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ABSTRACT 

Diabetic Retinopathy (DR) is one of leading causes of blindness. It can be diagnosed 

from symptoms like hemorrhages, exudates, microaneurysm (MA), blood vessels areas 

etc. Among these symptoms, MAs, are said to be the first sign of DR. Hence their 

detection is very important. Due to low and varying contrast and noise inherited in color 

fundus images, MA detection in color fundus images is a very challenging task. 

Although many state of the art algorithms have been proposed, many MAs are often 

missed in the process, thus resulting in low sensitivity. To achieve a higher sensitivity 

with comparable specificity, there is a need for addressing the issue of false positives 

(FP). Automated microaneurysm detection system is proposed in which FP by category 

are addressed. The categories of FP are (i) those from background (ii) from the blood 

vessel (iii) and from other objects/ lesions in the image. In the proposed system, 

candidate MAs are extracted in two parallel modules. In module one, blood vessels are 

removed from preprocessed green band image and preliminary MA candidates are 

selected by local thresholding technique. In module two, based on statistical features, 

the image background is estimated. The results from the two modules allowed us to 

identify preliminary MA candidates which are also present in the image foreground. A 

collection set of features is fed to a rule-based classifier to classify the candidates into 

true MAs and false MAs. The proposed system is tested with Retinopathy Online 

Challenge database. The automated system detected 162 MAs out of 336, thus achieved 

a sensitivity of 48.21% with 65 false positives per image. The retinal vessel 

segmentation was further refined to reduce FP. Image homogenization was proposed to 

ameliorate the effects of low and varying contrast. The proposed blood vessel 

segmentation system uses local and Hessian features and classifies each pixel into 

vessel and non-vessel using a LMSE classifier. We achieved a sensitivity of 0.77 with 

0.0283 FPR on DRIVE test images database. Counting MA is a means to measure the 

progression of DR. Hence, the proposed system may be deployed to monitor the 

progression of DR at early stage in population.  

ABSTRAK 
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 Diabetic retinopathy (DR) adalah penyebab utama kepada masalah hilangya daya 

penglihatan boleh didiagnosis melalui simton-simton seperti hemorrhages, exudates, 

microaneurysm (MA), pembulur darah dll. Di antara simtom ini, MA merupakan tanda-

tanda awal DR. Maka pengesanan MA adalah amat penting. Disebabkan kontra imej 

fundus yang rendah dan sentiasa berubah serta terdapat hingar maka pengesanan imej 

warna fundus merupakan tugas yang sukar. Walaupun terdapat banyak pengaturcaraan 

terkini yang dicadangkan bagi  pengesanan MA namum masih lagi terdapat kekurangan 

kerana kepekaan yang rendah. Kajian ini mencadangkan sistem microaneurysm secara 

automatic di mana ia memperincikan false positive mengikut kategori. Kategori Fp 

adalah seperti (i) dari latar belakang (ii) dari pembulur darah (iii) dari objek lain/lika di 

dalam imej. Di dalam sistem ini, sampel MA diekstrak kepada dua langkah secara 

selari. Langkah pertama imej pembuluh darah diasingkan sebelum proses spektrum 

imej hijau dan sampel MA ini dipilih melalui teknik nilai ambang. Langkah kedua ialah 

dengan menggunakan elemen statistik bagi menganggar imej latar belakang. Ciri-ciri 

pengelasan disuap kepada pegelas berasaskan peraturan bagi mencirikan calon-calon 

MA dan bukan MA. Sistem ini diuji dengan pangkalan data Retinopathy Online 

Challenge. Sistem automatik ini mengesan 162 MA daripada 336 jesteru mencapai 

sensitiviti sebanyak 48.21% dengan 65 false positives bagi setiap imej. Segmentasi 

pembulur retina diperhalusi bagi mengurangakan Fp. Penyeragaman imej dicadangakn 

bagi menyelesaikan kesan kontra yang berubah dan rendah. Cadangan tersebut 

menggunakan ciri local dan Hessian serta memperincikan piksel kepada pembulur dan 

bukan pembulur menggunakan perincian LMSE. Sensitiviti sebanyak 0.77 dengan 

0.0283 FPR dapat dicapai dengan menggunakan imej-imej pengujian pangkalan data 

DRIVE.Mengira MA bermaksud mengukur perkembangan DR. Maka sistem yang 

dicadangkan boleh 

 dibangunkan bagi memantau perkembangan DR pada peringkat awal. 

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the 
university, the copyright of this thesis has been reassigned by the author to the legal 
entity of the university, 
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CHAPTER 1 

INTRODUCTION 

1.1 The Human Eye 

Cameras are developed to mimic the eyes,  similar to camera where lens focuses light 

on film, cornea focuses light on retina [1]. The eye gives us the sense of sight. In 

comparison with other four senses, we may observe and learn more about the 

surrounding world by using our eyes.  Eye detects and converts the light reflected or 

emitted by objects, into neural impulses which are processed by different parts in brain. 

Thus eyes allow us to see and interpret colors, shapes and dimensions.  As shown in 

Figure 1.1, three main structures of an eye are as follows. 

1. The pupil, a black-looking aperture, through which light enters the eye. Due to 

absorbing pigments in the retina, it looks dark in color. It is round in shape. Its 

size varies depending upon the amount of light allowed to enter the eye. The 

size of the pupil is controlled by iris. 

2. The iris is colored circular muscle, giving us our eye’s color (Figure 1.1). Due 

to different amounts of eumelanin (brown/black melanins) and pheomelanin 

(red/yellow melanins), iris may have different colors, thus people with different 

colored eyes. This circular muscle, regulates the amount of light by controlling 

the size of the pupil.  

3. White part of the eye or the sclera, is part of the supporting wall of the eyeball. 

The sclera is continuous with the cornea (transparent, protective outer layer). 

Furthermore the sclera is in continuity with the dura of the central nervous 

system, as shown in Figure 1.1. 
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Figure 1.1: Different structures in human eye[2] 

1.1.1 Layers of the Eye 

There are three layers in the thick wall of the eye. [3], as shown in Figure 1.2. 

1. The sclera is the first or outer most layer of the eye, and it is  the white part of 

the eye [3] . The eye ball gets its white color from sclera and the muscles that 

control eye movement are connected to it. It extends from the cornea to the optic 

nerve at the back of the eye. It is a thick layer and protects the eye.  The eye gets 

its structural stability and shape due to sclera. A clear mucus membrane called 

conjunctiva covers the sclera. This membrane helps in lubricating the eye. 

2. The choroid is the second layer of the eye. It is made up of blood vessels and 

dense pigment[3] .  The nutrients to the retinal layers are supplied by these blood 

vessels. The pigmentation of the choroid layer is visible in iris. In the center of 

iris, there is a round opening called pupil. The change in its size controls both 

the quantity of light incident on the retina and retinal image quality. Lens which 

is solid ellipsoid but elastic and transparent resides behind the iris. It focuses the 

light on the retina, which is the third and innermost layer of tissue. 

3. The retina is a network of nerve cells, notably the photoreceptors (rods and 

cones), and nerve fibers [3] . The function of the photoreceptors is to absorb and 

convert the visible light into nerve impulses. These impulses via optic nerve are 
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sent to the brain. Macula, located in the central part of the retina, is the 

specialized area for perceiving color and fine detail. Fovea is the center of 

macula and contains only cone photoreceptors. The optic nerve is composed of 

millions of nerve fibers. The function of these fibers is to send the information 

received from the eye to the brain visual cortex. 

 

Figure 1.2: Different layers in the eye[4] 

1.2 Diabetic Retinopathy (DR) 

DR is a complication of diabetes mellitus and the second most common cause of 

blindness and the most important cause of blindness in the working age population[5]. 

Diabetes affects over 2% of the population and retinal screening is very costly, both in 

terms of technical resources and personnel [6]. Majority of the people suffering from 

diabetes mellitus will eventually develop this eye disease. It can only be controlled if 

detected early.  With the advent of digital fundus photograph  technology  and  

availability of fast  computers,  automatic  systems  are  being  designed  to  detect  DR. 

DR is  known as a silent disease due to the fact that patient can only realize it when the  

retinal changes have developed into such a condition where treatment is complicated 

and cannot be done[7]. It can be diagnosed from symptoms like: 

1. Hemorrhages: They are red in color similar to microaneurysms. Their shape 

may be large round, hemispherical or flame shaped or irregular. Hemorrhages 

are shown in Figure 1.3 (a). 
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2. Exudates: They may be soft or hard. Soft exudates also called cotton-wool-spots 

have fluffy indistinct margins but the hard exudates are small, discrete waxy 

looking with crenated margins[8]. Exudates are shown in Figure 1.3 (a) 

3. Drusen: They are also called colloid bodies. They are numerous, minute, 

yellowish lesions [8] as shown in the Figure 1.3 (b). 

4. Microaneurysms: They are round in shape and they have red color similar to 

blood vessels[9]. Their diameter lies normally between 10μm and 100μm , but 

it is always smaller than 125μm [10, 11]. Example of MA is shown in Figure 

1.3 (c). 

5. Neovascularization/Blood vessels areas: To compensate for hypoxia, fresh 

vascular channels may be formed in the retina. 

Among these symptoms, MAs are the first to appear. Hence their detection is 

important.   

 

Figure 1.3: (a) encircled bright lesions are exudates while encircled red one are hemorrhages 
(b) encircled yellowish are drusen (c) encircled red is microaneurysm 

 

 

1.2.1 Stages of Diabetic Retinopathy 

For healthy people, if the blood sugar level were too high, insulin will be released by a 

group of special cells in the pancreas (called beta cells).  Insulin is a hormone and it 

causes cells to take in sugar as energy or to be stored as fat. This causes blood sugar 



 

5 

level to go back down. The body needs insulin to utilize sugar as a source of energy. 

Diabetes is a chronic disease, in which the body either cannot produce enough insulin 

or cannot properly use the insulin it produces. Thus diabetes has two types, type I and 

type II. In case of type I diabetes, the beta cells of pancreases are mistakenly attacked 

and killed by the immune system. Thus no, or very little, insulin is released into the 

body. In case of type II, insulin is produced but cannot be utilized by the body. Ninety 

percent of the people suffering from diabetes are type II. During the first twenty years 

of having diabetes, nearly all patients with type I and more than sixty percent of patients 

with type II will develop DR [12]. DR can be categorized into two main categories i.e. 

Non Proliferative DR (NPDR) and Proliferative DR (PDR). According to the 

international classification by American Academy of Ophthalmology (AAO), NPDR is 

graded as: No DR, mild NPDR, moderate NPDR and severe NPDR. Table 1.1 lists 

different stages of DR[13]. Mild non-proliferative diabetic retinopathy (NPDR) is 

indicated by no haemorrhage (Hs) and the count of microaneurysms (MAs) equals to or 

less than 5; while DR stage will be considered as severe NPDR if there are more than 

15 MAs or Hs is more than 5. Neovessel on the optic disc indicates the progression to 

the stage of proliferative diabetic retinopathy (PDR). Microaneurysm detection in color 

fundus images is very challenging and is still an open issue. Some of the approaches 

for MA detection using color fundus images are scale-adapted blob analysis with semi-

supervised learning scheme proposed by [14] while local rotating cross-section profile 

analysis was used for MA detection by [15, 16] and [17] proposed multiscale correlation 

coefficients for the detection of MA. Hough transform based approach was proposed 

by [18]. Diameter closing based approach was used by [11]. Although these algorithms 

are good but to achieve comparable specificity, many MAs are still missed, thus 

resulting in lower sensitivity (see appendix C). To achieve a higher sensitivity with 

comparable specificity, there is a need for addressing the issue of false positives. One 

alternative approach may be multiscale based features for MA description. As there is 

similarity between vision and multiscale image processing[19, 20], hence Curvelet 

Transform being, multiscale and capable of extracting geometric properties of 

structures, may be used. 

 

Table 1.1: Different stages of DR 

DR Stage Findings in color fundus image 
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No DR No apparent diabetic changes, MA=0 and Hs=0 

Mild NPDR 1≤MA≤5, Hs=0 

Moderate NPDR 5<MA<15,0<Hs≤5 

Severe NPDR 15≤MA or Hs>5 

PDR Neovessel on the disc 

1.3 Problem Statement 

The detection of MA is not only important for the screening of DR but also it is very 

important for monitoring the progression of DR. However MA detection is a very 

challenging task using color fundus images. Color fundus images suffer from low and 

varying contrast, non-uniform illumination and noise. These result in fuzzy boundaries 

of MA. Moreover, the shape of the MA is not always circular. The color of the 

background in retinal images is reddish, making the MA detection even more difficult. 

In addition, MA detectors based on intensity may falsely detect parts of blood vessels 

as MA and blood vessels are both red in color as shown in Figure 1.3(c). Hence, blood 

vessels should be detected and removed more accurately. The main categories of FP are 

therefore image background, blood vessels and other objects/lesions in the image.  

The problems that have been identified from literature review and which will be 

investigated are as follows: 

1. Due to irregular shape, poor contrast and reddish background, the detection of 

microaneuryms is challenging using state of the art methods, with limited 

sensitivity of MA detection. 

2. Retinal vasculature is a major feature in the fundus image and is required to be 

removed before MA detection. Any remaining parts of vasculature after retinal 

vessel segmentation will cause false MA detection and hence reduce the system 

specificity in MA detection. 
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1.4 Research Hypotheses 

On the basis of problem statement, it is hypothesized that:  

1. Addressing the false positives by category and using geometry based multisca-

le techniques may help to improve sensitivity of microaneurysm detection. 

2. Preprocessing color fundus images with non-uniform illumination, low and 

varying contrast together with multiscale feature based technique (e.g. Hessian 

Matrix) may improve the blood vessel segmentation. 

1.5 Objectives of the Study 

 In this research work we aim to design and develop a computer aided diagnosis (CAD) 

system that can be used as a monitoring or screening system for diabetic retinopathy. 

The proposed system may assist the ophthalmologists in reducing their workload.  On 

the basis of the hypotheses, the research objectives are defined as: 

1. To design and develop MA detection algorithm based on category of false 

candidates and geometry based multiscale technique such as Curvelet 

transform, to increase the sensitivity in early detection of DR. 

2. To design and develop blood vessel segmentation technique using multiscale 

technique. 

1.6 Scope of the thesis 

The scope of the thesis is limited to color fundus images only. This study involves 

automated detection of diabetic retinopathy using color retinal images.  It consists of 

two parts. In part I, the primary aim is to design and develop an automated MA detection 

with high sensitivity. The dataset for training and testing the MA detection will be from 

Retinopathy Online Challenge (ROC). The algorithm for MA detection is based on 

Hessian features, color features and Curvelet Transform. The second part of the study 

is to design and develop blood vessel segmentation system. For blood vessel 
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segmentation publicly available dataset called Digital Retinal Images for Vessel 

Extraction (DRIVE) will be utilized. The algorithm for blood vessel segmentation is 

based on image homogenization, regional features and Hessian features at multiple 

scale. The expected outcomes of the study are: 

I. An automated MA detection system which can be deployed to assist the 

clinicians in screening and or monitoring the progression of diabetic 

retinopathy.  

II. Blood vessel segmentation system which can be deployed to diagnosis of 

different diseases such cardiovascular disease, stroke, glaucoma, DR, 

hypertension etc. 

Following are the knowledge contributions of the proposed study: 

1) The application of Curvelet Transform for MA detection 

2) The application of category based approach (background, blood vessel and other 

objects/lesions) in feature removal to extract the true candidates of MA. 

3) The introduction of homogenization technique using per pixel contrast to design 

and develop blood vessel segmentation system, together with a LMSE classifier 

to achieve results comparable to those of state-of-art methods. 

