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ABSTRACT 

 

New Divergence Theorem is a new formulation for the simplest case of heat 

transfer problem involving Neumann Boundary Condition which combines two 

different numerical techniques which are Finite Element Method (FEM) and Finite 

Volume Method (FVM). The use of numerical techniques to solve such problems is 

therefore considered essentials since the powerful Finite Element Method (FEM) is 

capable in solving heat transfer analysis by giving a piecewise approximation of the 

domain. This study aims to evaluate the hypothesis of combining FEM with the FVM 

and to develop a new formulation of heat transfer problem involving Neumann 

Boundary Condition. Finite Volume Method (FVM), which uses the concept of Green 

Divergence Theorem, where a surface integral can be transformed to line integral has 

less accuracy since it develops the assumption of constant flux.   Meanwhile, for FEM, 

the accuracy is higher since FEM is based on polynomial interpolation using shape 

function. Accuracy or convergence rate increases as the order of polynomials 

increases. Comparing between linear interpolation and polynomials interpolation, the 

former will converge faster. By combining these two methods, the assumption of 

constant flux in FVM can be eliminate with the general polynomial interpolation of 

FEM. Another disadvantage of Finite Element Method (FEM) is its difficulty in 

accurately representing a geometrically complex domain. Taking the advantage of 

exact geometry representation of Finite Volume Method (FVM), the New Divergence 

Theorem is able to evaluate at the boundary of the domain, which may yield more 

accurate solution. In this study, the first step involves the establishment of partial 

differential equation (PDE) for heat transfer problem. By solving the equation based 

on a series of discretization work, the equation can be arranged in a matrix form and 

the temperature can be obtained by using MATLAB. Verification and parametric 

study was done and the New Divergence Method was verified to provide converged 

results. Despite that, the rate of convergence is lower than the established Finite 

Element Method. As the New Divergence Method is still in the developing phase, 

further study and enhancement are needed to improve the performance and compare 

it with the existing method.   
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background Study 

 

Numerical method is a method used to solve complicated mathematical 

equations such as Ordinary Differential Equation (ODE) and Partial Differential 

Equation (PDE). This method uses an integral form of equations governing mass, 

energy and momentum balance for an arbitrary control volume (DemirdiiC and 

Muzaferija,1994). It gives approximations to solve the problem by guessing the values 

and functions involved. Regardless of how precise the approximation is, in most cases, 

the exact answer cannot be obtained. However, numerical method is still the most 

used method because working out the exact answer using different approach seems 

quite impossible due to accuracy as compared to solving using numerical method and 

might be time consuming. 

 

There are different types of numerical techniques available which are; 

i. Finite Element Method (FEM) 

ii. Finite Difference Method (FDM) 

iii. Boundary Element Method (BEM) 

iv. Meshless or Meshfree Method (MESHFREE) 

 

For this study, the main interest is on Finite Element Method (FEM) and Finite 

Volume Method (FVM). FEM is one of the most commonly used method in solving 

problems related to structural mechanics as well as heat transfer and fluid mechanics. 

This method provides a systematic procedure in discretizing a domain where the 

domain will be subdivide into smaller and simpler parts called finite element. It is an 
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approach to solve complex partial differential equations that oversee the behavior of 

the structure in terms of the stresses, strains and other variables. 

Meanwhile, Finite Volume Method (FVM) is a discretization technique for 

partial differential equations (Zhiqiang Cai, 1990) especially those that arise from 

physical conservation laws. FVM is frequently used methods in fluid mechanics as 

well as in heat and mass transfer problems. W.Q. Tao (2002) explained that they have 

the advantages of easily discretizing the governing equations and treating 

discontinuous physical phenomena, such as capturing shock waves and implementing 

upwind scheme. 

 

Finite Volume Method uses the concept of Green Divergence Theorem. Green 

Divergence Theorem is a mathematical statement where in three-dimensional 

problem, volume integral can be converted to area integral.  

∫ 𝛻. ₸ 𝑑𝑉 =  ∫ ₸ . 𝑛
𝐴

 𝑑𝐴

𝑉

                                                                                                   (1.1) 

Meanwhile, for two-dimensional condition, surface integral can be 

transformed to line integral. Applying Divergence Theorem in discretizing heat 

transfer equation yields the following: 

 

∫
𝛿2𝑇

𝛿𝑥2
𝐴

+  ∫
𝛿2𝑇

𝛿𝑦2
𝐴

 𝑑𝐴 =  ∫
𝛿2𝑇

𝛿𝑥2
𝐴

 𝑑𝐴 +  ∫
𝛿2𝑇

𝛿𝑦2
𝐴

 𝑑𝐴 

                                                                                                               

=  ∫ 𝛻.
𝛿𝑇

𝛿𝑥𝐴

 𝑑𝐴 +  ∫ 𝛻.
𝛿𝑇

𝛿𝑦𝐴

 𝑑𝐴 

              

= ∫
𝛿𝑇

𝛿𝑥𝐴

. 𝑛𝑥 𝑑𝑥 + ∫
𝛿𝑇

𝛿𝑦𝐴

. 𝑛𝑦 𝑑𝑦                                             (1.2) 

 

Eqn. (1.2) shows the transformed heat transfer equation when Divergence Theorem 

was applied.  
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1.2 Problem Statement 

 

Finite Element Method (FEM) has been known as vortex-centric method 

whilst Finite Volume Method (FVM) is known for its volume centric nature. Whilst 

the former has been shown as being very rigor in various continuum analysis (e.g. 

solid and fluid), the latter has emerged as an effective numerical technique especially 

those that involve moving boundary. However, despite its practicality, FVM is still 

based on linear interpolation and hence the assumption of constant flux. It is the 

hypothesized in this study that such a limitation would not be necessary if the general 

polynomial interpolation of FEM is combined with the divergence theorem which is 

the basis of FVM. It is the interest of this study to evaluate such hypothesis and idea 

by developing new formulation for the simplest case of heat transfer problem 

involving Neumann Boundary Condition. 

 

1.3 Objectives of the Study 

 

This study is to evaluate the hypothesis of combining FEM with the 

divergence theorem and to develop a new formulation of heat transfer problem 

involving Neumann Boundary Condition. Thus, the objectives of this study are listed 

as follows: 

1) To formulate, to write in Matlab software and to verify the new method for 

heat transfer problem 

2) To conduct performance study by comparing against result obtained by FEM 

in terms of rate of convergence (in example: number of degree of freedoms) 

 

1.4 Scope of Study 

 

To fulfil the objectives of this study, below are the scopes that will be covered 

in this study: 

1) Derivation of mathematical formulations and computer programming for 2D 

heat transfer problem which is in linear and isotropic condition using 

MATLAB. 

2) Solving heat transfer problem with Neumann boundary condition will be 

allowed throughout the study 
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3) Verification of the formulation and codes applied by comparing the results 

against existing results. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Numerical Techniques 

 

As a general rule, analytical and experimental solutions are inapplicable in 

handling some heat transfer problem with significant complexity. For this reason, 

many numerical methods such as finite element (FE) methods (FEM), Finite 

Difference Methods (FDM), Finite Volume Methods (FVM), etc, have been 

developed. According to DemirdiiC and Muzaferija (1994), numerical method uses 

an integral form of equations governing mass, energy and momentum balance for an 

arbitrary control volume. 

 

2.1.1 Finite Element Method  

 

The Finite-Element Method, in its by and by acknowledged structures can be 

credited to no lesser a man than Richard L. Courant. According to Barkanov (2001), 

today, the finite element method (FEM) is considered as one of the well-established 

and convenient technique for the computer solution of complex problems in different 

fields of engineering: civil engineering, mechanical engineering, nuclear engineering, 

biomedical engineering, hydrodynamics, heat conduction, geo-mechanics, etc. 

FEM is a formulation for both the continuous and the discrete problems. The 

formulation is obtained by multiplying the original equation by a “test function”. The 

continuous unknown is then approximated by a linear combination of “shape” 

functions. These shape functions are the test functions for the discrete formulation. 

The resulting equation is then integrated over the domain by the method of integration 

by parts.  



6 
 

The FVM is sometimes called a “discontinuous finite element method” since 

the original equation is multiplied by the characteristic function of each grid cell and 

the discrete unknown may be considered as a linear combination of shape functions.  

Indeed, the FEM can be much more precise than FVM when using higher order 

polynomials, but it requires an adequate functional framework which is not always 

available in industrial problems. Other more precise methods are, for instance, particle 

methods or spectral methods but these methods can be more expensive and less robust 

than the finite volume method. 

The common methods available for the solution of general field problems, like 

elasticity, fluid flow, heat transfer problems, etc., can be classified as presented in Fig. 

2.1. 

 

Nowadays, stabilized finite element methods are very popular and prevalently 

used in the numerical solutions of partial differential equations. There are many 

advantages from the stabilization methods such as enhancing stability, using simple 

node-based continuous Lagrange element and does not require special meshes are 

example of advantages from the stabilization methods.   

  

Figure 2.1: Different method in solving engineering problem 
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 2.1.2 Finite Volume Method 

 

The finite volume method is a discretization strategy which is appropriate for 

the numerical simulation of different sorts (elliptic, parabolic or hyperbolic, for 

instance) of conservation laws. It has been broadly utilized as a part of a few building 

fields, for example, fluid mechanics, heat and mass transfer or petroleum engineering. 

According to Oden (1991), some of the important features of the finite volume 

method are similar to those of the finite element method.  The finite volume method 

is locally conservative because it is based on a “ balance” approach: a local balance is 

written on each discretization cell which is often called “control volume” 

The finite volume method is very unique from the finite difference method or 

the finite element method. The principle of the finite difference method is, given a 

number of discretization points which may be defined by a mesh, to assign one 

discrete unknown per discretization point, and to write one equation per discretization 

point. At each discretization point, the derivatives of the unknown are replaced by 

finite differences through the use of Taylor expansions. However, FDM is ends up 

noticeably hard to utilize when the coefficients associated with the condition are 

discontinuous. With the finite volume method, discontinuities of the coefficients will 

not be any problem if the mesh is chosen such that the discontinuities of the 

coefficients occur on the boundaries of the control volumes.  

 

2.2 Coupling Different Numerical Techniques 

 

According to J. Krok and J. Orkisz (2016), the coupling of FEM with other 

methods for computational analysis of boundary value problems (especially with 

meshless methods) is not new as it reaches early seventies of the previous century. 

From that point forward, this issue has been later explored by numerous different 

scientists and it is still being worked on these days. 

In most cases, the principle thought behind the coupling strategies is either to 

wipe out or decrease downsides of one strategy (e.g. time-consuming mesh 

generation, low rate of derivatives convergence) or to utilize the upsides of other 

strategy (super-convergence, least squares smoothing, independent integration mesh 

and so on) in more powerful way. 
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One of the examples on the coupling method is the study on the combination 

of Finite Element Method (FEM) with Meshless Finite Difference Method (MFDM) 

in thermomechanical problems by J. Jaśkowie and S. Milewski in 2016. The MFDM 

is a representative approach among a wide class of meshless techniques. FEM utilizes 

structural of components (meshes) and unknown function approximation by means of 

the appropriate polynomial shape functions, built upon finite elements and associated 

with nodal degrees of freedom. MFDM, as one of the oldest meshless methods, may 

use both regular meshes or totally arbitrarily irregular clouds of nodes, without any 

imposed structure, like finite element, regular mesh or mapping restrictions. 

The kind of issues where the coupling is legitimized is for instance the issues 

in which selected parts of the domain are under rapid change  of subjected load, 

boundary conditions and/or material parameters (e.g. due to temperature dependency). 

In such issues, applying a meshless approach (particularly the MFDM) to 

those areas is by all accounts sensible due to its higher flexibility in nodes generation, 

super-convergence of solution derivatives, as well as element-free determination of 

the approximation base (in general). In addition, non-linear problems, in which the 

basic linear problem has to be solved many times or situation in which the 

approximation mesh/cloud of nodes requires frequent refinements (e.g. due to the 

adaptation technique or shrinking of the material), are other examples. 

