. The total potential energy generated is about 0.00736 kWh/m²/day.

Energy each PZT = 0.0012 JPower = $\frac{Energy}{Time}$ = $\frac{0.0012 \text{ J}}{3600s}$ = $3.3 \times 10^{-10} \text{ kWh}$ Total energy output = $100 \times P \times \text{ADT}(\text{max})$ = $100 \times 3.3 \times 10^{-10} \times 221\ 066$ = $0.00736 \text{ kWh/m^2/day}$ (KL - Seremban Expressway)

Figure 4 shows the average of potential energy output generated by piezoelectric energy harvester for major roadways in Malaysia according to the regions. Kuala Lumpur, largest and busiest in city the country with high traffic volume can generate highest average potential electrical energy of 0.0066 kWh/m²/day. Other fast developing regions such as Selangor and Pulau Pinang are also having great potential to generate electricity by using piezoelectric system.

Figure 4: Average of potential energy generated by piezoelectric road energy harvester for major roadways in Malaysia

By having 0.3m width of PZT in two parallel lines under the standard trajectory path of the wheels for a stretch of 1km roadway, the area covered is $600m^2$ per lane. Assuming the average Malaysia roadways are four lanes in two directions, the total area of PZT will be approximately $2400m^2$ for 1km length. Thus, the piezoelectric system may generate about 15.85 kWh/day for 1km roadway with area of 2400 in Kuala Lumpur. The rest potential energy generated for other regions are shown in Figure 5 below.

Average Potential Energy Generated for 1km Roadway (kWh/day)

Figure 5: Average of potential energy generated by 1km of 2400m² area piezoelectric road energy harvester for major roadways in Malaysia

If the area of 2400m² PZT used in 1 km roadway in Kuala Lumpur, it can generate about 15.85 kWh/day, almost 475 kWh electricity per month. On average, Malaysia's per household electricity consumption is 251 kWh per month. Thus, the generated electricity from the piezoelectric system along this 1km pavement stretch in Kuala Lumpur may light up almost 2 homes in Malaysia.

4.2.2 Potential of Energy Generation from Photovoltaic Energy Harvester

Based on data from Mekhilefa et al., (2012), Kota Kinabalu is having the highest annual average solar radiation which is 1900 kWh/m² that equal to 5.2 kwh/m² per day. For road embedded photovoltaic, the solar conversion efficiency for Wattway pavement by Colas is 15%. However this 15% efficiency still doesn't take into account the fact that traffic, snow or standing water could block the sunlight and reduce efficiency even further. The blockage of sunlight is highly depends on traffic volume as well as the traffic speed. Generally, the higher traffic volume of a certain pavement, the lower the sunlight exposure to the embedded photovoltaic and due to this shading effect, it is assumed that the maximum conversion efficiency loss is about 4%. Thus, 11% efficiency will be used in estimating the potential energy generation by road embedded photovoltaic. It is also assumed that the performance ratio (PR) is about 75% by default due to the loss of inverter, cables and other losses.

While for PVNB, the efficiency is assumed about 18% based on realistic projects studied by Goetzberger et al., (1999). They have more solar conversion efficiency compare to road embedded photovoltaic as the tilted angle of PVNB surface will increase its efficiency to obtain optimum sun radiation depends on the type of PVNB structures and its orientation. The shading effect also is not that crucial in such the sunlight will not be blocked by the vehicles on the road but just the shadow of barrier itself and might be from the neighbouring structures. However, the performance ratio (PR) for PVNB is also assumed to be 75% due to the losses. In general, the electrical generation from photovoltaic energy harvester can be estimated using formula below;

$\mathbf{E} = \mathbf{A} * \mathbf{r} * \mathbf{H} * \mathbf{PR}$

E = Energy output (kWh/day) A = Solar panel area (m²) r = Conversion efficiency (%) H = Solar radiation for the day (kWh/m²/day) PR = Performance ratio (%)

Table 2: Total potential energy output by road embedded photovoltaic and PVNB in Malaysia based on 2012 average annual solar radiation.

