
1

A NEW DIVERGENCE METHOD FOR HEAT
TRANSFER WITH NEUMANN BOUNDARY

CONDITION

FATIN NABILAH BINTI SABRI

CIVIL ENGINEERING

UNIVERSITI TEKNOLOGI PETRONAS

SEPTEMBER 2017

2

A New Divergence Method for Heat Transfer with Neumann

Boundary Condition

by

Fatin Nabilah Binti Sabri

19318

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Engineering (Hons)

(Civil Engineering)

SEPTEMBER 2017

Universiti Teknologi PETRONAS

32610, Bandar Seri Iskandar,

Perak Darul Ridzuan

ii

CERTIFICATION OF APPROVAL

A New Divergence Method for Heat Transfer with Neumann Boundary

Condition

By

Fatin Nabilah Binti Sabri

19318

A dissertation submitted to the

Civil Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(CIVIL ENGINEERING)

Approved by,

(DR AIRIL YASREEN BIN MOHD YASSIN)

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SERI ISKANDAR, PERAK

September 2017

iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

(FATIN NABILAH BINTI SABRI)

iv

ABSTRACT

New Divergence Theorem is a new formulation for the simplest case of heat

transfer problem involving Neumann Boundary Condition which combines two

different numerical techniques which are Finite Element Method (FEM) and Finite

Volume Method (FVM). The use of numerical techniques to solve such problems is

therefore considered essentials since the powerful Finite Element Method (FEM) is

capable in solving heat transfer analysis by giving a piecewise approximation of the

domain. This study aims to evaluate the hypothesis of combining FEM with the FVM

and to develop a new formulation of heat transfer problem involving Neumann

Boundary Condition. Finite Volume Method (FVM), which uses the concept of Green

Divergence Theorem, where a surface integral can be transformed to line integral has

less accuracy since it develops the assumption of constant flux. Meanwhile, for FEM,

the accuracy is higher since FEM is based on polynomial interpolation using shape

function. Accuracy or convergence rate increases as the order of polynomials

increases. Comparing between linear interpolation and polynomials interpolation, the

former will converge faster. By combining these two methods, the assumption of

constant flux in FVM can be eliminate with the general polynomial interpolation of

FEM. Another disadvantage of Finite Element Method (FEM) is its difficulty in

accurately representing a geometrically complex domain. Taking the advantage of

exact geometry representation of Finite Volume Method (FVM), the New Divergence

Theorem is able to evaluate at the boundary of the domain, which may yield more

accurate solution. In this study, the first step involves the establishment of partial

differential equation (PDE) for heat transfer problem. By solving the equation based

on a series of discretization work, the equation can be arranged in a matrix form and

the temperature can be obtained by using MATLAB. Verification and parametric

study was done and the New Divergence Method was verified to provide converged

results. Despite that, the rate of convergence is lower than the established Finite

Element Method. As the New Divergence Method is still in the developing phase,

further study and enhancement are needed to improve the performance and compare

it with the existing method.

v

ACKNOWLEDGEMENT

All praise to The Almighty, The Most Merciful for granting me His never-

ending blessing and strength throughout the completion of my Final Year Project. I

would like to express my deepest gratitude towards my supervisor, Dr Airil Yasreen

Mohd Yassin for his endless support and constructive comments despite being busy

with his overwhelming commitment and responsibilities. Continuous guidance by my

supervisor is what steered me to the completion of this project. A big thank you also

to those who was directly or indirectly involved to complete this project. To my

dearest parents, there is nothing more I want than to make them proud after all the

sacrifices they have made for me. I am beyond thankful for their encouragement and

understanding in times when I have been occupied with the project. To my dearest

parents, there is nothing more I want than to make them proud after all the sacrifices

they have made for me. I am beyond thankful for their encouragement and

understanding in times when I have been occupied with the project.

vi

TABLE OF CONTENT

CERTIFICATION OF APPROVAL ii

CERTIFICATION OF ORIGINALITY iii

ABSTRACT iv

ACKNOWLEDGEMENT v

LIST OF FIGURES ix

LIST OF TABLES xi

CHAPTER 1: INTRODUCTION 1

1.1 Background Study 1

1.2 Problem Statement 3

1.3 Objectives of the Study 3

1.4 Scope of Study 3

CHAPTER 2: LITERATURE REVIEW 5

 2.1 Numerical Techniques 5

 2.1.1 Finite Element Method 5

 2.1.2 Finite Volume Method 7

 2.2 Coupling Different Numerical Techniques 7

2.3 Use of Numerical Method in Structural

Engineering 8

 CHAPTER 3: METHODOLOGY 10

 3.1 Discretization 10

3.1.1 Discretization of Finite Element

Method 11

vii

3.1.2 Discretization of Finite Volume

Method 13

3.1.3 Discretization of New Divergence

Method 14

3.2 Derivation of New Divergence Method with

Neumann Boundary Condition 15

3.2.1 Implementation of Neumann

Boundary condition in New

Divergence Method 17

 3.3 Computer Source Coding Using Matlab 18

 3.4 Modelling Using COMSOL Software 21

3.4.1 Creating A Model Guided by Model

Wizard 21

 3.4.2 Creating Component 1 23

 3.5 Verification of Formula and Codes 29

 3.6 Parametric Study 29

 3.7 Discussion 29

 CHAPTER 4: RESULT AND DISCUSSION 30

 4.1 Preliminary Work 30

4.1.1 Heat Transfer Problem using Finite

Element Method 30

4.1.2 Heat Transfer Problem (Comparison

using Finite Element Method and

New Divergence Method) 32

4.2 Heat Transfer Problem with Neumann

Boundary Condition 36

viii

4.2.1 Verification Study 38

4.2.2 Parametric Study 39

CHAPTER 5: CONCLUSION AND RECOMMENDATION 43

REFERENCES 44

APPENDICES

ix

LIST OF FIGURES

Figure 2.1 Different method in solving engineering problem 6

Figure 2.2 Application of numerical method in structural engineering 9

Figure 3.1 Flowchart of discretization work 10

Figure 3.2 Neumann B.C. at domain 17

Figure 3.3 MATLAB Command window 18

Figure 3.4 Selection of model mode 21

Figure 3.5 Selection of space dimension 21

Figure 3.6 Selection of physics interface 22

Figure 3.7 Selection of study type 22

Figure 3.8 Setting up axis 23

Figure 3.9 Creating the model domain 23

Figure 3.10 Specify domain size 24

Figure 3.11 Specify heat transfer properties 24

Figure 3.12 Specify temperature value 25

Figure 3.13 Adding heat source to domain 25

Figure 3.14 Specify value for heat source 26

Figure 3.15 Adding temperature to domain 26

Figure 3.16 Specify temperature at the domain 27

Figure 3.17 Adding heat flux to the domain 27

Figure 3.18 Specify value for heat flux 28

Figure 3.19 Compute the domain to get the temperature contour 28

Figure 4.1 Heat transfer domain 30

Figure 4.2 Arrangement of elements and nodes 31

x

Figure 4.3 Contour temperature distribution from MATLAB 31

Figure 4.4 Heat transfer domain 32

Figure 4.5 Contour of temperature distribution from FEM 33

Figure 4.6 Contour of temperature distribution from NDM 33

Figure 4.7 Graph of temperature against distance for FEM and NDM 34

Figure 4.8 Graph of temperature against degree of freedom for FEM

and NDM 35

Figure 4.9 Heat transfer problem with Neumann Boundary Condition 36

Figure 4.10 Contour of temperature distribution with Neumann for FEM 37

Figure 4.11 Contour of temperature distribution with Neumann for NDM 37

Figure 4.12 Contour of temperature distribution from COMSOL software 38

Figure 4.13 Graph of temperature against distance for FEM and NDM 39

Figure 4.14 Graph of residual error against degree of freedom for FEM

and NDM 40

Figure 4.15 Graph of time against degree of freedom for FEM and NDM 42

xi

LIST OF TABLES

Table 3.1 MATLAB commands involving vectors 18

Table 3.2 MATLAB commands involving matrices 19

Table 4.1 Temperature for FEM and NDM at selected coordinate 34

Table 4.2 Temperature for FEM and NDM at selected degree of freedom 35

Table 4.3 Temperature for FEM and NDM at selected distance 38

Table 4.4 Percentage error for FEM and NDM at selected degree of

Freedom 40

Table 4.5 Elapsed time for FEM and NDM at selected degree of freedom 41

1

CHAPTER 1

INTRODUCTION

1.1 Background Study

Numerical method is a method used to solve complicated mathematical

equations such as Ordinary Differential Equation (ODE) and Partial Differential

Equation (PDE). This method uses an integral form of equations governing mass,

energy and momentum balance for an arbitrary control volume (DemirdiiC and

Muzaferija,1994). It gives approximations to solve the problem by guessing the values

and functions involved. Regardless of how precise the approximation is, in most cases,

the exact answer cannot be obtained. However, numerical method is still the most

used method because working out the exact answer using different approach seems

quite impossible due to accuracy as compared to solving using numerical method and

might be time consuming.

There are different types of numerical techniques available which are;

i. Finite Element Method (FEM)

ii. Finite Difference Method (FDM)

iii. Boundary Element Method (BEM)

iv. Meshless or Meshfree Method (MESHFREE)

For this study, the main interest is on Finite Element Method (FEM) and Finite

Volume Method (FVM). FEM is one of the most commonly used method in solving

problems related to structural mechanics as well as heat transfer and fluid mechanics.

This method provides a systematic procedure in discretizing a domain where the

domain will be subdivide into smaller and simpler parts called finite element. It is an

2

approach to solve complex partial differential equations that oversee the behavior of

the structure in terms of the stresses, strains and other variables.

Meanwhile, Finite Volume Method (FVM) is a discretization technique for

partial differential equations (Zhiqiang Cai, 1990) especially those that arise from

physical conservation laws. FVM is frequently used methods in fluid mechanics as

well as in heat and mass transfer problems. W.Q. Tao (2002) explained that they have

the advantages of easily discretizing the governing equations and treating

discontinuous physical phenomena, such as capturing shock waves and implementing

upwind scheme.

Finite Volume Method uses the concept of Green Divergence Theorem. Green

Divergence Theorem is a mathematical statement where in three-dimensional

problem, volume integral can be converted to area integral.

∫ 𝛻. ₸ 𝑑𝑉 = ∫ ₸ . 𝑛
𝐴

 𝑑𝐴

𝑉

 (1.1)

Meanwhile, for two-dimensional condition, surface integral can be

transformed to line integral. Applying Divergence Theorem in discretizing heat

transfer equation yields the following:

∫
𝛿2𝑇

𝛿𝑥2
𝐴

+ ∫
𝛿2𝑇

𝛿𝑦2
𝐴

 𝑑𝐴 = ∫
𝛿2𝑇

𝛿𝑥2
𝐴

 𝑑𝐴 + ∫
𝛿2𝑇

𝛿𝑦2
𝐴

 𝑑𝐴

= ∫ 𝛻.
𝛿𝑇

𝛿𝑥𝐴

 𝑑𝐴 + ∫ 𝛻.
𝛿𝑇

𝛿𝑦𝐴

 𝑑𝐴

= ∫
𝛿𝑇

𝛿𝑥𝐴

. 𝑛𝑥 𝑑𝑥 + ∫
𝛿𝑇

𝛿𝑦𝐴

. 𝑛𝑦 𝑑𝑦 (1.2)

Eqn. (1.2) shows the transformed heat transfer equation when Divergence Theorem

was applied.

3

1.2 Problem Statement

Finite Element Method (FEM) has been known as vortex-centric method

whilst Finite Volume Method (FVM) is known for its volume centric nature. Whilst

the former has been shown as being very rigor in various continuum analysis (e.g.

solid and fluid), the latter has emerged as an effective numerical technique especially

those that involve moving boundary. However, despite its practicality, FVM is still

based on linear interpolation and hence the assumption of constant flux. It is the

hypothesized in this study that such a limitation would not be necessary if the general

polynomial interpolation of FEM is combined with the divergence theorem which is

the basis of FVM. It is the interest of this study to evaluate such hypothesis and idea

by developing new formulation for the simplest case of heat transfer problem

involving Neumann Boundary Condition.

