Final Year Project (FYP) Viva Presentation
Computational Fluid Dynamic Around a Pier by using LABSWE ${ }^{\text {TM }}$

Presenter : Muhammad Naqib Izzuddin(17006688)
Supervisor : Dr. Siti Habibah

Presentation Outline

1. Introduction

2. Literature Review
3. Research Methodology
4. Results \& Discussion
5. Conclusion \& Recommendations

- Piers faces hydrodynamic load causing structural failures.
- The problem studied by using LABSWE ${ }^{\text {TM }}$
- The computational analysis of flow around the piers was done to be able in understanding the behaviour against the hydraulic structure.
- Piers structural failures had become a serious problem in rural areas in Malaysia.
- Unable to picture the flow behaviour against the piers.
- Thus, it is essential to have a flow model that can provide accurate predictions.

1) To derive LABSWE - Turbulence Model.
2) To perform numerical simulations using LABSWE ${ }^{\text {TM }}$
3) To analyse the computational and wave hydrodynamic parameters by using a circular and square cylinder method.
4) To understand the flow behaviour comparison to piers hydrodynamic with computational analysis of velocity vectors and channel depth centreline flow.

- LABSWE - The turbulence model is a shallow water flow model that considers the effects of turbulence around the piers.
- Studied computational analysis environment: flow around the circular and square cylinder.

2. LITERATURE REVIEW

Continuity equation
$\frac{\partial h}{\partial t}+\frac{\partial\left[h u_{j}\right]}{\partial x_{j}}$

Momentum equation(Navier-Stokes equation)
$\frac{\partial\left(h u_{i}\right)}{\partial t}+\frac{\partial\left(h u_{i} u_{j}\right)}{\partial x_{j}}=-g \frac{\partial}{\partial x_{i}}\left(\frac{h^{2}}{2}\right)+v \frac{\partial^{2}\left(h u_{i}\right)}{\partial x_{j} \partial x i}+F_{i}$

Shallow-water equations.

- Respect to the conservation laws
- Fluid computation to analyse natural flow which regards to shallow water.
- Continuity and Navier Stokes govern SWE.

Cartesian of the coordinate system

- Widely used for solving SWE for its directness in terms of time iterations.

2. LITERATURE REVIEW

Lattice Boltzmann Shallow Water Equation with Turbulence Modelling (LABSWE ${ }^{\text {TM }}$).

- Turbulent flows problems.
- Advantage: Accuracy and efficiency.
- Space filtered Navier-Stokes + LES + Smagorinsky SGS $=$ LABSWE $^{\mathrm{TM}}$.

$$
f_{\alpha}\left(x+e_{\alpha} \Delta t, t \Delta t\right)-f_{\alpha}(x, t)=-\frac{1}{\tau}\left(f_{\alpha}-f_{\alpha}^{e q}\right)+\frac{\Delta t}{6 e^{2}} e_{\alpha i} F_{i}
$$

2. LITERATURE REVIEW

Computational Fluid Dynamic Flow Around Circular and Square Cylinder.

Resolution (N)	20
Characteristically pressure $\left(\mathrm{N} / \mathrm{m}^{2}\right)$	0
Physical density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	1
Characteristically length (m)	0.1
Speed (m/s)	0.2
Lattice relaxation time	0.506
Lattice velocity	0.002
Time steps (s)	5×10^{-6}
Physical kinematic viscosity $\left(\mathrm{m}^{2} / \mathrm{s}\right)$	0.001

Parameters	Values
The channel dimension	$4 \mathrm{~m}(\mathrm{~L}) \times 2 \mathrm{~m}(\mathrm{~W})$
Q, Discharge	$0.248 \mathrm{~m}^{3} / \mathrm{s}$
h0, Outflow depth	0.185 m
$\partial_{z} / \partial_{x}$, Bed slope	-6.25×10^{-4}
	(In flow direction)

\hline Lattice

\hline (Square lattice)

(Model D2Q9)\end{array}\right|\)

2. LITERATURE REVIEW

Shape and flow	Form Drag	Skin friction
三-	0\%	100\%
E	$\sim 10 \%$	$\sim 90 \%$
	~90\%	$\sim 10 \%$
	100\%	0\%

Hydrodynamic load action along the piers.

- Hydrodynamic load can be presented in many forms suited to the researcher's goals.
- Hydrodynamic load need to be analysed in order to have a better structure
- This is because they give force or drag force to the structure which may cause structural failures if the flow is failed to be analysed.

(a)

(b)

(c)

3. RESEARCH METHODOLOGY

The derivation of the lattice Boltzmann shallow water equation with turbulence model (LABSWE $\left.{ }^{\mathrm{TM}}\right)$.
4. Validation

3. RESEARCH METHODOLOGY

. Flow type \& parameters

\bigcirc
The set-up of a computational fluid dynamic simulation-based environment around the piers.
4. Export data to tools: MATLAB

3. RESEARCH METHODOLOGY

The computational analysis of the flows along with the cylinder and square piers.
4. run-up simulation

3. RESEARCH METHODOLOGY

min_program.m \times solid vilue.m $\times+$

3. KEY PROJECT MILESTONE

Key Project Milestone

Week 1-2	Week 3-7	Week 8-16	Week 17-24	Week 25-28
- Identifying and resolving projectrelated issues. - Define the study's problem statements and objectives. - Read relevant academic papers and books for more information.	- Researching hydrological concerns. - Reading related research articles and reference books. - Conducting a literature review and critical analysis.	- To comprehend LABSWE ${ }^{\top \mathrm{M}}$, deduce LBM, LABSWE, Navier Stokes, Large Eddies, and Turbulence flow. - Simulations should be run with the changed model. - Understanding the requirements for exporting parameters in MATLAB.	- Choosing parameters to include in the simulation based on data. - Use linear extrapolation to process and analyse the data.	- Write the FYP thesis to summarise the entire investigation. - Discuss the findings and make recommendations for future research in this sector.