1.7 Organizational Structure of the Thesis 

The organization of the thesis is as shown in Figure 1.4. The thesis comprises of five 

chapters. Chapter 2 describes the literature review, and in Chapter 3 methodology of 

automated microaneurysm system is described. In Chapter 4, the results on MA 

detection are presented. The methodology of blood vessel segmentation and results are 

given in Chapter 5. Chapter 6 concludes the thesis and discusses about future work. The 

publications resulted from this work are listed in Appendix A. The weblinks for 

downloading the fundus image datasets are given in Appendix B while technical terms 

are explained in Appendix C. 
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 Figure 1.4: Organization of the thesis  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview

Retinal image analysis is not only important for the diagnosis of diabetic retinopathy 

but it has showed potential in the diagnosis of many other systematic diseases and 

medical conditions such as heart, kidney, stroke etc. It is due to the fact that many 

medical conditions do manifest their symptoms in eyes. This chapter describes 

literature review of the different preprocessing techniques, state of the art methods 

designed for detection of microaneurysm and blood vessel segmentation.  

In section 2.2 fundus photography is described while in section 2.3 the 

preprocessing is discussed. Literature review about microaneurysm is described in 

section 2.4 and it is summarized in section 2.5. Literature review of blood vessel 

segmentation is given in section 2.6. Section 2.7 describes the summary of the literature 

review of blood vessel segmentation. Finally chapter is concluded with section 2.8. 

2.2 Fundus Photography 

Fundus photography is an imaging technique to image the back of eye called fundus. 

The fundus camera that is used for fundus photography consists of an intricate 

microscope attached to a flashed enabled camera[21]. The central and peripheral retina, 

optic disc and macula are the main structures that are captured on fundus images. Some 

of the applications of the fundus photography are: 

 

a) To record abnormalities of disease  affecting the eye. 

https://en.wikipedia.org/wiki/Retina
https://en.wikipedia.org/wiki/Optic_disc
https://en.wikipedia.org/wiki/Macula_of_retina


 

12 

b) To follow up on the progress of the eye condition/disease such as diabetes, age-

macular degeneration (AMD), Neoplasm of the choroid, glaucoma, cranial 

nerves etc. 

c) For monitoring the progression of certain eye conditions/diseases. 

d) For diagnosing different diseases like arteriosclerosis, cardiovascular disease, 

stroke, glaucoma, diabetic retinopathy etc. [5].  

Among these conditions, DR and glaucoma result in vision loss. In fact these two 

are the leading causes of vision loss. Moreover in eye, we can observe the vascular 

condition in vivo. Therefore, detection and analysis of retinal blood vessels is an 

extremely important task. To improve the accuracy of any automated DR detection 

system, the detection and segmentation of the blood vessels plays a vital role. Following 

are some of the techniques used for fundus photography. 

2.2.1 Fluorescein angiography 

Gass et al. in 1967 [22], introduced Fluorescein angiography (FA) into mainstream 

ophthalmology. In FA photography, before capturing the images using fundus camera,  

a sterile aqueous solution, sodium fluorescein is injected intravenously [23]. Imaging 

photos from FA can show microaneurysms, increase in the foveal avascular zone, 

abnormal blood vessels, neovascularization etc. Figure 2.1 shows the example of FA 

image, the white small round objects are microaneurysms. The part of the retina most 

affected by diabetes is blood vessels and FA is currently the gold standard for evaluating 

them. Researchers working on automated microaneurysm detection using FA images 

achieved results similar to clinicians. Although injecting sodium fluorescein improves 

the contrast of the FA images but this improvement is accompanied by a number of 

potential side effects. These include transient nausea, vomiting and allergic reactions. 

About 2.9% of patients face the transient nausea and vomiting is observed in 1.2% of 

the patients [24]. In case of allergic reactions, the  examples of mild reactions are 

pruritus and urticarial while in severe case, anaphylaxis has also been reported[25]. 

2.2.2  Fundus Photography 

https://en.wikipedia.org/wiki/Macular_degeneration
https://en.wikipedia.org/wiki/Macular_degeneration
https://en.wikipedia.org/wiki/Neoplasms,_fibrous_tissue
https://en.wikipedia.org/wiki/Glaucoma
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In color fundus photography, fundus camera is used to record color images of the 

fundus. Traditionally, film based fundus photography were performed. With the 

introduction of digital fundus camera, now digital color fundus photography has 

become widely chosen.  

 

Figure 2.1: Fluorescein angiography shows scattered microaneurysms [26] 

 

Types of fundus photography are standard, wide field, and stereoscopic. 30° of the 

posterior pole of the eye includes the optic nerve and the macula can be captured by 

standard macular fundus photography, as shown in the Figure 2.2. In wide field fundus 

photography, a montage image showing a 75° field of view can be created by combining 

seven fields using standard fundus camera, as shown in Figure 2.3. Newer cameras are 

capable of capturing fundus images up to 200° field of view. Thus more than 80% of 

the total surface area of the retina can be viewed [27]. Similar to direct ophthalmoscopy, 

stereoscopic fundus images allows for examination of the pathology in three 

dimensions. In stereoscopic imaging, two images are created by laterally shifting the 

fundus camera and when viewed appropriately, they become fused  and thus form a 

singular stereoscopic picture [28]. 
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Figure 2.2: Standard color fundus image, 30° of the posterior pole  
 

 

Figure 2.3: Based on 7-field color fundus photography, same patients montage image as in 
Figure 2.2 

2.2.3 Ultrasonography 

B-scan ultrasonography is another fundus imaging modality. It is useful in proliferative 

DR. In this case an eye image is created by using sound waves [29] . In patients with 

media opacity such as vitreous hemorrhage, the retina cannot be accessed directly 

through standard ophthalmic examination. In such cases B-scan ultrasonography is 

most useful. The presence of retinal detachment can be shown using B-scan 

ultrasonography. B-scan ultrasonography can also be used to show other retinal 

pathologies such as a posterior vitreous detachment or vitreous heorrh-

age  [30].  However for clear media, this imaging technique is not useful especially for 

diabetic retinopathy. 

2.2.4 Optical Coherence Tomography 
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The technique that can evaluate retinal morphology with microscopic resolution is 

optical coherence tomography (OCT)  [31]. The working principle of OCT is to emit 

light and measuring the time taken for light to be reflected back from the tissue. It is 

similar to ultrasonography where sound waves are used. For the management of various 

retinal diseases, especially in macular diseases, the OCT has now become the main 

stream. It is the most useful in measuring and quantifying macular edema. In managing 

patients with diabetic macular edema, it has developed into the most important imaging 

tool. 

2.3 Preprocessing 

Fundus images have non-uniform illumination and suffer from low and varying 

contrast. Therefore, they are generally preprocessed to overcome these variations in 

illumination and contrast.  The retinal images contain noise as well as variation within 

and between the retinal images. To obtain meaningful information, this variation must 

be compensated. Intra retinal variation is due to the presence of abnormalities, 

differences in light diffusion, fundus thickness and variation in fundus reflectivity 

[32].Variation in fundus reflectivity causes intensity shading, the shade however may 

be  corrected usually  by median filtering. While inter retinal images variation is due to 

factors such as differences in cameras, retinal pigmentation, illumination, and 

acquisition angle. Preprocessing can be mainly classified for the rectification of the 

following [32]: 

1. Correction of non-uniform illumination. 

2.  Color normalization. 

3. Contrast enhancement. 

 

2.3.1 Correction of Non-uniform Illumination  
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Non-uniform illumination causes shading artifacts and vignetting [33], which  hinders 

the quantitative image analysis. The subsequent reliable global operators are also badly 

affected due to non-uniform illumination. Other adverse effects are altering of local 

statistical characteristics i.e. mean, variance and median. Different techniques have 

been proposed to attenuate this deviation and refining the reliability of subsequent 

operators. Image formation models for describing the observed retinal images, typically 

in terms of foreground image, background image and an acquisition transformation 

function has been proposed by several authors e.g. [34, 35]. All illumination variation 

due to the transformation function or the original background can be contained in the 

background image while the objects in the foreground image are vasculature, visible 

lesions and optic disc. The non-uniform variations in the background image can be 

removed using a method called shade-correction. In this method, by smoothing the 

original image using a mean or median filter with a large kernel, a background image 

is approximated.  Shade-corrected image is obtained by either the filtered image 

subtracted from the original image or original image divided by the filtered image [36-

38], as shown in Figure 2.4. (a) original colored image, (b) green channel image, (c), 

background estimated image and (d) non-uniform corrected image. Alternating 

sequential filtering and brightness adjustment procedure are respectively proposed by 

[39, 40]. 

2.3.2  Color Normalization 

Color is a powerful descriptor and can be used for discriminating between different 

retinal features. But there is a significant variability in the color of intra-image and inter-

image. Also variability in pigmentation of skin and inter patient color of iris affect the 

coloration of the images. The age of patient also affects the color of the images. 

Therefore, it is necessary to normalize the color of retinal images. There are different 

approaches for color normalization. In the histogram equalization based approach, the 

histogram of each color channel in the original colored image is redistributed so that 

the histogram equalized image holds a uniform distribution of pixel values. The 

histogram of each channel is equalized by applying a monotonic, non-linear 

transformation function. Thus each grey level value of the input image is 
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Figure 2.4: Non-uniform illumination correction, (a) original colored image, (b) green channel 
image, (c), background estimated image and (d) non-uniform illumination corrected image, 

obtained by  dividing the original image by the filtered image. 

 

mapped to a new corresponding value in the output image. Another approach is 

histogram specification, this involves interpolation of the distribution of each channel 

to closely match to a reference channel. The image with very good contrast and 

coloration is selected as reference as shown in Figure 2.5 (top row represents the colored 

images while shown in bottom are the color normalized images). Some of the prominent 

works based on histogram equalization/specification are [41-44]. Sinthanayothin et al. 

[45] transformed the original RGB image to an intensity-hue-saturation. This results in 

separating the different channels and normalization without any effect on perceived 

relative pixels color values.  
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Figure 2.5: Color normalization, are two different coloration images, while (c) 
and (d) are the color normalized images of (a) and (b) respectively, reproduced 

from [46] 

2.3.3 Contrast Enhancement 

The contrast enhancement techniques aim to alter the visual appearance so that objects 

can be distinguished from the background and other objects. Many contrast 

enhancement algorithms have been proposed to more easily distinguishable retinal 

features. Usually after correcting non-uniform illumination and color normalization, 

contrast enhancement approaches are applied to the images. Shown in Figure 2.6 (a) 

original color image, (b) green channel, (c) background and (d) contrast enhanced 

image obtained after non-uniform illumination correction and histogram specification. 

The color fundus images acquired often contain photographic artifacts and exhibit low 

contrast. Typically the center of the image has a higher contrast while moving outw- 
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Figure 2.6: Contrast enhancement 

-ard from the center reduced contrast is observed [43, 47]. Some of the approaches for 

contrast enhancement of retinal images are [45, 48-50]. 

2.4 Microaneurysm Detection 

Figure 2.7 depicts the generalized block diagram of computer aided diagnosis (CAD) 

system for detecting MAs.  The MA detection system can be classified into three main 

classes. Class I in which MA candidates are first detected, then using some features, the 

candidates are classified into true MA and false MA. Class II are all those MA detection 

systems that straight away using some features to detect MA at full fundus image level. 

Whereas in case of Class III, blood vessels are removed and candidate MA are detected 

and finally candidates are classified into true MA and false MA. The proposed system 

for MA detection belongs to this class of MA detection system. Microaneurysms 

(MAs), which are basically the saccular enlargement of the venous ends of retinal 
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capillaries, are said to be the first sign of DR. They are round in shape and have red 

color similar to blood vessel [9, 14, 51]. MAs appear and disappear during the early 

course of retinopathy. The MA count and turnover are important measures of DR 

progression [52, 53]. Therefore, accurately detecting MA is not only important for DR 

detection, but also it may assist in monitoring DR progression. They are one of the first 

lesions selected for automated image due to the fact that they have definite clinical 

implications and they are reasonably easy to describe. Hence people started working in 

early 1980s on automated MA detection. Following are some of the important 

approaches used for MA detection. 

 

 

 

Figure 2.7: Generalized block diagram of CAD system for MA detection 

2.4.1 Mathematical Morphology 

Lay et al. [54] proposed MA detection approach based on morphology. The images 

were digitized film negatives and covered a small field of view of macula so MAs were 

well resolved. In these images MAs appeared dark because they used image negatives. 
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They applied top hat transform to identify local minima. For blood vessel identification 

top hat transform with a linear structuring element at various orientations was used too. 

The dataset used has 10 angiographic images containing 177 MAs. The resolution of 

the images was 256 × 256 pixels with 100 gray levels. The system had a sensitivity of 

58% with 4.2 false positives per image. Baudoin et al. [55] improved the system of Lay 

et al. [47]  by adding an extra morphological processing to remove false detection. 

There were 1045 MAs in 25 retinal angiographic images used. The system achieved a 

higher sensitivity of 70 % with slightly higher false positives of 4.4 per image and time 

taken by the process was 30-40 minutes. Shown in Figure 2.8 is an angiographic image 

with MAs which are white dots. Spencer et al. [36] proposed a strategy for MA 

detection in which initial segme- 

 

Figure 2.8: Angiofluorography (positive image), MAs are the white dots 

ntation was achieved after preprocessing images and then using bilinear top-hat 

transformation and matched filtering. Following this process, the images which contain 

candidate MAs were binarized. A novel region-growing algorithm was used and 

subsequently based on the size, shape, and energy characteristics, the candidates were 

classified. They claimed to have similar performance as the clinicians. Thus the system 

could be deployed to accurately monitor the progression of DR. Walter et al. [56] 

proposed MA detection based on bounding box closing. Bounding box closing is 

basically a diameter closing instead of a linear structuring element. After preprocessing 

the image, bounding box closing was used to detect the MA candidates. Based on image 

quality, automatic threshold was calculated. In the final step, using position, area and 

contrast, false positives were removed. The algorithm was tested with 5 images 
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containing 133 MAs and achieved a sensitivity of 86.4%. Some of the other approaches 

based on morphology are [57, 58]. 

2.4.2 Matched Filter 

Spencer et al. [59] used Matched Filter (MF) to detect MAs and blood vessel. After 

preprocessing the images, they used MF to studying the intensity cross-sections of 

microaneurysms from various digitized fluorescein angiograms. They concluded that 

MAs could be approximated to a two-dimensional Gaussian.  MF was used for both 

blood vessel detection and MA detection. Cree et al. [60] proposed automated MA 

detection system using MF. After preprocessing and blood vessel removal, MF was 

used to locate all possible microaneurysms in the image. The resultant image was 

thresholded in such a way to keep maximum number of MA candidates to retain the 

maximum sensitivity. Subsequently region growing was deployed and using 13 

features, the candidate MA was classified into MA and false positive using rule based 

classifier. The dataset consisted of 20 test images containing 297 MAs. A sensitivity of 

82% and a specificity of 84% was achieved which corresponded to a false-positive rate 

of 5.7 microaneurysms per image. Cree [61] designed an automated microaneurysm 

detector for color retinal images. After preprocessing the green channel, top hat 

transform by reconstruction in various orientations was used to remove the blood 

vessels. The small round objects detected in the blood vessels were removed from the 

image by using a 2D matched-filter. The matched image was thresholded to obtain the 

MA candidates. To properly delineate the candidates, region growing was used. Seven 

features were extracted from the region growing candidates and using a Naïve Bayes 

classifier, the candidates were classified into MAs and non-MAs. Other approaches 

based on MF are [36, 62]. 

 

 

2.4.3 Neural Networks 
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Gardner et al. [63] used a neural network (NN) to determine whether diabetic features 

in fundus images can be detected by neural networks. The network was compared 

against an ophthalmologist for screening a set of fundus images. The images were 

broken into small windows of size 20 ×  20 and 30 × 30 for detecting blood 

vessels/exudates and hemorrhages respectively. Pixel data of the window and Sobel 

operator images were used as features and NN was trained and tested. In detecting 

diabetic retinopathy, the system achieved a sensitivity of 88.4% and a specificity of 

83.5%. Similar approach was used by Kamel et al.[64] to detect microaneurysms. Usher  

et  al. [47] used NN to classify each image into those with  lesions and those without 

lesions.   