Bil		Average	Daily	Embeddeo	d Photovoltaic	Photovoltaic Noise Barrier (PVNB)		
	Region	Solar Radiation (kWh/m ²)	Solar Radiation (kWh/m²)	Solar Conversion Efficiency	Potential Energy Output (kWh/m²/day)	Solar Conversion Efficiency	Potential Energy Output (kWh/m²/day)	
1	Kuching	1470	4.027		0.332		0.544	
2	Bangi	1487	4.074		0.336		0.550	
3	Kuala Lumpur	1571	4.304		0.335		0.581	
4	Petaling Jaya	1571	4.304		0.335		0.581	
5	Seremban	1572	4.307		0.335		0.581	
6	Kuantan	1601	4.386			0.362		0.592
7	Johor Bahru	1625	4.452	4.452 0.11 0.367 0.18 4.463 0.11 0.382 0.18		0.19	0.601	
8	Senai	1629	4.463			0.18	0.603	
9	Kota Bharu	1705	4.671		0.385		0.631	
10	Ipoh	1739	4.764		0.393		0.643	
11	Taiping	1768	4.844		0.400		0.654	
12	Georgetown	1785	4.890		0.403		0.660	
13	Bayan Lepas	1809	4.956]	0.409		0.669	
14	Kota Kinabalu	1900	5.205		0.429		0.703	

Based on the data from Mekhilefa et al., (2012), the average daily solar radiation differences between the regions in Malaysia are not varies significantly as shown in Table 2. However, these differences of solar radiation will produce different amount of electrical energy harvested by piezoelectric system that have to be considered for the design optimisation especially when the cost of investment is huge. It is found that Kota Kinabalu has the highest average annual solar radiation which is about 1900 kWh/m². Thus, photovoltaic energy harvester system is best to be implemented in Kota Kinabalu as for every meter square of PVNB, it may approximately generate 0.703 kWh electricity per day in Kota Kinabalu with 18% efficiency of solar conversion, as compared to only 0.544 kWh per day in Kuching which is having the lowest average annual solar radiation. By having less conversion efficiency, the differences of the energy output between road embedded photovoltaic and PVNB be observed in Table 2 and Figure 5.

Figure 6: Average energy output of the regions generated by road embedded photovoltaic and PVNB in Malaysia

If the embedded photovoltaic panels are installed on the roadway with average width of 3.5m roadway, assuming the roadway is 4four lanes with two directions, for 1km length, the area covered is 14 000m². For that area in Kuala Lunpur roadway, the embedded photovoltaic system can generate about 4 970 kWh electricity per day which is almost 149 100 kWh/month or 149.1 MWh /months. The generated electricity can power up about 590 homes with average Malaysia household electricity consumption and some further electricity supply for various road-side applications, such as traffic lights, billboards, traffic cameras and road signs.

Figure 7: Potential energy generated by 1km of 14 000m² area embedded photovoltaic energy harvester for major roadways in Malaysia

While for PVNB, based on A27 highway project in Netherland, the height of the PVNB is about 1m which is installed on the 3 m noise barrier. If 1 m height of photovoltaic panels are installed both sides of the 1 km road in Kuala Lumpur, the potential energy generated is about 1162 kWh/day with area of 2000 m². Theoretically, the system can supply approximately 34 860 kWh electricity per month which cover up electricity for almost 138 homes.

Potential Energy Generated for 1 km Roadway by Photovoltaic Noise Barrier System

Figure 8: Potential energy generated by 1km of 2 000m² area photovoltaic noise barrier energy harvester for major roadways in Malaysia

4.3 COST-EFFECTIVENESS ANALYSIS OF ROAD ENERGY HARVESTIING IN MALAYSIA

Electrical energy generated by each road energy harvesters is not the only parameters used to study the full potential these harvesters to be used in Malaysia. The evaluation must take into account the cost to be invested for each system to generate electricity over their lifetime. In this paper, cost-effectiveness analysis is used as a levelised cost of electricity (LCOE).

4.3.1 Cost-Effectiveness Analysis for Piezoelectric Energy Harvester

Based on Guo et al., (2017) he expressed the LCOE for piezoelectric energy harvester as;

$$LCOE = \frac{Cp + Ci}{Wp \times N \times w \times 365 \times Y}$$

Where;

Cp = cost each PZT unit Ci = cost of installation Wp =energy output from each PZT unit per vehicle N = number of vehicle per day w = equivalent hit rate Y = service life