1.3 Objectives of the Study

This study is to evaluate the hypothesis of combining FEM with the

divergence theorem and to develop a new formulation of heat transfer problem

involving Neumann Boundary Condition. Thus, the objectives of this study are listed

as follows:

1) To formulate, to write in Matlab software and to verify the new method for

heat transfer problem

2) To conduct performance study by comparing against result obtained by FEM

in terms of rate of convergence (in example: number of degree of freedoms)

1.4 Scope of Study

To fulfil the objectives of this study, below are the scopes that will be covered

in this study:

1) Derivation of mathematical formulations and computer programming for 2D

heat transfer problem which is in linear and isotropic condition using

MATLAB.

2) Solving heat transfer problem with Neumann boundary condition will be

allowed throughout the study

4

3) Verification of the formulation and codes applied by comparing the results

against existing results.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Numerical Techniques

As a general rule, analytical and experimental solutions are inapplicable in

handling some heat transfer problem with significant complexity. For this reason,

many numerical methods such as finite element (FE) methods (FEM), Finite

Difference Methods (FDM), Finite Volume Methods (FVM), etc, have been

developed. According to DemirdiiC and Muzaferija (1994), numerical method uses

an integral form of equations governing mass, energy and momentum balance for an

arbitrary control volume.

2.1.1 Finite Element Method

The Finite-Element Method, in its by and by acknowledged structures can be

credited to no lesser a man than Richard L. Courant. According to Barkanov (2001),

today, the finite element method (FEM) is considered as one of the well-established

and convenient technique for the computer solution of complex problems in different

fields of engineering: civil engineering, mechanical engineering, nuclear engineering,

biomedical engineering, hydrodynamics, heat conduction, geo-mechanics, etc.

FEM is a formulation for both the continuous and the discrete problems. The

formulation is obtained by multiplying the original equation by a “test function”. The

continuous unknown is then approximated by a linear combination of “shape”

functions. These shape functions are the test functions for the discrete formulation.

The resulting equation is then integrated over the domain by the method of integration

by parts.

6

The FVM is sometimes called a “discontinuous finite element method” since

the original equation is multiplied by the characteristic function of each grid cell and

the discrete unknown may be considered as a linear combination of shape functions.

Indeed, the FEM can be much more precise than FVM when using higher order

polynomials, but it requires an adequate functional framework which is not always

available in industrial problems. Other more precise methods are, for instance, particle

methods or spectral methods but these methods can be more expensive and less robust

than the finite volume method.

The common methods available for the solution of general field problems, like

elasticity, fluid flow, heat transfer problems, etc., can be classified as presented in Fig.

2.1.

Nowadays, stabilized finite element methods are very popular and prevalently

used in the numerical solutions of partial differential equations. There are many

advantages from the stabilization methods such as enhancing stability, using simple

node-based continuous Lagrange element and does not require special meshes are

example of advantages from the stabilization methods.

Figure 2.1: Different method in solving engineering problem

7

 2.1.2 Finite Volume Method

The finite volume method is a discretization strategy which is appropriate for

the numerical simulation of different sorts (elliptic, parabolic or hyperbolic, for

instance) of conservation laws. It has been broadly utilized as a part of a few building

fields, for example, fluid mechanics, heat and mass transfer or petroleum engineering.

According to Oden (1991), some of the important features of the finite volume

method are similar to those of the finite element method. The finite volume method

is locally conservative because it is based on a “ balance” approach: a local balance is

written on each discretization cell which is often called “control volume”

The finite volume method is very unique from the finite difference method or

the finite element method. The principle of the finite difference method is, given a

number of discretization points which may be defined by a mesh, to assign one

discrete unknown per discretization point, and to write one equation per discretization

point. At each discretization point, the derivatives of the unknown are replaced by

finite differences through the use of Taylor expansions. However, FDM is ends up

noticeably hard to utilize when the coefficients associated with the condition are

discontinuous. With the finite volume method, discontinuities of the coefficients will

not be any problem if the mesh is chosen such that the discontinuities of the

coefficients occur on the boundaries of the control volumes.

2.2 Coupling Different Numerical Techniques

According to J. Krok and J. Orkisz (2016), the coupling of FEM with other

methods for computational analysis of boundary value problems (especially with

meshless methods) is not new as it reaches early seventies of the previous century.

From that point forward, this issue has been later explored by numerous different

scientists and it is still being worked on these days.

In most cases, the principle thought behind the coupling strategies is either to

wipe out or decrease downsides of one strategy (e.g. time-consuming mesh

generation, low rate of derivatives convergence) or to utilize the upsides of other

strategy (super-convergence, least squares smoothing, independent integration mesh

and so on) in more powerful way.

8

One of the examples on the coupling method is the study on the combination

of Finite Element Method (FEM) with Meshless Finite Difference Method (MFDM)

in thermomechanical problems by J. Jaśkowie and S. Milewski in 2016. The MFDM

is a representative approach among a wide class of meshless techniques. FEM utilizes

structural of components (meshes) and unknown function approximation by means of

the appropriate polynomial shape functions, built upon finite elements and associated

with nodal degrees of freedom. MFDM, as one of the oldest meshless methods, may

use both regular meshes or totally arbitrarily irregular clouds of nodes, without any

imposed structure, like finite element, regular mesh or mapping restrictions.

The kind of issues where the coupling is legitimized is for instance the issues

in which selected parts of the domain are under rapid change of subjected load,

boundary conditions and/or material parameters (e.g. due to temperature dependency).

In such issues, applying a meshless approach (particularly the MFDM) to

those areas is by all accounts sensible due to its higher flexibility in nodes generation,

super-convergence of solution derivatives, as well as element-free determination of

the approximation base (in general). In addition, non-linear problems, in which the

basic linear problem has to be solved many times or situation in which the

approximation mesh/cloud of nodes requires frequent refinements (e.g. due to the

adaptation technique or shrinking of the material), are other examples.

 In the coupling method, the domain is divided into two sub domains for FEM

and MFDM, respectively. One scalar parameter, translated as a width of thin material

layer between those two sub domains, has to be set. The scalar parameter depends

neither on the type of considered

2.3 Use of Numerical Method in Structural Engineering

Utilization of finite element tools in building industry has not just permitted

the effective building items, but also the development of accurate design method.

Generally, engineers have utilized research laboratory testing to examine the

structural behavior of steel building items and frameworks subject to the normal wind

and earthquake before coming out with appropriate design of the structural members.

9

Be that as it may, such dependence on tedious and costly research laboratory testing

has frustrated advance around there. In any case, progresses in the field of computer

helped building amid the most recent two decades have changed this circumstance

altogether in many designing work.

One of the applications of numerical method in structural engineering is the study on

steel woof and wall cladding system in Australia. These claddings often suffer from

local pull-through failures at their screw connections under wind uplift/suction

loading caused by storms. [1,2]

Figure 2.2 : Application of numerical method in structural engineering

10

CHAPTER 3

METHODOLOGY

Chapter 3 will discuss and outline the approach of methodological to this

study. It provides the correct stage to the researcher to snoozing out the improvement

work with the end goal to resolve the work using the correct technique within a given

specifications.

3.1 Discretization

Discretization is the process of converting the continuous nature of PDE/ODE

to ‘equivalent’ simultaneous algebraic equation. This process is usually carried out as

a first step towards making them suitable for numerical evaluation and

implementation on digital computers. In this study, a series of discretization work will

be done in several steps. Figure 3.1 shows the brief flow of discretization work.

Figure 3.1 : Flowchart of discretization work

11

 3.1.1 Discretization of Finite Element Method

In Finite Element Method, for heat transfer problem, the first step involves the

establishment of partial differential equation as follows:

𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝑇

𝜕𝑥
) −

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝑇

𝜕𝑦
) = −𝑞𝐻 (3.1)

In order to solve the following partial differential equation, a guess equation for the

function T in the form of polynomials is needed to convert the PDE into algebraic

equation. Example of the trial function is:

𝑇 = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥𝑦 (3.2)

Eqn. (3.2) will then be evaluated at the location of the nodes and the calculated values

is equals to the corresponding degree of freedom, 𝑇𝑖

At 𝑥 = 0, 𝑦 = 0 ;

𝑇 = 𝑎1 + 𝑎2(0) + 𝑎3(0) + 𝑎4(0)(0) = �̂�1

At 𝑥 = 𝑎, 𝑦 = 0 ;

𝑇 = 𝑎1 + 𝑎2(𝑎) + 𝑎3(0) + 𝑎4(𝑎)(0) = �̂�2

At 𝑥 = 𝑎, 𝑦 = 𝑏 ; (3.3)

𝑇 = 𝑎1 + 𝑎2(𝑎) + 𝑎3(𝑏) + 𝑎4(𝑎)(𝑏) = �̂�3

At 𝑥 = 0, 𝑦 = 𝑏 ;

𝑇 = 𝑎1 + 𝑎2(0) + 𝑎3(𝑏) + 𝑎4(0)(𝑏) = �̂�4

Solving the above equations will result in obtaining the value for the

polynomials coefficient and shape function of the equation. The following trial

function are used corresponding to the Galerkin WRM.

12

 𝑇 = 𝑁𝑖𝑇𝑖 = {𝑁} {𝑇} 𝑇 (3.4)

Where 𝑁𝑖 is the shape function and 𝑇𝑖 is the degree of freedoms (dofs). The next step

involve integration by part (IBP) with the intentions to relax the statement and to

induce natural boundary conditions.

Eqn. (3.1) which are the Partial Differential Equation (PDE) for heat can be express

in matrix forms as follows:

{𝜕} [𝐸]{𝜕}
𝑇

𝑇 = −𝑞𝐻 (3.5)

Where [𝐸] = [
𝑘𝑥 0
0 𝑘𝑦

] and {𝜕} = {
𝜕

𝜕𝑥

𝜕

𝜕𝑦
 }

By replacing Eqn. (3.5) with Eqn. (3.4), the following equation obtained:

{𝜕} [𝐸]{𝜕} 𝑇{𝑁} {𝑇} 𝑇 = −𝑞𝐻 (3.6)

In order to obtain a sufficient number of equations, Eqn (3.6) needs to be multiplied

with shape function, {𝑁} and integrate it to get the independent equations.

∫ ∫{𝑁} 𝑇 ({𝜕} [𝐸]{𝜕} 𝑇{𝑁} {𝑇} 𝑇 + 𝑞𝐻) 𝑑𝑦𝑑𝑥

𝑦𝑥

= 0 (3.7)

Conducting IBP to Eqn (3.7) gives;

∫ ∫ {𝑁} 𝑇{𝜕} [𝐸]{𝜕} 𝑇{𝑁} {𝑇} 𝑇𝑑𝑦𝑑𝑥
𝑦𝑥

= ∫ ∫ {𝑁} 𝑇𝑞𝐻 𝑑𝑦𝑑𝑥
𝑦𝑥

+ ∫ [𝑁𝑇
𝑠

]{ф} 𝑇𝑑𝑠 (3.8)

Where {ф} is the Neumann boundary condition terms from IBP.

13

By solving the IBP, the equation can be arranged in a matrix form and the

degree of freedom can be solve by using MATLAB.

[𝐾]{𝑇} 𝑇 = {𝑞
𝐻

} + {ф} = {𝑟}

3.1.2 Discretization of Finite Volume Method

In Finite Volume Method (FVM), Green’s Divergence Theorem are used. Taking one

simple closed region as an example, the equations are discretized as following:

𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 = 0 (3.5)

Eqn. (3.5) shows the equation in evaluating the boundary of the domain.

∫
𝜕2𝑇

𝜕𝑥2𝐴
+ ∫

𝜕2𝑇

𝜕𝑦2𝐴
 𝑑𝐴 = ∫

𝜕2𝑇

𝜕𝑥2𝐴
 𝑑𝐴 + ∫

𝜕2𝑇

𝜕𝑦2𝐴
 𝑑𝐴 (3.6)

14

By applying the divergence theorem, Eqn. (3.7) yields. Sign notation need to be

synchronize to the figure shown.