2.4.4  Miscellaneous Approaches 

Sanchez et al. [65] proposed MA detection system in which after preprocessing, 

background and foreground objects are separated using Mixture Model-based 

Clustering. In this way different image regions can be obtained which may correspond 

to lesions. The method is robust to changes in the appearance of color fundus images. 

Based on color, shape and texture characteristics, a likelihood of each region is 

generated using logistic regression. The probability map is then thresholded to obtain 

final MA classification. For evaluation of the algorithm, ROC dataset [66] is utilized. 

Zhang et al. [17] detected microaneurysms using multi-scale correlation coefficients. 

Algorithm is based on two levels, first level called coarse level in which MA candidates 

are extracted and the second level called the fine level in which MA candidates are 

classified into true MA and false positives. Based on similarity between the Gaussian 

function and grayscale distribution of MA, correlation coefficient was used to extract 

the initial MA candidate. In case of the MA, the coefficient would be high, and low 

otherwise. To match the different sizes of MAs, multiple scales of the Gaussian kernel 

were used. At fine level, 31 features were used for each candidate. These are based on 

shape, grayscale pixel intensity, color intensity, responses of Gaussian filter-banks, and 

correlation coefficient values. The algorithm was evaluated with ROC dataset.  

Mizutani et al.[67] used double ring filter to detect MA. After image preprocessing, 

a double ring filter was used. This filter consisted of an inner circle and an outer ring 

with diameters of 5 and 13 pixels respectively to detect the candidate MA. The blood 
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vessels were segmented and those candidates which were from blood vessel were 

removed. Subsequently twelve image features were extracted and rule based and 

artificial neural network (ANN) classifier was employed to classify candidate lesions 

into microaneurysms or false positives. On ROC training dataset, a sensitivity of 50.6% 

and 44.9 % with 105.28 and 27.04 false positives per image was achieved using rule 

based and ANN classifier respectively. Adal et al.[14] modelled MAs by finding 

regions or blobs of interest. After preprocessing, candidates were detected using 

Hessian features.  Due to variation in size MA and variation in the resolution of images, 

scale adaptive approach with an automatic local-scale selection technique was 

proposed. The features extracted are 18 scale-space, 64 Speeded up robust features 

(SURF), 3 Radon-space and 2 image features from each MA candidate. A semi-

supervised based learning approach was used to classify each candidate into MA and 

false positive. Four classifier namely K-Nearest  Neighbor  (KNN),Naïve  Bayes,  

Random  Forest,  and  Support  Vector  Machines (SVM) were used. A performance 

evaluation was conducted to find optimum classifier-feature pairing. The best classifier- 

feature pair was Radon and SURF features coupled with SVM and KNN classifiers. On 

ROC training dataset, a sensitivity of 44.64% with 35.20 false positives per image were 

achieved.  

Lazar et al. [16] used rotating cross-section profile analysis to detect MA. In the 

inverted green channel, MAs are local intensity maximum structures. MA candidates 

were selected based on local maximum region (LMR) after preprocessing the image 

and inverting the green channel. In each LMR, for a pixel with maximum intensity, a 

set of cross-sectional intensity was obtained.  Furthermore on each profile, peaks were  

detected and attributes of peaks such as the height, size and shape were calculated. The 

feature set consists of orientation of the cross-section changes and statistical measures 

of these attribute values. A naïve Bayes classifier was used to classify the candidates. 

They tested their algorithm on two datasets i.e. ROC and their private dataset. 

Giancardo  et  al. [68] proposed  a MA detection based on Radon transformation and 

rule based classification, while Giancardo  et  al.  [69] extracted features from Radon-

transform and used support vector machine. Abdulazeem [18] proposed the MA 

detection system based on circular Hough transform. In this approach blood vessel were 

first removed. Then based on the fact that microaneurysms are circular, circular Hough 

transform was applied on all the remaining objects in the image. The algorithm was 
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tested on angiographic images. An improvement in terms of sensitivity and specificity 

was observed. Their technique was implemented by[70] for color images. A sensitivity 

of 28% with 505.85 false positive per image was achieved. Quellec et al. [71] proposed 

a method to detect MAs using template matching in wavelet domain. A wide range of 

shapes can be modeled by the generalized Gaussian function for instance MAs may be 

modeled with 2D rotation-symmetric generalized Gaussian function template.  One 

hundred reference lesions were randomly selected, to study shape deviation of the 

lesions. The dataset used consists of green-filtered color (GFC) photographs, 

angiographs and color photographs.  Sensitivity of 90%, 94% and 90 % and positive 

predictive values of 90%, 92% and 89% were achieved respectively on GFC, 

angiographs and color photographs. Sopharak et al. [58] proposed a scheme for 

detecting  MAs consists of three main steps. In the first step images are preprocessed 

and exudates and blood vessel which may cause a false detection are detected in the 

second step. And in the third step, MAs were detected by using a set of optimally 

adjusted mathematical morphology. The scheme was evaluated on 45 non-dilated 

retinal images. Sensitivity of 81.61%, specificity of 99.99%, precision of 63.76% and 

accuracy of 99.98% were achieved.  

Akram et al.[72] proposed a three-stage system for identification and classification 

of MA.  Images were preprocessed in two parallel steps. They enacted the contrast for 

dark lesions detection and enhanced the vessel for blood vessel segmentation. Blood 

vessels were removed from the dark lesion enhanced image using threshold to obtain 

the candidate MAs. In the second stage, the shape based, gray level based, color based 

and statistical features of the candidates were extracted. While in the third stage, a 

hybrid classifier was used. To improve the accuracy, the ensemble approach was 

utilized. GMM, SVM and multimodal medoid were combined. The publically available 

dataset DIARETDB0 [73]and DIARETDB1 [74] were used to evaluate the algorithm.  

Sensitivity of 98.64%, specificity of 99.69% and accuracy of 99.40% were achieved.  

Antal et al.[70] proposed an ensemble based approach for improving the MA 

detection. In their proposed scheme, preprocessing methods and candidate extractors 

were combined. The preprocessing methods include Walter–Klein Contrast 

Enhancement [10], contrast limited adaptive histogram equalization (CLAHE) [75], 

vessel removal and extrapolation [76], illumination equalization [77]. While the 
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candidate extractor were Walter et al.[10], Spencer et al.[36], Circular Hough-

Transformation[18], Zhang et al.[17] and Lazar et al.[78]. Using optimal voting 

scheme, preprocessing-candidate extractor were selected and using threshold, final 

decision on the presence of MA was made. The datasets used was  Retinopathy Online 

Challenge (ROC ), DiaretDB1 2.1 Database [74] and private database provided by 

Moorfields Eye Hospital. They obtained the best score on ROC dataset among all the 

participant of that time. Ram et al.[79] proposed MA detection system using successive 

clutter-rejection-based. Detection of microaneurysm as target detection from clutter 

was formulated. To progressively lower the number of clutter responses, a successive 

rejection-based scheme was proposed. Based on a set of specialized features, processing 

stages were designed to pass majority of true MAs and reject specific classes of clutter. 

After the final rejecter, true positives that remain are assigned a score based on their 

similarity to a true MA. Wang et al. [80] proposed singular spectrum analysis (SSA) 

based MA detection. Using dark object filtering process, the candidate objects were 

located. After performing SSA based candidate cross-section profile analysis, 11 

features from the scaled profile were extracted. For candidate classification, kNN, 

support vector machines (SVMs) and naıve Bayes (NB) classifiers were compared and 

the best results obtained was using the kNN. The algorithm was evaluated on ROC 

dataset.  Some of the other approaches are [58, 81-83]. 

2.5 Summary of the Literature Review of Microaneurysm Detection 

The summary of the literature review of the most relevant MA detection approaches is 

presented in Table 2.1. The fundus images used for automated microaneurysm detec- 

tion are either angiographic or color retinal images. The performance of those MA 

detectors based on angiographic images is better.  

Table 2.1: Summary of the most relevant approaches for MA detection 

First 

Author 
Year Method Dataset used 

Results and 

comments 

Spencer 

[36] 

 

1996 Top-hat transformation & 

matched filtering, thr-

esholding, region gro-wing, 

13 angiogra-

phic images 

Results achieved are 

similar to the clinic-

ians. The method ac-

hieved very good re-



 

27 

classification using size, 

shape and energy 

sults because MA are 

well contrasted in 

angiographic im-ages. 

Cree 

[61] 

2008 Bood vessel removal and 

matched-filtering to det-ect 

small round objects. Region 

growing and using seven 

features and Naïve Bayes 

classifier for candidate 

classificati-on 

758 color re-

tinal images of  

1560 × 1360 

pixel size at 

50° FOV.  

The achieved sens-

itivity is 85% with 

90% specificity. This 

is in the context of a 

diabetic retin-opathy 

screening p-

rogramme. Thus the 

detector is made more 

specific and less 

sensitive. 

Gardener 

[63] 

1996 The images are divided into 

small windows of size 

20x20 and 30x30 for 

detecting blood vessel 

/exudates and hemorrh-

ages respectively. Pixel 

data of the window and 

Soblel operator images are 

used as features and NN 

was trained and tested. 

147 images c-

ontaining DR 

and 32 norm-al 

images are 

used. 

System achieved the 

sensitivity of 88.4% 

and a specificity of 

83.5% for the dete-

ction of diabetic ret-

inopathy. 

Quellec 

[84] 

2008 Template matching in 

wavelet is used and MA is 

modeled based on 2D 

rotation-symmetric gene-

ralized Gaussian function 

template.  They used 100 

reference lesions, to study 

their shape deviation. 

914 color im-

ages 

The achieved sen-

sitivity is 89.62%  

Lazar 

[16] 

 

2013 MA candidates based on 

local maximum region 

(LMR) and obtained a set of 

cross-sectional inten-sity. 

Candidates are cla-ssified 

50 color im-

ages of ROC 

dataset 

Sensitivity of 48% 

with  73.944  FPPI is 

achieved. 
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using different at-tributes 

and naïve Bayes classifier. 

Adal 

[14] 

2014 Hessian features based 

candidate extraction and 

using, scale space, SURF 

Radon-space and  image 

features and four clas-sifier, 

found optimum cl-assifier 

feature pair  

50 color 

images of 

ROC dataset 

44.64% sensitivity 

with 35.20 FPPI is 

achieved. 

That is owing to the contrast enhancement agent injected intravenously. On the other 

hand, the performance of the microaneurysms detectors using color fundus images is 

limited due to low and varying contrast. The challenge is to find a balance between 

sensitivity and specificity. Simply increasing sensitivity may result in an increase in 

false positives. Based on microaneurysm literature review, most of the false positives 

come from blood vessels, background and other objects/lesions. To improve the 

sensitivity while keeping the similar number of false positives per image we need to 

address the issue of various types of false positives. The existing literature review do 

not address the issue of false positives by type. We, however, believe that addressing 

the issue of false positives by type is a more effective way. Secondly the multiscale 

techniques which are good at representing geometric properties of structures such as 

Curvelet Transform can be good in detecting MA. 

2.6 Blood Vessel Segmentation 

The block diagram of generalized automated blood vessel segmentation system is 

shown in Figure 2.9. Similar to MA, blood vessel segmentations can also be roughly 

classified into three main classes. In Class I, firstly BV candidates are detected followed 

by candidates classification into BV and non BV; in case of Class II BV detection 

system, all the pixels in the image are classified into BV and non BV pixels; whereas 

in case of Class III BV detection system, there is a post processing after all the pixels 

in the image are classified into BV and non BV pixels. The proposed algorithm of BV 

segmentation belongs to the class III BV segmentation system. Blood vessel detection 

and analysis are being used in diagnosing different diseases. Moreover accurate blood 
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vessels segmentation may improve the performance of  automated DR detection system 

such as MA [85]. 

2.6.1  Filter based Blood Vessel Detection  

Chaudhuri  et al. [86] firstly  proposed the idea of  matched filter to detect the piecewise 

linear segments of blood vessels. The following three properties of the blood vessel are 

observed. 

1. Due to the fact that BV typically have small curvatures, the anti-parallel pairs 

are assumed to be piecewise linear sections.  

2. In comparison with other retinal surfaces, blood vessels have lower reflectance, 

thus relative to the background, they appear darker. Based on observation that 

ideal step edges in blood vessel are rare, therefore, Gaussian curves may 

approximate the intensity profiles of the blood vessels. 

3. There is a gradual change in the vessel caliber when it travels radially outward 

from the optic disc. 

It may be realized that blood vessel may be oriented at any orientation and there 

will be a peak response of matched filter only if it is aligned with that particular 

orientation. Therefore, extending the idea of matched filter to 2D images requires a 

filter to be rotated at all possible angles. In addition, comparison of corresponding 

responses must be done and maximum response for each pixel can then be obtained. To 

find the blood vessel segments in all possible directions, 12 different templates are 

required. The limitation is the method being sensitive to edges. For instance, the method 

may detect some response due to edges of other bright objects (such as lesions, optic 

disc etc.) which do not resemble any vessel segment. This is due to the fact that the 

local contrast is very high and the edges of the objects partially match the shape of the 

kernel. A post- processing step is needed to identify and subsequently eliminate such 

false detection. Hoover et al.[87] improved the matched filter system of Chaudhuri  et 

al. [86] by adding  probing technique. Using a novel probing technique, the Matched 

Filter Response image was thresholded. The probe examined the image based on a 

number of properties. The constituent pixels were simultaneously segmented and 
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classified when the probe decided a pixel belonged to a vessel. Contrary to classifier-

based methods, this method allowed, before final classification, a pixel to be tested in 

multiple region configu-rations. Similarly in comparison with tracking based methods, 

the probing method was driven by a two-dimensional (2-D) MFR. Using local and 

regional properties, each pixel is classified into vessel and non-vessel. 15 times 

reduction in false positives comparing to basic MFR with 0.75 true positive rate was 

achieved. An improved matched filter was proposed by Al-Rawi et al. [88] for blood 

vessel detection. Better filter parameters (size, standard deviation and threshold) were 

proposed to increase the response of the matched filter for the detection of blood 

vessels. Twenty training images from DRIVE dataset were used and exhaustive search 

optimization procedure was adopted to find the best parameters of matched filter. 

Matched filter being a simple and effective method for blood vessel segmentation is 

prone to false detection because it is sensitive to edges. It detects vessel as well as non-

vessel edges. The first-order derivative of Gaussian (FDOG) was incorporated by 

Zhang et al. [89] along with MF to remove  false detections. The system is called MF-

FDOG. Blood vessels were  
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Figure 2.9: Generalized block diagram of automated blood vessel segmentation 

obtained by thresholding the response of the MF, whereas the FDOG was employed to 

adjust the threshold. The MF-FDOG method is not only very simple but also very 

effective in improving the overall accuracy i.e. significant reduction in false positives 

while detecting fine vessels missed by original MF.  Cinsdikici et al. [90] introduced 

the hybrid of MF with ant colony to overcome the deficiency of MF. The blood vessel 

was detected in two parallel steps i.e. using ant colony algorithm and MF filter. The 

detected vessel in both steps were combined to get the full set of vessels. In post 

 

 processing step length filtering was used. The method could not get rid from the 

pathological areas detected as blood vessels. To improve the performance of the MF, 

Gang et al. [91] used amplitude-modified second order Gaussian filter. Width 
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measurement in the detection process was added. Thus there was a significant increase 

in the success rate of detection. It is shown that when the magnitude coefficient of the 

Gaussian filter is suitably assigned, the vessel width can be measured in a linear 

relationship with the spreading factor of the Gaussian filter. Second-order Gaussian 

filter for retinal vessel detection based on this elaboration was proposed. Using the 

vessel width measurement the size of the blood vessels could be found. Also it can be 

used in optimization of MF. 