 In the coupling method, the domain is divided into two sub domains for FEM 

and MFDM, respectively. One scalar parameter, translated as a width of thin material 

layer between those two sub domains, has to be set. The scalar parameter depends 

neither on the type of considered 

 

2.3 Use of Numerical Method in Structural Engineering  

 

Utilization of finite element tools in building industry has not just permitted 

the effective building items, but also the development of accurate design method. 

Generally, engineers have utilized research laboratory testing to examine the 

structural behavior of steel building items and frameworks subject to the normal wind 

and earthquake before coming out with appropriate design of the structural members. 
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Be that as it may, such dependence on tedious and costly research laboratory testing 

has frustrated advance around there. In any case, progresses in the field of computer 

helped building amid the most recent two decades have changed this circumstance 

altogether in many designing work. 

One of the applications of numerical method in structural engineering is the study on 

steel woof and wall cladding system in Australia. These claddings often suffer from 

local pull-through failures at their screw connections under wind uplift/suction 

loading caused by storms. [1,2]  

 

 

Figure 2.2 : Application of numerical method in structural engineering 
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CHAPTER 3 

 

METHODOLOGY 

 

Chapter 3 will discuss and outline the approach of methodological to this 

study. It provides the correct stage to the researcher to snoozing out the improvement 

work with the end goal to resolve the work using the correct technique within a given 

specifications. 

3.1 Discretization  

Discretization is the process of converting the continuous nature of PDE/ODE 

to ‘equivalent’ simultaneous algebraic equation. This process is usually carried out as 

a first step towards making them suitable for numerical evaluation and 

implementation on digital computers. In this study, a series of discretization work will 

be done in several steps. Figure 3.1 shows the brief flow of discretization work. 

Figure 3.1 : Flowchart of discretization work 
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 3.1.1 Discretization of Finite Element Method 

In Finite Element Method, for heat transfer problem, the first step involves the 

establishment of partial differential equation as follows: 

 

𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝑇

𝜕𝑥
) −

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝑇

𝜕𝑦
) =  −𝑞𝐻              (3.1) 

 

In order to solve the following partial differential equation, a guess equation for the 

function T in the form of polynomials is needed to convert the PDE into algebraic 

equation. Example of the trial function is: 

𝑇 = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥𝑦               (3.2)

    

Eqn. (3.2) will then be evaluated at the location of the nodes and the calculated values 

is equals to the corresponding degree of freedom, 𝑇𝑖 

At 𝑥 = 0, 𝑦 = 0 ; 

𝑇 =  𝑎1 + 𝑎2(0) +  𝑎3(0) +  𝑎4(0)(0) =  �̂�1 

At 𝑥 = 𝑎, 𝑦 = 0 ;  

𝑇 =  𝑎1 + 𝑎2(𝑎) +  𝑎3(0) +  𝑎4(𝑎)(0) =  �̂�2  

At 𝑥 = 𝑎, 𝑦 = 𝑏 ;                        (3.3) 

𝑇 =  𝑎1 + 𝑎2(𝑎) +  𝑎3(𝑏) +  𝑎4(𝑎)(𝑏) =  �̂�3  

At 𝑥 = 0, 𝑦 = 𝑏 ; 

𝑇 =  𝑎1 + 𝑎2(0) +  𝑎3(𝑏) +  𝑎4(0)(𝑏) =  �̂�4  

 

Solving the above equations will result in obtaining the value for the 

polynomials coefficient and shape function of the equation. The following trial 

function are used corresponding to the Galerkin WRM. 
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 𝑇 =  𝑁𝑖𝑇𝑖  = {𝑁} {𝑇} 𝑇                          (3.4) 

Where 𝑁𝑖 is the shape function and 𝑇𝑖 is the degree of freedoms (dofs). The next step 

involve integration by part (IBP) with the intentions to relax the statement and to 

induce natural boundary conditions.  

Eqn. (3.1) which are the Partial Differential Equation (PDE) for heat can be express 

in matrix forms as follows: 

{𝜕} [𝐸]{𝜕} 
𝑇

𝑇 =  −𝑞𝐻                                                                                                     (3.5) 

 

Where [𝐸] = [
𝑘𝑥 0
0 𝑘𝑦

] and {𝜕} = { 
𝜕

𝜕𝑥
 

𝜕

𝜕𝑦
 }  

 

By replacing Eqn. (3.5) with Eqn. (3.4), the following equation obtained: 

 

{𝜕} [𝐸]{𝜕} 𝑇{𝑁} {𝑇} 𝑇 =  −𝑞𝐻                                                                                      (3.6) 

 

In order to obtain a sufficient number of equations, Eqn (3.6) needs to be multiplied 

with shape function, {𝑁} and integrate it to get the independent equations. 

 

∫ ∫{𝑁} 𝑇 ({𝜕} [𝐸]{𝜕} 𝑇{𝑁} {𝑇} 𝑇 + 𝑞𝐻) 𝑑𝑦𝑑𝑥

𝑦𝑥

= 0                                                 (3.7) 

 

Conducting IBP to Eqn (3.7) gives; 

 

∫ ∫ {𝑁} 𝑇{𝜕} [𝐸]{𝜕} 𝑇{𝑁} {𝑇} 𝑇𝑑𝑦𝑑𝑥
𝑦𝑥

= ∫ ∫ {𝑁} 𝑇𝑞𝐻 𝑑𝑦𝑑𝑥
𝑦𝑥

+  ∫ [𝑁𝑇
𝑠

]{ф} 𝑇𝑑𝑠  (3.8) 

 

Where {ф} is the Neumann boundary condition terms from IBP. 
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By solving the IBP, the equation can be arranged in a matrix form and the 

degree of freedom can be solve by using MATLAB. 

[𝐾]{𝑇} 𝑇 = {𝑞
𝐻

}  + {ф}  = {𝑟}   

 

3.1.2 Discretization of Finite Volume Method 

 

In Finite Volume Method (FVM), Green’s Divergence Theorem are used. Taking one 

simple closed region as an example, the equations are discretized as following: 

 

 

𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 = 0                (3.5) 

Eqn. (3.5) shows the equation in evaluating the boundary of the domain.  

 

∫
𝜕2𝑇

𝜕𝑥2𝐴
+  ∫

𝜕2𝑇

𝜕𝑦2𝐴
 𝑑𝐴 =  ∫

𝜕2𝑇

𝜕𝑥2𝐴
 𝑑𝐴 +  ∫

𝜕2𝑇

𝜕𝑦2𝐴
 𝑑𝐴             (3.6) 
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By applying the divergence theorem, Eqn. (3.7) yields. Sign notation need to be 

synchronize to the figure shown. 

− ∫
𝜕𝑇

𝜕𝑦
 

𝑏

0
|𝑦=0 𝑑𝑥 +  ∫

𝜕𝑇

𝜕𝑥
 

𝑎

0
|𝑥=𝑏 𝑑𝑦 +  ∫

𝜕𝑇

𝜕𝑦
 

𝑏

0
|𝑦=𝑎 𝑑𝑥 −  ∫

𝜕𝑇

𝜕𝑥
 

𝑎

0
|𝑥=0 𝑑𝑦 = 0          (3.7) 

Eqn. (3.7) can be simplified in matrix form as follows: 

[𝐾𝑖𝑗]{𝑇𝑖} =  0 

In FVM, the temperature gradient, T at the surface is assumed as constant, which 

eventually simplifies the equation to; 

(
𝛿𝑇

𝛿𝑥
|𝑥=𝑏 −

𝛿𝑇

𝛿𝑥
 |𝑥=0) 𝐿𝑦 + (

𝛿𝑇

𝛿𝑦
|𝑦=𝑎 −  

𝛿𝑇

𝛿𝑦
|𝑦=0) 𝐿𝑥 = 0           (3.8) 

 

Referring to the above figure, the equation can be simplified as below:  

[
𝑇(𝑎 ,𝑏 2⁄ )−𝑇(0 ,𝑏 2⁄  )

𝐿𝑥
] 𝐿𝑦 + [

𝑇(𝑎
2⁄  ,𝑏)−𝑇(𝑎

2⁄  ,0)

𝐿𝑦
] 𝐿𝑥                (3.9) 

 

3.1.3 Discretization of New Divergence Method 

 

− ∫
𝛿

𝛿𝑦
 

𝑏

0
|𝑦=0 𝑑𝑥 +  ∫

𝛿𝑇

𝛿𝑥
 

𝑎

0
|𝑥=𝑏 𝑑𝑦 +  ∫

𝛿𝑇

𝛿𝑦
 

𝑏

0
|𝑦=𝑎 𝑑𝑥 −  ∫

𝛿𝑇

𝛿𝑥
 

𝑎

0
|𝑥=0 𝑑𝑦 = 0       (3.10) 
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In New Divergence Theorem, instead of directly integrate Eqn. (3.10), Eqn. (3.4) 

which contains shape function will be included in the equation.  

𝑇 =  𝑁𝑖𝑇𝑖 

 

∫ 𝛿
𝑇𝑗𝑁𝑗

𝛿𝑥
. 𝑛𝑥  𝑑𝑥 +  ∫ 𝛿

𝑇𝑗𝑁𝑗

𝛿𝑦
. 𝑛𝑦 𝑑𝑦 = 0            (3.11) 

 

− ∫ 𝑁𝑖

𝛿𝑁𝑗

𝛿𝑦
 

𝑏

0

|𝑦=0 𝑑𝑥 +  ∫ 𝑁𝑖

𝛿𝑁𝑗

𝛿𝑥
 

𝑎

0

|𝑥=𝑏  𝑑𝑦 +  ∫ 𝑁𝑖

𝛿𝑁𝑗

𝛿𝑦
 

𝑏

0

|𝑦=𝑎 𝑑𝑥

−  ∫ 𝑁𝑖

𝛿𝑁𝑗

𝛿𝑥
 

𝑎

0

|𝑥=0 𝑑𝑦 = 0                                                                  (3.12) 

 

The purpose of using the concept of Green Divergence Theorem in Finite Volume 

Method is to make use of the shape function since Finite Volume Method carry the 

assumption of constant flux.  

Eqn. (3.12) is the discretized equation for the proposed New Divergence Theorem, 

which can be presented in matrix form as follows: 

[𝐾𝑖𝑗]{𝑇𝑖} =  0 

Solving the line integrals can be finalized as: 

[𝐾𝑖𝑗] {

𝑇1
𝑇2
𝑇3
𝑇4

} =  {

0
0
0
0

} 

 

3.2 Derivation of the New Divergence Method with Neumann Boundary 

Condition 

In this study, the aim is to derive a New Divergence Formulation with Neumann 

Boundary Condition. The general steps in deriving the formulation are as follows: 
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i. Establishment of partial differential equation for heat 

 

𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝑇

𝜕𝑦
) =  0             (3.14)

    

ii. Discretization of the equation based on Finite Element Method. The 

discretized equation is shown as below. ф𝑥 and ф𝑦 is the Neumann Boundary 

Condition. 

 

∫ (𝑘𝑥
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
+ 𝑘𝑦

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦
 ) 𝜕𝐴

𝐴
 {𝑇𝑖} = ∫  (𝑘𝑥𝑁𝑖ф𝑥 + 𝑘𝑦𝑁𝑖ф𝑦 )

𝐴
𝜕𝐴     (3.15) 

 

𝑤ℎ𝑒𝑟𝑒 ф𝑥 =  
𝜕𝑇

𝜕𝑥
       ,     ф𝑦 =  

𝜕𝑇

𝜕𝑦
      

 

iii. The formulation is then discretized using the New Divergence Method and 

the discretized equation is as below. 

 

− ∫ 𝑘𝑦𝑁𝑖

𝜕𝑁𝑖

𝜕𝑦
 

𝑎

0

|𝑦=0 𝜕𝑥 {𝑇𝑖} +  ∫ 𝑘𝑥𝑁𝑖

𝜕𝑁𝑖

𝜕𝑥
 

𝑏

0

|𝑥=𝑎 𝜕𝑦 {𝑇𝑖}

+  ∫ 𝑘𝑦𝑁𝑖

𝜕𝑁𝑖

𝜕𝑦
 

𝑎

0

|𝑦=𝑏 𝜕𝑥 {𝑇𝑖} −  ∫ 𝑘𝑥𝑁𝑖

𝜕𝑁𝑖

𝜕𝑥
 

𝑏

0

|𝑥=0 𝜕𝑦 {𝑇𝑖} 

                                                 = 𝑘𝑥ф𝑥 + 𝑘𝑦ф𝑦                                                             (3.16) 

iv. The equations can be arranged in matrix form of as follow 

 

[𝐾𝑖𝑗]{𝑇𝑖} =  0 
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3.2.1 Implementation of Neumann Boundary Condition in New Divergence         

         Method 

 

The implementation of Neumann Boundary Condition was based on linear 

Taylor Difference which can be illustrated as below. 