Study done by Urquiza et al., (2016) cited in Guo et al., (2017) estimated that the cost for PZT material is about \$1207 (RM 4700) /m² and installation of PZT system is \$75(RM 300)/m². Since the area of 100m × 0.2m was used which can be embedded with 30,000 PZT cymbals, total cost for installation of each PZT, $C_p + C_i$, is around RM 3.33. Each PZT can generate energy about 0.0012 J (3.33×10^{-10} kWh) and with the traffic volume of Malaysia major expressway varies from 2,310 to 221,066 vehicles as well as equivalent hit rate, w, is assumed to be 100% with 5-15 years of service life, Y, LCOE for the PZT system is calculated as follows;

$$LCOEpzt = \frac{3.33}{3.33 \times 10^{-10} \times ADT \times 365 \times Y}$$

For service life of 5 to 15 years, average LCOE for PZT is in the range of RM 135.85/kWh to RM 407.56/kWh based on average traffic volume in Malaysia expressway. The distribution of LCOE for each region in Malaysia is shown as per Figure 6. Kuala Lumpur which has the potential to generate highest average electricity output is having the lowest LCOE compared to other regions. As the service life of the system increases, the LCOE becomes lesser. Based on the result, for every kWh electricity generated in Kuala Lumpur by piezoelectric system, the cost is only RM9.38 if the system can last at least for 15 years.

Figure 9: Average LCOE with service life of 5 to 10 years from piezoelectric system

4.3.2 Cost-Effectiveness Analysis for Photovoltaic Energy Harvester

The equation to calculate LCOE for photovoltaic energy harvester is almost similar to piezoelectric energy harvester. It is the total cost of the photovoltaic system divided with total of electrical energy generated over the lifetime.

Embedded photovoltaic pavement was installed by Colas in France with total cost of \notin 5million (RM 24.9million) for a 1km road with area of 2800m². It can be assumed that total cost for 1m² of embedded photovoltaic is RM 8890. The panels are expected to last for 10 years under heavy traffic and up to 20 years, Y, in less trafficked sites. Therefore, LCOE for the embedded photovoltaic system based on the average energy output in Malaysia (0.375 kWh/m²/day) can be calculated as follows;

$$LCOE_{\rm pv} = \frac{8890}{0.375 \times 365 \times Y}$$

LCOE for pavement embedded photovoltaic energy harvester is in the range of RM3.24/kWh to RM6.49/kWh for 10-20 years of service life.

For PVNB, the cost analysis is based on 1995 PV Noise Barrier A27 installed along the (A27 highway at De Bilt, Utrecht in Netherlands. According to PVdatabase (2015), total cost for the system is about \notin 1.1million (RM 5.5 million) with area that cover 550m² and consist of 1116 solar modules. It can be assumed that 1m² of PVNB will cost about RM9950. The PVNB should be last at least 20 years and with 0.614 kWh/m²/day average energy output in Malaysia, the LCOE of PVNB can be calculated as follows;

$$LCOE_{\rm PVNB} = \frac{9950}{0.614 \times 365 \times Y}$$

As for the result, LCOE of PVNB is about RM2.22/kWh as per previous data and some estimation. This value is slightly less than LCOE of embedded photovoltaic due to its better efficiency of generating electrical energy although the cost would be higher than photovoltaic as summarised in Table 3. Note that all the cost estimation is done based on the previous researches for the real project application at different countries. These cost include the materials cost and installation cost which is known as total or the first cost. However, the maintenance and service cost for each energy harvester throughout the life time does not included in the total cost.

	Piezoelectric	Embedded	Photovoltaic		
	System	Photovoltaic	Noise Barrier		
		System	System		
Potential Average Energy	0.0066	0.335	0 581		
Output in KL (kWh/m ² /day)	0.0000	0.355	0.501		
Potential Energy Output for					
1km roadway in KL	15.85	5000	1 162		
(kwh/day)					
Total Area in 1 km roadway	2 400	14,000	2 000		
(m ²)	2 400	14 000	2 000		
Cost of Energy Harvester					
System per meter squared	5000	8890	9950		
(RM/m ²)					
Total Cost of Energy					
Harvester System for 1km	12 Million	124.5 Million	19.9 Million		
Roadway (RM)					
I COF (RM/kWh)	28.14 to 9.38	3.43 to 6.86	2.35		
	(5-15 years)	(10-20 years)	(20 years)		

Table 3: Summary of evaluation for piezoelectric, embedded photovoltaic, and PVNB in Kuala Lumpur.