2.6.2 Multiscale Based Blood Vessel Detection 

The approaches using multiple scales to segment the blood vessel are based on the fact 

that blood vessels have varying width. Hence they can be better segmented using 

multiple scales. These methods can be further classified into wavelet based, Curvelet 

based and Gaussian based. 

Miri et al. [92] used Curvelet Transform (CT) to enhance the edges of retinal images 

for segmenting the blood vessels. Edges of the colored retinal images were enhanced 

by modifying the coefficients of the CT. The ridges were found by applying 

morphological operators using multistructure elements on the enhanced image. The 

scheme was tested with DRIVE dataset, achieving more than 0.94 accuracy for blood 

vessel detection. Esmaeili et al. [93] enhanced the image using CT and intensified blood 

vessels using matched filter while CT was again utilized to segment vessel from 

background. Soares et al. [94] proposed a vessel segmentation method based on 2-D 

Gabor wavelet. Using Gaussian Mixture Model (GMM), each pixel is classified into 

vessel and non-vessel. Gabor wavelet has the capability to be tuned to specific 

frequencies, which may be exploited for vessels contrast enhancement and noise 

removal in a single step. Pixel intensity in the green band and two-dimensional Gabor 

wavelet transform responses taken at multiple scales (they used five scales) were used 

as features. All the features were normalized to have zero mean and unit standard 

deviation. The approach was tested with two publicly available datasets DRIVE and 

STARE. On the DRIVE database, they achieved an average accuracy of 0.9466 with 

area under the receiver operating characteristic curve of 0.9614. Based upon scale space 

analysis of the first and second derivative of the intensity image,  Martinez-Perez at el. 

[95] proposed  a blood vessel segmentation method. The region was grown in two 
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stages using local maxima over scales of the magnitude of gradient and maximum 

curvature. In stage I, the growth was restricted to regions of low gradient magnitude 

along with the 8-neighboring pixels spatial information. In the stage II, to allow borders 

between regions to be defined, this constraint was relaxed. The algorithm was tested on 

both fluorescent retinal images and red free images. Martinez-Perez et al. [96] modified 

the Martinez-Perez at el. [95] by adding a diameter-dependent equalization factor  to 

the multiscale information and tested the system on DRIVE and STARE datasets. On 

STARE dataset the average TPR of 0.7506, average FPR of 0.0431 and average 

accuracy of 0.9410 were achieved. While on DRIVE dataset, average TPR of 0.7246, 

average FPR of 0.0345, with average accuracy of 0.9344 were achieved. Fast retinal 

vessel detection and measurement based on wavelets and edge location refinement was 

proposed by [97]. On DRIVE dataset the method achieved accuracy of 0.9371 with 

0.7027 sensitivity. Some of the other methods using wavelet are [98, 99]. 

2.6.3 Mathematical Morphology based Blood Vessel Detection 

Zana et al. [100] presented an algorithm to segment blood vessel using Mathematical 

Morphology (MM). A vessel was assumed to be a bright pattern, piece-wise connected, 

and locally linear. Based on this description of vessel, MM was the ultimate choice. But 

many other patterns fit to such a description. So a cross curvature evaluation to 

differentiate vessels from analogous background patterns was also used. They were 

separated out as they had a specific Gaussian-like profile whose curvature varies 

smoothly along the vessel. The algorithm consists of the following steps: 

1. Noise reduction  

2. Improvement of linear pattern with Gaussian-like profile 

3. Cross-curvature evaluation 

4. Linear filtering 

Inverted green channel without any preprocessing was used. The dataset used consists 

of 33 images of poor quality. Out of the 33 images 31 images contained pathologies. 

The images were obtained by scanning the transparent negatives developed on paper. 



 

34 

The algorithm was able to detect most of vasculature tree in 14 images including two 

images from eye without any pathology.  In the remaining 19 images few vessels were 

detected.  In those images where most of the vessels could not be detected were due to 

the low contrast. The length of the structuring element determines the performance of 

the algorithm. Algorithm was also tested on other images that contains tree like 

structures e.g. road. Mendonca et al. [101] segmented the vessel by combining the 

detection of enter lines and morphological reconstruction. The three main processing 

phases of their algorithm were: 

1. Preprocessing: To normalize the background and enhance the thin vessels.  

2. Vessel centerline detection: To define a connected segments set in the central 

part of the vessels. 

3. Vessel segmentation: To ultimately label those pixels which belong to blood 

vessel. 

In the Preprocessing phase, background normalization was achieved by subtracting 

an estimate of the background obtained by filtering with a large arithmetic mean kernel. 

Using set of line detection filters at four orientations (0o, 45o, 90o and 135o), the thin 

vessel were enhanced by keeping the highest filter response for each pixel. The 

candidates for blood vessel centerline were chosen based on directional information 

supplied by four directional Difference of Offset Gaussians filters. Candidate points 

were connected by a region growing process guided by some image statistics while 

characteristics of the line segments were used to validate the detection of centerline 

segment candidates. To enhance the vessels of different widths, modified top-hat 

transform with variable size structuring elements was applied. Binary morphological 

reconstruction was used at four scales to obtain binary maps of the vessels and finally 

vessels were filled by region growing. Green component of the original RGB image, 

the gray band, the luminance channel of the National Television Systems Committee 

(NTSC) color space and the a* component of L*a*b representation were used. 

Algorithm was tested with STARE and DRIVE datasets. The maximum accuracy on 

DRIVE dataset using gray band was 0.9463 while on STARE dataset they achieved 

0.9479 using a* component. Vlachos et al. [102] utilized morphological directional 

filtering and morphological reconstruction in the post processing step. Retinal vessel 
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segmentation technique based on line-tracking was used. Candidates were selected 

using multi-scale line tracking procedure. Then median filtering was applied to restore 

disconnected vessel lines and eliminate noisy lines. In the post-processing steps, 

morphological directional filtering was utilized to keep only vessel like structures 

whereas to remove erroneous regions such as blob morphological reconstruction was 

used. The approach was evaluated using DRIVE dataset. The achieved results were 

accuracy 0.9285 with 0.7468 sensitivity. [92, 98, 99, 103-106] are some of the other 

approaches utilizing mathematical morphology. 

2.6.4 Hierarchical based Blood Vessel Detection 

Xu et al. [107] used both Wavelet and Curvelet Transform based on hierarchical 

approach. Using adaptive local thresholding, a binary image was obtained from which 

large vessels were segmented. While for thin vessels, residual fragments in the binary 

image were used to classify them into vessels and none vessels. Twelve dimensional 

feature vector was constructed using Curvelet and wavelet coefficients which were then 

fed to a SVM. Finally to form the whole vascular network, tracking growth was used 

on thin vessel segments. DRIVE database was used to test the algorithm.  The algorithm 

achieved average sensitivity of 0.7760 with average accuracy 0.93. Wang et al. [108]  

introduced a hierarchical  blood vessel segmentation based on ensemble learning. 

Combination of two superior classifiers: Convolutional Neural Network (CNN) and 

Random Forest (RF) was utilized. CNN was used as a trainable hierarchical feature 

extractor whereas the ensemble RFs work as a trainable classifier. The algorithm was 

evaluated using two publicly available datasets (DRIVE and STARE). The method 

outperformed the state of the art methods by achieving accuracy of 0.9767 with 0.8173 

sensitivity on DRIVE dataset while on STARE dataset, it achieved accuracy of 0.9813 

with 0.8103 sensitivity. Roychowdhury et al. [105]  proposed blood vessel to be 

segmented in two stages. Firstly major vessels were detected and then the fine vessel 

were detected. Green channel was preprocessed to enhance the contrast of blood vessel. 

High pass filtered image was obtained from the enhanced image which was then 

thresholded to get a binary image. Another binary image was obtained from the 

morphologically reconstructed enhanced image for the vessel regions. The major 

vessels were the common regions in the aforementioned two images. Using Gaussian 
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mixture model (GMM) all the remaining pixels in the two binary images were classified 

into vessel and non-vessel pixels. The feature set consisted of the neighborhood features 

and first and second-order gradient features, in all eight features. In the post processing 

step, the major portions of the blood vessels were combined with the classified vessel 

pixels. The algorithm was tested on STARE, DRIVE, and CHASE_DB1 datasets 

achieving accuracy of 0.953, 0.952, 0.9515 in an average of 11.7, 3.1, and 6.7, seconds 

respectively. 

2.6.5  Active Contours and Model based Blood Vessel Detection 

Based on hybrid region information of the image , Zhao et al. [109] proposed  an  

infinite active contour model. It was presumed that in comparison with the length of a 

feature's boundaries based approach, small oscillatory structures could be detected 

using Lebesgue measure of the -neighborhood of boundaries. As local phase based 

enhancement map was a capable in preserving vessel edges whereas image intensity 

information guarantees a correct feature's segmentation. Therefore, to achieve superior 

general segmentation performance, model used region information i.e. combination of 

intensity information and local phase based enhancement map. The model was tested 

using three publicly available datasets DRIVE, STARE and VAMPIRE. For DRIVE 

dataset, it achieved sensitivity (0.742), specificity (0.982) and accuracy (0.954). A 

model based method for blood vessel detection was proposed by Vermeer et al. [104]. 

This approach was based on a Laplacian filter and thresholding segmentation step. This 

was followed by a classification to improve performance. The last step assured 

incorporation of the inner part of large vessels with specular refection. This approach 

achieved a sensitivity of 0.92 with a specificity of 0.91.  Lam and Hong [110] proposed  

a  novel  vessel  segmentation  algorithm based  on  the divergence  of  vector  fields 

for  pathological  retinal  images. Using the normalized gradient vector field, the 

centerlines were detected. Subsequently, based on  the  gradient vector  field  of  a  pixel 

,  the candidate  blood vessels were  detected .The spurious detected candidate blood 

vessel were pruned using the distance from detected centerlines. The method achieved 

average accuracy of 0.9474 and area under the ROC curve (AUC) of 0.9392 on 

pathological images in the STARE database. Gonzalez et al. [111] proposed blood 

vessels detection technique based on graph cut. On DRIVE and STARE datasets, they 
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achieved accuracy of 0.9412 and 0.9481 with sensitivity of 0.7512 and 0.7887 

respectively. Graph cut with Retinex and local phase based scheme for retinal vessel 

segmentation was proposed by Zhao et al. [109]. In this technique, image 

inhomogeneity was corrected by using Retinex. Images were enhanced using local 

phase while for the segmentation of the vessel graph cut based active contour was 

utilized. Using DRIVE dataset the approach achieved average sensitivity of 0.744 and 

average accuracy of 0.953. 

2.6.6 Miscellaneous Approaches for Blood Vessel Detection 

Orlando et al. [112] proposed an algorithm for retinal blood vessels segmentation based 

on fully connected conditional random field model. Support vector machine was used 

for classification. The approach was evaluated using DRIVE dataset and achieved 

sensitivity of 0.785 with 0.967 specificity. Azzopardi et al. [113] proposed trainable 

COSFIRE filters  that selectively responded to vessels, and called it B-COSFIRE 

(Combination Of Shifted Filter Responses) with B (standing for bar). By computing the 

weighted geometric mean of the output of a pool of Difference-of-Gaussians filters, the 

orientation selectivity was achieved. While for achieving rotation invariance, shifting 

operations were used. B-COSFIRE filter was versatile because in an automatic process, 

its selectivity could be tuned. It was configured as symmetric filter for selecting the 

bars and asymmetric filters for selecting bar-endings. By adding the responses of the 

two rotation-invariant B-COSFIRE filters and thresholding, the vessel were segmented. 

The algorithm evaluation was done on three publically available datasets. The 

algorithm achieved sensitivity of 0.7655, 0.7716, 0.7585 and specificity of 0.9704, 

0.9701, 0.9587 respectively on DRIVE, STARE and CHASE_DB1. An unsupervised 

method for blood vessel segmentation was proposed by Oliveira et al. [114]. Images 

were enhanced by combining matched filter, Frangi's filter and Gabor Wavelet filter. 

Two approaches for filter combinations investigated were weighted mean and median 

ranking. In case of weight mean based enhancement, deformable models were used i.e. 

the minimization of Oriented Region-Scalable Fitting energy (ORSF) and fuzzy C-

means (FCM) for vessel segmentation. While in case of median ranking based 

enhancement they used simple threshold criteria. The performance of the algorithm was 

assessed on DRIVE and STARE datasets. Based on Median ranking it achieved 
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accuracy of 0.9464, 0.9532 with sensitivity of 0.8644, 0.8254 on DRIVE and STARE 

dataset respectively. Based on Weighted mean using ORSF, it achieved accuracy of 

0.9356, 0.9429 with sensitivity of 0.7988, 0.8377 on DRIVE and STARE dataset 

respectively. While in case of weighted mean using FCM, the accuracy of 0.9402, 

0.9446 with sensitivity of 0.9106, 0.8049 on DRIVE and STARE dataset were achieved 

respectively.  

2.7 Summary of the Literature Review of Blood Vessel Segmentation 

Summary of the literature review of the most relevant approaches for Blood Vessel 

segmentation is presented in Table 2.2. The algorithms using the angiographic images 

achieved a good performance for BV segmentation similar to the case of MA detection. 

But as far as the color fundus images are concerned, they suffer from low and varying 

contrast. The approach using color images that achieved the best accuracy is based on 

convolutional neural network [108]. Most of the approaches use the features which rely 

on edge detection and suffers from the false positives due to boundary of ROI and edges 

on the optic disc regions. Although the algorithms for blood vessel segmentation 

generally achieve a very low false positive rate but their sensitivity is relatively low if 

we set false positive rate (FPR) of ≤0.03. Low sensitiv- 

 

 

Table 2.2: Summary of the most relevant approaches for BV segmentation 

First Author 

& Year 
Algorithm 

Evaluation Metrics  

(Sn, Sp. Acc) 

Hoover 

[87], 2000 

Matched Filter with thresholding 

Dataset: Angiographic images 

 

0.7500 

 

x 

 

x  

Soares  

[94], 2006 

Pixel intensity in the green band 

and two-dimensional Gabor 

wavelet transform and GMM 

classifier. 

Dataset: DRIVE (colored images) 

 

0.7283 

 

x 

 

 

0.9466  
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Vlachos 

[102], 2010 

 

Multi-scale line tracking, med-ian 

filtering and mathematical 

morphology. 

Dataset: DRIVE (colored images) 

 

0.7468 

 

x 

 

 

0.9285 

Wang 

[108], 2015 

Combination of Convolutional 

Neural Network (CNN) and 

Random Forest (RF).  

Dataset: DRIVE (colored images) 

 

0.8173 

 

x 

 

 

0.9767  

Zhao 

[115], 2015 

Infinite active contour model that 

uses hybrid region information of 

the image to approach this 

problem 

Dataset:DRIVE. (colored images) 

 

0.7420 

 

 

0.9820 

 

0.954  

Azzopardi 

[113], 2015 

B-COSFIRE (Combination Of 

Shifted Filter Responses) with B 

standing for bar .Capable of 

achieving orientation selectiv-ity 

and rotation invariance  

Dataset: DRIVE (colored images) 

 

0.7655 

 

0.9704 

 

  

x 

  

Note: x denotes the unknown values while Sn, Sp and ACC represent sensitivity, 

specificity and accuracy respectively. 

-ity in blood vessel detection in this case, contributes to many false positives in 

automated MA detection algorithms in which blood vessels needs to be removed. Thus 

it is very important for a blood vessel segmentation algorithm to have a good sensitivity 

while keeping the false positive rate low. In order to have a good sensitivity, 

preprocessing should overcome the problem of non-uniform illumination, low and 

varying contrast. Therefore, there is a need to introduce additional steps in 

preprocessing the images to overcome these issues, and use some multiscale techniques 

such as Hessian to cope with various widths of the blood vessel in retinal images. 
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2.8 Summary 

In this chapter different imaging techniques used for fundus photography have been 

presented. In addition different techniques used for preprocessing, microaneurysm 

detection and blood vessel segmentation have also been presented. Preprocessing is 

very important for any computer aided diagnosis (CAD) system. It corrects the non-

uniform illumination, normalizes the color variation and helps to improve the contrast 

of the retinal images. The overall effect of the preprocessing shows an improvement in 

the performance of the CAD system. Most of the early works whether on MA detection 

or blood vessel segmentation used angiographic images. These algorithms achieved 

results similar to clinician’s assessment. Although the contrast enhancement agent 

injection improved the contrast but it is also accompanied by many adverse effects. 