 

𝛿𝑇

𝛿𝑥
=  ф 

𝑤ℎ𝑒𝑟𝑒;     Neumann , ф =  
𝑇21 −  𝑇20

𝑑𝑥
 

  

 Taking figure above as the example, in coming out with the Neumann 

equation, the temperature at node 21, 𝑇21 is minus with temperature at node 20, 𝑇20 

and divided with the distance between the two nodes, 𝑑𝑥. The purpose of conducting 

Taylor Difference is to get the temperature gradient of the domain. 

 The implementation of Neumann Boundary Condition in source code for 

Finite Element Method and for the New Divergence Method is different. In Finite 

Element Method, the Neumann equation is included inside the stiffness matrix, [K] 

while for New Divergence Method, the Neumann equation is replacing the existing 

equation, which eventually takes a longer time for Matlab to work on it.  

 

Figure 3.2 : Neumann B.C. at domain 
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3.3 Computer source coding using Matlab 

 

The name MATLAB stands for MATrix LABoratory. MATLAB is a software 

package for high performance numerical computation and visualization. It provides 

an interactive environment with hundreds of built-in functions for technical 

computation, graphics and animations. It also provides easy extensibility with its own 

high-level programming language.  

 MATLAB can be used to create arrays, vectors (vector or matrices) as well as 

performing operations on them. An array is a list of numbers or expressions arranged 

in horizontal and vertical columns. One dimensional arrays are called vector and two-

dimensional arrays are called matrices. 

 Below are the example of commands and the results that can be obtained from 

MATLAB: 

Table 3.1 : MATLAB commands involving vectors 

Commands Results 

>> x=[1 2 3]      or     >> x=[1,2,3] Creates a row vector x = ( 1 2 3 ) 

 

Figure 3.3 : MATLAB Command window 
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>> y=[3;7;9] 
Creates a column vector y = 

3
7
9

 

>> a= x+y This will produce an error 

>> a= x+z a= (3 3 3) 

>> c=x./y This will produce an error 

>> x’ 
Transpose of x. Ans = 

1
2
3

 

>> y’ Transpose of y. Ans = (3 7 9) 

>> t=linspace (0,10,6) Creates a vector t = (0 2 4 6 8 10) 

>> t=[ 0 : 0.2 : pi ] Creates the vector t = ( 0 0.2 0.4 ……pi) 

>> t( 5:length (t) ) = [] Deletes all elements of vector t except 1 

through 4. Ans t=( 0 0.2 0.4 0.6 ) 

 

 

Table 3.1 : MATLAB commands involving matrices 

Commands Results 

>>A = [2,4,6; 1,7,3; 8,4,5] 
Creates a matrix A=

2 4 6
1 7 3
8 4 5

 

>>B = (1:2, 1:3) Creates a matrix B from A. Thus  

B = 
2 4 6
1 7 0

   . Here ‘1:2’ means from 

row 1 to row 2, and ‘1:3’ means from 

column 1 to column 3 

>>C = A ( 1:2, : ) Creates a matric C from A. Ans  

C = 
2 4 6
1 7 0

    . Here ‘:’ means all 

columns, same as 1:3 
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>>A = [2,4,10,13;  

             16,3,7,18; 

             8,4,9,25; 

             3,12,15,17] 

 

 

Creates a matrix A = [

2 4
16 3

10 13
7 18

8 4
3 12

9 25
15 17

] 

>>A (3,:) = [] Deletes the third row in A 

Ans A=[
2 4 10 13

16
3

3
12

7
15

18
17

] 

>>A = eye (3) A is a 3x3 identity matrix 

>>B = zeros (3) B is a 3x3 matrix of zeros 

 

In MATLAB there are two operators used for dividing operations which are: 

1) The right division represented by the symbol ‘/’ or known as ‘slash’ 

2) The left division represented by the symbol ‘\’ or also known as ‘backslash’ 

These two operators differs from one another. The right division is as of what we 

usually make use of. Taking this example; 

𝐴 = 8 , B = 2 

𝐴 𝐵 = 8 2⁄⁄ = 4 

 

Contrary to the right division, the left division works as follows (using the same 

example); 

𝐴\𝐵 = 𝐵 𝐴⁄ = 2 8⁄ = 0.25 

 

Therefore, if the matrix were to solve using backslash operators, the operation will be 

written as: 

>> A=[1 2     ; 2 2]; 

   B=[3 2     ; 1 1]; 

   A\B  
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ans = 

      
−2.0000 −1.0000
    2.5000     1.5000

 

 

3.4 Modelling Using COMSOL Software 

3.4.1 Creating a model guided by the Model Wizard 

1. Setting up a new model can be either guided by the Model Wizard or start 

from a Blank Model. In this project, Model Wizard was used as it guides in 

setting up the dimension, physics and study type.  

 

2. 2D space dimension was selected for the model component. 

 

 

 

Figure 3.4 : Selection of model mode 

Figure 3.5 : Selection of space dimension 
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3. For the Physics interface, Heat Transfer in Solids was added. The Heat 

Transfer in Solids interface is used to model heat transfer by conduction, 

convection, and radiation. The temperature equation defined in solid domains 

corresponds to the differential form of the Fourier's law that may contain 

additional contributions like heat sources. 

 

 

4. Study type selected was Stationary. The Stationary study is used when field 

variables do not change over time where in this heat transfer project, the study 

is to compute the temperature field at thermal equilibrium.  

 

5. Next, click Done and the desktop will display the model tree configured 

based on the choices made. 

Figure 3.6 : Selection of physics interface 

Figure 3.7 : Selection of study type 
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3.4.2 Creating Component 1 

 

1. In the Model Builder window, under Component 1, expand Definitions > 

expand View 1 > Axis. The maximum and minimum length for both x-axis 

and y-axis are set as following: 

 

2. Right click Geometry and select Rectangle.  

 

Figure 3.8 : Setting up axis 

Figure 3.9 : Creating the model domain 
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3. Click at Rectangle 1. In the Rectangle window, specify the size of the model 

as 0.8(W) x 0.5(H) and then click Build Selected. 

Figure 3.10 : Specify domain size 

 

4. Click Heat Transfer in Solids 1. In the Heat Transfer in Solids window, 

change the following: 

 

Thermal conductivity = 600 𝑊/(𝑚. 𝐾) 

Density = 8700 𝑘𝑔/𝑚3 

Heat capacity at constant pressure = 385 𝐽/(𝑘𝑔. 𝐾) 

Figure 3.11 : Specify heat transfer properties 
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5. Click on Initial Values 1 and specify the temperature, 𝑻 = 273.15 𝐾 

 

6. Right click on Heat Transfer in Solids (ht) and click Heat Source 

 

 

 

 

Figure 3.13 : Adding heat source to domain 

Figure 3.12 : Specify temperature value 
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7. Click on Heat Source 1. Under Heat Source tab, click on the General 

source and specify the  

Q = 0 𝑊/𝑚3 

 

 

8. Right click on Heat Transfer in Solids (ht) and click Temperature 

 

Figure 3.14 : Specify value for heat source 

Figure 3.15 : Adding temperature to domain 
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9. Click on Temperature 1 and at the Graphics window, click at the left 

boundary. Specify the temperature, T = 0 𝐾 

 

10. Repeat step 8 & 9 for temperature at the bottom boundary. Specify the 

temperature as T = 2 𝐾 

 

11. Right click on Heat Transfer in Solids (ht) and click Heat Flux.  

 

Figure 3.16 : Specify temperature at the domain 

Figure 3.17 : Adding heat flux to the domain 
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12. Click on Heat Flux 1 and at the Graphics window, click on the right boundary. 

Under Heat Flux tab, click on the General inward heat flux and specify the 

𝑞0 = 3700 𝑊/𝑚2 

 

 

 

 

13. Click on Study 1 in the Model Builder and click Compute to get the contour 

of temperature distribution. 

 

Figure 3.18 : Specify value for heat flux 

Figure 3.19 : Compute the domain to get the temperature contour 
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3.5 Verification of formula and codes 

 At the end of this study a new formulation is expected to be derived. Therefore, 

since it involves deriving a new formulation, the verification of the formula and codes 

need to be done by comparing the results against the existing result which used finite 

element method for heat transfer problem.  

 

3.6 Parametric study 

Choosing parameters for evaluation, characterize the parameter extend, 

determine the outline limitations, and examine the aftereffects of every parameter 

variety are the definition of parametric study.  Therefore, it is crucial to access the 

performance of the new formulation based on the convergence rate 

 

3.7 Discussion 

 To successfully achieve the objectives of this study, thorough discussion is 

needed throughout the study. In this study, detailed discussion will be on the variables 

involved in heat transfer problem which is temperature, the distribution of the heat 

and also the highest gradient of distribution. It is crucial to keep up with all the 

variables that may contribute to the end result. The main concern of new formulation 

is its accuracy as compared to the existing formulation. Apart from that, the computer 

consumption such as how long the time taken to process and how big storage needed 

to be used.
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1 Preliminary Work 

 4.1.1 Heat Transfer Problem Using Finite Element Method  

In this  subtopic, a simple heat transfer problem will be solved using Finite 

Element Method formulation. Four assembled 4-nodes elements are used as the 

domain for this problem. Taking the size of domain as 0.4𝑚(𝑊) 𝑋 0.2𝑚 (𝐻), heat 

source, 𝑄 = 50𝑊/𝑚3 and other parameters as shown in the figure below, step by step 

manual calculations to evaluate the temperature at each node are shown below. 

 

 

 

 

Figure 4.1 : Heat transfer domain 
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Figure 4.2 : Arrangement of elements and nodes 

 

Figure above shows the arrangement of element and global degree of freedom 

numbering for 4-nodes element. 

Each element would have similar conductance matrix and internal heat generation 

forces. 

[𝑘1] = [𝑘2] = [𝑘3] = [𝑘4]                                                                                                (4.2) 

 

By solving the equation for this heat problem using Matlab command “\”, the values 

of the temperature are obtained. The figure below shows the contour of the 

temperature distribution obtained once the equation is plotted in Matlab. 

  

Figure 4.3 : Contour temperature distribution from MATLAB 
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Taking another different condition of heat transfer problem, two different 

methods, Finite Element Method (FEM) and the New Divergence Method (NDM) are 

used to solve this problem. Both methods are discretized following the steps as 

mentioned in the previous chapter.  

4.1.2 Heat Transfer Problem (Comparison using Finite Element 

Method and New Divergence Method) 

 

 

In this heat transfer problem, the rectangular domain has heat source of 

Q=50𝑊/𝑚3 Therefore, in the Partial Differential Equation (PDE), the heat source 

must be included as well. Solving the problem using Matlab software yields the 

following results.  

Considering the same condition and total degree of freedom of 64 elements, 

the problem was solved using MATLAB software and yield the following results. 

Figure below shows the contour of temperature distribution in Kelvin (K) for both 

FEM and NDM. The colour varies depending on the intensity of the temperature on 

the domain. The intensity scale can be seen on the right side of the figure.  

Figure 4.4 : Heat transfer domain 
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As can be seen above, at the top left of the figure. the contour of temperature 

distribution has a slight different between one another. This difference may be due to 

the number of decimal points taken at selected coordinate.  

Figure 4.5 : Contour of temperature distribution from FEM 

Figure 4.6 : Contour of temperature distribution from NDM 
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Since the work is about deriving a new formulation, verification was done by 

comparing the results between FEM and NDM. Temperature at selected coordinates 

was recorded and tabulated as Table 3 below. 