− ∫
𝜕𝑇

𝜕𝑦

𝑏

0
|𝑦=0 𝑑𝑥 + ∫

𝜕𝑇

𝜕𝑥

𝑎

0
|𝑥=𝑏 𝑑𝑦 + ∫

𝜕𝑇

𝜕𝑦

𝑏

0
|𝑦=𝑎 𝑑𝑥 − ∫

𝜕𝑇

𝜕𝑥

𝑎

0
|𝑥=0 𝑑𝑦 = 0 (3.7)

Eqn. (3.7) can be simplified in matrix form as follows:

[𝐾𝑖𝑗]{𝑇𝑖} = 0

In FVM, the temperature gradient, T at the surface is assumed as constant, which

eventually simplifies the equation to;

(
𝛿𝑇

𝛿𝑥
|𝑥=𝑏 −

𝛿𝑇

𝛿𝑥
 |𝑥=0) 𝐿𝑦 + (

𝛿𝑇

𝛿𝑦
|𝑦=𝑎 −

𝛿𝑇

𝛿𝑦
|𝑦=0) 𝐿𝑥 = 0 (3.8)

Referring to the above figure, the equation can be simplified as below:

[
𝑇(𝑎 ,𝑏 2⁄)−𝑇(0 ,𝑏 2⁄)

𝐿𝑥
] 𝐿𝑦 + [

𝑇(𝑎
2⁄ ,𝑏)−𝑇(𝑎

2⁄ ,0)

𝐿𝑦
] 𝐿𝑥 (3.9)

3.1.3 Discretization of New Divergence Method

− ∫
𝛿

𝛿𝑦

𝑏

0
|𝑦=0 𝑑𝑥 + ∫

𝛿𝑇

𝛿𝑥

𝑎

0
|𝑥=𝑏 𝑑𝑦 + ∫

𝛿𝑇

𝛿𝑦

𝑏

0
|𝑦=𝑎 𝑑𝑥 − ∫

𝛿𝑇

𝛿𝑥

𝑎

0
|𝑥=0 𝑑𝑦 = 0 (3.10)

15

In New Divergence Theorem, instead of directly integrate Eqn. (3.10), Eqn. (3.4)

which contains shape function will be included in the equation.

𝑇 = 𝑁𝑖𝑇𝑖

∫ 𝛿
𝑇𝑗𝑁𝑗

𝛿𝑥
. 𝑛𝑥 𝑑𝑥 + ∫ 𝛿

𝑇𝑗𝑁𝑗

𝛿𝑦
. 𝑛𝑦 𝑑𝑦 = 0 (3.11)

− ∫ 𝑁𝑖

𝛿𝑁𝑗

𝛿𝑦

𝑏

0

|𝑦=0 𝑑𝑥 + ∫ 𝑁𝑖

𝛿𝑁𝑗

𝛿𝑥

𝑎

0

|𝑥=𝑏 𝑑𝑦 + ∫ 𝑁𝑖

𝛿𝑁𝑗

𝛿𝑦

𝑏

0

|𝑦=𝑎 𝑑𝑥

− ∫ 𝑁𝑖

𝛿𝑁𝑗

𝛿𝑥

𝑎

0

|𝑥=0 𝑑𝑦 = 0 (3.12)

The purpose of using the concept of Green Divergence Theorem in Finite Volume

Method is to make use of the shape function since Finite Volume Method carry the

assumption of constant flux.

Eqn. (3.12) is the discretized equation for the proposed New Divergence Theorem,

which can be presented in matrix form as follows:

[𝐾𝑖𝑗]{𝑇𝑖} = 0

Solving the line integrals can be finalized as:

[𝐾𝑖𝑗] {

𝑇1
𝑇2
𝑇3
𝑇4

} = {

0
0
0
0

}

3.2 Derivation of the New Divergence Method with Neumann Boundary

Condition

In this study, the aim is to derive a New Divergence Formulation with Neumann

Boundary Condition. The general steps in deriving the formulation are as follows:

16

i. Establishment of partial differential equation for heat

𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝑇

𝜕𝑦
) = 0 (3.14)

ii. Discretization of the equation based on Finite Element Method. The

discretized equation is shown as below. ф𝑥 and ф𝑦 is the Neumann Boundary

Condition.

∫ (𝑘𝑥
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
+ 𝑘𝑦

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦
) 𝜕𝐴

𝐴
 {𝑇𝑖} = ∫ (𝑘𝑥𝑁𝑖ф𝑥 + 𝑘𝑦𝑁𝑖ф𝑦)

𝐴
𝜕𝐴 (3.15)

𝑤ℎ𝑒𝑟𝑒 ф𝑥 =
𝜕𝑇

𝜕𝑥
 , ф𝑦 =

𝜕𝑇

𝜕𝑦

iii. The formulation is then discretized using the New Divergence Method and

the discretized equation is as below.

− ∫ 𝑘𝑦𝑁𝑖

𝜕𝑁𝑖

𝜕𝑦

𝑎

0

|𝑦=0 𝜕𝑥 {𝑇𝑖} + ∫ 𝑘𝑥𝑁𝑖

𝜕𝑁𝑖

𝜕𝑥

𝑏

0

|𝑥=𝑎 𝜕𝑦 {𝑇𝑖}

+ ∫ 𝑘𝑦𝑁𝑖

𝜕𝑁𝑖

𝜕𝑦

𝑎

0

|𝑦=𝑏 𝜕𝑥 {𝑇𝑖} − ∫ 𝑘𝑥𝑁𝑖

𝜕𝑁𝑖

𝜕𝑥

𝑏

0

|𝑥=0 𝜕𝑦 {𝑇𝑖}

 = 𝑘𝑥ф𝑥 + 𝑘𝑦ф𝑦 (3.16)

iv. The equations can be arranged in matrix form of as follow

[𝐾𝑖𝑗]{𝑇𝑖} = 0

17

3.2.1 Implementation of Neumann Boundary Condition in New Divergence

 Method

The implementation of Neumann Boundary Condition was based on linear

Taylor Difference which can be illustrated as below.

𝛿𝑇

𝛿𝑥
= ф

𝑤ℎ𝑒𝑟𝑒; Neumann , ф =
𝑇21 − 𝑇20

𝑑𝑥

 Taking figure above as the example, in coming out with the Neumann

equation, the temperature at node 21, 𝑇21 is minus with temperature at node 20, 𝑇20

and divided with the distance between the two nodes, 𝑑𝑥. The purpose of conducting

Taylor Difference is to get the temperature gradient of the domain.

 The implementation of Neumann Boundary Condition in source code for

Finite Element Method and for the New Divergence Method is different. In Finite

Element Method, the Neumann equation is included inside the stiffness matrix, [K]

while for New Divergence Method, the Neumann equation is replacing the existing

equation, which eventually takes a longer time for Matlab to work on it.

Figure 3.2 : Neumann B.C. at domain

18

3.3 Computer source coding using Matlab

The name MATLAB stands for MATrix LABoratory. MATLAB is a software

package for high performance numerical computation and visualization. It provides

an interactive environment with hundreds of built-in functions for technical

computation, graphics and animations. It also provides easy extensibility with its own

high-level programming language.

 MATLAB can be used to create arrays, vectors (vector or matrices) as well as

performing operations on them. An array is a list of numbers or expressions arranged

in horizontal and vertical columns. One dimensional arrays are called vector and two-

dimensional arrays are called matrices.

 Below are the example of commands and the results that can be obtained from

MATLAB:

Table 3.1 : MATLAB commands involving vectors

Commands Results

>> x=[1 2 3] or >> x=[1,2,3] Creates a row vector x = (1 2 3)

Figure 3.3 : MATLAB Command window

19

>> y=[3;7;9]
Creates a column vector y =

3
7
9

>> a= x+y This will produce an error

>> a= x+z a= (3 3 3)

>> c=x./y This will produce an error

>> x’
Transpose of x. Ans =

1
2
3

>> y’ Transpose of y. Ans = (3 7 9)

>> t=linspace (0,10,6) Creates a vector t = (0 2 4 6 8 10)

>> t=[0 : 0.2 : pi] Creates the vector t = (0 0.2 0.4 ……pi)

>> t(5:length (t)) = [] Deletes all elements of vector t except 1

through 4. Ans t=(0 0.2 0.4 0.6)

Table 3.1 : MATLAB commands involving matrices

Commands Results

>>A = [2,4,6; 1,7,3; 8,4,5]
Creates a matrix A=

2 4 6
1 7 3
8 4 5

>>B = (1:2, 1:3) Creates a matrix B from A. Thus

B =
2 4 6
1 7 0

 . Here ‘1:2’ means from

row 1 to row 2, and ‘1:3’ means from

column 1 to column 3

>>C = A (1:2, :) Creates a matric C from A. Ans

C =
2 4 6
1 7 0

 . Here ‘:’ means all

columns, same as 1:3

20

>>A = [2,4,10,13;

 16,3,7,18;

 8,4,9,25;

 3,12,15,17]

Creates a matrix A = [

2 4
16 3

10 13
7 18

8 4
3 12

9 25
15 17

]

>>A (3,:) = [] Deletes the third row in A

Ans A=[
2 4 10 13

16
3

3
12

7
15

18
17

]

>>A = eye (3) A is a 3x3 identity matrix

>>B = zeros (3) B is a 3x3 matrix of zeros

In MATLAB there are two operators used for dividing operations which are:

1) The right division represented by the symbol ‘/’ or known as ‘slash’

2) The left division represented by the symbol ‘\’ or also known as ‘backslash’

These two operators differs from one another. The right division is as of what we

usually make use of. Taking this example;

𝐴 = 8 , B = 2

𝐴 𝐵 = 8 2⁄⁄ = 4

Contrary to the right division, the left division works as follows (using the same

example);

𝐴\𝐵 = 𝐵 𝐴⁄ = 2 8⁄ = 0.25

Therefore, if the matrix were to solve using backslash operators, the operation will be

written as:

>> A=[1 2 ; 2 2];

 B=[3 2 ; 1 1];

 A\B

21

ans =

−2.0000 −1.0000
 2.5000 1.5000

3.4 Modelling Using COMSOL Software

3.4.1 Creating a model guided by the Model Wizard

1. Setting up a new model can be either guided by the Model Wizard or start

from a Blank Model. In this project, Model Wizard was used as it guides in

setting up the dimension, physics and study type.

2. 2D space dimension was selected for the model component.

Figure 3.4 : Selection of model mode

Figure 3.5 : Selection of space dimension

22

3. For the Physics interface, Heat Transfer in Solids was added. The Heat

Transfer in Solids interface is used to model heat transfer by conduction,

convection, and radiation. The temperature equation defined in solid domains

corresponds to the differential form of the Fourier's law that may contain

additional contributions like heat sources.

4. Study type selected was Stationary. The Stationary study is used when field

variables do not change over time where in this heat transfer project, the study

is to compute the temperature field at thermal equilibrium.

5. Next, click Done and the desktop will display the model tree configured

based on the choices made.

Figure 3.6 : Selection of physics interface

Figure 3.7 : Selection of study type

23

3.4.2 Creating Component 1

1. In the Model Builder window, under Component 1, expand Definitions >

expand View 1 > Axis. The maximum and minimum length for both x-axis

and y-axis are set as following:

2. Right click Geometry and select Rectangle.

Figure 3.8 : Setting up axis

Figure 3.9 : Creating the model domain

24

3. Click at Rectangle 1. In the Rectangle window, specify the size of the model

as 0.8(W) x 0.5(H) and then click Build Selected.

Figure 3.10 : Specify domain size

4. Click Heat Transfer in Solids 1. In the Heat Transfer in Solids window,

change the following:

Thermal conductivity = 600 𝑊/(𝑚. 𝐾)

Density = 8700 𝑘𝑔/𝑚3

Heat capacity at constant pressure = 385 𝐽/(𝑘𝑔. 𝐾)

Figure 3.11 : Specify heat transfer properties

25

5. Click on Initial Values 1 and specify the temperature, 𝑻 = 273.15 𝐾

6. Right click on Heat Transfer in Solids (ht) and click Heat Source

Figure 3.13 : Adding heat source to domain

Figure 3.12 : Specify temperature value

26

7. Click on Heat Source 1. Under Heat Source tab, click on the General

source and specify the

Q = 0 𝑊/𝑚3

8. Right click on Heat Transfer in Solids (ht) and click Temperature

Figure 3.14 : Specify value for heat source

Figure 3.15 : Adding temperature to domain

27

9. Click on Temperature 1 and at the Graphics window, click at the left

boundary. Specify the temperature, T = 0 𝐾

10. Repeat step 8 & 9 for temperature at the bottom boundary. Specify the

temperature as T = 2 𝐾

11. Right click on Heat Transfer in Solids (ht) and click Heat Flux.

Figure 3.16 : Specify temperature at the domain

Figure 3.17 : Adding heat flux to the domain

28

12. Click on Heat Flux 1 and at the Graphics window, click on the right boundary.

Under Heat Flux tab, click on the General inward heat flux and specify the

𝑞0 = 3700 𝑊/𝑚2

13. Click on Study 1 in the Model Builder and click Compute to get the contour

of temperature distribution.