Thus this research moved away from angiographic images to digital color fundus 

photography. In general digital color fundus photography, MA, blood vessel and other 

pathologies are not well contrasted. Therefore, the performance of automated detection 

systems based on color retinal images is limited and this is still an open problem. In 

chapter 3, methodology of the proposed system for automated MA detection is 

described. 

 

 

 
 
 

 
 
 

CHAPTER 3 

METHODOLOGY OF AUTOMATED MICROANEURYSM DETECTION 

3.1 Overview 

Majority of the people suffering from diabetes mellitus will eventually develop diabetic 

retinopathy (DR). DR is one of the leading causes of blindness and can be controlled if 
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detected early. This chapter describes the methodology of microaneurysm detection 

system.  In section 3.2.1, materials used for training and testing the proposed MA 

detection system is presented. Section 3.2.2 presents in detail the proposed automated 

MA detection system. The evaluation metrics for MA detection are presented in section 

3.2.3. The chapter concludes with a summary presented in section 3.3. 

3.2 Materials and Method for Microaneurysm Detection 

3.2.1 Materials for MA detection 

Publically available Retinopathy Online Challenge (ROC) dataset [66] will be used to 

evaluate the proposed system . The dataset consists of 50 images with ground truth at 

different resolutions mimicking the real world scenario. The MAs were annotated by 

four eye specialists at the Department of Ophthalmology, University of Iowa. The ROC 

dataset is challenging due to the presence of noise, compression artifacts and the general 

image quality. These are in common to the image quality found in mass screening 

projects. The images were acquired using different types of camera and at different 

resolutions, which makes it more difficult to detect MAs in such images. The fundus 

cameras used were Topcon NW 100, a Topcon NW200 and a Canon CR5-45NM. 

Niemeijer selected them from 150,000 photographs collected in a DR screening 

program to form the ROC dataset.  Table 3.1 describes the different image types.  

Table 3.1: Types of images used in the proposed approach 

Type 
Resolution(height x width in 

pixels) 
Coverage of the 

retina 
Number of 

images 

Type I 768 x 576 45° 22 

Type II 1058 x 1061 45° 03 

Type III 1389 x 1383 45° 25 

3.2.2 Method for Microaneurysm Detection 
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This section presents our proposed method for automated MA detection system Figure 

3.1 depicts the complete procedure of the proposed MA detection system which consists 

of the following steps: 

1. Candidate selection  

2. Candidate features extraction 

3. Candidate classification into true MA and false MA 

As shown in the Figure 3.1(b), blood vessels are segmented from green band using 

Soares et al. method [94] and are extracted from preprocessed image to obtain image 

shown in Figure 3.1 (d). The image shown in Figure 3.1(d) is thresholded to obtain 

preliminary MA candidates. Similarly using gray band, image is segmented into 

foreground and background as shown in Figure 3.1 (f). Figure 3.1 (g) depicts the image 

obtained after separating the preliminary MA candidate image and background 

foreground image. Thus all those MA candidates which are from background are 

removed in this step. The objects in the image, shown in Figure 3.1 (g) are passed to the 

classifier to classify these objects into true MA and false MA. The classifier used in the 

proposed system is rule-based and consisted of three sequential stages. In stage one, 

false MA candidates are removed based on color features while in stage two, false 

candidates appeared as elongated objects are removed using Hessian features. 
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Figure 3.1: Automated MA detection system flow chart 

Finally in stage three, false MA candidates are removed using Curvelet Coefficient 

based features. Shown in Figure 3.1(h) and Figure 3.1(i) are the objects after 

classification in colored and green band respectively. 

3.2.2.1 Candidate Selection 
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Candidate selection is done in two parallel processes i.e. local thresholding and 

background estimation based. Candidates that are selected by both are kept as the 

potential MA candidates. Following steps are involved in candidate selection: 

a) Preprocessing 

b) BV extraction   

c)  MA candidate selection using local thresholding 

d) Background estimation and removal of false positives 

 

a) Preprocessing 

As described in the section 3.2.1, ROC dataset will be used to evaluate the 

performance of the proposed system which consists of images at different sizes. 

Therefore, the height of all the images is resized to a standard 800-pixel while 

maintaining their original width/height ratio. After resizing, fundus image is 

divided into red band (Rd), green band (Gn), and gray band (Gy). We 

preprocessed the green band as the MAs being red are well contrasted in green 

band. Color fundus images suffer from non-uniform illumination. These images 

also have low and varying contrast. To address the problem of non-uniform 

illumination, a median filter with large kernel size is used to estimate the 

background followed by division of the image by its background estimated 

image. We estimated the background of green band by using a median filter 

with a 35 x 35 kernel and subsequently the green band is divided by the 

background estimated image to obtain image Gnb.  Using another median filter 

with a small kernel of size 5x5, the noise in Gnb is minimized. To overcome the 

problem of low and varying contrast, histogram specification is utilized. We 

performed histogram specification on noise minimized image to get 

preprocessed image, denoted by Gnpr as shown in Figure 3.2. 

b) Blood Vessel Extraction Based on Gabor Wavelet 
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To extract the blood vessel, Soares et al. [94] method is used. This method is 

described here for completeness sake. This method is based on two-dimensional 

(2-D) Gabor wavelet transform responses taken at multiple scales and Gaussian 

mixture model (GMM) classifier. Soares et al.[94] chose the 2-D Gabor wavelet 

because it has directional selectiveness capability of detecting oriented features 

and can be fine-tuned to specific frequencies. The 2-D Gabor wavelet is defined 

as: 

 𝜓𝐺(𝑥) = 𝑒(𝑗𝑘0𝑥)e⁡(−
1
2
|𝐴𝑥|2) (3.1) 

where A is 2x2 diagonal matrix and⁡𝐴 = 𝑑𝑖𝑎𝑔[ϵ−
1

2⁡⁡⁡⁡, 1⁡], 𝜖 ≥ 1, anisotropy of the filter 

is defined by it. The parameter k0 defines the frequency of the complex exponential. 

The filter is made elongated by setting ϵ =4 and k0 is set to [0, 3]. Due to the fact that 

Gabor wavelet responds strongly to high contrast edges, borders of the camera’s 

aperture may lead to false detection as a consequence. In order to reduce this 

effect, a preprocessing technique is proposed in which region of interest (ROI) 

is iteratively grown as explained below: 

i. Determine the set of pixels of the exterior border of ROI, here called 

Ibod. Ibod pixels are defined as those pixels that are outside the ROI 

and are neighbors (using 4-neighborhood) to pixels inside it. 

ii. Each pixel value of this set Ibod , is replaced with the mean value of 

its neighbors inside the ROI, here using 8-neighborhood. 

iii. Expand the ROI by inclusion of this set of changed pixels. 

iv. Repeating steps (i) - (iii) results in artificially increasing the ROI. 

Figure 3.3, shows an example of increased ROI. Features are the maximum 

response of the Gabor wavelet over all possible orientations at each scale. 

Mathematically this can be described as: 

 𝑀ѱ(𝑏, 𝑎) = ⁡ ⁡⁡⁡|𝑇ѱ(𝑏, 𝜃, 𝑎)|𝜃⁡⁡⁡
𝑚𝑎𝑥  (3.2) 
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Figure 3.2: Preprocessing of fundus image. (a) Original color fundus 
image (b) Green channel (c) background estimation (d) Pre-processed 

image 

 

Figure 3.3: Preprocessing to artificially increasing the ROI. (a) original ROI (b) artificially 
increased ROI, reproduced from [94] 
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where a is scale parameter, b is the position and  𝜃 represents the angle/orien-

tation parameter. From 0° to 170° in the steps of 10, Gabor wavelet is taken and 

the maximum response, using above formula, is found and kept as feature. To 

accommodate all the blood vessel of different widths, four scales i.e. a=2, 3, 4, 

5 are used. Thus for each pixel in total five features are extracted, which are the 

maximum response of Gabor wavelet over all angles on four scales and intensity 

of the pixel in inverted green channel. Thus using these features Gaussian 

Mixture Model (GMM) is trained.  More details about GMM can be found at 

[116-118]. Shown in Figure 3.4, is training and testing of the classifier. The left 

diagram illustrates the supervised training of a classifier. The trained classifier 

can then be applied to the segmentation of test images, as illustrated in the right 

diagram in Figure 3.4. The training data consists of randomly selected one 

million pixels from 20 training images of the DRIVE dataset images[119] and 

the trained classifier is tested using DRIVE test dataset of 20 images. 

Subsequently the trained GMM classifier is used to segment the blood vessel 

from the Gn of ROC dataset as shown in Figure 3.1(b). Blood vessels are bright 

objects once inverted green band is used. Therefore, keeping low threshold will 

result in not only detecting almost all the vessels but also many of the MAs will 

be removed as part of blood vessels, whereas keeping threshold high will result 

in missing many vessels but only few of the MA will be removed as part of 

blood vessel. Thus in this step threshold is kept high so that those MAs near to 

blood vessels can be isolated. Keeping threshold high results in better sensitivity 

as many of the MAs are not removed along with blood vessel but many 

segments of blood vessel are also undetected which adds to false positives. 

These blood vessels are removed from the Gnpr to obtain BV-removed image, 

denoted by G-BV as shown in Figure 3.1(d). 

c) MA candidate selection using local thresholding 

MAs appear dark in the green band similar to the retinal blood vessels, and can 

be extracted using threshold. Using global thresholding, many of the true MAs 

are not captured if the threshold is set too high [120].  On the other hand, 
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Figure 3.4: Supervised pixel classification approach, reproduced from[94] 

many MAs and background subjects would clump together if the threshold is 

kept too low. Both missing MAs and having multiple MAs clumped together 

caused lower MA count than the actual number. This effectively reduced the 

sensitivity of MA detection. As intra- and inter-image variability in intensity 

was significant in color fundus image datasets, local thresholding was adopted 
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instead. Based on minimum intensity in a small window of size 9x9 (empirically 

determined value), we binarized each pixel in the G-BV image to obtain 

candidate image, denoted by𝐺𝑙𝑡, a part of which is shown in Figure 3.1 (g). Since 

we use none-overlap window, so we have one MA candidate in almost each and 

every window with exception of those in which all the pixels are dark. Thus in 

this step we detect almost all of the MAs accompanied by thousands of false 

positives.  

d) Background Estimation and Removal of False Positives: 

 From gray channel image (Gy), shown in Figure 3.1 (e) we also detect the 

candidates. Based on per pixel contrast (PPC) and standard deviation (STD), we 

classify each pixel into MA and background, as shown in Figure 3.1(f). PPC is 

defined as the average intensity difference between a pixel and its adjacent 

pixel.  Using 17x17 window (the window size is empirically determined), PPC 

and STD are calculated. We randomly selected 10 images containing 50 MAs 

and 50 background regions to estimate the values for PPC and STD. Based on 

the estimated values for background, all the pixels in the images are classified 

into background and foreground. Foreground pixels are assigned value equal to 

one while background pixels are assigned value of zero as shown in Figure 3.5 

(b). In this case we keep the threshold low so that as many MAs as possible are 

picked. The image thus obtained is denoted by⁡𝐺𝑓𝑏. We multiple the two images 

to obtained 𝐺𝑐𝑎𝑛𝑑 i.e. 

 

 
𝐺𝑐𝑎𝑛𝑑 = 𝐺𝑓𝑏 ⁡× ⁡𝐺𝑙𝑡 

 
(3.3) 

Thus Gcand image contains most of the MAs while many of the false candidates that 

are from background are removed. At this stage the FPs are mainly from traces of the  

BV and the  background,  some  of these are from red lesions. Therefore, many 

candidate pixels are close to each other and actually belong to single object. Thus 

we merge all those candidates which are in the neighborhood of one pixel and have 

similar intensity. 
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Figure 3.5: (a) color image (b) background estimated image (Gfb) 

3.2.2.2 Candidate Feature Extraction 

In general, MAs are red in color and have round shape. Based on their morphology and 

intensity, we use three feature sets to describe the MAs, namely color-based, Hessian 

matrix-based, and Curvelet coefficients-based features. 

a) Color Based features 

The color features are one of the important descriptors in pattern recognition 

and computer vision. In the proposed system many of the FPs are those that are 

not red in color. Hence many FPs are removed in this stage. Color based features 

we use in the proposed system include: 

1. Mean intensity in red band: Mean intensity in red band 𝐸𝑚𝑒𝑎𝑛𝑅𝐵 is defined 

as sum of values of pixels in a region divided by the total number of pixels 

in a region. Mathematically it can be written as: 

 𝐸𝑚𝑒𝑎𝑛𝑅𝐵 =
1

𝑀 × 𝑁
(∑∑𝑅𝐵𝑛𝑜𝑟𝑚((𝑖, 𝑗)

𝑁

𝑗=1

𝑀

𝑖=1

) (3.4) 

where M and N are the number of rows and column in the region. And  

𝑅𝐵𝑛𝑜𝑟𝑚 is normalized region in red band obtained by normalizing red band 

using following equation [121]  
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 𝜐̂𝑖 =
𝜐𝑖 − µ𝑖
𝜎𝑖

 (3.5) 

where υi is the ith feature assumed by each pixel, µi is the average value   of 

the ith feature, and σi is the associated standard deviation. 

2. Standard deviation in red band: Standard deviation of red band or 𝑆𝑡𝑑𝑟 is 

defined as measure of the degree of spread among a set of intensity values 

or a measure of the tendency of individual intensity  values to vary from the 

mean intensity values in the red band. Mathematically it can be described 

as: 

 𝑆𝑡𝑑𝑟 = (
1

𝑛 − 1
∑(⁡𝑅𝐵𝑛𝑜𝑟𝑚 − 𝐸𝑚𝑒𝑎𝑛𝑅𝐵

𝑛

𝑘=1

)2)
1
2 (3.6) 

where n is total number of pixels in the region. 

3. Mean intensity in green band: Mean intensity in green band  𝐸𝑚𝑒𝑎𝑛𝐺𝐵  is 

defined as sum of values of pixels in a region divided by the total number 

of pixels in a region. Mathematically it can be written as 

 𝐸𝑚𝑒𝑎𝑛𝐺𝐵 =
1

𝑀 × 𝑁
(∑∑𝐺𝐵𝑛𝑜𝑟𝑚((𝑖, 𝑗)

𝑁

𝑗=1

𝑀

𝑖=1

) (3.7) 

      where M and N are the number of rows and column in the region. And  

𝐺𝐵𝑛𝑜𝑟𝑚 is normalized region in green band obtained by normalizing green 

band using equation 3.5. 

4. Standard deviation in green band:  Standard deviation in green band or 𝑆𝑡𝑑𝑔 

is defined as measure of the degree of spread among a set of intensity values 

or a measure of the tendency of individual intensity  values to vary from the 

mean intensity values in the green band. Mathematically it can be described 

as: 

 𝑆𝑡𝑑𝑔 = (
1

𝑛 − 1
∑(𝐺𝐵𝑛𝑜𝑟𝑚 − 𝐸𝑚𝑒𝑎𝑛𝐺𝐵

𝑛

𝑘=1

)2)
1
2 (3.8) 

where n is total number of pixels in the region. 
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5. Histogram based features: Histogram is a graph showing the number of 

pixels in an image at each different intensity value.  This method analyses 

image based on intensity. In the proposed work histogram based features are 

histogram of S and V band in HSV color space. Histogram is computed from 

all of the pixels in the candidate MA in S and V band, and the peaks in the 

histograms are used as feature to differentiate between MA and false MA. 