Based on the result, photovoltaic noise barrier system is more cost-effective than piezoelectric and embedded photovoltaic system. It also found that for Malaysia road pavement, using photovoltaic energy harvester is highly recommended as justified in Table 3, noted that the potential average energy output for each harvesting system is based on the average value from the regions in Malaysia.

CONCLUSION & RECOMMENDATION

Three technologies of road energy harvesting system (piezoelectric, embedded photovoltaic and photovoltaic noise barrier) are reviewed and analysed in depth to be implemented in Malaysia pavement road. Studying their implementation involves the evaluation of criteria such as energy efficiency, prospective cost, and their lifetime. There are advantages and disadvantages for each of road energy harvesters which are discussed in the result to get the information on strength and weakness of the system so they can be improved.

Based on the current estimation of electrical energy generation, it can be conclude that photovoltaic technology which is using photovoltaic noise barrier seems to be the most efficient method to harvest the wasted energy from Malaysia road pavement. PVNB system have the potential to generate the highest amount of energy (0.614 kWh per m² per day) compared to other methods and also the most cost-effective systems with LCOE of approximately RM 2.22 per kWh. This preliminary study indicates that solar energy can be harvested potentially much greater compare to stress or vibration energy from the road.

However, further research on this topic should be carried out in order to prove the effectiveness of the available energy harvesting technologies to the real application on site. Information from the previous literature review revealed that assessment on the pavement condition as the impact from the energy harvesting system is not prioritised. Evaluation on the impact of every system to the pavement as well as to the vehicles should be done to ensure the safety of the roadway users. Besides, the output of total potential energy generated by each harvesting system can be improved by using some software such as GIS since the traffic volume and solar radiation are varies for different location of the pavement. GIS software can produce more detailed result through topology and spatial operation which will further explore the potential of the harvesting technologies for Malaysia road pavement.

REFERENCES

Andriopoulou, S. (2012). A review on energy harvesting from roads.

- Carder, D., & Barker, K. J. (2007). M7 trial of highway noise barriers as solar energy generators. PUBLISHED PROJECT REPORT PPR178.
- Carl, C. (2014). Calculating solar photovoltaic potential on residential rooftops in Kailua Kona, Hawaii (Doctoral dissertation, University of Southern California).
- Goetzberger, A., Kleiss, G., Castello, S., Hille, G., Reise, C., Wiemken, E., ... &Gaidddon, B. (1999). Evaluation of the potential of PV noise barriertechnology for electricity production and market share. Final report (No.

NWS--99091). Department of Science.

- Grasselli, U., Schirone, L. and Bellucci, P. "Infrastructures Integration of Photovoltaic Power", Proceedings of the International Conference on Clean Electrical Power (ICCEP '07), May 2007, Capri, Italy.
- Guo, L., & Lu, Q. (2017). Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements. Renewable and Sustainable Energy Reviews, 72, 761-773.
- Kang-Won, W. and Correia, A., J., 2010. "A Pilot Study for Investigation of Novel Methods to Harvest Solar Energy from Asphalt Pavements". Korea Institute of Construction Technology (KICT)
- Mekhilef, S., Safari, A., Mustaffa, W. E. S., Saidur, R., Omar, R., & Younis, M. A. A. (2012). Solar energy in Malaysia: current state and prospects. Renewable and Sustainable Energy Reviews, 16(1), 386-396.
- Ministry of Transport Malaysia, (n.d). *Transport Statistics Malaysia 2015*. Retrieved from Official Portal Ministry of Transport Malaysia: http://www.mot.gov.my/en/resources/yearly-statistic.

- Papagiannakis, A. T., Dessouky, S., Montoya, A., & Roshani, H. (2016). Energy Harvesting from Roadways. Proceedia Computer Science, 83, 758-765.
- Paving the way to tomorrow's energy. (n.d.). Retrieved June 19, 2017, Retrieved from <u>http://www.wattwaybycolas.com/en/</u>.
- Poe, C., Plovnick, A., Hodges, T., Hastings, A., & Dresley, S. (2017). Highway Renewable Energy: Photovoltaic Noise Barriers (No. FHWA-HEP-17-088).