Figure 3.18 : Specify value for heat flux

Figure 3.19 : Compute the domain to get the temperature contour

29

3.5 Verification of formula and codes

 At the end of this study a new formulation is expected to be derived. Therefore,

since it involves deriving a new formulation, the verification of the formula and codes

need to be done by comparing the results against the existing result which used finite

element method for heat transfer problem.

3.6 Parametric study

Choosing parameters for evaluation, characterize the parameter extend,

determine the outline limitations, and examine the aftereffects of every parameter

variety are the definition of parametric study. Therefore, it is crucial to access the

performance of the new formulation based on the convergence rate

3.7 Discussion

 To successfully achieve the objectives of this study, thorough discussion is

needed throughout the study. In this study, detailed discussion will be on the variables

involved in heat transfer problem which is temperature, the distribution of the heat

and also the highest gradient of distribution. It is crucial to keep up with all the

variables that may contribute to the end result. The main concern of new formulation

is its accuracy as compared to the existing formulation. Apart from that, the computer

consumption such as how long the time taken to process and how big storage needed

to be used.

30

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Preliminary Work

 4.1.1 Heat Transfer Problem Using Finite Element Method

In this subtopic, a simple heat transfer problem will be solved using Finite

Element Method formulation. Four assembled 4-nodes elements are used as the

domain for this problem. Taking the size of domain as 0.4𝑚(𝑊) 𝑋 0.2𝑚 (𝐻), heat

source, 𝑄 = 50𝑊/𝑚3 and other parameters as shown in the figure below, step by step

manual calculations to evaluate the temperature at each node are shown below.

Figure 4.1 : Heat transfer domain

31

Figure 4.2 : Arrangement of elements and nodes

Figure above shows the arrangement of element and global degree of freedom

numbering for 4-nodes element.

Each element would have similar conductance matrix and internal heat generation

forces.

[𝑘1] = [𝑘2] = [𝑘3] = [𝑘4] (4.2)

By solving the equation for this heat problem using Matlab command “\”, the values

of the temperature are obtained. The figure below shows the contour of the

temperature distribution obtained once the equation is plotted in Matlab.

Figure 4.3 : Contour temperature distribution from MATLAB

32

Taking another different condition of heat transfer problem, two different

methods, Finite Element Method (FEM) and the New Divergence Method (NDM) are

used to solve this problem. Both methods are discretized following the steps as

mentioned in the previous chapter.

4.1.2 Heat Transfer Problem (Comparison using Finite Element

Method and New Divergence Method)

In this heat transfer problem, the rectangular domain has heat source of

Q=50𝑊/𝑚3 Therefore, in the Partial Differential Equation (PDE), the heat source

must be included as well. Solving the problem using Matlab software yields the

following results.

Considering the same condition and total degree of freedom of 64 elements,

the problem was solved using MATLAB software and yield the following results.

Figure below shows the contour of temperature distribution in Kelvin (K) for both

FEM and NDM. The colour varies depending on the intensity of the temperature on

the domain. The intensity scale can be seen on the right side of the figure.

Figure 4.4 : Heat transfer domain

33

As can be seen above, at the top left of the figure. the contour of temperature

distribution has a slight different between one another. This difference may be due to

the number of decimal points taken at selected coordinate.

Figure 4.5 : Contour of temperature distribution from FEM

Figure 4.6 : Contour of temperature distribution from NDM

34

Since the work is about deriving a new formulation, verification was done by

comparing the results between FEM and NDM. Temperature at selected coordinates

was recorded and tabulated as Table 3 below.

Table 4.1 : Temperature for FEM and NDM at selected coordinate

x-
coordinate

y-
coordinate

Finite Element Method New Divergence Method

Temperature (K)

0 0 0 0

0.2 0.25 0.927568371 0.918972275

0.4 0.25 1.429989029 1.41425864

0.6 0.25 1.646574765 1.642246696

0.8 0.25 1.70809284 1.709503999

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Te
m

p
e

ra
tu

re
 (

K
)

Distance

Temperature (K) against Distance

NDM

FEM

Figure 4.7 : Graph of temperature against distance for FEM and NDM

35

From the data table, there is no much difference on the value of temperature

for both method. Therefore, it can be concluded that the New Divergence Method

worked perfectly as the Finite Element Method.

Another checking that need to be done to New Divergence Theorem is the

Convergence Test. One coordinate of (0.75,0.25) was chosen as point of interest. As

the degree of freedom was increased, the temperature at the point of interest was

recorded. The result was tabulated and plot in a graph as below.

Table 2.2 : Temperature for FEM and NDM at selected degree of freedom

Degree of Freedom
Temperature (K)

Finite Element Method New Divergence Theorem

36 1.698981797 1.698981797

121 1.702696723 1.702696723

441 1.705211763 1.705211763

961 1.705678014 1.705678014

1681 1.705691773 1.705691773

2601 1.705691773 1.705819988

3721 1.705824073 1.705824073

5041 1.705835139 1.705835139

6561 1.70588507 1.70588507

8281 1.705860858 1.705860858

10201 1.705872742 1.705872742

1.695

1.697

1.699

1.701

1.703

1.705

1.707

1.709

0 2000 4000 6000 8000 10000

Te
m

p
er

at
u

re
 (

K
)

Degree of Freedom

Temperature (K) against Degree of Freedom

FEM
NDV

Figure 4.8 : Graph of temperature against degree of freedom for FEM and NDM

36

From the graph, it can be clearly seen that there is not much difference between

the temperature at one point as the degree of freedom increases. This verify that the

New Divergence Method worked.

4.2 Heat Transfer with Neumann Boundary Condition

In this heat transfer problem, the problem is slightly different from the

previous discussed chapter. This problem has a Neumann Boundary Condition on the

right boundary of the domain. The derivation of formulation for heat transfer problem

with Neumann Boundary Condition has been discussed in the previous chapter.

The figure below shows the contour of the temperature distribution obtained

from Finite Element Method and Finite Volume Method once the equation is plotted

in Matlab. Both method yields the same contour temperature distribution which

proves that both method works the same. From the graph, it can be seen that on the

right hand side of the domain, the intensity of the temperature is the highest. This is

due to the presence of Neumann Boundary Condition which in terms of heat flux.

Figure 4.9 : Heat transfer problem with Neumann Boundary

Condition

37

Figure 4.10 : Contour of temperature distribution with Neumann for FEM

Figure 4.11 : Contour of temperature distribution with Neumann for NDM

38

Figure below shows the contour temperature distribution from COMSOL

Multiphysics software. COMSOL Multiphysics is a platform for finite element

analysis. Therefore, the result obtained from COMSOL should not have too much

difference with the result obtained from Matlab using Finite Element Method. The

slight difference in the contour temperature distribution may be due to source code

restriction in Matlab.

4.2.1 Verification Study

Verification test was done by comparing the results between FEM and NDM.

Temperature at selected distance was recorded and tabulated as Table 4.3.

Table 4.3 : Temperature for FEM and NDM at selected distance

Distance

(x-direction)

Finite Element Method New Divergence Method

Temperature (K)

0 0 0

0.2 1.11679 1.13192

0.4 1.888926 1.932565

0.6 2.581402 2.721189

0.8 3.562975 3.836548

Figure 4.12 : Contour of temperature distribution from COMSOL software

39

The figure above shows the graph of temperature against the distance in the

domain. From the graph, it shows that as the distance increases, the temperature

increases as well. However, there is a slight difference in temperature recorded

between Finite Element Method and New Divergence Method. Since the work is

about deriving a new formulation, the result from new method is expected to be a little

bit lower or higher than the result from existing method. This is when tolerance error

need to be taken in consideration. In this case, the result of New Divergence Method

is slightly higher than the Finite Element Method. Despite the difference, the results

are still acceptable.

 4.2.2 Parametric Study

Parametric study was done to access the performance of the New Divergence

Method to compare with the existing method. The parameters used in this parametric

study are the degree of freedom and the temperature. Convergence rate between these

two methods are compared by the plotting of residual error against the degree of

freedom. The formula used for the calculation of residual error are as follows:

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
em

p
er

a
tu

re
 (

K
)

Distance (m)

Graph of Temperature (K) against Distance (m)

FEM NDM

Figure 4.13 : Graph of temperature against distance for FEM and NDM

40

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (%)

=
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
 𝑋 100

Where;

Current temperature = Temperature recorded at certain degree of freedom in Kelvin

Converge temperature = Maximum temperature of the domain in Kelvin = 3.8477 𝐾

Table 4.4 : Percentage error for FEM and NDM at selected degree of freedom

Degree of

Freedom

Finite Element Method New Divergence Method

Tmax
Percentage

Error , %
Tmax

Percentage

Error , %

2601 3.8476 0.00 3.8849 0.97

3721 3.8476 0.00 3.8788 0.81

5041 3.8476 0.00 3.8744 0.69

8281 3.8477 0.00 3.8685 0.54

10201 3.8477 0.00 3.8664 0.49

14641 3.8477 0.00 3.8633 0.41

29241 3.8477 0.00 3.8587 0.29

Figure 4.14 : Graph of residual error against degree of freedom for FEM and NDM

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 5000 10000 15000 20000 25000 30000 35000

R
es

id
u

a
l

E
rr

o
r

Degree of Freedom

Graph of Residual Error against Degree of Freedom

NDM FEM

41

The graph above shows the comparison curve between Finite Element Method

and New Divergence Method based on the plotting of residual error against the degree

of freedom. As the degree of freedom increases, the temperature starts to converge.

Thus, the residual error decreases. From the graph, the residual error of the New

Divergence Method is quite significant to compare with the error from the Finite

Element Method. This error was expected due to the way the Neumann Boundary

Condition was implemented in the matrix.

The implementation of Neumann Boundary Condition which was based on

linear Taylor Difference may result in less accuracy. Instead of calculating the

temperature gradient between two nodes, taking several number of nodes and

calculate the gradient would give a significant and more accurate value. However, a

better convergence thus expected if a more appropriate interpolation of the boundary

condition is formulated.

Another parametric study that was done is to access the time taken for each

method to compute the temperature in computer software Matlab with the increment

of degree of freedom. The elapsed time in seconds with the degree of freedom for

each method are tabulated as below

Table 4.5 : Elapsed time for FEM and NDM at selected degree of freedom

Degree of

Freedom

Finite Element Method New Divergence Method

Elapsed Time (s)

25 0.008914 2.478023

81 0.017949 2.60808

169 0.055117 2.818525

289 0.021947 3.001262

441 0.039904 3.367504

961 0.050144 4.45111

1681 0.229369 6.19935

2601 0.448826 8.291786

3721 1.063554 11.275603

5041 2.247754 15.061531

8281 8.927647 28.565342

10201 19.004603 55.616099

42

. From the table, the time taken between FEM and NDM shows a quite huge

difference as the degree of freedom increases. This difference can be explained due to

the different way the Neumann Boundary Condition was imposed. For Finite Element

Method, the Neumann Boundary Condition was imposed by was including the

Neumann equation inside the stiffness matrix. Meanwhile, for New Divergence

Method, the existing equation are replaced with the Neumann equation which

eventually takes a longer time for the software to compute the temperature.

Another factor that contributes to the difference in the elapsed time is due to

the source code optimization. In writing the codes for the New Divergence Method,

direct integration is used. In direct integration, the integration was done in symbolic,

where it integrates from 0 to an indefinite number. Matlab software is not suitable to

carry out a symbolic integration as it slows down the process.

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000 12000

T
im

e
(s

)

Degree of Freedom

Graph of Time(s) against Degree of Freedom

FEM NDM

Figure 4.15 : Graph of time against degree of freedom for FEM and NDM

43

CHAPTER 5

CONCLUSION AND RECOMMENDATION

The idea of combining two numerical methods, Finite Volume Method and

Finite Element Method works perfectly as expected. This can be proven from the

parametric study that has been carried out based on the result obtained. The result

obtained from FEM is the same as the New Divergence Method. Therefore, it can be

strongly concluded that this New Divergence Method can be used for this study. The

next step for this study is to include the Neumann Boundary Condition and verify the

result.

The aim of this study is not only to create a new formulation. The formulation

should work perfectly with the Neumann Boundary Condition. Based on the

verification test and parametric study, the New Divergence Method with Neumann

Boundary Condition was found as able to provide converged results. However, the

rate of convergence is lower than the established Finite Element Method. This is

identified as being caused by the satisfaction of the Neumann boundary condition

using a linear Taylor difference. A better convergence thus expected if a more

appropriate interpolation of the boundary condition is formulated.