The color space red, green and blue (RGB) describes the colors in terms of red, 

green and blue. This color space is defined in terms of combination of primary 

colors.  While in case of HSV color space, colors are described in terms of the 

Hue, Saturation, and Value as shown in Figure 3.6 . The HSV colors space is 

similarly to how the human eye tends to perceive color.  The HSV  model was 

created by A. R. Smith in 1978 [122]. The coordinate system is cylindrical, and 

the colors are defined inside a hexcone. Details can be found in [122]. In RGB 

space, most of the information is available in green and red bands. Therefore, 

we use only green and red bands. Similarly for HSV, we use S and V bands. 

The above color features are calculated using 11x11 circular window centered 

on the center of the candidate objects, the size of the window is empirically 

determined.  

b) Hessian Based Features 

The Hessian matrix is a square matrix which is composed of second-order 

partial derivatives of multivariable scalar valued function. Shape characteristics 

of objects can be captured based on eigen values of the Hessian matrix[123]. 

Hessian matrix for 2D image is given by: 

 

 𝐻 = [
𝐼𝑥𝑥 𝐼𝑥𝑦
𝐼𝑦𝑥 𝐼𝑦𝑦

] (3.9) 

where 𝐼𝑥𝑥 and⁡𝐼𝑦𝑦 are the second order partial derivatives of image I and 𝐼𝑥𝑦and 

𝐼𝑦𝑥 are the mixed derivatives of image I. Based on the fact that 𝐼𝑥𝑦= 𝐼𝑦𝑥 , it can 

be stated that the Hessian matrix is symmetrical with real eigenvalues  
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Figure 3.6: HSV color space 

and orthogonal eigenvectors. The eigenvalues of the Hessian, represented by λ1 

and λ2, taking |λ1| ≤ |λ2|, measure convexity and concavity in the corresponding 

eigen directions. The eigenvalues of H are called principal directions/ curvatures 

and are directions of pure curvature (no mixed partial derivative). They are 

always orthogonal and invariant under rotation. Different structures such as 

tubular,  blob etc. can be detected based on these eigenvalues  [124]. In the 

proposed system we use four Hessian features. These are the eigenvalues, their 

product, and their ratio. Using 17x17 window centered on candidate MA, the 

aforementioned features are extracted.   

c) Curvelet Coefficient 

The basic concept of Curvelets is to represent a curve as a superposition of 

multiple functions of various lengths and widths obeying the scaling law 

width≈length. Because Curvelet Transform (CT) has a highly redundant 

dictionary. Thus for those signals that have edges along regular curve, it can 

provide sparse representation. It is localized in angular orientation in addition 

to localization in spatial and frequency domains a very important feature 

missing in the classic wavelet transform. Initial construction of Curvelet has 

been redesigned and was reintroduced as fast digital CT [125].  Most natural 

images/signals exhibit line-like edges, i.e., discontinuities across curves (so-



 

54 

called line or curve singularities). Traditional wavelets perform well only at 

representing point singularities, since they ignore the geometric properties of 

structures and do not exploit the regularity of edges. The solution to this 

problem and some other limitations of the wavelet is provided by CT. Unlike 

the isotropic elements of wavelets, the needle-shaped elements of this transform 

possess very high directional sensitivity and anisotropy [95]. Before explaining 

Curvelet transform in 2-D, we define some terms. Let x be a spatial variable, w 

as frequency-domain variable, and with r and θ polar coordinates in the 

frequency domain. We have, W(r) radial window and V (t), angular window, 

which are smooth, nonnegative and real valued. With W taking positive real 

arguments and supported on r ∈ (1/2, 2) and V taking real arguments and 

supported on t ∈ [−1, 1]. These windows will always obey the admissibility 

conditions [125] : 

 ∑𝑊2(⁡2𝑗𝑟) = 1, , 𝑟⁡ϵ (
3

4
,
3

2
)⁡⁡⁡⁡⁡⁡⬚

∞

𝑗=−∞

 (3.10) 

 

 ∑𝑉2(𝑡 − 𝑙) = 1, , 𝑡ϵ (−
1

2
,
1

2
)⁡⁡⁡⁡⁡⁡⬚

∞

𝑙=−∞

 (3.11) 

Now, for each j≥⁡ j0, we introduce the frequency window Uj defined in the 

Fourier domain by  

 𝑈𝑗(𝑟, 𝜃) = 2
−3𝑗
4 𝑊(2−𝑗𝑟)𝑉(

2
𝑗
2𝜃⁡⁡

2𝜋
) (3.12) 

Thus the support of 𝑈𝑗 is a polar “wedge” defined by the support of 𝑊 and 𝑉, the radial 

and angular windows, applied with scale-dependent window widths in each direction. 

Define the waveform 𝜑𝑗(x) by means of its Fourier transform𝜑̂𝑗(𝜔)=𝑈𝑗(𝜔),⁡let 

𝑈𝑗(𝜔1, 𝜔2) be the window defined in the polar coordinate system by (3.12). We may 

think of 𝜑𝑗as a “mother” Curvelet in the sense that all Curvelets at scale 2-j are obtained 

by rotations and translations of 𝜑𝑗. 

With rotation angles  
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 𝜃𝑙 = 2𝜋. 2𝑗/2⁡⁡. 𝑙⁡ (3.13) 

where 𝑙= 0, 1, . . .⁡⁡, 4. 2𝑗/2⁡⁡⁡ − 1 , such that 0 ≤ 𝜃 < 2π . It should be noted that 

the spacing between the consecutive angles depends on scale. For example in 

case of 2nd scale, we have 8 orientations/angles in total, while in case of 4th 

scale, we have total 16 orientations/angles. Thus at higher scale, we have higher 

orientations/angles resolution. 

Similarly, the sequence of translation parameters are k = (k1, k2) ∈ Z2. Now we 

define Curvelets (as function of x = (x1, x2)) at scale 2-j orientation 𝜃𝑙, and 

position: 

 𝑥(𝑗,𝑙)𝑘 = 𝑅𝜃𝑙
−1(𝑘1. 2

−𝑗 , 𝑘2⁡.2
−𝑗/2) (3.14) 

by 

 𝜑𝑗,𝑙,𝑘(𝑥) = 𝜑𝑗(⁡𝑅𝜃𝑙⁡(𝑥 − 𝑥𝑘
(𝑗,𝑙)

)⁡⁡ (3.15) 

where Rθ is the rotation by θ radians. 

 

 𝑅𝜃 = (
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) (3.16) 

A Curvelet coefficient is then simply the inner product between an element f ∈ 

L2(R2) and a Curvelet 𝜑𝑗,𝑙,𝑘, 

 
𝑐(𝑗, 𝑙, 𝑘) ≔⁡ 〈𝑓, 𝜑𝑗,𝑙,𝑘⟩ = ∫ ⁡𝑓(𝑥)𝜑𝑗,𝑙,𝑘(𝑥)𝑑𝑥

⬚

𝑅2
 

 

(3.17) 
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Figure 3.7: Curvelet tiling of space and frequency, reproduced from [125] 

Referring to Figure 3.7: Curvelet tiling of space and frequency, reproduced from [125], 

parabolic shape of wedges is achieved by splitting the Fourier plane into radial and 

angular divisions. Image is decomposed into multiple scales (different frequency bands) 

using the concentric circles. Similarly different orientations/angles in particular band 

are obtained by angular divisions. Therefore, scale j and angle Ɩ is used to deal with a 

particular wedge. Taking the inverse FFT of such a wedge corresponds to an ellipse as 

shown in Figure 3.7 right. This indicates that the inverse FFT of a particular wedge if 

taken, will determine the Curvelet coefficients for that scale and angle[126] . Figure 3.7 

represents the continuous Curvelet transform tilings, in case of digital coronization, we 

have Cartesian arrays where coronae and rotations of continuous time are not especially 

adapted to Cartesian arrays. So in this case we have Cartesian coronae which are based 

on concentric squares instead of circles and shears instead of rotations, as shown in 

Figure 3.8. 

The digital counter part of equation 3.12 is  

 𝑈𝑗(𝜔) = 𝑊𝑗(𝜔)𝑉𝑗(ω) (3.18) 

while we have shear matrix instead of rotation matrix in digital domain. 

 

 𝑆𝜃 = (
1 0

−𝑡𝑎𝑛𝜃 1
)⁡⁡⁡⁡ (3.19) 

where 𝑆𝜃 is the shear matrix. 
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Figure 3.8: The figure illustrates the basic digital tiling. The windows 𝑼̃j,l ,smoothly localize, 
reproduced from [100] 

Curvelets are used in many medical image analysis applications like computed 

tomography [127], breast cancer diagnosis in digital mammogram [128], ulcer 

detection[129], retinal image analysis [92], and so on. 

d) Curvelet Coefficient Based Features 

The second generation Curvelet transform called Fast Digital Curvelet 

Transform (FDCT) was introduced by [125] by redesigning the initial 

construction of the Curvelet. This second generation FDCT is simpler to 

understand, use, also faster and less redundant compared to its first generation 

version. Algorithm of CT is shown in Figure 3.9. It is based on two windows, 

namely scale window V and radial window W, and consists of four steps: 

1. Compute the 2-D Fourier transform of the original image. 

2. For each scale s and orientation n, estimate frequency window Us,n  

as a product of the scale and radial windows. 

3. Wrap this product around the origin. 
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4. Compute a 2-D inverse fast Fourier transform to derive the Curvelet 

coefficients.  

More details and mathematical description  can be found in [125]. In digital 

implementation of the CT, the two main parameters are: 

a. number of scales at the coarsest level 

b. number of orientations at the coarsest level 

We find in our case that two scales and 16 orientations work well. Based on 

Curvelet coefficients, we calculate aspect ratio, circulatory, mean energy and 

standard deviation of energy. 

1. Aspect ratio: Aspect ratio 𝐴𝑅  is defined as the ratio of the width to 

the height of an object. It describes the proportional relationship 

between its width and its height. Mathematically it is expressed as: 

 𝐴𝑅 =
𝐷𝑤
𝐷𝐻

 (3.20) 

where Dw is the width of an object and DH is its height. For a  circular 

object the value of AR will be one. 

2. Circulatory : Circularity ∁ is a function of the perimeter  and the area 

of object and is defined as: 

 ∁=
4 × 𝜋 × 𝐴

𝑃2
 (3.21) 

where  A is area of an object and P is its perimeter. For round object, 

the value of ∁⁡will be one. 
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Figure 3.9: Steps of Curvelet Transform, reproduce from [92] 

 

3. Mean energy: Mean energy 𝐸𝑚𝑒𝑎𝑛  is defined as the sum of squared values of 

pixels in a region divided by the total number of pixels in a region. 

Mathematically it can be written as : 
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 𝐸𝑚𝑒𝑎𝑛 =
1

𝑀 × 𝑁
(∑∑𝑃𝑖𝑥𝑒𝑙(𝑖, 𝑗))2

𝑁

𝑗=1

𝑀

𝑖=1

 (3.22) 

where M and N are the number of rows and column in the region respectively. 

4. Standard deviation of energy: Standard deviation of energy 𝑆𝑡𝑑𝑒𝑛𝑔𝑦 is defined 

as measure of the degree of spread among a set of energy values or a measure 

of the tendency of individual energy values to vary from the mean energy 

values. Mathematically it can be described as: 

 𝑆𝑡𝑑𝑒𝑛𝑔𝑦 = (
1

𝑛 − 1
∑(𝐸𝑛𝑔𝑦𝑘 − 𝐸𝑚𝑒𝑎𝑛

𝑛

𝑘=1

)2)
1
2 (3.23) 

where Emean is the mean of energy and 𝐸𝑛𝑔𝑦 is the normalized energy in 

different orientations. 

3.2.2.3 Candidate Classification MA and false MA 

A simple rule based classifier is designed to classify the candidates into MA and false 

MA. To estimate the range of values we select 10 images. Out of these 6 images contain 

MA whereas 4 images do not contain any MA. The values of very clear MAs and false 

positives are selected and used for estimating the range of parameters. Based on the 

range selected, we test those 10 images and by trial and error a range of parameters are 

found as shown in Table 3.2. After finding the range of parameters value, we test all the 

fifty images. The classification is done in three sequential stages. In stage one, using 

color features we remove the false positives which are from non-red objects. In stage 

two, using Hessian matrix based features we remove those candidates that are from 

traces of blood vessels and other elongated objects. While in stage three, Curvelet 

Coefficients based features are utilized to remove non-circular objects. 

 

 

Table 3.2 : Parameter values 

Filter Function Parameters range 
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3.2.3 Evaluation Metrics for Microaneurysm Detection 

The performance of the automated MA detection system will be evaluated using free-

response receiver operating characteristic (FROC) curve. FROC is the plot of 

sensitivity (see appendix C) vs. average number of false positives per image (see 

appendix C). In this plot sensitivity is on the y axis while average number of false 

positives per image is on the x-axis. It can extend indefinitely to the right, but the 

ordinate is limited to unity or less.   

3.3 Summary 

In this chapter, the methodology of the proposed MA detection has been presented. The 

proposed system for MA detection is designed to have maximum sensitivity. The 

candidates are extracted in two parallel steps. To achieve better sensitivity with 

Median filter Background estimation 35x35 

Median Noise removal 5x5 

Color RGB Std in red band 0.0106<R_std>0.167 

Color RGB Std in green band 0.006641<G_std>0.120945 

Color RGB Mean intensity in red band -0.0434<R_mean>0.1915 

Color RGB Mean intensity in green 

band 

-0.0320<G_mean>0.137780 

Color HSV Intensity values in S 

channel 

0.78<S 

Color HSV Intensity values in V 

channel 

0.65<V 

Hessian 1 1>0 

Hessian 2 2>0 

Hessian 1 × 2 1 × 2>0 

Hessian Ratio of 1 and  2 (Ro1,2) Ro1,2<85 

Curvelet Aspect ratio (AR) AR<3.7 

Curvelet Circulatory (C) 0.1<C<1.5 

Curvelet Mean Energy (Emean) Emean<5.9 

Curvelet Std of Energy (StdE) StdE>1.5 
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comparable number of false positives, a three stage sequential mechanism to remove 

the false positives has been proposed. Thus using features based on color, Hessian and 

Curvelet, most of the false positives are expected to be removed while keeping 

maximum number of microaneurysms. The results of the automated microaneurysm 

system are presented in chapter 4 section 4.2 and 4.3.   
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CHAPTER 4 

RESULTS AND DISCUSSION ON MICROANEURYSM DETECTION 

4.1 Overview  

This chapter discusses the evaluation of the proposed microaneurysm detection system. 

As illustrated in chapter 3, in case of MA detection, the preliminary MA candidates 

were extracted using local thresholding and background estimation. The false positives  

were  removed  using three sequential  stages: color features based, Hessian based and 

Curvelet transform based. The overall results and discussion of the proposed system for 

MA detection are described in section 4.3, while section 4.4 concludes the chapter with 

a summary. 

4.2 Automated Microaneurysm Detection 

This section presents the results of the proposed system. We have used 50 images from 

ROC dataset to test the proposed system. Out of these 50 images, only 37 images 

contain MAs, while the remaining 13 images do not contain any MA. The total number 

of MAs in these 37 images is 336. Our aim is to detect as many MAs as possible in each 

stage. We used the inverted green band, so MAs were bright objects. Therefore, we 

kept flexible threshold in all the stages to get the maximum sensitivity albeit with many 

false MA detections also. 

4.2.1 Blood Vessel Segmentation Based on Gabor Wavelet  

In the inverted green band, both blood vessel and MA are high intensity objects as both 

are red in color fundus images. Having same color, blood vessel are generally mistaken 

as MA. Therefore, it is important to remove the blood vessel before candidate MA 
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extraction. Based on Gabor wavelet approach proposed by Soares et al. [94], we 

segmented the blood vessel from ROC dataset, two examples are shown in Figure 4.1. 