PVdatabase, 2015. PV Noise Barrier A27. [online] Retrieved from

http://www.pvdatabase.org/projects_view_detailsmore.php?ID=74

- Rooij, Rogier van. "Dutch Solar Bike Path SolaRoad Successful & Expanding." CleanTechnica, 12 Mar. 2017, cleantechnica.com/2017/03/12/dutch-solarbike-path-solaroad-successful-expanding/.
- Roshani, H., Dessouky, S., Montoya, A., & Papagiannakis, A. T. (2016). Energy harvesting from asphalt pavement roadways vehicle-induced stresses: a feasibility study. Applied Energy, 182, 210-218.
- Voigt, T., Ritter, H., & Schiller, J. (2003, October). Utilizing solar power in wireless sensor networks. In Local Computer Networks, 2003. LCN'03. Proceedings.
 28th Annual IEEE International Conference on (pp. 416-422). IEEE.
- Xiong, H., & Wang, L. (2016). Piezoelectric energy harvester for public roadway:On-site installation and evaluation. Applied Energy, 174, 101-107.
- Zhang, Z., Xiang, H., & Shi, Z. (2016). Modeling on piezoelectric energy harvesting from pavements under traffic loads. Journal of Intelligent Material Systems and Structures, 27(4), 567-578.

APPENDICES

JADUAL 1.12 : PURATA TRAFIK HARIAN (ADT) DI 63 LOKASI, SEMENANJUNG MALAYSIA, 2006 - 2015 Table 1.12 : Average Daily Traffic (ADT) at 63 Locations, Peninsular Malaysia, 2006 - 2015

Source: Ministry of Works

31

47	â	a		ŝ	đ	đ		÷	ð	8	8	37	8	8	¥	8	8	31	8		29	28	27		≷岸
MR 313	MR 301	MR 206		KR 501	KR 401	KR 202		JR 801	307 RL	JR 503	1R 501	JR 404	JR 305	JR 305	JR216	JR 205	JR 108	JR 104	JR 101		DR 802	DR 603	DR 201		STESEN Station
43.5	25.0	22.9		0.62	70.B	20.6		199.5	0.08	111.1	135.2	38.6	49.5	76.0		12.7	116.0	127.2	142.0		61.5	6.1	19.3		ē
Melsika - Lubok Cira	Melaka - Kendong	Meksika - Muar		Nor Setar - Sungal Petani	Nor Satar - Sungal Petani - Butterworth	Nor Setar - Changlun		Johor Bahru - Segamat - Batu Anam	Johor Bahru - Pontian Kecil - Pontian Beear (neer Pontian Hospital)	Johor Bahru - Kola Tinggi - Jemaluang (500 m south of Jemaluang)	Johor Bahru - Endau (2.4km north of Mersing town)	Johor Bahru - Kola Tinggi	Batu Pahat - Ayor Hitam - Khuang	Johor Bahnu - Ayer Hillam	1000m east junction to Massal	Johor Bahnu - Skudal	Johor Bahru - Segamat	Johor Bahnu - Yong Peng - Muar	Johor Bahru - Batu Pahat - Muar		Kolia Eharu - Kuala Kral	Km Lebuh raya Timur-Barat	Kofa Bharu - Melor		LOKAS
7,255	9,971	24,404		20,396	21,067	37,863		12,282	20,095	4,049	17,332	19,289	31,429	15,248	45,330	199,433	11,201	17,891	11,000		16,932	4,807	22,900		2008
8,730	10,781	19,090		21,206	20,596	37,093		13,880	13,926	4,247	18,563	19,500	30,231	15,381	42,184	187,887	12,263	24,014	11,727		18,828	5,090	35,931	*	2007
8,179	11,067	14,057	MELAKA	17,586	16,123	51,314	KEDNH	14,145	17,709	4,246	17,192	19,417	33,897	14,708	43,457	154,962	12,557	32,084	10,736	NOHOR	18,707	6,224	90,089	ELMIN	200
7,709	9,908	15,501		19,169	19,062	34,715		14,648	14,480	4,477	16,688	19,182	33,572	15,261	46,426	218,005	12,869	33,381	12,735		19,521	5,296	43,222		2009
7,868	11,472	15,679		19,387	24,002	30,402		15,237	14,406	4,603	15,598	20,302	34,964	14,810	49,309	221,084	12,262	25,916	11,162		20,632	5,440	31,002		2010
8,084	11,465	16,426		19,618	22,195	32,311		15,781	12,125	4,401	13,445	20,105	36,952	14,894	40,428	213,390	13,025	40,092	11,711		22,306	5,863	37,939		2011
6,490	11,170	17,044		19,249	23,141	42,822		15,875	16,772	4,490	13,411	23,273	39,674	15,396	47,563	162,454	12,369	23,361	14,847		23,381	6,275	42,433		2012
780,8	15,715	16,779		18,863	23,971	47,474		16,826	15,081	4,720	14,412	22,103	38,053	13,911	26,552	109,292	11,628	34,672	18,659		21,200	620(8	32,263		2013
9,013	15,005	17,112		17,797	23,672	34,003		16,800	14,678	4,143	14,391	19,750	38,305	15,847	26,502	191,427	11,521	32,757	15,491		22,523	6,141	26,043		2014
11,202	16,895	17,182		19,854	24,779	36,660		17,751	15,945	2,056	14,672	19,745	41,632	17,359	29,045	178,012	11,995	25,310	13,321		23,345	4,718	39,257		2015