However, the New Divergence Method is still in the developing stage. Further

study and enhancement need to be done before the method can become useful tools

for complex engineering problems.

44

REFERENCES

Airil, A.Akhbar, Erwan And Zhafri (2013). Linear and Nonlinear Finite

Element Analysis for Solids and Fluids with Matlab (Unedited First

Draft).[Manuscript in preparation].

C.Serraa, A.Tadeub, N.Simõesb (2016). "3D heat diffusion simulation using 3D and

1D heat sources –Temperature and phase contrast results for defect detection

using IRT." Applied Mathematical Modelling: 1576–1587

Dong-yeon Seo a, C. K. b., Taehoon Hong b,⇑ (2015). "A Lagrangian finite element

model for estimating the heating and cooling demand of a residential building

with a different envelope design." Applied Energy: 66–79.

Eric Li a, Zhongpu Zhang a, Z.C. He b, Xu Xuc, G.R. Liu d, Q. Li a (2014).

"Smoothed finite element method with exact solutions in heat transfer

problems." International Journal of Heat and Mass Transfer 78: 1219–1231.

Kanjanakijkasem, W. (2015). "A finite element method for prediction of unknown

 boundary conditions in two-dimensional steady-state heat conduction

problems." International Journal of Heat and Mass Transfer: 891–901.

Mahendran, M. (2007). Applications of Finite Element Analysis in Structural

Engineering. Q. U. o. T. Faculty of Built Environment and Engineering,

Australia: 38-46.

Pawe_l J. Matuszyk, M. S., and Maciej Paszy´nski (2015). "Fully automatic 2D hp-

adaptive Finite Element Method for Non-Stationary Heat Transfer." Procedia

Computer Science 51: 2883–2887.

V.D. Thi a, b., M. Khelifa a,⇑, M. Oudjene a, M. El Ganaoui b, Y. Rogaume a

(2017). "Finite element analysis of heat transfer through timber elements

exposed to fire." Engineering Structures: 11-21.

Y.C. Ching a, Hakan F. Öztop b, M.M. Rahman c, M.R. Islam a, A. Ahsan d (2012).

"Finite element simulation of mixed convection heat and mass transfer in a

right triangular enclosure." International Communications in Heat and Mass

Transfer 39: 689–696.

xlv

APPENDICES

APPENDIX A Key Milestone of the project

APPENDIX B Source Code for Heat Transfer Problem with 4-Nodes

Element Using Finite Element

APPENDIX C Source Code for Heat Transfer Problem Using Finite Element

Method

APPENDIX D Sub Routine for klocalmatrix

APPENDIX E Source Code for Heat Transfer Problem Using New

Divergence Method

APPENDIX F Source Code for Heat Transfer Problem with Neumann

Boundary Condition Using Finite Element Method

APPENDIX G Source Code for Heat Transfer Problem with Neumann

Boundary Condition Using New Divergence Method

APPENDIX H Sub-routine for Imposed Neumann Boundary Condition

xlvi

APPENDIX A

Selection of
project title

Start of project

Discretization

Computer
source coding
using MATLAB

Verification ,
discussion and
report writing

Submission of
final report

May 2017

June 2017

June 2017

August 2017

October 2017

December

2017

xlvii

APPENDIX B

clc;clear all;

kx1=400;

ky1=400;

Qa=50;

h1=0;

t1=0.1;

dx=8;

dy=8;

Lx=0.4;

Ly=0.2;

deltax=Lx/dx;

deltay=Ly/dy;

dofNo=[];

NodeNo=[];

index=0;

for i=1:dy

 for j=1:dx;

 index=index+1;

 val1=(dx+1)*(i-1)+j;

 val2=(dx+1)*(i)+j;

 Nd1=val1;

 Nd2=val1+1;

 Nd3=val2+1;

 Nd4=val2;

 NodeNo (index,:)=[Nd1 Nd2 Nd3 Nd4];

 dofNo(index,:)=NodeNo(index,:);

 end

end

TTDOF=max(max(dofNo));

% syms a b t kx ky h

[klocal]=klocalmatrix(t1,ky1,deltax,deltay,kx1);

% klocal=subs(k1,{a,b,t,kx,ky,h},{deltax,deltay,t1,kx1,ky1,h1})

kglobal=zeros(TTDOF,TTDOF);

flocal=zeros(TTDOF,1);

for i=1:size(dofNo,1)

 for j=1:4

 dof1=dofNo(i,j);

 for k=1:4

 dof2=dofNo(i,k);

 kglobal(dof1,dof2)=kglobal(dof1,dof2)+klocal(j,k);

 end

 end

end

a=deltax;

b=deltay;

for i=1:size(NodeNo,1)

 f1=[(Qa*a*b*t1)/4;(Qa*a*b*t1)/4;(Qa*a*b*t1)/4;(Qa*a*b*t1)/4];

 for j=1:4

 dof1=dofNo(i,j);

 flocal(dof1,1)=flocal(dof1,1)+f1(j,1);

 end

end

xlviii

dofe=[81;80;79;78;77;76;75;74;73;64;55;46;37;28;19;10;1];

for i=1:size(dofe,1);

 val1=dofe(i,1);

 kglobal(val1,:)=[];

 kglobal(:,val1)=[];

 flocal(val1,:)=[];

end

T=kglobal\flocal

Tori=zeros(TTDOF,1);

Tori(2:9,1)=T(1:8,1);

Tori(11:18,1)=T(9:16,1);

Tori(20:27,1)=T(17:24,1);

Tori(29:36,1)=T(25:32,1);

Tori(38:45,1)=T(33:40,1);

Tori(47:54,1)=T(41:48,1);

Tori(56:63,1)=T(49:56,1);

Tori(65:72,1)=T(57:64,1);

Zx=[];

index=0;

for i=1:dy+1

 for j=1:dx+1

 index=index+1;

 x_val=Tori(index,1);

 Zx(i,j)=x_val;

 end

end

[X,Y] = meshgrid(0:deltax:Lx, 0:deltay:Ly);

% figure (1)

% surf(X,Y,Zx)

% title('Temperature (K)')

% colorbar

figure(2)

surf(X,Y,Zx)

colormap(jet)

title('Temperature')

% xlabel('string')

% ylabel('string')

colorbar

xlix

APPENDIX C

clc;clear all;

kx1=600;

ky1=600;

Qa=0;

h1=0;

t1=0.2;

dx=100;

dy=100;

Lx=0.8;

Ly=0.5;

deltax=Lx/dx;

deltay=Ly/dy;

Node_xy = [];

index = 0;

for iy = 1:dy+1

 ycoor = (iy-1)*deltay;

 for ix = 1:dx+1

 xcoor = (ix-1)*deltax;

 index = index + 1;

 Node_xy(index,:) = [xcoor ycoor];

 end

end

dofNo=[];

NodeNo=[];

index=0;

for i=1:dy

 for j=1:dx

 index=index+1;

 val1=(dx+1)*(i-1)+j;

 val2=(dx+1)*(i)+j;

 Nd1=val1;

 Nd2=val1+1;

 Nd3=val2+1;

 Nd4=val2;

 NodeNo(index,:)=[Nd1 Nd2 Nd3 Nd4];

 dofNo(index,:)=NodeNo(index,:);

 end

end

TTDOF= max(max(dofNo));

% syms a b t kx ky h

[klocal]=klocalmatrix (t1,ky1,deltax,deltay,kx1);

kglobal=zeros(TTDOF,TTDOF);

flocal=zeros(TTDOF,1);

for i=1:size(dofNo,1)

 for j=1:4

 dof1=dofNo(i,j);

 for k=1:4

 dof2=dofNo(i,k);

 kglobal(dof1,dof2)=kglobal(dof1,dof2)+klocal(j,k);

 end

 end

end

l

for iNode = 1:TTDOF

 xx = Node_xy(iNode,1);

 yy = Node_xy(iNode,2);

 if xx == 0

 kglobal(iNode, :) = 0;

 kglobal(iNode, iNode) = 1;

 flocal(iNode, :) = 0;

 elseif yy == 0

 kglobal(iNode, :) = 0;

 kglobal(iNode, iNode) = 1;

 flocal(iNode, :) = 2;

 end

end

T=kglobal\flocal

Zx=[];

index=0;

for i=1:dy+1

 for j=1:dx+1

 index=index+1;

 x_val=T(index,1);

 Zx(i,j)=x_val;

 end

end

[X,Y] = meshgrid(0:deltax:Lx, 0:deltay:Ly);

figure(1)

surf(X,Y,Zx,'edgecolor','none')

shading interp

title('Temperature (K)- Finite Element Method')

colorbar

colormap(jet)

% Result interpolation

FT = TriScatteredInterp(Node_xy(:,1),Node_xy(:,2),T);

% Display Result

Node_disp = [0.75 0.25;];

Data_Result = [];

for iNode = 1:size(Node_disp,1)

 xcoor = Node_disp(iNode,1);

 ycoor = Node_disp(iNode,2);

 TempV = FT(xcoor,ycoor);

 Data_Result(iNode,:) = [xcoor ycoor TempV];

end

li

APPENDIX D

function [klocal]=klocalmatrix(t,ky,a,b,kx)

klocal = [t * ky * a / b / 0.3e1 + t * kx / a * b / 0.3e1 t * ky * a / b / ...

 0.6e1 - t * kx / a * b / 0.3e1 -t * kx / a * b / 0.6e1 - t * ky * a / b...

 / 0.6e1 t * kx / a * b / 0.6e1 - t * ky * a / b / 0.3e1; t * ky * a / b...

 / 0.6e1 - t * kx / a * b / 0.3e1 t * ky * a / b / 0.3e1 + t * kx / a * ...

 b / 0.3e1 t * kx / a * b / 0.6e1 - t * ky * a / b / 0.3e1 -t * kx / a *...

 b / 0.6e1 - t * ky * a / b / 0.6e1; -t * kx / a * b / 0.6e1 - t * ky * ...

 a / b / 0.6e1 t * kx / a * b / 0.6e1 - t * ky * a / b / 0.3e1 t * ky * ...

 a / b / 0.3e1 + t * kx / a * b / 0.3e1 t * ky * a / b / 0.6e1 - t * kx ...

 / a * b / 0.3e1; t * kx / a * b / 0.6e1 - t * ky * a / b / 0.3e1 -t * ...

 kx / a * b / 0.6e1 - t * ky * a / b / 0.6e1 t * ky * a / b / 0.6e1 - t...