Gabor wavelet being sensitive to edges detects most of the vessels. But 

 

Figure 4.1: Examples of BV segmentation based on Gabor Wavelet. Right column 
colored ROC images, left column segmented vessels. 

there are many MAs which are not only positioned close to blood vessels but also low 

intensity variation in the region between MA and the nearby blood vessel. In such cases 

keeping the same threshold as used by the Soares et al. [94] will result in removal of 

those MAs along with blood vessel. This is because at low threshold, MAs might be 

clumped together with blood vessel and will also be removed as part of the blood vessel. 

Thus to retain such MAs we used higher threshold values. In this way we are able to 

keep those such MAs. However keeping high threshold will result missing many vessels 

also, and in this process many broken pieces of the vessel may contribute to false 

positives. These false positives were expected to be removed in latter stages. Thus we 

could maintain the high sensitivity.  In this stage, we missed only few MAs which are 
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clumped together with blood vessels unintentionally and removed along with the blood 

vessels. 

4.2.2 MA Candidate Selection 

As discussed in chapter 3, in the green band, MAs are dark objects with low intensity. 

We used 9 × 9 window on preprocessed blood-vessel-removed images and the pixel 

with lowest intensity was identified as candidate MA. In this step, most of the MAs 

with thousands of false positives were detected. Local thresholding was used because 

of the problems with global thresholding, as shown in Figure 4.2. As the intensity values 

of all the pixels in any MA may not be the same, and each MA may be present in more 

than one window, thus the candidate selection is not pixel-by-pixel. Therefore, after 

local thresholding, we merged all those candidates which were one pixel apart. The 

possible MA detection count was 196 MAs out of 336, because the rest of 140 MAs or 

41.666% of the total MAs were very faint and could not be detected.  After the local 

thresholding, a very huge number of average false positives per image remained as 

expected. Most of these false positives were from background, traces of blood vessels 

and hemorrhages.  

4.2.3 Background Estimation 

As the color fundus images are reddish in color, using intensity-based candidate 

selection will select many of the background pixels as candidate MAs. Thus it is 

important to estimate the background and remove those candidates from background. 

In this step, most of the false positives that were from background were removed. 

Although some of the MAs were also removed during this process, the false positive 

reduction was significantly more than the true positive removal. After this stage, we 

had a sensitivity of 52.97% (178/336 MAs) with 250 false positives per image. 
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Figure 4.2: At high threshold MA (encircled in red) in (a) is detected and in (b) is missed. At 
low threshold, MA in (a) large cluster of pixels (c), but the MA previously missed in (b) can 

now be detected (d) 

4.2.4 Color Based Features 

The two main characteristic features of MA are their color and shape. MAs are red in 

color. So using this feature is helpful in differentiating between MAs and false 

positives. Although we could have used this feature alone without using background 

estimation, color fundus images suffer from non-uniform illumination and varying 

contrast. It is easy to mistakenly remove the MA while removing the false positives due 

to background. Thus to detect most of the MAs and also keeping better specificity we 

added an extra step of background estimation and removal of false positives due to 

background. The sensitivity and false positives per image were 50.59 and 144 

respectively after color based features classification stage.  Here we lost 2.3% of the 

total MAs while there was 42.4% reduction in average false positives per image. 

Therefore, in this step the priority was to remove as many false positives as possible, at 

the expense of losing several true MAs. This also shows that color features have high 

potential to differentiate between MAs and false positives. 

4.2.5 Hessian Based Features 
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As described in the methodology chapter on microaneurysm detection, threshold to 

remove the blood vessel was kept high in order to achieve maximum sensitivity.  

Though high threshold enabled the system to detect most of the MA near the blood 

vessel, this also resulted in missing many traces of blood vessel. As Hessian based 

features are robust in detecting tubular structures such as blood vessels and other such 

objects, therefore they were utilized to remove the elongated objects such as blood 

vessel which were false positives. This enabled us to detect those MAs which were very 

close to blood, with few false positives per image. 

4.2.6 Curvelet Based Features 

As we have discussed in previous section, MAs are round in shape. This parameter is 

vital in discriminating the MAs and false positives. Most of the false positives were 

removed in background estimation stage, color based features stage and Hessian stage. 

The candidate objects that were left up to this stage were those objects which were 

somehow non-elongated and red in color. The problems in color fundus images i.e. non-

uniform illumination and low and varying contrast, not only affects the color but it also 

affects the shape of the MAs. Also, there are many MAs in the ROC dataset which do 

not look round in shape, thus using shape parameter to detect MA in such case becomes 

very difficult. Using shape parameters on Curvelet coefficient, we were able to 

differentiate MAs and false positives. In this stage, those objects which are not circular 

in shape were removed. Many of the false positives were removed with very few loss 

of MAs. Thus we achieved better sensitivity with comparable number of average false 

positives per image. 

4.3 The Overall Results and Discussion 

The results of the proposed system and those previously reported in literature are shown 

in the Table 4.1. Out of the 336 MAs, the proposed approach was able to detect 162 

MAs, achieving a sensitivity of 48.21% with 65 FPPI. This result is favourably-

comparable to the state-of-the-arts, although only simple rule-based classifier was 

implemented. Unlike the method by Adal et al. [14] that employed four supervised 

classifiers and 87 features in total to select an optimum classifier-feature pairing to 
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remove False Positives, the computation of the proposed system is simpler and faster 

albeit at the expense of higher FPPI. In this work, we aimed to achieve high sensitivity 

in MA detection, i.e. to detect as many MAs as possible from fundus images. We used 

local thresholding technique in identifying MA candidates and kept the threshold to a 

low value as our approach to achieve maximum possible sensitivity, at the cost of 

hundreds of FPs per image. These FPs at this initial stage were mainly due to background 

of the fundus images and blood vessels. We used statistical features to estimate the 

background and remove those candidates that were from background. In addition, during 

the blood vessel extraction stage, we kept the threshold to a low value so that only true 

blood vessels were extracted. This helped us in detecting MAs near the BV and 

ultimately improving the sensitivity. However this resulted in introducing many FPs as 

there were many traces of blood vessels. To eliminate those blood vessels, we used the 

Hessian matrix based features. Thus the proposed system could detect MA near to the 

blood vessels with reasonably good specificity. Figure 4.3 illustrates examples of MA 

detected in close vicinity to blood vessels.  

To our best knowledge, Curvelet Transform is used for the first time in MA 

detection. Curvelet Transform is fast and robust at detecting objects with curved 

singularities. We used features including shape parameters based Curvelet coefficients 

to discriminate between MAs and non-MAs. The results indicate that Curvelets are very 

effective at detecting round objects such as MAs. Table 4.1further shows our approach 

achieves the highest sensitivity, among reported approaches. Admittedly, the FPPI is 

higher than Adal’s but a simpler solution is perhaps better as Oscar’s razor principle 

suggests. The ROC dataset is a very challenging dataset.  It has been observed that 

general image quality, noise, low and varying contrast make it difficult to detect MAs 

in this dataset. Figure 4.5 depicts some of the objects detected by the proposed system. 

The FP are mostly from blood vessels and hemorrhages (large red lesions). Some of the 

images are very dark hence in those images the background has also contributed to the 

FP .Factors such as variation in fundus image background, low and varying contrast and 

artifact are found to further limit the MA detection rate. The   
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Table 4.1:  Result comparison of different MA detection methods 

Authors Methodology Sensitivity FPPI 

Spencer et al. [130] Top-hat transform 12.00% 20.30 

Abdelazeem  [51] 
Circular Hough 

Transform 
28.00% 505.85 

Walter et al.  [131] Diameter closing 36.00% 154.42 

Zhang et al. [89] Multiple Gaussian mask 33.00% 328.30 

Lazar et al. [132, 133] Cross-section profile 48.00% 73.94 

Adal et al. [14] Hessian operator 44.64% 35.20 

Proposed method Curvelet Transform 48.21% 65.00 

 

 

Figure 4.3: Examples of MA that are very close to the BVs but detected by the proposed   
system: (a)–(d) full color images and (e)–(h) in green band 
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Figure 4.4: FROC plot of the proposed system 

cases where the proposed system failed to detect MAs are shown in Figure 4.6, and can 

be summarized into three categories: 

Case I: If central pixel of the MA is not the darkest point, then in some cases that 

MA will be missed. The hit criteria specified by ROC [66] is very strict. We assumed 

that the center point of the MA to be the darkest point. But in some cases the ground 

truth does not represent the darkest point. In such cases if the darkest point of the 

detected lesion is not within the specified distance from the ground truth, then it is 

declared as missed. 

Case II: All those MAs which are very faint in color will be missed. As the 

candidates are extracted based on the assumption that MAs have low intensity in green 

band i.e. dark in color as intensity level increases from dark/black (value = 0) to 

faint/white (value = 255). Thus those MAs which are faint in color, i.e. having very 

high intensity value in green band will be missed. These are the examples of MAs which 

were missed in the first stage. Most of the missed MAs belong to this category. 

Case III: Those MAs having abnormal shape will also be missed. Since the 

proposed algorithm assumes MAs to be somehow round in shape. So all those MAs 

selected at the initial stage will be missed in the final stage of classification if they have 

non-circular shape. 
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Figure 4.5: Objects encircled in blue are TP, encircled in red are FN, whereas objects inside the 
red squares are FP, (a) full-color images while (b) in green band 

4.4 Summary 

In this chapter results and discussion of automated microaneurysms system have 

been presented. The MA candidates were extracted in two parallel steps namely: local 

thresholding and background foreground estimation. The candidates were classified 

into true positives and false positives using rule based classifier which consists of three 

stages. In stage one, color based features were exploited to remove the false positives. 

In the second stage using Hessian features, false positives were identified and removed. 

While in stage three, Curvelet transform was used to differentiate between MA and 

non-MA. In chapter one section 1.4, it was hypothesized that addressing the false 

positives by category and Curvelet transform may help to improve sensitivity of 

microaneurysm detection. We achieved highest sensitivity among all the competitors 

presented in  Table 4.1. The proposed system achieved sen- 
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Figure 4.6: Different cases where the proposed system was unable to detect the MAs: (a)–(d) 
examples of missed MA because the center pixel does not have the minimum intensity, (e)–

(h) examples of missed MA because their colors are very faint, and (i)–(l) examples of missed 
MA due to abnormal shape 

sitivity of 48.21% with averaging 65 FPPI. Thus the results prove the hypothesis is 

positive. In chapter 5, methodology, results and discussion on blood vessel segmen-

tation will be described. 
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CHAPTER 5 

BLOOD VESSEL SEGMENTATION METHODOLOGY, RESULTS AND 

DISCUSSION 

5.1 Overview 

Retinal fundus images are used for diagnosing different diseases like arteriosclerosis, 

cardiovascular disease, stroke, glaucoma, diabetic retinopathy etc. Among these 

conditions, DR and glaucoma can result in vision loss. In fact these two are the leading 

causes of vision loss. This chapter describes the methodology, results and discussion of 

proposed blood vessel segmentation detection approach. In section 5.2.1, the materials 

used for training and testing the proposed blood vessel segmentation is presented. 

Similarly in section 5.2.2, the proposed blood vessel segmentation methodology is 

described. While the evaluation metrics for the blood vessel segmentation is presented 

in section 5.2.3. The results and discussion of the proposed blood vessel segmentation 

system are presented in section 5.3. The developed system was trained and tested using 

DRIVE dataset. The results at the output of a classifier are given in section 5.3.1. 

Results on test images are given in section 5.3.3. Discussion and comparison with state 

of the art methods is given in section 5.3.4. The chapter concludes with a summary 

provided in section 5.4. 
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5.2 Materials and Method for Blood Vessel Segmentation 

5.2.1 Materials for Blood Vessel Segmentation 

We evaluated the proposed blood vessels segmentation system using dataset called 

DRIVE [119]. This dataset consists of 40 color fundus images. The images were taken 

with three CCD camera having 45 degree field of view (FOV) and 768x584 pixels. 

Each pixel is represented by 24 bits (8 bits per color). These 40 images were further 

divided into two datasets: training dataset with 20 images and test dataset with 20 

images. The dataset is accompanied by ground truths or the manually segmented blood 

vessels images and masks images. There are two independent sets of manual 

segmentations for test images called first manual segmentation and second manual 

segmentation. Most of the researchers use first manual segmentation to evaluate the 

performance of their algorithms. The masks images are about 540 pixels in diameter, 

representing the region of interest (ROI). 

5.2.2 Method of Blood Vessel Segmentation 

The proposed approach consists of three main steps, i.e. image preprocessing, feature 

extraction and pixel classification into vessels and non-vessels. The flow chart of the 

proposed system is shown in Figure 5.1 .  

5.2.2.1 Image Preprocessing 

As discussed in section 2.3 that retinal images contain noise as well as variations within 

and between the retinal images. Therefore, these images require generally 

preprocessing. The proposed system has blood vessels segmented in gray channel. 

Therefore, the RGB images were first converted to gray channel. In the gray channel, 

we used 3x3 median filter to remove salt and pepper noise. The blood vessels being red 

in color have low intensity in the gray channel while the background has the high 

intensity values. Hence, dot product of the gray channel with itself will improve the 

contrast of the blood vessels with the background. The major blood vessels are 

generally well contrasted while the fine vessels have mostly low contrast. To 
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homogenize the images, we calculated per pixel the contrast of the neighborhood in 5x5 

array. This operation resulted in an image with a more homogenous background and 

very clear blood vessels. 

 

 

Figure 5.1: Flow chart of the proposed blood vessel segmentation system 

 

5.2.2.2 Features Extraction 
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Feature extraction is one of the very important stages in blood vessel segmentation. 

Robust features are one of the main requirements for a good classification. Based on 

the preprocessed image, it could be seen that the blood vessel and background were 

well contrasted then. Therefore, regional statistical features similar to [134] in 

combination with Hessian features would be sufficient to classify the pixels into vessel 

and non-vessel.  

a) Regional Features 

We have utilized following six regional statistical features. Here IH represents 

the homogenized image while IH(x,y) represents the current pixel. 

1. Difference of the current pixel with the pixel in the region with the lowest 

intensity. Mathematically it can be written as: 

 𝐹𝑅1 = 𝐼𝐻(𝑥, 𝑦) − {𝐼𝐻(𝑠, 𝑡)}(𝑠,𝑡)∈𝑆𝑥,𝑦
9

𝑚𝑖𝑛  (5.1) 

2. Difference of the current pixel with the pixel in the region with the highest 

intensity. Mathematically it can be written as: 

 𝐹𝑅2 = −𝐼𝐻(𝑥, 𝑦)(𝑠,𝑡)∈𝑆𝑥,𝑦
9

𝑚𝑎𝑥  (5.2) 

3. Current pixel minus mean of the surrounding. Mathematically it can be written 

as: 

 𝐹𝑅3 = 𝐼𝐻(𝑥, 𝑦) − {𝐼𝐻(𝑠, 𝑡)}(𝑠,𝑡)∈𝑆𝑥,𝑦
9

𝑚𝑒𝑎𝑛  (5.3) 

4. Standard deviation of the region. Mathematically it can be written as: 

 𝐹𝑅4 = {𝐼𝐻(𝑠, 𝑡)}(𝑠,𝑡)∈𝑆𝑥,𝑦
9

𝑆𝑇𝐷  (5.4) 

5. Entropy of the region. Mathematically it can be written as: 

 𝐹𝑅5 = −⁡𝑠𝑢𝑚(Phistcount𝑙𝑜𝑔2(Phistcount)) (5.5) 

where Phistcount of 9x9 region. 