 

Table 4.1 : Temperature for FEM and NDM at selected coordinate 

 

x-
coordinate 

y-
coordinate 

Finite Element Method New Divergence Method 

Temperature (K) 

0 0 0 0 

0.2 0.25 0.927568371 0.918972275 

0.4 0.25 1.429989029 1.41425864 

0.6 0.25 1.646574765 1.642246696 

0.8 0.25 1.70809284 1.709503999 
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Figure 4.7 : Graph of temperature against distance for FEM and NDM 
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From the data table, there is no much difference on the value of temperature 

for both method. Therefore, it can be concluded that the New Divergence Method 

worked perfectly as the Finite Element Method.  

Another checking that need to be done to New Divergence Theorem is the 

Convergence Test. One coordinate of (0.75,0.25) was chosen as point of interest. As 

the degree of freedom was increased, the temperature at the point of interest was 

recorded. The result was tabulated and plot in a graph as below.  

Table 2.2 : Temperature for FEM and NDM at selected degree of freedom 

Degree of Freedom 
Temperature (K) 

Finite Element Method New Divergence Theorem 

36 1.698981797 1.698981797 

121 1.702696723 1.702696723 

441 1.705211763 1.705211763 

961 1.705678014 1.705678014 

1681 1.705691773 1.705691773 

2601 1.705691773 1.705819988 

3721 1.705824073 1.705824073 

5041 1.705835139 1.705835139 

6561 1.70588507 1.70588507 

8281 1.705860858 1.705860858 

10201 1.705872742 1.705872742 
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Figure 4.8 : Graph of temperature against degree of freedom for FEM and NDM 
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From the graph, it can be clearly seen that there is not much difference between 

the temperature at one point as the degree of freedom increases. This verify that the 

New Divergence Method worked.  

4.2 Heat Transfer with Neumann Boundary Condition  

 

In this heat transfer problem, the problem is slightly different from the 

previous discussed chapter. This problem has a Neumann Boundary Condition on the 

right boundary of the domain. The derivation of formulation for heat transfer problem 

with Neumann Boundary Condition has been discussed in the previous chapter.  

The figure below shows the contour of the temperature distribution obtained 

from Finite Element Method and Finite Volume Method once the equation is plotted 

in Matlab. Both method yields the same contour temperature distribution which 

proves that both method works the same. From the graph, it can be seen that on the 

right hand side of the domain, the intensity of the temperature is the highest. This is 

due to the presence of Neumann Boundary Condition which in terms of heat flux.  

Figure 4.9 : Heat transfer problem with Neumann Boundary 

Condition 
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Figure 4.10 : Contour of temperature distribution with Neumann for FEM 

Figure 4.11 : Contour of temperature distribution with Neumann for NDM 
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Figure below shows the contour temperature distribution from COMSOL 

Multiphysics software. COMSOL Multiphysics is a platform for finite element 

analysis. Therefore, the result obtained from COMSOL should not have too much 

difference with the result obtained from Matlab using Finite Element Method. The 

slight difference in the contour temperature distribution may be due to source code 

restriction in Matlab.   

 

4.2.1 Verification Study 

Verification test was done by comparing the results between FEM and NDM. 

Temperature at selected distance was recorded and tabulated as Table 4.3. 

Table 4.3 : Temperature for FEM and NDM at selected distance 

 

 

Distance 

(x-direction) 

Finite Element Method New Divergence Method 

Temperature (K) 

0 0 0 

0.2 1.11679 1.13192 

0.4 1.888926 1.932565 

0.6 2.581402 2.721189 

0.8 3.562975 3.836548 

Figure 4.12 : Contour of temperature distribution from COMSOL software 
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The figure above shows the graph of temperature against the distance in the 

domain. From the graph, it shows that as the distance increases, the temperature 

increases as well. However, there is a slight difference in temperature recorded 

between Finite Element Method and New Divergence Method. Since the work is 

about deriving a new formulation, the result from new method is expected to be a little 

bit lower or higher than the result from existing method. This is when tolerance error 

need to be taken in consideration. In this case, the result of New Divergence Method 

is slightly higher than the Finite Element Method. Despite the difference, the results 

are still acceptable.  

 4.2.2 Parametric Study 

Parametric study was done to access the performance of the New Divergence 

Method to compare with the existing method. The parameters used in this parametric 

study are the degree of freedom and the temperature. Convergence rate between these 

two methods are compared by the plotting of residual error against the degree of 

freedom. The formula used for the calculation of residual error are as follows: 
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Figure 4.13 : Graph of temperature against distance for FEM and NDM 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (%)

=  
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
 𝑋 100 

 

Where; 

Current temperature = Temperature recorded at certain degree of freedom in Kelvin 

Converge temperature = Maximum temperature of the domain in Kelvin = 3.8477 𝐾 

 

Table 4.4 : Percentage error for FEM and NDM at selected degree of freedom 

Degree of 

Freedom 

Finite Element Method New Divergence Method 

Tmax 
Percentage 

Error , % 
Tmax 

Percentage 

Error , % 

2601 3.8476 0.00 3.8849 0.97 

3721 3.8476 0.00 3.8788 0.81 

5041 3.8476 0.00 3.8744 0.69 

8281 3.8477 0.00 3.8685 0.54 

10201 3.8477 0.00 3.8664 0.49 

14641 3.8477 0.00 3.8633 0.41 

29241 3.8477 0.00 3.8587 0.29 

 

 

Figure 4.14 : Graph of residual error against degree of freedom for FEM and NDM 

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 5000 10000 15000 20000 25000 30000 35000

R
es

id
u

a
l 

E
rr

o
r

Degree of Freedom

Graph of Residual Error against Degree of Freedom

NDM FEM



41 
 

The graph above shows the comparison curve between Finite Element Method 

and New Divergence Method based on the plotting of residual error against the degree 

of freedom. As the degree of freedom increases, the temperature starts to converge. 

Thus, the residual error decreases. From the graph, the residual error of the New 

Divergence Method is quite significant to compare with the error from the Finite 

Element Method. This error was expected due to the way the Neumann Boundary 

Condition was implemented in the matrix.  

The implementation of Neumann Boundary Condition which was based on 

linear Taylor Difference may result in less accuracy. Instead of calculating the 

temperature gradient between two nodes, taking several number of nodes and 

calculate the gradient would give a significant and more accurate value. However, a 

better convergence thus expected if a more appropriate interpolation of the boundary 

condition is formulated. 

Another parametric study that was done is to access the time taken for each 

method to compute the temperature in computer software Matlab with the increment 

of degree of freedom. The elapsed time in seconds with the degree of freedom for 

each method are tabulated as below  

 

Table 4.5 : Elapsed time for FEM and NDM at selected degree of freedom 

 

 

Degree of 

Freedom 

Finite Element Method New Divergence Method 

Elapsed Time (s) 

25 0.008914 2.478023 

81 0.017949 2.60808 

169 0.055117 2.818525 

289 0.021947 3.001262 

441 0.039904 3.367504 

961 0.050144 4.45111 

1681 0.229369 6.19935 

2601 0.448826 8.291786 

3721 1.063554 11.275603 

5041 2.247754 15.061531 

8281 8.927647 28.565342 

10201 19.004603 55.616099 
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. From the table, the time taken between FEM and NDM shows a quite huge 

difference as the degree of freedom increases. This difference can be explained due to 

the different way the Neumann Boundary Condition was imposed. For Finite Element 

Method, the Neumann Boundary Condition was imposed by was including the 

Neumann equation inside the stiffness matrix. Meanwhile, for New Divergence 

Method, the existing equation are replaced with the Neumann equation which 

eventually takes a longer time for the software to compute the temperature.  

Another factor that contributes to the difference in the elapsed time is due to 

the source code optimization. In writing the codes for the New Divergence Method, 

direct integration is used. In direct integration, the integration was done in symbolic, 

where it integrates from 0 to an indefinite number. Matlab software is not suitable to 

carry out a symbolic integration as it slows down the process.  
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CHAPTER 5 

 

CONCLUSION AND RECOMMENDATION 

 

The idea of combining two numerical methods, Finite Volume Method and 

Finite Element Method works perfectly as expected. This can be proven from the 

parametric study that has been carried out based on the result obtained. The result 

obtained from FEM is the same as the New Divergence Method. Therefore, it can be 

strongly concluded that this New Divergence Method can be used for this study. The 

next step for this study is to include the Neumann Boundary Condition and verify the 

result.  

The aim of this study is not only to create a new formulation. The formulation 

should work perfectly with the Neumann Boundary Condition. Based on the 

verification test and parametric study, the New Divergence Method with Neumann 

Boundary Condition was found as able to provide converged results. However, the 

rate of convergence is lower than the established Finite Element Method. This is 

identified as being caused by the satisfaction of the Neumann boundary condition 

using a linear Taylor difference. A better convergence thus expected if a more 

appropriate interpolation of the boundary condition is formulated.  

However, the New Divergence Method is still in the developing stage. Further 

study and enhancement need to be done before the method can become useful tools 

for complex engineering problems. 
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APPENDIX B 

 

  
clc;clear all; 

  

kx1=400; 

ky1=400; 

Qa=50; 

  

h1=0; 

t1=0.1; 

  

dx=8; 

dy=8; 

  

Lx=0.4; 

Ly=0.2; 

  

deltax=Lx/dx; 

deltay=Ly/dy; 

  

dofNo=[]; 

NodeNo=[]; 

index=0; 

for i=1:dy 

    for j=1:dx; 

        index=index+1; 

        val1=(dx+1)*(i-1)+j; 

        val2=(dx+1)*(i)+j; 

        Nd1=val1; 

        Nd2=val1+1; 

        Nd3=val2+1; 

        Nd4=val2; 

        NodeNo (index,:)=[Nd1 Nd2 Nd3 Nd4]; 

        dofNo(index,:)=NodeNo(index,:); 

         

    end 

end 

  

TTDOF=max(max(dofNo)); 

  

% syms a b t kx ky h 

[klocal]=klocalmatrix(t1,ky1,deltax,deltay,kx1); 

  

% klocal=subs(k1,{a,b,t,kx,ky,h},{deltax,deltay,t1,kx1,ky1,h1}) 

  

kglobal=zeros(TTDOF,TTDOF); 

flocal=zeros(TTDOF,1); 

  

for i=1:size(dofNo,1) 

    for j=1:4 

        dof1=dofNo(i,j); 

        for k=1:4 

            dof2=dofNo(i,k); 

            kglobal(dof1,dof2)=kglobal(dof1,dof2)+klocal(j,k); 

        end 

    end 

end 

 

a=deltax; 

b=deltay; 

for i=1:size(NodeNo,1) 

    f1=[(Qa*a*b*t1)/4;(Qa*a*b*t1)/4;(Qa*a*b*t1)/4;(Qa*a*b*t1)/4]; 

    for j=1:4 

        dof1=dofNo(i,j); 

        flocal(dof1,1)=flocal(dof1,1)+f1(j,1); 

    end 

end 
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dofe=[81;80;79;78;77;76;75;74;73;64;55;46;37;28;19;10;1]; 

for i=1:size(dofe,1); 

    val1=dofe(i,1); 

    kglobal(val1,:)=[]; 

    kglobal(:,val1)=[]; 

    flocal(val1,:)=[]; 

end 

  

T=kglobal\flocal 

  

Tori=zeros(TTDOF,1); 

Tori(2:9,1)=T(1:8,1); 

Tori(11:18,1)=T(9:16,1); 

Tori(20:27,1)=T(17:24,1); 

Tori(29:36,1)=T(25:32,1); 

Tori(38:45,1)=T(33:40,1); 

Tori(47:54,1)=T(41:48,1); 

Tori(56:63,1)=T(49:56,1); 

Tori(65:72,1)=T(57:64,1);  

  

Zx=[]; 

index=0; 

for i=1:dy+1 

    for j=1:dx+1 

        index=index+1; 

        x_val=Tori(index,1); 

        Zx(i,j)=x_val; 

    end 

end 

  

[X,Y] = meshgrid(0:deltax:Lx, 0:deltay:Ly); 

  

% figure (1) 

% surf(X,Y,Zx) 

% title('Temperature (K)') 

% colorbar 

  

figure(2) 

surf(X,Y,Zx) 

colormap(jet) 

title('Temperature') 

% xlabel('string') 

