

Final Year Project (FYP) Viva Presentation

Computational Fluid Dynamic Around a Pier by using LABSWE™

Presenter : Muhammad Naqib Izzuddin(17006688)

Supervisor : Dr. Siti Habibah

Presentation Outline

1. Introduction

2. Literature Review

3. Research Methodology

4. Results & Discussion

5. Conclusion & Recommendations

1. INTRODUCTION

Background

Problem Statement

Objectives

Scope of Study

- Piers structural failures had become a serious problem in rural areas in Malaysia.
- Unable to picture the flow behaviour against the piers.
- Thus, it is essential to have a flow model that can provide accurate predictions.

Shallow-water equations.

Continuity equation

 $\frac{\partial h}{\partial t} + \frac{\partial [hu_j]}{\partial x_j}$

Momentum equation (Navier-Stokes equation)

$$\frac{\partial(hu_i)}{\partial t} + \frac{\partial(hu_iu_j)}{\partial x_j} = -g \frac{\partial}{\partial x_i} \left(\frac{h^2}{2}\right) + v \frac{\partial^2(hu_i)}{\partial x_j \partial x_i} + F_i$$

- Respect to the conservation laws
- Fluid computation to analyse natural flow which regards to shallow water.
- Continuity and Navier Stokes govern SWE.
- Widely used for solving SWE for its directness in terms of time iterations.

Ζ

Lattice Boltzmann Shallow Water Equation with Turbulence Modelling (LABSWETM).

- Turbulent flows problems.
- Advantage: Accuracy and efficiency.
- Space filtered Navier-Stokes + LES + Smagorinsky SGS = LABSWETM.

$$f_{\alpha}(x + e_{\alpha}\Delta t, t\Delta t) - f_{\alpha}(x, t) = -\frac{1}{\tau} \left(f_{\alpha} - f_{\alpha}^{eq} \right) + \frac{\Delta t}{6e^2} e_{\alpha i} F_i$$

Computational Fluid Dynamic Flow Around Circular and Square Cylinder.

0.4

Arumona,2018)

Zhou,2004)

5

5

TABLE 2.1 Parameters of the computational analysis

Hydrodynamic load action along the piers.

- Hydrodynamic load can be presented in many forms suited to the researcher's goals.
- Hydrodynamic load need to be analysed in order to have a better structure
- This is because they give force or drag force to the structure which may cause structural failures if the flow is failed to be analysed.

(a)

Bridge pier

(c)

3. KEY PROJECT MILESTONE

Key Project Milestone

Week 1-2	Week 3-7	Week 8-16	Week 17-24	Week 25-28
 Identifying and resolving project- related issues. 	 Researching hydrological concerns. Reading related 	 To comprehend LABSWETM, deduce LBM, LABSWE, Navier Stokes, Large Eddies, and Turbulence flow. 	 Choosing parameters to include in the simulation based on data. 	• Write the FYP thesis to summarise the entire investigation.
 Define the study's problem statements and objectives. 	research articles and reference books.	 Simulations should be run with the changed model. 	 Use linear extrapolation to process and 	 Discuss the findings and make recommendations for future research in this sector.
• Read relevant academic papers and books for more information.	 Conducting a literature review and critical analysis. 	• Understanding the requirements for exporting parameters in MATLAB.	analyse the data.	

3. FYP I GANTT CHART

FYPI												
TASK/WEEK	1	2	3	4	5	6	7	8	9	10	11	12
Topic discussion with SV												
Highlighting problems												
Highlighting objectives												
Gather references												
Study literature review												
Submit extended proposal												
Conceptualise research in reports												
Familiarise with LABSWE™												
Simulate conceptual design in MATLAB												
Interim report draft submission												
Finalise proposal defence report												

3. FYP II GANTT CHART

FYPII												
TASK/WEEK	1	2	3	4	5	6	7	8	9	10	11	12
Discuss with SV												
Design lattice												
Boltzmann with												
turbulence												
modelling												
Refer literature												
review												
Gather Intel on do												
simulation												
Analyse the factor of \tilde{a}												
flow												
Analyse the piers												
chosen												
Submit draft report												
Finalise report												
Simulate conceptual												
design in MATLAB												
Submission of report												
Viva												

•

D	erivation	Simulation	Validation	Analysis	
ŀ	lence, the simul piers by u	ation of the computat sing LABSWE TM with M	ional analysis of fluid d ATLAB as the medium is	ynamics along the svalidated.	
	Data	validation on flow alo	ong the piers with past	data.	
	Observed	Data achieve	ed differ	rence	
	Velocity vector finals (x-axis)	ors (Past) = 2.130m (Present) = 2.135m	=0.00 =0.23	5m %	
	Depth at initia final depth le	al and (Past) vel i=0.19 (h-h0) f= - 0.12(h-h (Present) i=0.185(h-h0) f= - 0.14(h-h	i=0.00 i%= 0. i%= 0. f= -0. F%= 0)/h0 0)/h0	05(h-h0)/h0 .02% 02(h-h0)/h0 .16%	Tolerar in err must below (J. G. Z 2004

Constant parameters throughout the

anatysis					
Parameters	Values				
The channel dimension	4m (L) x 2m (W)				
Q, Discharge	0.248 m³/s				
h0, Outflow depth	0.185m				
∂_z / ∂_x , Bed slope	-6.25 x 10 ⁻⁴				
	(In flow direction)				
Lattice	600 × 300				
	(Square lattice)				
	(Model D2Q9)				
L _x = L _y	0.00667m				
Time, iteration	0.01, 6000 steps				
tau	1.982				

Manipulated variables throughout the

analysis

Parameters	Value					
Circular piers						
Height	0.37m					
Radius	0.11m					
Boundary condition	No-slip					
Square	e piers					
Height	0.37					
Dimension	0.22m (W) x 0.22 (L)					
Boundary condition	No-slip					

Comparison of discharge observed along the flow

Circular piers	Square piers
The discharge seems to peak a litter when the flow passes by the piers.	The discharge seems to be higher than circular did.

Can be concluded such phenomena happens, because the simulation shows that the hydrodynamic load against the square piers is higher than circular piers.

Comparison of Level of depth along the centreline

Circular piers	Square piers
After the wave passes	After the wave passes the piers,
the piers the depth of	the depth of centreline started
centreline started at -0.1	at -0.155 ((h-h0)/h0)
((h-h0)/h0)	

As per hypothesis, the more not being hydrodynamic in terms of shape the deeper lower the level of depth as the flow went through. Therefore, the level will only be limited to 0.0 ((hh0)/h0) as centreline in comparing the piers shape as the disturbance to the flow.

3D VIEW

Square cylinder flow analysis in 3D view

Circular cylinder flow analysis in 3D view

5. Conclusion and Recommendations

- LABSWE Turbulence model is able to simulate flow around the piers
- Computational analysis is able to be done and validated with previous analysis which was done by J. G. Zhou (2005).

Recommendations:

- To grasp flow studies on it behaviour on other hydraulic structure
- To model other turbulent debris flows
- To produce 1D, 2D or 3D model

Presented By:

Muhammad Naqib Izzuddin(17006688) Civil Engineering Department, Universiti Teknologi PETRONAS.