 * kx / a * b / 0.3e1 t * ky * a / b / 0.3e1 + t * kx / a * b / 0.3e1;];

end

lii

APPENDIX E

clc;clear all;

tic

%--

% Input

%--

%

% (0,b) Side4 (a,b)

% +---------------+

% + +

% Side1 + + Side3

% + +

% +---------------+

% (0,0) Side2 (a,0)

Lx = 0.8;

Ly = 0.5;

Q=0;

maxelement=50;

azizam=1;

for fatin=7%:2:maxelement;

DivX = fatin; %element in x-direction

DivY = fatin; %element in y-direction

a = Lx/DivX; % width of element

b = Ly/DivY; % height of element

% Generate Node

Node_xy = [];

index = 0;

for iy = 1:DivY+1

 ycoor = (iy-1)*b;

 for ix = 1:DivX+1

 xcoor = (ix-1)*a;

 index = index + 1;

 Node_xy(index,:) = [xcoor ycoor];

 end

end

% Generate connectivity matrix

TEle = DivX*DivY; % Total Element;

Ele_dof = zeros(DivX*DivY,4);

index = 0;

for iy = 1:DivY

 for ix = 1:DivX

 nd1 = (iy-1)*(DivX+1) + ix;

 nd2 = nd1 + 1;

 nd4 = iy*(DivX+1) + ix;

 nd3 = nd4 +1;

 index = index + 1;

 Ele_dof(index,:)=[nd1 nd2 nd3 nd4];

 end

end

TN = max(max(Ele_dof)) % Total node

%--

% Shape function

%--

% [Ni,dNidx,dNidy] = Q4_Phy_ShapeFunc(a,b);

% Ni = matlabFunction(Ni);

% dNidx = matlabFunction(dNidx);

% dNidy = matlabFunction(dNidy);

liii

syms x y

N1 = @(x,y)1 - 1 / a * x - 1 / b * y + 1 / a / b * x * y;

N2 = @(x,y)0.1e1 / a * x - 0.1e1 / a / b * x * y;

N3 = @(x,y)0.1e1 / a / b * x * y;

N4 = @(x,y)0.1e1 / b * y - 0.1e1 / a / b * x * y;

dN1dx = @(y)-0.1e1 / a + 0.1e1 / a / b * y;

dN2dx = @(y)0.1e1 / a - 0.1e1 / a / b * y;

dN3dx = @(y)0.1e1 / a / b * y;

dN4dx = @(y)-0.1e1 / a / b * y;

dN1dy = @(x)-0.1e1 / b + 0.1e1 / a / b * x;

dN2dy = @(x)-0.1e1 / a / b * x;

dN3dy = @(x)0.1e1 / a / b * x;

dN4dy = @(x)0.1e1 / b - 0.1e1 / a / b * x;

%--

% R1

%--

% R1L1

Term11 = int(eval((subs(N1,x,0))*(subs(dN1dx,x,0))),y,0,b);

Term12 = int(eval((subs(N1,x,0))*(subs(dN2dx,x,0))),y,0,b);

Term13 = int(eval((subs(N1,x,0))*(subs(dN3dx,x,0))),y,0,b);

Term14 = int(eval((subs(N1,x,0))*(subs(dN4dx,x,0))),y,0,b);

TermR1L1 = [Term11 Term12 Term13 Term14];

% R1L2

Term11 = int(eval((subs(N1,y,0))*(subs(dN1dy,y,0))),x,0,a);

Term12 = int(eval((subs(N1,y,0))*(subs(dN2dy,y,0))),x,0,a);

Term13 = int(eval((subs(N1,y,0))*(subs(dN3dy,y,0))),x,0,a);

Term14 = int(eval((subs(N1,y,0))*(subs(dN4dy,y,0))),x,0,a);

TermR1L2 = [Term11 Term12 Term13 Term14];

% R1L3

Term11 = int(eval((subs(N1,x,a))*(subs(dN1dx,x,a))),y,0,b);

Term12 = int(eval((subs(N1,x,a))*(subs(dN2dx,x,a))),y,0,b);

Term13 = int(eval((subs(N1,x,a))*(subs(dN3dx,x,a))),y,0,b);

Term14 = int(eval((subs(N1,x,a))*(subs(dN4dx,x,a))),y,0,b);

TermR1L3 = [Term11 Term12 Term13 Term14];

% R1L4

Term11 = int(eval((subs(N1,y,b))*(subs(dN1dy,y,b))),x,0,a);

Term12 = int(eval((subs(N1,y,b))*(subs(dN2dy,y,b))),x,0,a);

Term13 = int(eval((subs(N1,y,b))*(subs(dN3dy,y,b))),x,0,a);

Term14 = int(eval((subs(N1,y,b))*(subs(dN4dy,y,b))),x,0,a);

TermR1L4 = [Term11 Term12 Term13 Term14];

R1 = - TermR1L1 - TermR1L2 + TermR1L3 + TermR1L4;

%--

% R2

%--

% R2L1

Term11 = int(eval((subs(N2,x,0))*(subs(dN1dx,x,0))),y,0,b);

Term12 = int(eval((subs(N2,x,0))*(subs(dN2dx,x,0))),y,0,b);

Term13 = int(eval((subs(N2,x,0))*(subs(dN3dx,x,0))),y,0,b);

Term14 = int(eval((subs(N2,x,0))*(subs(dN4dx,x,0))),y,0,b);

TermR2L1 = [Term11 Term12 Term13 Term14];

% R2L2

Term11 = int(eval((subs(N2,y,0))*(subs(dN1dy,y,0))),x,0,a);

Term12 = int(eval((subs(N2,y,0))*(subs(dN2dy,y,0))),x,0,a);

Term13 = int(eval((subs(N2,y,0))*(subs(dN3dy,y,0))),x,0,a);

Term14 = int(eval((subs(N2,y,0))*(subs(dN4dy,y,0))),x,0,a);

TermR2L2 = [Term11 Term12 Term13 Term14];

% R2L3

Term11 = int(eval((subs(N2,x,a))*(subs(dN1dx,x,a))),y,0,b);

Term12 = int(eval((subs(N2,x,a))*(subs(dN2dx,x,a))),y,0,b);

Term13 = int(eval((subs(N2,x,a))*(subs(dN3dx,x,a))),y,0,b);

Term14 = int(eval((subs(N2,x,a))*(subs(dN4dx,x,a))),y,0,b);

TermR2L3 = [Term11 Term12 Term13 Term14];

liv

% R2L4

Term11 = int(eval((subs(N2,y,b))*(subs(dN1dy,y,b))),x,0,a);

Term12 = int(eval((subs(N2,y,b))*(subs(dN2dy,y,b))),x,0,a);

Term13 = int(eval((subs(N2,y,b))*(subs(dN3dy,y,b))),x,0,a);

Term14 = int(eval((subs(N2,y,b))*(subs(dN4dy,y,b))),x,0,a);

TermR2L4 = [Term11 Term12 Term13 Term14];

R2 = - TermR2L1 - TermR2L2 + TermR2L3 + TermR2L4;

%--

% R3

%--

% R3L1

Term11 = int(eval((subs(N3,x,0))*(subs(dN1dx,x,0))),y,0,b);

Term12 = int(eval((subs(N3,x,0))*(subs(dN2dx,x,0))),y,0,b);

Term13 = int(eval((subs(N3,x,0))*(subs(dN3dx,x,0))),y,0,b);

Term14 = int(eval((subs(N3,x,0))*(subs(dN4dx,x,0))),y,0,b);

TermR3L1 = [Term11 Term12 Term13 Term14];

% R3L2

Term11 = int(eval((subs(N3,y,0))*(subs(dN1dy,y,0))),x,0,a);

Term12 = int(eval((subs(N3,y,0))*(subs(dN2dy,y,0))),x,0,a);

Term13 = int(eval((subs(N3,y,0))*(subs(dN3dy,y,0))),x,0,a);

Term14 = int(eval((subs(N3,y,0))*(subs(dN4dy,y,0))),x,0,a);

TermR3L2 = [Term11 Term12 Term13 Term14];

% R3L3

Term11 = int(eval((subs(N3,x,a))*(subs(dN1dx,x,a))),y,0,b);

Term12 = int(eval((subs(N3,x,a))*(subs(dN2dx,x,a))),y,0,b);

Term13 = int(eval((subs(N3,x,a))*(subs(dN3dx,x,a))),y,0,b);

Term14 = int(eval((subs(N3,x,a))*(subs(dN4dx,x,a))),y,0,b);

TermR3L3 = [Term11 Term12 Term13 Term14];

% R3L4

Term11 = int(eval((subs(N3,y,b))*(subs(dN1dy,y,b))),x,0,a);

Term12 = int(eval((subs(N3,y,b))*(subs(dN2dy,y,b))),x,0,a);

Term13 = int(eval((subs(N3,y,b))*(subs(dN3dy,y,b))),x,0,a);

Term14 = int(eval((subs(N3,y,b))*(subs(dN4dy,y,b))),x,0,a);

TermR3L4 = [Term11 Term12 Term13 Term14];

R3 = - TermR3L1 - TermR3L2 + TermR3L3 + TermR3L4;

%--

% R4

%--

% R4L1

Term11 = int(eval((subs(N4,x,0))*(subs(dN1dx,x,0))),y,0,b);

Term12 = int(eval((subs(N4,x,0))*(subs(dN2dx,x,0))),y,0,b);

Term13 = int(eval((subs(N4,x,0))*(subs(dN3dx,x,0))),y,0,b);

Term14 = int(eval((subs(N4,x,0))*(subs(dN4dx,x,0))),y,0,b);

TermR4L1 = [Term11 Term12 Term13 Term14];

% R4L2

Term11 = int(eval((subs(N4,y,0))*(subs(dN1dy,y,0))),x,0,a);

Term12 = int(eval((subs(N4,y,0))*(subs(dN2dy,y,0))),x,0,a);

Term13 = int(eval((subs(N4,y,0))*(subs(dN3dy,y,0))),x,0,a);

Term14 = int(eval((subs(N4,y,0))*(subs(dN4dy,y,0))),x,0,a);

TermR4L2 = [Term11 Term12 Term13 Term14];

% R4L3

Term11 = int(eval((subs(N4,x,a))*(subs(dN1dx,x,a))),y,0,b);

Term12 = int(eval((subs(N4,x,a))*(subs(dN2dx,x,a))),y,0,b);

Term13 = int(eval((subs(N4,x,a))*(subs(dN3dx,x,a))),y,0,b);

Term14 = int(eval((subs(N4,x,a))*(subs(dN4dx,x,a))),y,0,b);

TermR4L3 = [Term11 Term12 Term13 Term14];

% R4L4

Term11 = int(eval((subs(N4,y,b))*(subs(dN1dy,y,b))),x,0,a);

Term12 = int(eval((subs(N4,y,b))*(subs(dN2dy,y,b))),x,0,a);

Term13 = int(eval((subs(N4,y,b))*(subs(dN3dy,y,b))),x,0,a);

Term14 = int(eval((subs(N4,y,b))*(subs(dN4dy,y,b))),x,0,a);

TermR4L4 = [Term11 Term12 Term13 Term14];

R4 = - TermR4L1 - TermR4L2 + TermR4L3 + TermR4L4;

lv

%--

% klocal

%--

klocal1 = [R1;R2;R3;R4];

% klocal2 = [a/(3*b) + b/(3*a), a/(6*b) - b/(3*a), - a/(6*b) - b/(6*a), b/(6*a) - a/(3*b);

% a/(6*b) - b/(3*a), a/(3*b) + b/(3*a), b/(6*a) - a/(3*b), - a/(6*b) - b/(6*a);

% - a/(6*b) - b/(6*a), b/(6*a) - a/(3*b), a/(3*b) + b/(3*a), a/(6*b) - b/(3*a);

% b/(6*a) - a/(3*b), - a/(6*b) - b/(6*a), a/(6*b) - b/(3*a), a/(3*b) + b/(3*a)]

%

%

% res = klocal2-klocal1;

klocal = klocal1;

%--

% flocal

%--

flocal=[Q * a * b / 0.4e1;

 Q * a * b / 0.4e1;

 Q * a * b / 0.4e1;

 Q * a * b / 0.4e1;];

%--

% procedure

%--

KG = zeros(TN,TN);

FG = zeros(TN,1);

% Assemble

for iEle = 1:size(Ele_dof,1)

 uvw = Ele_dof(iEle,:);

 KG(uvw,uvw) = KG(uvw,uvw) + klocal;

 FG(uvw,1) = FG(uvw,1) + flocal;

end

% [KG,FG] = NEUMANN(KG,FG,Node_xy, a, TN)

% Specify DOF

for iNode = 1:TN

 xx = Node_xy(iNode,1);

 yy = Node_xy(iNode,2);

 if xx == 0

 KG(iNode, :) = 0;

 KG(iNode, iNode) = 1;

 FG(iNode, :) = 0;

% elseif xx == DivX*a

% KG(iNode, :) = 0;

% KG(iNode, iNode) = 1;

% FG(iNode, :) = 6;

 elseif yy == 0

 KG(iNode, :) = 0;

 KG(iNode, iNode) = 1;

 FG(iNode, :) = 2;

 end

end

% solve simultaneous equation

dof = KG\FG;

% dof'

maxT(azizam,1)=TN;

maxT(azizam,2)=max(dof)

tt=toc

maxT(azizam,3)=tt;

azizam=azizam+1;

clc

end

maxT

lvi

%--

% plot result

%--

% Result interpolation

FT = TriScatteredInterp(Node_xy(:,1),Node_xy(:,2),dof);

%

% % Evaluate Result

coor_x = [];

coor_y = [];

coor_z = [];

disp_T = [];

for iele = 1:size(Ele_dof,1)

 Nd1 = Ele_dof(iele,1);

 Nd2 = Ele_dof(iele,2);

 Nd3 = Ele_dof(iele,3);

 Nd4 = Ele_dof(iele,4);

 x1 = Node_xy(Nd1,1);

 x2 = Node_xy(Nd2,1);

 x3 = Node_xy(Nd3,1);

 x4 = Node_xy(Nd4,1);

 y1 = Node_xy(Nd1,2);

 y2 = Node_xy(Nd2,2);

 y3 = Node_xy(Nd3,2);

 y4 = Node_xy(Nd4,2);