% ylabel('string') 

colorbar 
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APPENDIX C 

  

clc;clear all; 

  

kx1=600; 

ky1=600; 

Qa=0; 

  

h1=0; 

t1=0.2; 

  

dx=100; 

dy=100; 

  

Lx=0.8; 

Ly=0.5; 

  

deltax=Lx/dx; 

deltay=Ly/dy; 

  

Node_xy = []; 

index = 0; 

for iy = 1:dy+1 

    ycoor = (iy-1)*deltay; 

    for ix = 1:dx+1 

        xcoor = (ix-1)*deltax; 

        index = index + 1; 

        Node_xy(index,:) = [xcoor ycoor]; 

    end 

end  

  

dofNo=[]; 

NodeNo=[]; 

index=0; 

for i=1:dy 

    for j=1:dx 

        index=index+1; 

        val1=(dx+1)*(i-1)+j; 

        val2=(dx+1)*(i)+j; 

        Nd1=val1; 

        Nd2=val1+1; 

        Nd3=val2+1; 

        Nd4=val2; 

        NodeNo(index,:)=[Nd1 Nd2 Nd3 Nd4]; 

        dofNo(index,:)=NodeNo(index,:); 

    end 

end 

 

 

  

TTDOF= max(max(dofNo)); 

  

% syms a b t kx ky h 

[klocal]=klocalmatrix (t1,ky1,deltax,deltay,kx1); 

  

kglobal=zeros(TTDOF,TTDOF); 

flocal=zeros(TTDOF,1); 

 

for i=1:size(dofNo,1) 

    for j=1:4 

        dof1=dofNo(i,j); 

        for k=1:4 

            dof2=dofNo(i,k); 

            kglobal(dof1,dof2)=kglobal(dof1,dof2)+klocal(j,k); 

        end 

    end 

end 
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for iNode = 1:TTDOF 

    xx = Node_xy(iNode,1); 

    yy = Node_xy(iNode,2); 

     

    if xx == 0 

       kglobal(iNode, :)       = 0; 

        kglobal(iNode, iNode)   = 1; 

        flocal(iNode, :)       = 0; 

  

    elseif yy == 0 

        kglobal(iNode, :)       = 0; 

        kglobal(iNode, iNode)   = 1; 

        flocal(iNode, :)       = 2; 

    end 

     

     

end 

T=kglobal\flocal 

  

Zx=[]; 

index=0; 

for i=1:dy+1 

    for j=1:dx+1 

        index=index+1; 

        x_val=T(index,1); 

        Zx(i,j)=x_val; 

    end 

end 

  

[X,Y] = meshgrid(0:deltax:Lx, 0:deltay:Ly); 

  

figure(1) 

  

surf(X,Y,Zx,'edgecolor','none') 

shading interp 

title('Temperature (K)- Finite Element Method') 

colorbar 

colormap(jet) 

  

%  Result interpolation 

FT  = TriScatteredInterp(Node_xy(:,1),Node_xy(:,2),T); 

  

% Display Result 

Node_disp = [0.75 0.25;]; 

             

Data_Result = []; 

for iNode = 1:size(Node_disp,1) 

    xcoor = Node_disp(iNode,1); 

    ycoor = Node_disp(iNode,2); 

    TempV = FT(xcoor,ycoor); 

    Data_Result(iNode,:) = [xcoor ycoor TempV]; 

end 
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APPENDIX D   

function [klocal]=klocalmatrix(t,ky,a,b,kx) 

klocal = [t * ky * a / b / 0.3e1 + t * kx / a * b / 0.3e1 t * ky * a / b / ... 

    0.6e1 - t * kx / a * b / 0.3e1 -t * kx / a * b / 0.6e1 - t * ky * a / b... 

    / 0.6e1 t * kx / a * b / 0.6e1 - t * ky * a / b / 0.3e1; t * ky * a / b... 

    / 0.6e1 - t * kx / a * b / 0.3e1 t * ky * a / b / 0.3e1 + t * kx / a * ... 

    b / 0.3e1 t * kx / a * b / 0.6e1 - t * ky * a / b / 0.3e1 -t * kx / a *... 

    b / 0.6e1 - t * ky * a / b / 0.6e1; -t * kx / a * b / 0.6e1 - t * ky * ... 

    a / b / 0.6e1 t * kx / a * b / 0.6e1 - t * ky * a / b / 0.3e1 t * ky * ... 

    a / b / 0.3e1 + t * kx / a * b / 0.3e1 t * ky * a / b / 0.6e1 - t * kx ... 

    / a * b / 0.3e1; t * kx / a * b / 0.6e1 - t * ky * a / b / 0.3e1 -t * ... 

    kx / a * b / 0.6e1 - t * ky * a / b / 0.6e1 t * ky * a / b / 0.6e1 - t... 

    * kx / a * b / 0.3e1 t * ky * a / b / 0.3e1 + t * kx / a * b / 0.3e1;]; 

end 
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APPENDIX E 

clc;clear all; 

tic 

%-------------------------------------------------------------------------- 

% Input 

%-------------------------------------------------------------------------- 

%               

%     (0,b)   Side4   (a,b) 

%       +---------------+ 

%       +               + 

% Side1 +               + Side3 

%       +               + 

%       +---------------+ 

%     (0,0)   Side2   (a,0) 

  

Lx = 0.8; 

Ly = 0.5; 

Q=0; 

maxelement=50; 

azizam=1; 

  

for fatin=7%:2:maxelement; 

    

DivX = fatin; %element in x-direction 

DivY = fatin; %element in y-direction  

  

a = Lx/DivX; % width of element 

b = Ly/DivY; % height of element 

  

% Generate Node 

Node_xy = []; 

index = 0; 

for iy = 1:DivY+1 

    ycoor = (iy-1)*b; 

    for ix = 1:DivX+1 

        xcoor = (ix-1)*a; 

        index = index + 1; 

        Node_xy(index,:) = [xcoor ycoor]; 

    end 

end  

  

% Generate connectivity matrix 

TEle = DivX*DivY; % Total Element; 

Ele_dof = zeros(DivX*DivY,4); 

index = 0; 

for iy = 1:DivY 

    for ix = 1:DivX 

        nd1 = (iy-1)*(DivX+1) + ix; 

        nd2 = nd1 + 1; 

        nd4 = iy*(DivX+1) + ix; 

        nd3 = nd4 +1; 

         

        index = index + 1; 

        Ele_dof(index,:)=[nd1 nd2 nd3 nd4]; 

    end 

end 

  

TN = max(max(Ele_dof)) % Total node  

 

%-------------------------------------------------------------------------- 

% Shape function 

%-------------------------------------------------------------------------- 

% [Ni,dNidx,dNidy] = Q4_Phy_ShapeFunc(a,b); 

% Ni = matlabFunction(Ni);     

% dNidx = matlabFunction(dNidx);        

% dNidy = matlabFunction(dNidy);      
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syms x y 

  

N1 = @(x,y)1 - 1 / a * x - 1 / b * y + 1 / a / b * x * y; 

N2 = @(x,y)0.1e1 / a * x - 0.1e1 / a / b * x * y; 

N3 = @(x,y)0.1e1 / a / b * x * y; 

N4 = @(x,y)0.1e1 / b * y - 0.1e1 / a / b * x * y; 

  

dN1dx = @(y)-0.1e1 / a + 0.1e1 / a / b * y; 

dN2dx = @(y)0.1e1 / a - 0.1e1 / a / b * y; 

dN3dx = @(y)0.1e1 / a / b * y; 

dN4dx = @(y)-0.1e1 / a / b * y; 

  

dN1dy = @(x)-0.1e1 / b + 0.1e1 / a / b * x; 

dN2dy = @(x)-0.1e1 / a / b * x; 

dN3dy = @(x)0.1e1 / a / b * x; 

dN4dy = @(x)0.1e1 / b - 0.1e1 / a / b * x; 

  

%-------------------------------------------------------------------------- 

% R1 

%-------------------------------------------------------------------------- 

% R1L1 

Term11 = int(eval((subs(N1,x,0))*(subs(dN1dx,x,0))),y,0,b); 

Term12 = int(eval((subs(N1,x,0))*(subs(dN2dx,x,0))),y,0,b); 

Term13 = int(eval((subs(N1,x,0))*(subs(dN3dx,x,0))),y,0,b); 

Term14 = int(eval((subs(N1,x,0))*(subs(dN4dx,x,0))),y,0,b); 

TermR1L1 = [Term11 Term12 Term13 Term14]; 

  

% R1L2 

Term11 = int(eval((subs(N1,y,0))*(subs(dN1dy,y,0))),x,0,a); 

Term12 = int(eval((subs(N1,y,0))*(subs(dN2dy,y,0))),x,0,a); 

Term13 = int(eval((subs(N1,y,0))*(subs(dN3dy,y,0))),x,0,a); 

Term14 = int(eval((subs(N1,y,0))*(subs(dN4dy,y,0))),x,0,a); 

TermR1L2 = [Term11 Term12 Term13 Term14]; 

  

% R1L3 

Term11 = int(eval((subs(N1,x,a))*(subs(dN1dx,x,a))),y,0,b); 

Term12 = int(eval((subs(N1,x,a))*(subs(dN2dx,x,a))),y,0,b); 

Term13 = int(eval((subs(N1,x,a))*(subs(dN3dx,x,a))),y,0,b); 

Term14 = int(eval((subs(N1,x,a))*(subs(dN4dx,x,a))),y,0,b); 

TermR1L3 = [Term11 Term12 Term13 Term14]; 

  

% R1L4 

Term11 = int(eval((subs(N1,y,b))*(subs(dN1dy,y,b))),x,0,a); 

Term12 = int(eval((subs(N1,y,b))*(subs(dN2dy,y,b))),x,0,a); 

Term13 = int(eval((subs(N1,y,b))*(subs(dN3dy,y,b))),x,0,a); 

Term14 = int(eval((subs(N1,y,b))*(subs(dN4dy,y,b))),x,0,a); 

TermR1L4 = [Term11 Term12 Term13 Term14]; 

  

R1 = - TermR1L1 - TermR1L2 + TermR1L3 + TermR1L4; 

 

%-------------------------------------------------------------------------- 

% R2 

%-------------------------------------------------------------------------- 

% R2L1 

Term11 = int(eval((subs(N2,x,0))*(subs(dN1dx,x,0))),y,0,b); 

Term12 = int(eval((subs(N2,x,0))*(subs(dN2dx,x,0))),y,0,b); 

Term13 = int(eval((subs(N2,x,0))*(subs(dN3dx,x,0))),y,0,b); 

Term14 = int(eval((subs(N2,x,0))*(subs(dN4dx,x,0))),y,0,b); 

TermR2L1 = [Term11 Term12 Term13 Term14]; 

  

% R2L2 

Term11 = int(eval((subs(N2,y,0))*(subs(dN1dy,y,0))),x,0,a); 

Term12 = int(eval((subs(N2,y,0))*(subs(dN2dy,y,0))),x,0,a); 

Term13 = int(eval((subs(N2,y,0))*(subs(dN3dy,y,0))),x,0,a); 

Term14 = int(eval((subs(N2,y,0))*(subs(dN4dy,y,0))),x,0,a); 

TermR2L2 = [Term11 Term12 Term13 Term14]; 

  

% R2L3 

Term11 = int(eval((subs(N2,x,a))*(subs(dN1dx,x,a))),y,0,b); 

Term12 = int(eval((subs(N2,x,a))*(subs(dN2dx,x,a))),y,0,b); 

Term13 = int(eval((subs(N2,x,a))*(subs(dN3dx,x,a))),y,0,b); 

Term14 = int(eval((subs(N2,x,a))*(subs(dN4dx,x,a))),y,0,b); 

TermR2L3 = [Term11 Term12 Term13 Term14]; 
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% R2L4 

Term11 = int(eval((subs(N2,y,b))*(subs(dN1dy,y,b))),x,0,a); 

Term12 = int(eval((subs(N2,y,b))*(subs(dN2dy,y,b))),x,0,a); 

Term13 = int(eval((subs(N2,y,b))*(subs(dN3dy,y,b))),x,0,a); 

Term14 = int(eval((subs(N2,y,b))*(subs(dN4dy,y,b))),x,0,a); 