JADUAL 1.12 : PURATA TRAFIK HARIAN (ADT) DI 63 LOKASI, SEMENANJUNG MALAYSIA, 2006-2015 (SAMB.) Table 1.12 : Average Daily Traffic (ADT) at 63 Locations, Peninsular Malaysia, 2006-2015 (Cont'd)

SUMBER: KEMENTERIAN KERJA RAYA Source: Ministry of Works

63	62	61		60	59	58	57	56		55		54	53	52		51	50	49	48		₿₽
WR 105	WR 103	WR 102		TR 502	TR 402	TR 305	TR 202	TR 103		RR 105		PR 203	PR 201	PR 116		NR 505	NR 501	NR 403	NR 304		STESEN Station
8,1	8.1	12.1		33.0	17.0	48.0	78.9	61.5		3.2		57.2	11.1	16.9		9.3	20.0	42.7	21.7		R
Kuala Lumpur - Seremban Expressway	Kuala Lumpur - Ipoh	Kuala Lumpur - Ipoh		K. Terengganu - Kg. Ajil - Jerangau	K. Terengganu - Kuantan	Kuantan - K. Terengganu (Jln. Jabor-Jerangau)	K. Terengganu - Dungun - Kemaman	K. Terengganu -Jerteh - Kota Bharu		Kangar - Alor Setar (Melalui Simpang Empat)		Georgetown - Bayan Lepas - Gelugor (Jln. Keliling Pulau)	Georgetown - Teluk Bahang (Jln. Keliling Pulau)	Butterworth - Taiping		Seremban - Tampin (500 m outside town area)	Seremban - Kuala Lumpur	Seremban - Tampin	Seremban - Port Dickson		LOKASI Location
244,417	206,484	150,874		12,216	24,524	4,079	20,955	19,007		19,859		41,843	22,884	50,151		39,714	14,844	13,074	47,909		2006
258,867	203,986	158,754	KUALA	10,838	39,230	5,116	25,215	18,384	KUALA TE	21,018	Р	40,757	23,061	47,787	PULA	38,284	15,418	13,456	58,328	NEGERI	2007
229,713	205,867	161,161	LUMPUR	13,132	24,933	5,363	23,463	23,357	ERENGGANU	20,769	erlis	43,232	24,392	53,451	J PINANG	38,197	14,329	12,990	68,327	SEMBILAN	2008
213,522	194,287	214,746		14,701	24,852	5,381	29,051	21,313		21,321		47,285	24,799	56,601		33,697	12,530	13,073	67,092		2009
201,260	196,796	277,797		14,695	25,887	5,590	28,602	24,196		21,758		50,776	27,334	56,349		35,708	12,052	12,690	65,580		2010
192,649	209,224	276,092		12,649	27,451	6,553	30,035	25,551		23,234		50,950	26,085	60,230		38,378	11,964	12,565	46,201		2011
213,161	203,277	252,341		10,092	29,532	7,566	27,856	27,325		25,577		59,900	28,442	56,932		57,639	11,397	12,832	54,394		2012
206,140	216,424	253,179		8,715	31,227	8,036	29,864	27,066		26,155		62,207	27,106	64,993		50,484	10,671	12,645	59,864		2013
219,336	192,223	214,760		8,739	31,686	7,667	28,124	19,490		25,092		63,049	28,419	48,588		48,002	11,810	11,459	62,112		2014
221,066	162,596	211,188		9,561	24,887	4,105	28,171	23,584		27,257		62,464	24,774	65,716		47,976	11,870	12,465	57,613		2015