 T1 = FT(x1,y1);

 T2 = FT(x2,y2);

 T3 = FT(x3,y3);

 T4 = FT(x4,y4);

 coor_x(:,iele) = [x1;x2;x3;x4];

 coor_y(:,iele) = [y1;y2;y3;y4];

 coor_z(:,iele) = [1;1;1;1];

 disp_T(:,iele) = [T1;T2;T3;T4];

end

figure(2)

fill3(coor_x,coor_y,coor_z,disp_T,'EdgeColor','none')

colormap(jet)

title('Temperature (K)- New Divergence Method')%(Total Node = ' num2str(TN) ' and Total Ele = '

num2str(TEle) ')'])

% xlabel('string')

% ylabel('string')

colorbar

% Display Result

Node_disp = [0 0;

 0.2 0.25;

 0.4 0.25;

 0.6 0.25;

 0.8 0.25];

Data_Result = [];

for iNode = 1:size(Node_disp,1)

 xcoor = Node_disp(iNode,1);

 ycoor = Node_disp(iNode,2);

 TempV = FT(xcoor,ycoor);

 Data_Result(iNode,:) = [xcoor ycoor TempV];

end

Data_Input = [DivX DivY TN]

Data_Result

% if centre 6,4 have dof

Val = [0 0];

for iNode = 1:TN

 xcoor = Node_xy(iNode,1);

 ycoor = Node_xy(iNode,2);

 if xcoor == 6 && ycoor == 4

 TempV = dof(iNode,1);

 Val = [iNode TempV];

 end

end

Val

lvii

APPENDIX F

clc;clear;

%--

% Input

%--

Lx = 0.8; % Total length in x-direction (m)

Ly = 0.5; % Total length in y-direction (m)

kxy = 600; % Thermal conductivity (W/m.K)

Q = 0; % Heat source (W/m^3)

qx = 3700; % Heat flux (W/m2)

tic

divX = 100; % No of element in x-direction

divY = 100; % No of element in y-direction

%--

% Prepare data for FEM procedure

%--

deltaX = Lx/divX; % Elemental length in x-direction (m)

deltaY = Ly/divY; % Elemental length in y-direction (m)

% Generate node coordinate, Node_xy

Node_xy = [];

iNode = 0;

for iy = 1:divY+1

 ycoor = (iy-1)*deltaY;

 for ix = 1:divX+1

 xcoor = (ix-1)*deltaX;

 iNode = iNode + 1;

 Node_xy(iNode,:) = [xcoor ycoor];

 end

end

% Generate Connectivity Matrix, ConvMat

ConvMat = [];

iNode = 0;

for ix = 1:divY

 for iy = 1:divX

 iNode = iNode+1;

 val1 = (divX+1)*(ix-1)+iy;

 val2 = (divX+1)*(ix)+iy;

 Nd1 = val1;

 Nd2 = val1+1;

 Nd3 = val2+1;

 Nd4 = val2;

 ConvMat(iNode,:) = [Nd1 Nd2 Nd3 Nd4];

 end

end

TNodes = size(Node_xy,1); % Total number of node

NumEle = size(ConvMat,1); % Total number of element

%--

% Local stiffness,body force vector and flux vector

%--

a = deltaX;

b = deltaY;

klocal_xx = [kxy / a * b / 0.3e1 -kxy / a * b / 0.3e1 -kxy / a * b / 0.6e1 kxy / a * b / 0.6e1;

 -kxy / a * b / 0.3e1 kxy / a * b / 0.3e1 kxy / a * b / 0.6e1 -kxy / a * b / 0.6e1;

 -kxy / a * b / 0.6e1 kxy / a * b / 0.6e1 kxy / a * b / 0.3e1 -kxy / a * b / 0.3e1;

 kxy / a * b / 0.6e1 -kxy / a * b / 0.6e1 -kxy / a * b / 0.3e1 kxy / a * b / 0.3e1;];

klocal_yy = [kxy / b * a / 0.3e1 kxy / b * a / 0.6e1 -kxy / b * a / 0.6e1 -kxy / b * a / 0.3e1;

 kxy / b * a / 0.6e1 kxy / b * a / 0.3e1 -kxy / b * a / 0.3e1 -kxy / b * a / 0.6e1;

 -kxy / b * a / 0.6e1 -kxy / b * a / 0.3e1 kxy / b * a / 0.3e1 kxy / b * a / 0.6e1;

 -kxy / b * a / 0.3e1 -kxy / b * a / 0.6e1 kxy / b * a / 0.6e1 kxy / b * a / 0.3e1;];

lviii

klocal = klocal_xx + klocal_yy;

fheat = [Q * a * b / 0.4e1;

 Q * a * b / 0.4e1;

 Q * a * b / 0.4e1;

 Q * a * b / 0.4e1;];

fflux = [0;

 qx * b / 0.2e1;

 qx * b / 0.2e1;

 0;];

%--

% Assemble into global stiffness and vector

%--

Fglobal = zeros(TNodes,1);

Kglobal = zeros(TNodes,TNodes);

for iEle = 1:NumEle

 uv = ConvMat(iEle,:); % Element connectivity

 Fglobal(uv,1) = Fglobal(uv,1) + fheat;

 Kglobal(uv,uv) = Kglobal(uv,uv) + klocal;

 % Check element at flux boundary

 Node2 = uv(2);

 Node3 = uv(3);

 x2 = Node_xy(Node2,1);

 x3 = Node_xy(Node3,1);

 if x2 == Lx || x3 == Lx % If element node at flux boundary

 Fglobal(uv,1) = Fglobal(uv,1) + fflux;

 end

end

%--

% Specify dirichlet boundary condition (Temperature,T)

%--

for iNode = 1:TNodes

 x_coor = Node_xy(iNode,1);

 y_coor = Node_xy(iNode,2);

 if x_coor == 0

 Kglobal(iNode, :) = 0;

 Kglobal(iNode, iNode) = 1;

 Fglobal(iNode, :) = 0;

 elseif y_coor == 0

 Kglobal(iNode, :) = 0;

 Kglobal(iNode, iNode) = 1;

 Fglobal(iNode, :) = 2;

 end

end

%--

% Solve simultaneous eqn for Temperature,T

%--

T = Kglobal \ Fglobal;

toc

lix

%--

% Display result

%--

% Result interpolation

FT = scatteredInterpolant(Node_xy(:,1),Node_xy(:,2),T);

Node_disp = [0.75 0.4];

Data_Result = [];

for iNode = 1:size(Node_disp,1)

 xcoor = Node_disp(iNode,1);

 ycoor = Node_disp(iNode,2);

 TempV = FT(xcoor,ycoor);

 Data_Result(iNode,:) = [xcoor ycoor TempV];

end

FEM_Result = Data_Result

%--

% Plot result of Temperature,T

%--

Zx=[];

index=0;

for ix = 1:divY+1

 for iy = 1:divX+1

 index = index+1;

 x_val = T(index,1);

 Zx(ix,iy) = x_val;

 end

end

[X,Y] = meshgrid(0:deltaX:Lx, 0:deltaY:Ly);

figure(1)

surf(X,Y,Zx,'edgecolor','none')

shading interp

title('Temperature (K)- Finite Element Method')

colorbar

colormap(jet)

%--

% End of coding

%--

lx

APPENDIX G

clc;clear all;

%--

% Input

%--

%

% (0,b) Side4 (a,b)

% +---------------+

% + +

% Side1 + + Side3

% + +

% +---------------+

% (0,0) Side2 (a,0)

Lx = 0.8;

Ly = 0.5;

kxy = 600;

Q = 0;

maxelement = 20;

azizam = 1;

tic

for fatin=100%:2:maxelement;

DivX = fatin; %element in x-direction

DivY = fatin; %element in y-direction

a = Lx/DivX; % width of element

b = Ly/DivY; % height of element

% Generate Node

Node_xy = [];

index = 0;

for iy = 1:DivY+1

 ycoor = (iy-1)*b;

 for ix = 1:DivX+1

 xcoor = (ix-1)*a;

 index = index + 1;

 Node_xy(index,:) = [xcoor ycoor];

 end

end

% Generate connectivity matrix

TEle = DivX*DivY; % Total Element;

Ele_dof = zeros(DivX*DivY,4);

index = 0;

for iy = 1:DivY

 for ix = 1:DivX

 nd1 = (iy-1)*(DivX+1) + ix;

 nd2 = nd1 + 1;

 nd4 = iy*(DivX+1) + ix;

 nd3 = nd4 +1;

 index = index + 1;

 Ele_dof(index,:)=[nd1 nd2 nd3 nd4];

 end

end

TN = max(max(Ele_dof)) % Total node

%--

% Shape function

%--

% [Ni,dNidx,dNidy] = Q4_Phy_ShapeFunc(a,b);

% Ni = matlabFunction(Ni);

% dNidx = matlabFunction(dNidx);

% dNidy = matlabFunction(dNidy);

syms x y

N1 = @(x,y)1 - 1 / a * x - 1 / b * y + 1 / a / b * x * y;

N2 = @(x,y)0.1e1 / a * x - 0.1e1 / a / b * x * y;

N3 = @(x,y)0.1e1 / a / b * x * y;

N4 = @(x,y)0.1e1 / b * y - 0.1e1 / a / b * x * y;

dN1dx = @(y)-0.1e1 / a + 0.1e1 / a / b * y;

dN2dx = @(y)0.1e1 / a - 0.1e1 / a / b * y;

dN3dx = @(y)0.1e1 / a / b * y;

dN4dx = @(y)-0.1e1 / a / b * y;

lxi

N1 = @(x,y)1 - 1 / a * x - 1 / b * y + 1 / a / b * x * y;

N2 = @(x,y)0.1e1 / a * x - 0.1e1 / a / b * x * y;

N3 = @(x,y)0.1e1 / a / b * x * y;

N4 = @(x,y)0.1e1 / b * y - 0.1e1 / a / b * x * y;

dN1dx = @(y)-0.1e1 / a + 0.1e1 / a / b * y;

dN2dx = @(y)0.1e1 / a - 0.1e1 / a / b * y;

dN3dx = @(y)0.1e1 / a / b * y;

dN4dx = @(y)-0.1e1 / a / b * y;

dN1dy = @(x)-0.1e1 / b + 0.1e1 / a / b * x;

dN2dy = @(x)-0.1e1 / a / b * x;

dN3dy = @(x)0.1e1 / a / b * x;

dN4dy = @(x)0.1e1 / b - 0.1e1 / a / b * x;

%--

% R1

%--

% R1L1

Term11 = int(eval((subs(N1,x,0))*kxy*(subs(dN1dx,x,0))),y,0,b);

Term12 = int(eval((subs(N1,x,0))*kxy*(subs(dN2dx,x,0))),y,0,b);

Term13 = int(eval((subs(N1,x,0))*kxy*(subs(dN3dx,x,0))),y,0,b);

Term14 = int(eval((subs(N1,x,0))*kxy*(subs(dN4dx,x,0))),y,0,b);

TermR1L1 = [Term11 Term12 Term13 Term14];

% R1L2

Term11 = int(eval((subs(N1,y,0))*kxy*(subs(dN1dy,y,0))),x,0,a);

Term12 = int(eval((subs(N1,y,0))*kxy*(subs(dN2dy,y,0))),x,0,a);

Term13 = int(eval((subs(N1,y,0))*kxy*(subs(dN3dy,y,0))),x,0,a);

Term14 = int(eval((subs(N1,y,0))*kxy*(subs(dN4dy,y,0))),x,0,a);

TermR1L2 = [Term11 Term12 Term13 Term14];

% R1L3

Term11 = int(eval((subs(N1,x,a))*kxy*(subs(dN1dx,x,a))),y,0,b);

Term12 = int(eval((subs(N1,x,a))*kxy*(subs(dN2dx,x,a))),y,0,b);

Term13 = int(eval((subs(N1,x,a))*kxy*(subs(dN3dx,x,a))),y,0,b);

Term14 = int(eval((subs(N1,x,a))*kxy*(subs(dN4dx,x,a))),y,0,b);

TermR1L3 = [Term11 Term12 Term13 Term14];

% R1L4

Term11 = int(eval((subs(N1,y,b))*kxy*(subs(dN1dy,y,b))),x,0,a);

Term12 = int(eval((subs(N1,y,b))*kxy*(subs(dN2dy,y,b))),x,0,a);