TermR2L4 = [Term11 Term12 Term13 Term14]; 

  

R2 = - TermR2L1 - TermR2L2 + TermR2L3 + TermR2L4; 

%-------------------------------------------------------------------------- 

% R3 

%-------------------------------------------------------------------------- 

% R3L1 

Term11 = int(eval((subs(N3,x,0))*(subs(dN1dx,x,0))),y,0,b); 

Term12 = int(eval((subs(N3,x,0))*(subs(dN2dx,x,0))),y,0,b); 

Term13 = int(eval((subs(N3,x,0))*(subs(dN3dx,x,0))),y,0,b); 

Term14 = int(eval((subs(N3,x,0))*(subs(dN4dx,x,0))),y,0,b); 

TermR3L1 = [Term11 Term12 Term13 Term14]; 

  

% R3L2 

Term11 = int(eval((subs(N3,y,0))*(subs(dN1dy,y,0))),x,0,a); 

Term12 = int(eval((subs(N3,y,0))*(subs(dN2dy,y,0))),x,0,a); 

Term13 = int(eval((subs(N3,y,0))*(subs(dN3dy,y,0))),x,0,a); 

Term14 = int(eval((subs(N3,y,0))*(subs(dN4dy,y,0))),x,0,a); 

TermR3L2 = [Term11 Term12 Term13 Term14]; 

  

% R3L3 

Term11 = int(eval((subs(N3,x,a))*(subs(dN1dx,x,a))),y,0,b); 

Term12 = int(eval((subs(N3,x,a))*(subs(dN2dx,x,a))),y,0,b); 

Term13 = int(eval((subs(N3,x,a))*(subs(dN3dx,x,a))),y,0,b); 

Term14 = int(eval((subs(N3,x,a))*(subs(dN4dx,x,a))),y,0,b); 

TermR3L3 = [Term11 Term12 Term13 Term14]; 

  

% R3L4 

Term11 = int(eval((subs(N3,y,b))*(subs(dN1dy,y,b))),x,0,a); 

Term12 = int(eval((subs(N3,y,b))*(subs(dN2dy,y,b))),x,0,a); 

Term13 = int(eval((subs(N3,y,b))*(subs(dN3dy,y,b))),x,0,a); 

Term14 = int(eval((subs(N3,y,b))*(subs(dN4dy,y,b))),x,0,a); 

TermR3L4 = [Term11 Term12 Term13 Term14]; 

  

R3 = - TermR3L1 - TermR3L2 + TermR3L3 + TermR3L4; 

%-------------------------------------------------------------------------- 

% R4 

%-------------------------------------------------------------------------- 

% R4L1 

Term11 = int(eval((subs(N4,x,0))*(subs(dN1dx,x,0))),y,0,b); 

Term12 = int(eval((subs(N4,x,0))*(subs(dN2dx,x,0))),y,0,b); 

Term13 = int(eval((subs(N4,x,0))*(subs(dN3dx,x,0))),y,0,b); 

Term14 = int(eval((subs(N4,x,0))*(subs(dN4dx,x,0))),y,0,b); 

TermR4L1 = [Term11 Term12 Term13 Term14]; 

  

% R4L2 

Term11 = int(eval((subs(N4,y,0))*(subs(dN1dy,y,0))),x,0,a); 

Term12 = int(eval((subs(N4,y,0))*(subs(dN2dy,y,0))),x,0,a); 

Term13 = int(eval((subs(N4,y,0))*(subs(dN3dy,y,0))),x,0,a); 

Term14 = int(eval((subs(N4,y,0))*(subs(dN4dy,y,0))),x,0,a); 

TermR4L2 = [Term11 Term12 Term13 Term14]; 

  

% R4L3 

Term11 = int(eval((subs(N4,x,a))*(subs(dN1dx,x,a))),y,0,b); 

Term12 = int(eval((subs(N4,x,a))*(subs(dN2dx,x,a))),y,0,b); 

Term13 = int(eval((subs(N4,x,a))*(subs(dN3dx,x,a))),y,0,b); 

Term14 = int(eval((subs(N4,x,a))*(subs(dN4dx,x,a))),y,0,b); 

TermR4L3 = [Term11 Term12 Term13 Term14]; 

 

% R4L4 

Term11 = int(eval((subs(N4,y,b))*(subs(dN1dy,y,b))),x,0,a); 

Term12 = int(eval((subs(N4,y,b))*(subs(dN2dy,y,b))),x,0,a); 

Term13 = int(eval((subs(N4,y,b))*(subs(dN3dy,y,b))),x,0,a); 

Term14 = int(eval((subs(N4,y,b))*(subs(dN4dy,y,b))),x,0,a); 

TermR4L4 = [Term11 Term12 Term13 Term14]; 

  

R4 = - TermR4L1 - TermR4L2 + TermR4L3 + TermR4L4; 
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%-------------------------------------------------------------------------- 

% klocal 

%-------------------------------------------------------------------------- 

klocal1 = [R1;R2;R3;R4]; 

  

% klocal2 = [   a/(3*b) + b/(3*a),   a/(6*b) - b/(3*a), - a/(6*b) - b/(6*a),   b/(6*a) - a/(3*b); 

%            a/(6*b) - b/(3*a),   a/(3*b) + b/(3*a),   b/(6*a) - a/(3*b), - a/(6*b) - b/(6*a); 

%          - a/(6*b) - b/(6*a),   b/(6*a) - a/(3*b),   a/(3*b) + b/(3*a),   a/(6*b) - b/(3*a); 

%           b/(6*a) - a/(3*b), - a/(6*b) - b/(6*a),   a/(6*b) - b/(3*a),   a/(3*b) + b/(3*a)] 

%  

%  

% res = klocal2-klocal1; 

  

klocal = klocal1; 

 

%-------------------------------------------------------------------------- 

% flocal 

%-------------------------------------------------------------------------- 

flocal=[Q * a * b / 0.4e1; 

        Q * a * b / 0.4e1; 

        Q * a * b / 0.4e1; 

        Q * a * b / 0.4e1;]; 

 

%-------------------------------------------------------------------------- 

% procedure 

%-------------------------------------------------------------------------- 

  

KG = zeros(TN,TN); 

FG = zeros(TN,1); 

  

% Assemble 

for iEle = 1:size(Ele_dof,1) 

    uvw = Ele_dof(iEle,:); 

    KG(uvw,uvw) = KG(uvw,uvw) + klocal; 

    FG(uvw,1) = FG(uvw,1) + flocal; 

end 

% [ KG,FG ] = NEUMANN( KG,FG,Node_xy, a, TN) 

  

% Specify DOF 

for iNode = 1:TN 

    xx = Node_xy(iNode,1); 

    yy = Node_xy(iNode,2); 

     

    if xx == 0 

        KG(iNode, :)       = 0; 

        KG(iNode, iNode)   = 1; 

        FG(iNode, :)       = 0; 

%     elseif xx == DivX*a 

%         KG(iNode, :)       = 0; 

%         KG(iNode, iNode)   = 1; 

%         FG(iNode, :)       = 6; 

    elseif yy == 0 

        KG(iNode, :)       = 0; 

        KG(iNode, iNode)   = 1; 

        FG(iNode, :)       = 2; 

    end 

     

     

end 

 

% solve simultaneous equation 

dof = KG\FG; 

% dof' 

maxT(azizam,1)=TN; 

maxT(azizam,2)=max(dof) 

tt=toc 

maxT(azizam,3)=tt; 

azizam=azizam+1; 

clc 

end 

maxT 
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%-------------------------------------------------------------------------- 

% plot result 

%-------------------------------------------------------------------------- 

  

%  Result interpolation 

FT  = TriScatteredInterp(Node_xy(:,1),Node_xy(:,2),dof); 

%  

% % Evaluate Result 

coor_x = []; 

coor_y = []; 

coor_z = []; 

disp_T = []; 

 

for iele = 1:size(Ele_dof,1) 

    Nd1 = Ele_dof(iele,1); 

    Nd2 = Ele_dof(iele,2); 

    Nd3 = Ele_dof(iele,3); 

    Nd4 = Ele_dof(iele,4); 

     

    x1 = Node_xy(Nd1,1); 

    x2 = Node_xy(Nd2,1); 

    x3 = Node_xy(Nd3,1); 

    x4 = Node_xy(Nd4,1); 

     

    y1 = Node_xy(Nd1,2); 

    y2 = Node_xy(Nd2,2); 

    y3 = Node_xy(Nd3,2); 

    y4 = Node_xy(Nd4,2); 

     

    T1 = FT(x1,y1); 

    T2 = FT(x2,y2); 

    T3 = FT(x3,y3); 

    T4 = FT(x4,y4); 

     

    coor_x(:,iele) = [x1;x2;x3;x4]; 

    coor_y(:,iele) = [y1;y2;y3;y4]; 

    coor_z(:,iele) = [1;1;1;1]; 

    disp_T(:,iele) = [T1;T2;T3;T4]; 

end 

  

figure(2) 

fill3(coor_x,coor_y,coor_z,disp_T,'EdgeColor','none') 

colormap(jet) 

title('Temperature (K)- New Divergence Method')%(Total Node = ' num2str(TN) ' and Total Ele = ' 

num2str(TEle) ' )']) 

% xlabel('string') 

% ylabel('string') 

colorbar 

% Display Result 

Node_disp = [0 0; 

             0.2 0.25; 

             0.4 0.25; 

             0.6 0.25; 

             0.8 0.25]; 

Data_Result = []; 

for iNode = 1:size(Node_disp,1) 

    xcoor = Node_disp(iNode,1); 

    ycoor = Node_disp(iNode,2); 

    TempV = FT(xcoor,ycoor); 

    Data_Result(iNode,:) = [xcoor ycoor TempV]; 

end 

Data_Input = [DivX DivY TN] 

Data_Result 

  

% if centre 6,4 have dof 

Val = [0 0]; 

for iNode = 1:TN 

    xcoor = Node_xy(iNode,1); 

    ycoor = Node_xy(iNode,2); 

    if xcoor == 6 && ycoor == 4 

        TempV = dof(iNode,1); 

        Val = [iNode TempV]; 

    end 

end 

Val 
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APPENDIX F 

clc;clear; 

%-------------------------------------------------------------------------- 

% Input 

%-------------------------------------------------------------------------- 

Lx  = 0.8;  % Total length in x-direction (m) 

Ly  = 0.5;  % Total length in y-direction (m) 

kxy = 600;  % Thermal conductivity (W/m.K) 

Q   = 0;    % Heat source (W/m^3) 

qx  = 3700; % Heat flux (W/m2) 

  

tic 

  

divX = 100;   % No of element in x-direction 

divY = 100;   % No of element in y-direction 

  

%-------------------------------------------------------------------------- 

% Prepare data for FEM procedure 

%-------------------------------------------------------------------------- 

deltaX = Lx/divX;   % Elemental length in x-direction (m) 

deltaY = Ly/divY;   % Elemental length in y-direction (m) 

  

% Generate node coordinate, Node_xy 

Node_xy = []; 

iNode = 0; 

for iy = 1:divY+1 

    ycoor = (iy-1)*deltaY; 

    for ix = 1:divX+1 

        xcoor = (ix-1)*deltaX; 

        iNode = iNode + 1; 

        Node_xy(iNode,:) = [xcoor ycoor]; 

    end 

end  

  

% Generate Connectivity Matrix, ConvMat 

ConvMat = []; 

iNode = 0; 

for ix = 1:divY 

    for iy = 1:divX 

        iNode   = iNode+1; 

        val1    = (divX+1)*(ix-1)+iy; 

        val2    = (divX+1)*(ix)+iy; 

        Nd1     = val1; 

        Nd2     = val1+1; 

        Nd3     = val2+1; 

        Nd4     = val2; 

        ConvMat(iNode,:) = [Nd1 Nd2 Nd3 Nd4]; 

    end 

end 

  

TNodes = size(Node_xy,1);   % Total number of node 

NumEle = size(ConvMat,1);   % Total number of element 

 