3. FYP I GANTT CHART

FYPI												
TASK/WEEK	1	2	3	4	5	6	7	8	9	10	11	12
Topic discussion with SV												
Highlighting problems												
Highlighting objectives												
Gather references												
Study literature review												
Submit extended proposal												
Conceptualise research in reports												
Familiarise with LABSWE ${ }^{\text {TM }}$												
Simulate conceptual design in MATLAB												
Interim report draft submission												
Finalise proposal defence report												

3. FYP II GANTT CHART

FYP II													
TASK/WEEK	1	2	3		4	5	6	7	8	9	10	11	12
Discuss with SV													
Design lattice Boltzmann with turbulence modelling													
Refer literature review													
Gather Intel on do simulation													
Analyse the factor of flow													
Analyse the piers chosen													
Submit draft report													
Finalise report													
Simulate conceptual design in MATLAB													
Submission of report													
Viva													

4. RESULTS \& DISCUSSION

Derivation

Simulation

The Discussion of the Derivation of the LABSWE - The turbulence modelling.

- LBM
- to enable in understanding the dynamic behaviour of fluids flow directly meaning it can run independently.
- Navier - Stokes equation
- an equation which able to be derived in simulating expected flow
- Large Eddy Scale
- to enable twirl or turbulence flow in the simulation scale
- Standard Sub Grid-Scale (flow turbulence)
- total relaxation time and local equilibrium distribution function (collision)
- particle velocity \& force term (streaming)
- Chapman- Enskog expansion
- to recover macroscopic equation for SWE

4. RESULTS \& DISCUSSION

4. RESULTS \& DISCUSSION

Hence, the simulation of the computational analysis of fluid dynamics along the piers by using LABSWE ${ }^{T M}$ with MATLAB as the medium is validated.

Data validation on flow along the piers with past data.		
Observed	Data achieved	difference
Velocity vectors finals (x-axis)	(Past) $=2.130 \mathrm{~m}$	$=0.005 \mathrm{~m}$
	(Present) $=2.135 \mathrm{~m}$	$=0.23 \%$

4. RESULTS \& DISCUSSION

Cylinder validation simulation result of plotting quivers for the cylinder flow compared to J. G. Zhou (2005)

Square validation simulation result of plotting quivers for the cylinder flow compared to J. G. Zhou (2005)

4. RESULTS \& DISCUSSION

Constant parameters throughout the	
Parameters	Values
The channel dimension	$4 \mathrm{~m}(\mathrm{~L}) \times 2 \mathrm{~m}$ (W)
Q, Discharge	$0.248 \mathrm{~m}^{3} / \mathrm{s}$
h0, Outflow depth	0.185 m
$\partial_{z} / \partial_{x}$, Bed slope	-6.25×10^{-4}
	(In flow direction)
Lattice	600×300
	(Square lattice)
	(Model D2Q9)
$L_{x}=L_{y}$	0.00667 m
Time, iteration	0.01, 6000 steps
tau	1.982

Manipulated variables throughout the	
Parameters	Value
Circular piers	
Height	0.37m
Radius	0.11 m
Boundary condition	No-slip
Square piers	
Height	0.37
Dimension	$0.22 \mathrm{~m}(\mathrm{~W}) \times 0.22$ (L)
Boundary condition	No-slip

4. RESULTS \& DISCUSSION

Comparison of discharge observed along the flow

Circular piers	Square piers
The discharge seems to The discharge seems to be peak a litter when the flow passes by the piers.	

Can be concluded such phenomena happens, because the simulation shows that the hydrodynamic load against the square piers is higher than circular piers.

Comparison of Level of depth along the centreline

Circular piers	Square piers
After the wave passes	After the wave passes the piers,
the piers the depth of	the depth of centreline started
centreline started at -0.1	at $-0.155((\mathrm{~h}-\mathrm{h} 0) / \mathrm{h} 0)$
$((\mathrm{h}-\mathrm{h} 0) / \mathrm{h} 0)$	

As per hypothesis, the more not being hydrodynamic in terms of shape the deeper lower the level of depth as the flow went through. Therefore, the level will only be limited to 0.0 ($\mathrm{h}-$ $h 0) / \mathrm{h} 0$) as centreline in comparing the piers shape as the disturbance to the flow.

Square cylinder flow analysis in 3D view

Circular cylinder flow analysis in 3D view

5. Conclusion and Recommendations

- LABSWE - Turbulence model is able to simulate flow around the piers
- Computational analysis is able to be done and validated with previous analysis which was done by J. G. Zhou (2005).
- Recommendations:
- To grasp flow studies on it behaviour on other hydraulic structure
- To model other turbulent debris flows
- To produce 1D, 2D or 3D model

Presented By:

Muhammad Naqib Izzuddin(17006688)
Civil Engineering Department, Universiti Teknologi PETRONAS.