Term13 = int(eval((subs(N1,y,b))*kxy*(subs(dN3dy,y,b))),x,0,a);

Term14 = int(eval((subs(N1,y,b))*kxy*(subs(dN4dy,y,b))),x,0,a);

TermR1L4 = [Term11 Term12 Term13 Term14];

R1 = - TermR1L1 - TermR1L2 + TermR1L3 + TermR1L4;

%--

% R2

%--

% R2L1

Term11 = int(eval((subs(N2,x,0))*kxy*(subs(dN1dx,x,0))),y,0,b);

Term12 = int(eval((subs(N2,x,0))*kxy*(subs(dN2dx,x,0))),y,0,b);

Term13 = int(eval((subs(N2,x,0))*kxy*(subs(dN3dx,x,0))),y,0,b);

Term14 = int(eval((subs(N2,x,0))*kxy*(subs(dN4dx,x,0))),y,0,b);

TermR2L1 = [Term11 Term12 Term13 Term14];

% R2L2

Term11 = int(eval((subs(N2,y,0))*kxy*(subs(dN1dy,y,0))),x,0,a);

Term12 = int(eval((subs(N2,y,0))*kxy*(subs(dN2dy,y,0))),x,0,a);

Term13 = int(eval((subs(N2,y,0))*kxy*(subs(dN3dy,y,0))),x,0,a);

Term14 = int(eval((subs(N2,y,0))*kxy*(subs(dN4dy,y,0))),x,0,a);

TermR2L2 = [Term11 Term12 Term13 Term14];

% R2L3

Term11 = int(eval((subs(N2,x,a))*kxy*(subs(dN1dx,x,a))),y,0,b);

Term12 = int(eval((subs(N2,x,a))*kxy*(subs(dN2dx,x,a))),y,0,b);

Term13 = int(eval((subs(N2,x,a))*kxy*(subs(dN3dx,x,a))),y,0,b);

Term14 = int(eval((subs(N2,x,a))*kxy*(subs(dN4dx,x,a))),y,0,b);

TermR2L3 = [Term11 Term12 Term13 Term14];

lxii

% R2L4

Term11 = int(eval((subs(N2,y,b))*kxy*(subs(dN1dy,y,b))),x,0,a);

Term12 = int(eval((subs(N2,y,b))*kxy*(subs(dN2dy,y,b))),x,0,a);

Term13 = int(eval((subs(N2,y,b))*kxy*(subs(dN3dy,y,b))),x,0,a);

Term14 = int(eval((subs(N2,y,b))*kxy*(subs(dN4dy,y,b))),x,0,a);

TermR2L4 = [Term11 Term12 Term13 Term14];

R2 = - TermR2L1 - TermR2L2 + TermR2L3 + TermR2L4;

%--

% R3

%--

% R3L1

Term11 = int(eval((subs(N3,x,0))*kxy*(subs(dN1dx,x,0))),y,0,b);

Term12 = int(eval((subs(N3,x,0))*kxy*(subs(dN2dx,x,0))),y,0,b);

Term13 = int(eval((subs(N3,x,0))*kxy*(subs(dN3dx,x,0))),y,0,b);

Term14 = int(eval((subs(N3,x,0))*kxy*(subs(dN4dx,x,0))),y,0,b);

TermR3L1 = [Term11 Term12 Term13 Term14];

% R3L2

Term11 = int(eval((subs(N3,y,0))*kxy*(subs(dN1dy,y,0))),x,0,a);

Term12 = int(eval((subs(N3,y,0))*kxy*(subs(dN2dy,y,0))),x,0,a);

Term13 = int(eval((subs(N3,y,0))*kxy*(subs(dN3dy,y,0))),x,0,a);

Term14 = int(eval((subs(N3,y,0))*kxy*(subs(dN4dy,y,0))),x,0,a);

TermR3L2 = [Term11 Term12 Term13 Term14];

% R3L3

Term11 = int(eval((subs(N3,x,a))*kxy*(subs(dN1dx,x,a))),y,0,b);

Term12 = int(eval((subs(N3,x,a))*kxy*(subs(dN2dx,x,a))),y,0,b);

Term13 = int(eval((subs(N3,x,a))*kxy*(subs(dN3dx,x,a))),y,0,b);

Term14 = int(eval((subs(N3,x,a))*kxy*(subs(dN4dx,x,a))),y,0,b);

TermR3L3 = [Term11 Term12 Term13 Term14];

% R3L4

Term11 = int(eval((subs(N3,y,b))*kxy*(subs(dN1dy,y,b))),x,0,a);

Term12 = int(eval((subs(N3,y,b))*kxy*(subs(dN2dy,y,b))),x,0,a);

Term13 = int(eval((subs(N3,y,b))*kxy*(subs(dN3dy,y,b))),x,0,a);

Term14 = int(eval((subs(N3,y,b))*kxy*(subs(dN4dy,y,b))),x,0,a);

TermR3L4 = [Term11 Term12 Term13 Term14];

R3 = - TermR3L1 - TermR3L2 + TermR3L3 + TermR3L4;

%--

% R4

%--

% R4L1

Term11 = int(eval((subs(N4,x,0))*kxy*(subs(dN1dx,x,0))),y,0,b);

Term12 = int(eval((subs(N4,x,0))*kxy*(subs(dN2dx,x,0))),y,0,b);

Term13 = int(eval((subs(N4,x,0))*kxy*(subs(dN3dx,x,0))),y,0,b);

Term14 = int(eval((subs(N4,x,0))*kxy*(subs(dN4dx,x,0))),y,0,b);

TermR4L1 = [Term11 Term12 Term13 Term14];

% R4L2

Term11 = int(eval((subs(N4,y,0))*kxy*(subs(dN1dy,y,0))),x,0,a);

Term12 = int(eval((subs(N4,y,0))*kxy*(subs(dN2dy,y,0))),x,0,a);

Term13 = int(eval((subs(N4,y,0))*kxy*(subs(dN3dy,y,0))),x,0,a);

Term14 = int(eval((subs(N4,y,0))*kxy*(subs(dN4dy,y,0))),x,0,a);

TermR4L2 = [Term11 Term12 Term13 Term14];

% R4L3

Term11 = int(eval((subs(N4,x,a))*kxy*(subs(dN1dx,x,a))),y,0,b);

Term12 = int(eval((subs(N4,x,a))*kxy*(subs(dN2dx,x,a))),y,0,b);

Term13 = int(eval((subs(N4,x,a))*kxy*(subs(dN3dx,x,a))),y,0,b);

Term14 = int(eval((subs(N4,x,a))*kxy*(subs(dN4dx,x,a))),y,0,b);

TermR4L3 = [Term11 Term12 Term13 Term14];

% R4L4

Term11 = int(eval((subs(N4,y,b))*kxy*(subs(dN1dy,y,b))),x,0,a);

Term12 = int(eval((subs(N4,y,b))*kxy*(subs(dN2dy,y,b))),x,0,a);

Term13 = int(eval((subs(N4,y,b))*kxy*(subs(dN3dy,y,b))),x,0,a);

Term14 = int(eval((subs(N4,y,b))*kxy*(subs(dN4dy,y,b))),x,0,a);

TermR4L4 = [Term11 Term12 Term13 Term14];

R4 = - TermR4L1 - TermR4L2 + TermR4L3 + TermR4L4;

lxiii

%--

% klocal

%--

klocal1 = [R1;R2;R3;R4];

% klocal2 = [a/(3*b) + b/(3*a), a/(6*b) - b/(3*a), - a/(6*b) - b/(6*a), b/(6*a) - a/(3*b);

% a/(6*b) - b/(3*a), a/(3*b) + b/(3*a), b/(6*a) - a/(3*b), - a/(6*b) - b/(6*a);

% - a/(6*b) - b/(6*a), b/(6*a) - a/(3*b), a/(3*b) + b/(3*a), a/(6*b) - b/(3*a);

% b/(6*a) - a/(3*b), - a/(6*b) - b/(6*a), a/(6*b) - b/(3*a), a/(3*b) + b/(3*a)];

% res = klocal2-klocal1

klocal = klocal1;

%--

% flocal

%--

flocal=[Q * a * b / 0.4e1;

 Q * a * b / 0.4e1;

 Q * a * b / 0.4e1;

 Q * a * b / 0.4e1;];

%--

% procedure

%--

KG = zeros(TN,TN);

FG = zeros(TN,1);

% Assemble

for iEle = 1:size(Ele_dof,1)

 uvw = Ele_dof(iEle,:);

 KG(uvw,uvw) = KG(uvw,uvw) + klocal;

 FG(uvw,1) = FG(uvw,1) + flocal;

end

[KG,FG] = NEUMANN(KG,FG,Node_xy,a,b,TN,Lx,Ly,kxy);

% Specify DOF

for iNode = 1:TN

 xx = Node_xy(iNode,1);

 yy = Node_xy(iNode,2);

 if xx == 0

 KG(iNode, :) = 0;

 KG(iNode, iNode) = 1;

 FG(iNode, :) = 0;

 elseif yy == 0

 KG(iNode, :) = 0;

 KG(iNode, iNode) = 1;

 FG(iNode, :) = 2;

 end

end

% solve simultaneous equation

dof = KG\FG;

% dof'

maxT(azizam,1)=TN;

maxT(azizam,2)=max(dof)

tt=toc

maxT(azizam,3)=tt;

azizam=azizam+1;

clc

end

maxT

toc

lxiv

%--

% plot result

%--

% Result interpolation

FT = TriScatteredInterp(Node_xy(:,1),Node_xy(:,2),dof);

%

% % Evaluate Result

coor_x = [];

coor_y = [];

coor_z = [];

disp_T = [];

for iele = 1:size(Ele_dof,1)

 Nd1 = Ele_dof(iele,1);

 Nd2 = Ele_dof(iele,2);

 Nd3 = Ele_dof(iele,3);

 Nd4 = Ele_dof(iele,4);

 x1 = Node_xy(Nd1,1);

 x2 = Node_xy(Nd2,1);

 x3 = Node_xy(Nd3,1);

 x4 = Node_xy(Nd4,1);

 y1 = Node_xy(Nd1,2);

 y2 = Node_xy(Nd2,2);

 y3 = Node_xy(Nd3,2);

 y4 = Node_xy(Nd4,2);

 T1 = FT(x1,y1);

 T2 = FT(x2,y2);

 T3 = FT(x3,y3);

 T4 = FT(x4,y4);

 coor_x(:,iele) = [x1;x2;x3;x4];

 coor_y(:,iele) = [y1;y2;y3;y4];

 coor_z(:,iele) = [1;1;1;1];

 disp_T(:,iele) = [T1;T2;T3;T4];

end

figure(2)

fill3(coor_x,coor_y,coor_z,disp_T,'EdgeColor','none')

colormap(jet)

title('Temperature (K)- New Divergence Method')%(Total Node = ' num2str(TN) ' and Total Ele = '

num2str(TEle) ')'])

% xlabel('string')

% ylabel('string')

colorbar

% Display Result

Node_disp = [0.75 0.25];

Data_Result = [];

for iNode = 1:size(Node_disp,1)

 xcoor = Node_disp(iNode,1)

 ycoor = Node_disp(iNode,2);

 TempV = FT(xcoor,ycoor);

 Data_Result(iNode,:) = [xcoor ycoor TempV];

end

Data_Input = [DivX DivY TN]

Data_Result

% if centre 6,4 have dof

Val = [0 0];

for iNode = 1:TN

 xcoor = Node_xy(iNode,1);

 ycoor = Node_xy(iNode,2);

 if xcoor == 6 && ycoor == 4

 TempV = dof(iNode,1);

 Val = [iNode TempV];

 end

end

Val

lxv

APPENDIX H

function [KG,FG] = NEUMANN(KG,FG,Node_xy,a,b,TN,Lx,Ly,kxy) % a=dx

%UNTITLED3 Summary of this function goes here

% Detailed explanation goes here

for iNode = 1:TN

 xx = Node_xy(iNode,1);

 yy = Node_xy(iNode,2);

 if xx == Lx

 KG(iNode, :) = 0;

 KG(iNode, iNode-1) = -kxy/a;

 KG(iNode, iNode) = kxy/a;

 FG(iNode,:) = 3700;

% elseif yy == Ly

% KG(iNode, :) = 0;

% KG(iNode, iNode-1) = -kxy/b;

% KG(iNode, iNode) = kxy/b;

% FG(iNode,:) = 0;

 end

end