%-------------------------------------------------------------------------- 

% Local stiffness,body force vector and flux vector 

%-------------------------------------------------------------------------- 

a = deltaX; 

b = deltaY; 

klocal_xx = [kxy / a * b / 0.3e1 -kxy / a * b / 0.3e1 -kxy / a * b / 0.6e1 kxy / a * b / 0.6e1; 

            -kxy / a * b / 0.3e1 kxy / a * b / 0.3e1 kxy / a * b / 0.6e1 -kxy / a * b / 0.6e1;  

            -kxy / a * b / 0.6e1 kxy / a * b / 0.6e1 kxy / a * b / 0.3e1 -kxy / a * b / 0.3e1;  

             kxy / a * b / 0.6e1 -kxy / a * b / 0.6e1 -kxy / a * b / 0.3e1 kxy / a * b / 0.3e1;]; 

klocal_yy = [kxy / b * a / 0.3e1 kxy / b * a / 0.6e1 -kxy / b * a / 0.6e1 -kxy / b * a / 0.3e1; 

             kxy / b * a / 0.6e1 kxy / b * a / 0.3e1 -kxy / b * a / 0.3e1 -kxy / b * a / 0.6e1; 

            -kxy / b * a / 0.6e1 -kxy / b * a / 0.3e1 kxy / b * a / 0.3e1 kxy / b * a / 0.6e1;  

            -kxy / b * a / 0.3e1 -kxy / b * a / 0.6e1 kxy / b * a / 0.6e1 kxy / b * a / 0.3e1;]; 
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klocal = klocal_xx + klocal_yy; 

  

fheat = [Q * a * b / 0.4e1;  

         Q * a * b / 0.4e1;  

         Q * a * b / 0.4e1;  

         Q * a * b / 0.4e1;]; 

      

fflux = [0;  

         qx * b / 0.2e1;  

         qx * b / 0.2e1;  

         0;]; 

%-------------------------------------------------------------------------- 

% Assemble into global stiffness and vector 

%-------------------------------------------------------------------------- 

Fglobal = zeros(TNodes,1); 

Kglobal = zeros(TNodes,TNodes); 

  

for iEle = 1:NumEle 

     

    uv = ConvMat(iEle,:);   % Element connectivity 

     

    Fglobal(uv,1)  = Fglobal(uv,1) + fheat;  

    Kglobal(uv,uv) = Kglobal(uv,uv) + klocal;    

     

    % Check element at flux boundary 

    Node2 = uv(2); 

    Node3 = uv(3); 

     

    x2 = Node_xy(Node2,1); 

    x3 = Node_xy(Node3,1);  

     

    if x2 == Lx || x3 == Lx % If element node at flux boundary 

        Fglobal(uv,1)  = Fglobal(uv,1) + fflux; 

    end 

     

end 

  

%-------------------------------------------------------------------------- 

% Specify dirichlet boundary condition (Temperature,T) 

%-------------------------------------------------------------------------- 

  

for iNode = 1:TNodes 

     

    x_coor = Node_xy(iNode,1); 

    y_coor = Node_xy(iNode,2); 

     

    if x_coor == 0 

         

        Kglobal(iNode, :)       = 0; 

        Kglobal(iNode, iNode)   = 1; 

        Fglobal(iNode, :)       = 0; 

         

    elseif y_coor == 0  

         

        Kglobal(iNode, :)       = 0; 

        Kglobal(iNode, iNode)   = 1; 

        Fglobal(iNode, :)       = 2; 

         

    end 

     

end 

  

%-------------------------------------------------------------------------- 

% Solve simultaneous eqn for Temperature,T 

%-------------------------------------------------------------------------- 

T = Kglobal \ Fglobal; 

  

toc 
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%-------------------------------------------------------------------------- 

% Display result 

%-------------------------------------------------------------------------- 

%  Result interpolation 

FT  = scatteredInterpolant(Node_xy(:,1),Node_xy(:,2),T); 

  

Node_disp = [0.75 0.4]; 

             

Data_Result = []; 

for iNode = 1:size(Node_disp,1) 

    xcoor = Node_disp(iNode,1); 

    ycoor = Node_disp(iNode,2); 

    TempV = FT(xcoor,ycoor); 

    Data_Result(iNode,:) = [xcoor ycoor TempV]; 

end 

FEM_Result = Data_Result 

  

  

  

%-------------------------------------------------------------------------- 

% Plot result of Temperature,T 

%-------------------------------------------------------------------------- 

Zx=[]; 

index=0; 

for ix = 1:divY+1 

    for iy = 1:divX+1 

        index   = index+1; 

        x_val   = T(index,1); 

        Zx(ix,iy)   = x_val; 

    end 

end 

  

[X,Y] = meshgrid(0:deltaX:Lx, 0:deltaY:Ly); 

  

figure(1) 

  

surf(X,Y,Zx,'edgecolor','none') 

shading interp 

title('Temperature (K)- Finite Element Method') 

colorbar 

colormap(jet) 

  

%-------------------------------------------------------------------------- 

% End of coding 

%-------------------------------------------------------------------------- 
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APPENDIX G 

clc;clear all; 

  

%-------------------------------------------------------------------------- 

% Input 

%-------------------------------------------------------------------------- 

%               

%     (0,b)   Side4   (a,b) 

%       +---------------+ 

%       +               + 

% Side1 +               + Side3 

%       +               + 

%       +---------------+ 

%     (0,0)   Side2   (a,0) 

  

Lx = 0.8; 

Ly = 0.5; 

kxy = 600; 

Q = 0; 

maxelement = 20; 

azizam = 1; 

  

tic 

  

for fatin=100%:2:maxelement; 

    

DivX = fatin; %element in x-direction 

DivY = fatin; %element in y-direction  

  

a = Lx/DivX; % width of element 

b = Ly/DivY; % height of element 

  

% Generate Node 

Node_xy = []; 

index = 0; 

for iy = 1:DivY+1 

    ycoor = (iy-1)*b; 

    for ix = 1:DivX+1 

        xcoor = (ix-1)*a; 

        index = index + 1; 

        Node_xy(index,:) = [xcoor ycoor]; 

    end 

end  

  

% Generate connectivity matrix 

TEle = DivX*DivY; % Total Element; 

Ele_dof = zeros(DivX*DivY,4); 

index = 0; 

for iy = 1:DivY 

    for ix = 1:DivX 

        nd1 = (iy-1)*(DivX+1) + ix; 

        nd2 = nd1 + 1; 

        nd4 = iy*(DivX+1) + ix; 

        nd3 = nd4 +1; 

         

        index = index + 1; 

        Ele_dof(index,:)=[nd1 nd2 nd3 nd4]; 

    end 

end 

  

TN = max(max(Ele_dof)) % Total node  

  

  

%-------------------------------------------------------------------------- 

% Shape function 

%-------------------------------------------------------------------------- 

% [Ni,dNidx,dNidy] = Q4_Phy_ShapeFunc(a,b); 

% Ni = matlabFunction(Ni);     

% dNidx = matlabFunction(dNidx);        

% dNidy = matlabFunction(dNidy);      

  

syms x y 

  

N1 = @(x,y)1 - 1 / a * x - 1 / b * y + 1 / a / b * x * y; 

N2 = @(x,y)0.1e1 / a * x - 0.1e1 / a / b * x * y; 

N3 = @(x,y)0.1e1 / a / b * x * y; 

N4 = @(x,y)0.1e1 / b * y - 0.1e1 / a / b * x * y; 

  

dN1dx = @(y)-0.1e1 / a + 0.1e1 / a / b * y; 

dN2dx = @(y)0.1e1 / a - 0.1e1 / a / b * y; 

dN3dx = @(y)0.1e1 / a / b * y; 

dN4dx = @(y)-0.1e1 / a / b * y; 
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N1 = @(x,y)1 - 1 / a * x - 1 / b * y + 1 / a / b * x * y; 

N2 = @(x,y)0.1e1 / a * x - 0.1e1 / a / b * x * y; 

N3 = @(x,y)0.1e1 / a / b * x * y; 

N4 = @(x,y)0.1e1 / b * y - 0.1e1 / a / b * x * y; 

  

dN1dx = @(y)-0.1e1 / a + 0.1e1 / a / b * y; 

dN2dx = @(y)0.1e1 / a - 0.1e1 / a / b * y; 

dN3dx = @(y)0.1e1 / a / b * y; 

dN4dx = @(y)-0.1e1 / a / b * y; 

  

 

dN1dy = @(x)-0.1e1 / b + 0.1e1 / a / b * x; 

dN2dy = @(x)-0.1e1 / a / b * x; 

dN3dy = @(x)0.1e1 / a / b * x; 

dN4dy = @(x)0.1e1 / b - 0.1e1 / a / b * x; 

  

%-------------------------------------------------------------------------- 

% R1 

%-------------------------------------------------------------------------- 

% R1L1 

Term11 = int(eval((subs(N1,x,0))*kxy*(subs(dN1dx,x,0))),y,0,b); 

Term12 = int(eval((subs(N1,x,0))*kxy*(subs(dN2dx,x,0))),y,0,b); 

Term13 = int(eval((subs(N1,x,0))*kxy*(subs(dN3dx,x,0))),y,0,b); 

Term14 = int(eval((subs(N1,x,0))*kxy*(subs(dN4dx,x,0))),y,0,b); 

TermR1L1 = [Term11 Term12 Term13 Term14]; 

  

% R1L2 

Term11 = int(eval((subs(N1,y,0))*kxy*(subs(dN1dy,y,0))),x,0,a); 

Term12 = int(eval((subs(N1,y,0))*kxy*(subs(dN2dy,y,0))),x,0,a); 

Term13 = int(eval((subs(N1,y,0))*kxy*(subs(dN3dy,y,0))),x,0,a); 

Term14 = int(eval((subs(N1,y,0))*kxy*(subs(dN4dy,y,0))),x,0,a); 

TermR1L2 = [Term11 Term12 Term13 Term14]; 

  

% R1L3 

Term11 = int(eval((subs(N1,x,a))*kxy*(subs(dN1dx,x,a))),y,0,b); 

Term12 = int(eval((subs(N1,x,a))*kxy*(subs(dN2dx,x,a))),y,0,b); 

Term13 = int(eval((subs(N1,x,a))*kxy*(subs(dN3dx,x,a))),y,0,b); 

Term14 = int(eval((subs(N1,x,a))*kxy*(subs(dN4dx,x,a))),y,0,b); 

TermR1L3 = [Term11 Term12 Term13 Term14]; 

  

% R1L4 

Term11 = int(eval((subs(N1,y,b))*kxy*(subs(dN1dy,y,b))),x,0,a); 

Term12 = int(eval((subs(N1,y,b))*kxy*(subs(dN2dy,y,b))),x,0,a); 

Term13 = int(eval((subs(N1,y,b))*kxy*(subs(dN3dy,y,b))),x,0,a); 

Term14 = int(eval((subs(N1,y,b))*kxy*(subs(dN4dy,y,b))),x,0,a); 

TermR1L4 = [Term11 Term12 Term13 Term14]; 

  

R1 = - TermR1L1 - TermR1L2 + TermR1L3 + TermR1L4; 

%-------------------------------------------------------------------------- 

% R2 

%-------------------------------------------------------------------------- 

% R2L1 

Term11 = int(eval((subs(N2,x,0))*kxy*(subs(dN1dx,x,0))),y,0,b); 

Term12 = int(eval((subs(N2,x,0))*kxy*(subs(dN2dx,x,0))),y,0,b); 

Term13 = int(eval((subs(N2,x,0))*kxy*(subs(dN3dx,x,0))),y,0,b); 

Term14 = int(eval((subs(N2,x,0))*kxy*(subs(dN4dx,x,0))),y,0,b); 

TermR2L1 = [Term11 Term12 Term13 Term14]; 

  

% R2L2 

Term11 = int(eval((subs(N2,y,0))*kxy*(subs(dN1dy,y,0))),x,0,a); 

Term12 = int(eval((subs(N2,y,0))*kxy*(subs(dN2dy,y,0))),x,0,a); 

Term13 = int(eval((subs(N2,y,0))*kxy*(subs(dN3dy,y,0))),x,0,a); 

Term14 = int(eval((subs(N2,y,0))*kxy*(subs(dN4dy,y,0))),x,0,a); 

TermR2L2 = [Term11 Term12 Term13 Term14]; 