JADUAL 1.12 : PURATA TRAFIK HARIAN (ADT) DI 63 LOKASI, SEMENANJUNG MALAYSIA, 2006-2015 (SAMB.) Table 1.12 : Average Daily Traffic (ADT) at 63 Locations, Peninsular Malaysia, 2006-2015 (Cont'd)

SUMBER: KEMENTERIAN KERJA RAYA Source: Ministry of Works

16	15	14	13	12	₫	10		9	8	7	6	5	4	ω	2	-		⋛₿
SR 504	SR 503	SR 403	SR 402	SR 401	SR 103	SR 101		HR 507	HR 506	HR 504	HR 501	HR 204	HR 202	HR 201	HR 104	HR 101		STESEN Station
1.6	1.6	6.2	29.0	20.0	27.4	16.1		82.0	68.0	14.5	31.4	69.0	8.1	22.5	9.0	4.8		æ
Lawas - Trusan	Limbang - Brunei Border (Sg.Padaruan)	Miri - Bintulu (before junction to Airport)	Bintulu - Miri	Bintulu - Sibu	Kucing - Serian	Bau - Semantan		Tawau - Sandakan (Near Kunak Junction)	20km from Semporna towards Tawau	Sg. Segama Crossing	Tawau - Semporna	Kota Kinabalu - Kudat (100mm From Longtigi Junction)	Donggongan - Tambunan	Kota Kkinabalu - Papar	Tenom - Toman - Bekuku Highway	Beaufort - Sindumin		LOKASI Location
3,935	16,317	10,345	4,828	6,779	22,781	2,457		7,820	1,670	7,140	10,938	7,913	4,751	3,541	4,196	7,042		2006
5,235	15,830	6,882	4,771	6,240	21,071	2,779	SARAWAK	8,170	3,231	7,423	17,009	11,695	4,685	4,932	3,879	10,773		2007
4,519	16,319	9,984	5,924	7,250	22,225	3,188		ARAWAK	7,168	2,585	6,987	16,850	9,855	3,578	6,453	4,566	7,454	SABAH
5,139	14,141	11,060	7,880	9,808	24,564	3,143		8,600	2,663	6,781	9,407	9,450	3,701	7,968	4,566	4,811		2009
3,653	19,032	10,506	8,507	10,957	30,616	3,091		11,141	2,711	8,294	10,074	11,189	3,835	9,370	4,294	4,924		2010
6,683	13,519	12,211	4,178	14,520	31,112	3,504		11,633	3,074	8,691	10,035	11,138	3,881	11,791	4,425	5,965		2011
6,448	11,014	11,805	5,355	4,342	32,889	5,780		9,706	2,742	7,641	10,455	9,953	3,353	14,491	2,123	5,422		2012
7,243	12,742	10,865	9,139	4,476	27,987	3,512		7,831	2,704	9,407	10,327	13,909	3,839	14,406	2,450	5,694		2013
7,200	11,150	10,887	8,677	5,125	32,808	3,582		7,699	3,087	8,739	10,229	11,923	4,478	15,329	2,378	6,508		2014
7,912	12,807	12,329	7,452	5,841	34,874	4,090		6,700	2,310	6,335	11,508	12,388	4,105	15,786	2,299	6,710		2015

JADUAL 1.13 : PURATA TRAFIK HARIAN (ADT) DI 16 LOKASI, SABAH DAN SARAWAK, 2006-2015 Table 1.13 : Average Daily Traffic (ADT) at 16 Locations, Sabah and Sarawak, 2006-2015

Annual average solar radiation in Malaysia (Mekhilefa et al., 2012)

SUMBER: KEMENTERIAN KERJA RAYA Source: Ministry of Works

Annual solar radiation in different cities in Malaysia (Mekhilefa et al., 2012)

	Region/Cities	Annual average value (kWh/m ²)						
1	Kuching	1470						
2	Bangi	1487						
3	Kuala Lumpur	1571						
4	Petaling Jaya	1571						
5	Seremban	1572						
6	Kuantan	1601						
7	Johor Bahru	1625						
8	Senai	1629						
9	Kota Baru	1705						
10	Ipoh	1739						
11	Taiping	1768						
12	Georgetown	1785						
13	Bayan Lepas	1809						
14	Kota Kinabalu	1900						