  

% R2L3 

Term11 = int(eval((subs(N2,x,a))*kxy*(subs(dN1dx,x,a))),y,0,b); 

Term12 = int(eval((subs(N2,x,a))*kxy*(subs(dN2dx,x,a))),y,0,b); 

Term13 = int(eval((subs(N2,x,a))*kxy*(subs(dN3dx,x,a))),y,0,b); 

Term14 = int(eval((subs(N2,x,a))*kxy*(subs(dN4dx,x,a))),y,0,b); 

TermR2L3 = [Term11 Term12 Term13 Term14]; 
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% R2L4 

Term11 = int(eval((subs(N2,y,b))*kxy*(subs(dN1dy,y,b))),x,0,a); 

Term12 = int(eval((subs(N2,y,b))*kxy*(subs(dN2dy,y,b))),x,0,a); 

Term13 = int(eval((subs(N2,y,b))*kxy*(subs(dN3dy,y,b))),x,0,a); 

Term14 = int(eval((subs(N2,y,b))*kxy*(subs(dN4dy,y,b))),x,0,a); 

TermR2L4 = [Term11 Term12 Term13 Term14]; 

  

R2 = - TermR2L1 - TermR2L2 + TermR2L3 + TermR2L4; 

 

%-------------------------------------------------------------------------- 

% R3 

%-------------------------------------------------------------------------- 

% R3L1 

Term11 = int(eval((subs(N3,x,0))*kxy*(subs(dN1dx,x,0))),y,0,b); 

Term12 = int(eval((subs(N3,x,0))*kxy*(subs(dN2dx,x,0))),y,0,b); 

Term13 = int(eval((subs(N3,x,0))*kxy*(subs(dN3dx,x,0))),y,0,b); 

Term14 = int(eval((subs(N3,x,0))*kxy*(subs(dN4dx,x,0))),y,0,b); 

TermR3L1 = [Term11 Term12 Term13 Term14]; 

  

% R3L2 

Term11 = int(eval((subs(N3,y,0))*kxy*(subs(dN1dy,y,0))),x,0,a); 

Term12 = int(eval((subs(N3,y,0))*kxy*(subs(dN2dy,y,0))),x,0,a); 

Term13 = int(eval((subs(N3,y,0))*kxy*(subs(dN3dy,y,0))),x,0,a); 

Term14 = int(eval((subs(N3,y,0))*kxy*(subs(dN4dy,y,0))),x,0,a); 

TermR3L2 = [Term11 Term12 Term13 Term14]; 

  

% R3L3 

Term11 = int(eval((subs(N3,x,a))*kxy*(subs(dN1dx,x,a))),y,0,b); 

Term12 = int(eval((subs(N3,x,a))*kxy*(subs(dN2dx,x,a))),y,0,b); 

Term13 = int(eval((subs(N3,x,a))*kxy*(subs(dN3dx,x,a))),y,0,b); 

Term14 = int(eval((subs(N3,x,a))*kxy*(subs(dN4dx,x,a))),y,0,b); 

TermR3L3 = [Term11 Term12 Term13 Term14]; 

  

% R3L4 

Term11 = int(eval((subs(N3,y,b))*kxy*(subs(dN1dy,y,b))),x,0,a); 

Term12 = int(eval((subs(N3,y,b))*kxy*(subs(dN2dy,y,b))),x,0,a); 

Term13 = int(eval((subs(N3,y,b))*kxy*(subs(dN3dy,y,b))),x,0,a); 

Term14 = int(eval((subs(N3,y,b))*kxy*(subs(dN4dy,y,b))),x,0,a); 

TermR3L4 = [Term11 Term12 Term13 Term14]; 

  

R3 = - TermR3L1 - TermR3L2 + TermR3L3 + TermR3L4; 

%-------------------------------------------------------------------------- 

% R4 

%-------------------------------------------------------------------------- 

% R4L1 

Term11 = int(eval((subs(N4,x,0))*kxy*(subs(dN1dx,x,0))),y,0,b); 

Term12 = int(eval((subs(N4,x,0))*kxy*(subs(dN2dx,x,0))),y,0,b); 

Term13 = int(eval((subs(N4,x,0))*kxy*(subs(dN3dx,x,0))),y,0,b); 

Term14 = int(eval((subs(N4,x,0))*kxy*(subs(dN4dx,x,0))),y,0,b); 

TermR4L1 = [Term11 Term12 Term13 Term14]; 

  

% R4L2 

Term11 = int(eval((subs(N4,y,0))*kxy*(subs(dN1dy,y,0))),x,0,a); 

Term12 = int(eval((subs(N4,y,0))*kxy*(subs(dN2dy,y,0))),x,0,a); 

Term13 = int(eval((subs(N4,y,0))*kxy*(subs(dN3dy,y,0))),x,0,a); 

Term14 = int(eval((subs(N4,y,0))*kxy*(subs(dN4dy,y,0))),x,0,a); 

TermR4L2 = [Term11 Term12 Term13 Term14]; 

  

% R4L3 

Term11 = int(eval((subs(N4,x,a))*kxy*(subs(dN1dx,x,a))),y,0,b); 

Term12 = int(eval((subs(N4,x,a))*kxy*(subs(dN2dx,x,a))),y,0,b); 

Term13 = int(eval((subs(N4,x,a))*kxy*(subs(dN3dx,x,a))),y,0,b); 

Term14 = int(eval((subs(N4,x,a))*kxy*(subs(dN4dx,x,a))),y,0,b); 

TermR4L3 = [Term11 Term12 Term13 Term14]; 

  

% R4L4 

Term11 = int(eval((subs(N4,y,b))*kxy*(subs(dN1dy,y,b))),x,0,a); 

Term12 = int(eval((subs(N4,y,b))*kxy*(subs(dN2dy,y,b))),x,0,a); 

Term13 = int(eval((subs(N4,y,b))*kxy*(subs(dN3dy,y,b))),x,0,a); 

Term14 = int(eval((subs(N4,y,b))*kxy*(subs(dN4dy,y,b))),x,0,a); 

TermR4L4 = [Term11 Term12 Term13 Term14]; 

  

R4 = - TermR4L1 - TermR4L2 + TermR4L3 + TermR4L4; 
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%-------------------------------------------------------------------------- 

% klocal 

%-------------------------------------------------------------------------- 

klocal1 = [R1;R2;R3;R4]; 

  

% klocal2 = [   a/(3*b) + b/(3*a),   a/(6*b) - b/(3*a), - a/(6*b) - b/(6*a),   b/(6*a) - a/(3*b); 

%            a/(6*b) - b/(3*a),   a/(3*b) + b/(3*a),   b/(6*a) - a/(3*b), - a/(6*b) - b/(6*a); 

%          - a/(6*b) - b/(6*a),   b/(6*a) - a/(3*b),   a/(3*b) + b/(3*a),   a/(6*b) - b/(3*a); 

%           b/(6*a) - a/(3*b), - a/(6*b) - b/(6*a),   a/(6*b) - b/(3*a),   a/(3*b) + b/(3*a)]; 

  

  

% res = klocal2-klocal1 

  

klocal = klocal1; 

%-------------------------------------------------------------------------- 

% flocal 

%-------------------------------------------------------------------------- 

flocal=[Q * a * b / 0.4e1; 

        Q * a * b / 0.4e1; 

        Q * a * b / 0.4e1; 

        Q * a * b / 0.4e1;]; 

  

%-------------------------------------------------------------------------- 

% procedure 

%-------------------------------------------------------------------------- 

  

KG = zeros(TN,TN); 

FG = zeros(TN,1); 

  

% Assemble 

for iEle = 1:size(Ele_dof,1) 

    uvw = Ele_dof(iEle,:); 

    KG(uvw,uvw) = KG(uvw,uvw) + klocal; 

    FG(uvw,1) = FG(uvw,1) + flocal; 

end 

[ KG,FG ] = NEUMANN( KG,FG,Node_xy,a,b,TN,Lx,Ly,kxy); 

  

% Specify DOF 

for iNode = 1:TN 

    xx = Node_xy(iNode,1); 

    yy = Node_xy(iNode,2); 

     

    if xx == 0 

        KG(iNode, :)       = 0; 

        KG(iNode, iNode)   = 1; 

        FG(iNode, :)       = 0; 

    elseif yy == 0 

        KG(iNode, :)       = 0; 

        KG(iNode, iNode)   = 1; 

        FG(iNode, :)       = 2; 

    end 

     

     

end 

  

% solve simultaneous equation 

dof = KG\FG; 

% dof' 

maxT(azizam,1)=TN; 

maxT(azizam,2)=max(dof) 

tt=toc 

maxT(azizam,3)=tt; 

azizam=azizam+1; 

clc 

end 

maxT 

  

toc 
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%-------------------------------------------------------------------------- 

% plot result 

%-------------------------------------------------------------------------- 

  

%  Result interpolation 

FT  = TriScatteredInterp(Node_xy(:,1),Node_xy(:,2),dof); 

%  

% % Evaluate Result 

coor_x = []; 

coor_y = []; 

coor_z = []; 

disp_T = []; 

for iele = 1:size(Ele_dof,1) 

    Nd1 = Ele_dof(iele,1); 

    Nd2 = Ele_dof(iele,2); 

    Nd3 = Ele_dof(iele,3); 

    Nd4 = Ele_dof(iele,4); 

     

    x1 = Node_xy(Nd1,1); 

    x2 = Node_xy(Nd2,1); 

    x3 = Node_xy(Nd3,1); 

    x4 = Node_xy(Nd4,1); 

     

    y1 = Node_xy(Nd1,2); 

    y2 = Node_xy(Nd2,2); 

    y3 = Node_xy(Nd3,2); 

    y4 = Node_xy(Nd4,2); 

     

    T1 = FT(x1,y1); 

    T2 = FT(x2,y2); 

    T3 = FT(x3,y3); 

    T4 = FT(x4,y4); 

     

    coor_x(:,iele) = [x1;x2;x3;x4]; 

    coor_y(:,iele) = [y1;y2;y3;y4]; 

    coor_z(:,iele) = [1;1;1;1]; 

    disp_T(:,iele) = [T1;T2;T3;T4]; 

end 

  

figure(2) 

fill3(coor_x,coor_y,coor_z,disp_T,'EdgeColor','none') 

colormap(jet) 

title('Temperature (K)- New Divergence Method')%(Total Node = ' num2str(TN) ' and Total Ele = ' 

num2str(TEle) ' )']) 

% xlabel('string') 

% ylabel('string') 

colorbar 

  

  

% Display Result 

Node_disp = [0.75 0.25]; 

     

Data_Result = []; 

for iNode = 1:size(Node_disp,1) 

    xcoor = Node_disp(iNode,1) 

    ycoor = Node_disp(iNode,2); 

    TempV = FT(xcoor,ycoor); 

    Data_Result(iNode,:) = [xcoor ycoor TempV]; 

end 

  

Data_Input = [DivX DivY TN] 

Data_Result 

  

  

% if centre 6,4 have dof 

Val = [0 0]; 

for iNode = 1:TN 

    xcoor = Node_xy(iNode,1); 

    ycoor = Node_xy(iNode,2); 

    if xcoor == 6 && ycoor == 4 

        TempV = dof(iNode,1); 

        Val = [iNode TempV]; 

    end 

end 

Val 
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APPENDIX H 

function [ KG,FG ] = NEUMANN( KG,FG,Node_xy,a,b,TN,Lx,Ly,kxy) % a=dx 

%UNTITLED3 Summary of this function goes here 

%   Detailed explanation goes here 

  

for iNode = 1:TN 

    xx = Node_xy(iNode,1); 

    yy = Node_xy(iNode,2); 

     

    if xx == Lx 

        KG(iNode, :)        = 0; 

        KG(iNode, iNode-1)  = -kxy/a; 

        KG(iNode, iNode)    = kxy/a; 

        FG(iNode,:)         = 3700; 

         

%     elseif yy == Ly 

%         KG(iNode, :)        = 0; 

%         KG(iNode, iNode-1)    = -kxy/b; 

%         KG(iNode, iNode)      = kxy/b; 

%         FG(iNode,:)         = 0; 

    end 

     

end 

  

 
 