6. Pixel intensity in the homogenized image. Mathematically it can be written as: 

 𝐹𝑅6 = 𝐼𝐻(𝑥, 𝑦) (5.6) 
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b) Hessian based Features 

The Hessian matrix (or Hessian) is a square matrix. It is composed of second-

order partial derivatives of multivariable scalar valued function. It can be used 

to capture the shape characteristics of objects [123]. These objects can be tubes, 

planes, blob surfaces etc. As discussed that Hessian matrix is symmetrical with 

real eigenvalues and orthogonal eigenvectors, these eigenvalues values can be 

used for the detection of different structures [124]. Hence they are used to detect 

elongated objects such as blood vessels. Due to the fact that blood vessel have 

different widths, we need to find the Hessian features on multiple scales. Witkin 

[135] introduced the  formalism for the scale-space representation and 

Koenderink [136] developed it further.  Based on this approach a family of 

smooth images 𝐼(𝑥, 𝑦; 𝑠)using the parameter s can be generated. These smooth 

images are obtained by convolving the image 𝐼0(𝑥, 𝑦)⁡with a Gaussian kernel 

𝐺(𝑥, 𝑦; 𝑠) of size s. 

 𝐼(𝑥, 𝑦; 𝑠) = 𝐼0(𝑥, 𝑦) ∗ ⁡⁡𝐺(𝑥, 𝑦; 𝑠) (5.7) 

where * represents the convolution and  𝐺(𝑥, 𝑦; 𝑠) =
1

2𝜋𝑠
𝑒−(𝑥

2+𝑦2⁡)/2𝑠 

Using different values of s,we obtained different versions of the original image 

with some amount of blurring propoortional to s. According to scale-space 

theory differentiation is equal to the convolution of the image with the 

derivative of the Gaussian kernel. Thus using scale space theory, we could find 

the partial derivatives of image at scale s using the following equations: 

 

𝐼𝑥⁡⁡(𝑥, 𝑦, 𝑠) = 𝐼𝑜(𝑥, 𝑦) ∗⁡ (𝐺𝑥(𝑥, 𝑦; 𝑠))  (5.8) 

 

𝐼𝑥𝑥(𝑥, 𝑦, 𝑠) = 𝐼𝑜(𝑥, 𝑦) ∗ ⁡ (𝐺𝑥𝑥(𝑥, 𝑦; 𝑠))           (5.9) 

 

𝐼𝑦(𝑥, 𝑦, 𝑠) = 𝐼𝑜(𝑥, 𝑦) ∗ ⁡(𝐺𝑦(𝑥, 𝑦; 𝑠))         (5.10) 

 

⁡𝐼𝑦𝑦(𝑥, 𝑦, 𝑠) = 𝐼𝑜(𝑥, 𝑦) ∗⁡(𝐺𝑦𝑦(𝑥, 𝑦; 𝑠))          (5.11) 
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⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐼𝑥𝑦⁡⁡(𝑥, 𝑦, 𝑠) = 𝐼𝑜(𝑥, 𝑦) ∗ ⁡(𝐺𝑥𝑦(𝑥, 𝑦; 𝑠))                                  (5.12) 

Thus using equations 5.8 to 5.12, Hessian matrix was formed. In the context of 

blood vessel detection, second order information, the Hessian, has an intuitive 

justification. The second derivative of a Gaussian kernel at scale s generates a 

probe kernel that measures the contrast between the regions inside and outside 

the range (-1,1) in the direction of the derivative, as shown in Figure 5.2,right: 

the second order ellipsoid describes the local principal directions of curvature. 

 

 

Figure 5.2: The second order derivative of a Gaussian kernel probes inside/outside contrast of 
the range (−1,1), reproduced from [137] 

Retinal vessel have different widths, therefore, Hessian features should be 

calculated at multiple scales. The Hessian features to be incorporated in the 

proposed algorithm are the eigen values (λ1 and λ2). Nine scales were used to 

accommodate all the widths of the blood vessels. Thus we have 24 features in 

total to describe the blood vessel. All these features were extracted from each 

pixel in the ROI and were normalized using equation 3.5. These features were 

then fed to a linear minimum squared error classifier (LMSE). 

 

5.2.2.3 Pixel Classification 
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Since all the pixels in the retinal images belong to two classes vessels class (VC) and 

non-vessels class (NVC), thus we have a two-class problem. Based on features 

extracted, we needed to classify each pixel into VC or NVC.  To perform this operation, 

we utilized the Linear Minimum Squared Error classifier (LMSE). LMSE has a very 

fast training process. In d-dimensional feature space, the linear classifiers are defined 

by linear decision function y as follows: 

 

 𝑦(𝑥) = 𝑤𝑇𝑥 + 𝑤0 (5.13) 

In equation 3.36, x represents feature vector, w is the weight vector while 𝑤0denotes 

the threshold. The class is decided based on the value of the function y i.e. we have VC 

if y(x)>0 and NVC if y(x) <=0. Equation 3.34 can also be written as: 

 𝑦(𝑥) = 𝑤′𝑇𝑥′ (5.14) 

where 𝑤′ ≡[wT w0]T and  𝑥′ ≡[xT 1]T 

In the training phase, we try to find W such that it minimizes the sum of squared 

erorr criteria. For training the LMSE, we select samples of blood vessels and non-blood 

vessels from all the 20 images of training dataset. In testing phase we use the test dataset 

provided by DRIVE dataset. 

5.2.2.4 Post processing 

At the output of the classifier, the proposed system has a high sensitivity with lower 

specificity and accuracy. This is expected because the homogenized image is sensitive 

to variation in intensity. In the consequences of this sensitivity, there were a lot of false 

positives from the OD region of the retina. Also the bright lesions and circular boundary 

near the region of interest (ROI) in many of the images are contributing the false 

positives due to the same reason. Thus to improve the specificity, we needed post 

processing. To overcome the problem of false positives, we utilized the background 

estimation, mathematical morphology and length filtering. 

1. Background Estimation 
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Blood vessels in green band have low intensity values compared to optic disc 

and bright lesions. Hence based on intensity, we divided all the pixels in fundus 

image into dark and none-dark objects and we called pixels that belong to dark 

objects as foreground pixels and the rest into background pixels. To estimate 

the background, green band has been selected and the highest 17 % pixels were 

considered as background. And all those pixels which were from background 

were removed.  Thus in this way we removed most of the false positives. The 

image after this step is denoted by ImgFP_removed. 

2. Mathematical Morphology Based  

As stated in the previous section, using the background foreground division 

based on intensity removed most of the false positives but many of the true 

vessel pixels were also lost. Hence there would be a decrease in the sensitivity 

of the proposed system. Thus to regain those vessel pixel which were 

unintentionally lost in background foreground division, we used a mathematical 

morphological technique called Top Hat Transform (THT). Mathematical 

morphology has been used for detection of different objects in an image. The 

top-hat transformation of a grayscale image I is defined as I minus its opening 

(see appendix C). Mathematically it can be described as: 

 𝑇𝐻𝑇⁡ = 𝐼 − (𝐼⁡⁡𝐵)⁡ (5.15) 

where (I  B) represent the opening of  I with structuring element B. Based on 

above equation, it can be said that the desired detail can be obtained by 

subtracting the opened image from the original image. The opened image will 

remove all the small objects from the image while subtracting the opened image 

from the image results in leaving only those small objects. Hence using top hat 

transform we can extract small or narrow, bright or dark features in image. Thus 

by selecting a proper structuring element, we can use top hat transform to extract 

objects of interest.  
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Figure 5.3: Left original image, right top hat transformed image  

Figure 5.3 depicts an example of top hat transformed image where image on 

right is obtained by applying top hat transform with linear structuring element 

of length 10 pixels on left image. In case of blood vessel, we used linear 

structuring element with length of 10 pixels and orientations in the range of 

0:180 with increment of 10 and applied the top hat transform. Before application 

of top hat transform the iterative region growing of the ROI has been 

implemented as in [94] to avoid false positives due to border of the camera’s 

aperture. Thus summing the top hats in all the orientations results in 

enhancement of all the vessels regardless of their directions, sizes, and regions 

(even in the low local contrast regions). This enhanced image is binarized to get 

vessel image denoted by ImgTHt. The image ImgTHt is multiplied with the image 

obtained in previous section 5.2.2.4 1, to obtain ImgBV_Rconst. The image 

ImgBV_Rconst contains all those pixels which are from blood vessels and those 

removed during the false positives removal, however it also contains some of 

the false positives. The image ImgBV_Rconst is added to image ImgFP_removed to 

obtain ImgMod.  

3. Length/Area Filtering 

The image obtained in the previous section was length filtered to obtain the final 

image blood vessel image denoted by ImgFinal_BV. Thus in this step we removed 

the small objects which were less than 50 pixels, and obtained the final blood 

vessel image. 
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5.2.3 Evaluation Metrics for Blood Vessel Segmentation 

The performance of the automatic blood vessel segmentation system can be evaluated 

using different metrics. These are sensitivity or True Positive Rate (TPR), False 

Positive Rate (FPR) (for TPR and FPR see appendix C), Accuracy (ACC), Area under 

the Receiver Operating Characteristic (ROC) Curve (AUC), Matthews Correlation 

Coefficient (MCC) and Connectivity (C), Area (A), Length (L). If a pixel belongs to 

blood vessel and the system detects it as blood vessel then it is said to be true positive 

(TP). While if mistakenly the system detects non-vessel pixel as blood vessel, in such 

case it is called False Positive (FP). Similarly if the pixel belongs to non-vessel and the 

system detects it as non-vessel, then it is called True Negative (TN). If mistakenly the 

system recognizes the vessels pixel as non-vessel, in such case it is called false negative 

(FN). ACC can be mathematically described as: 

 

 

An ideal system should have sensitivity/TPR=1, ACC=1 and Specificity=1. Ideally 

FPR should be zero. The ROC curve is plot of TPR vs FPR. ROC curve can be obtained 

by changing the threshold. When threshold is kept very high, we have very few false 

positives but the TPR is also very low. Reducing the threshold will improve the TPR at 

the cost of more false positives. Thus using a span of thresholds, we can obtain a set of 

points which can be plotted to obtain a curve called ROC. Now using this ROC we can 

find AUC. Thus the simplest way to calculate the AUC is by using trapezoidal 

integration. The AUC metric is frequently reported in literature. In case of an ideal 

system, the value of AUC = 1, while most of the automated segmentation systems have 

AUC values falling in between 0 and 1. MCC measures the quality of a binary 

classification. It was introduced by [138]. It is defined as: 

 

 𝑀𝐶𝐶 =
𝑇𝑃𝘹𝑇𝑁 − 𝐹𝑃𝘹𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (5.18) 

The maximum value MCC can have is 1 while the minimum can be -1. MCC=1, 

represent the ideal case and the detection of the system is perfect while -1 means total 

 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦⁡𝑜𝑟⁡𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.16) 

 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5.17) 
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disagreement between detected values and the ground truth. This measurement is also 

suitable for those applications in which the samples in one class are far more than the 

other class. A different approach for the evaluation of blood vessel segmentation was 

proposed by Gegúndez-Arias et al. [139]. Instead of pixel by pixel comparison, 

connectivity, area and length of the segmented image are compared with ground truth. 

The function is given by: 

 

 𝑓(𝐶, 𝐴, 𝐿) = 𝐶𝘹𝐴𝘹𝐿 (5.19) 

where C represents connectivity, A is area while L represents the length. Let S 

represents the segmentation to be evaluated and ground truth image is SG. The C which 

represents the assessment of the fragmentation degree between S and SG and is given 

by: 

 𝐶(𝑆, 𝑆𝐺) = 1 − min⁡⁡(1,
|#𝑐(𝑆𝐺⁡) − #𝑐(𝑆)|

#(𝑆𝐺⁡⁡)
) (5.20) 

 The evaluation of the degree of overlapping areas between S and SG is denoted by 

A and is given by: 

 

 𝐴(𝑆, 𝑆𝐺) = ⁡
#((𝛿𝛼(𝑆)⋂𝑆𝐺⁡⁡)⋃(𝑆⋂𝛿𝛼(𝑆𝐺⁡⁡)))

#(𝑆⋃𝑆𝐺⁡⁡)
 (5.21) 

Function 𝛿𝛼 is a morphological dilation with a disc SE having  𝛼 pixels in radius. 

L measures the degree of coincidence between segmented image S and ground truth 

image SG in terms of total length and is given by: 

 𝐿(𝑆, 𝑆𝐺) = ⁡
#((𝜑(𝑆)⋂𝛿𝛽⁡(𝑆𝐺⁡⁡))⋃(𝛿𝛽⁡(𝑆)⋂𝜑(𝑆𝐺⁡⁡)))

#(𝜑(𝑆)⋃𝜑(𝑆𝐺⁡⁡))
 (5.22) 

where 𝜑 and 𝛿𝛽⁡ are respectively a and  morphological dilation with 𝛽 pixels disc. 𝛼 

and 𝛽 values have been set to 2. More details can be found in [139]. 
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5.3 Results and discussion of Blood Vessel Segmentation 

We have used a total of 4000 pixels of vessel and non-vessel class from the DRIVE 

dataset to train the LMSE classifier. These pixels were selected randomly from the 20 

images of training dataset provided by the DRIVE. To cope with the varying width of 

blood vessel, we have used the Hessian features at nine scales.  

5.3.1 Preprocessing  

Blood vessels and other red lesions are dark in green and gray bands. As stated earlier 

that color fundus images suffer from low and varying contrast, we have preprocessed 

the images in gray band to obtain a homogenized image as shown in Figure 5.4(d). 

Using local features in conjunction with Hessian features is found to be robust enough 

for detection of the blood vessels. 

5.3.2 Pixel Classification 

In the proposed system, a LMSE classifier was trained using 24 features and randomly 

selected 4000 pixels of vessels and non-vessels from 20 training images of DRIVE 

dataset. LMSE classifier being simple is quite fast in training and testing. The proposed 

system was tested on test dataset. 

5.3.2.1 Results at the Output of Classifier 

At the output of classifier, the proposed system had a high sensitivity and most of the 

blood vessels were detected. But overall accuracy of the system was not very good. The 

false positives at this stage were mostly from the boundary region of ROI, edges of 

optic disc and over segmented blood vessels. We believe that false positives from 

boundary of ROI region and on the edges of optic disc region were introduced in image 

homogenization step. The average sensitivity and accuracy were 0.87 and 0.92 

respectively as we have used only 4000 randomly selected vessel and non-vessel pixels, 

which is a very small fraction of the total pixels in the 20 training images (less than one 

percent of the total pixels in ROI) of the DRIVE training dataset. 
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5.3.2.2  Post Processing Results  

As described in previous section, the system has high sensitivity but not very good 

specificity and accuracy.  

 

Figure 5.4: a) color fundus image (b) gray channel image (c) enhanced gray channel (d) 
homogenized background image with vessels 

It has been observed that most of the false positives were from the circular boundary of 

the ROI. Many of the false positives were from optic disc region and some others from 

the bright regions in the image. Many of the false positives are from bright lesions and 

red lesions. Another group of false positives is the over segmented blood vessels. 

Therefore, to improve specificity while maintaining the sensitivity a two steps post 

processing strategy was designed. 
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5.3.2.3 Results after Background Estimation Post Processing 

As discussed in section 5.2.2.4, all pixels in the image are either foreground (blood 

vessel pixels) or background (non-blood vessel pixels). Blood vessel pixels being red 

in color have low intensity values and can be separated from other objects based on 

intensity value. In this way most of the false positives are removed.  These removed 

objects were from the bright regions in the image, bright lesions, optic disc region, 

circular boundary region of the ROI and in some cases the segments of the blood vessels 

also. Thus most of the false positives were removed. However few of the blood vessels 

were also removed. In this step although there was a decrease in sensitivity, there was 

more improvement in specificity which resulted in overall improvement in accuracy of 

the proposed system. 

5.3.2.4 Results after Mathematical Morphology Based Post Processing 

This step was required to maintain the sensitivity of the developed system at good level. 

In the previous step most of the false positives were removed but some of the vessel 

pixels were also missed in the process. Therefore, to reinstate those vessel pixels we 

had utilized mathematical morphology based approach. As discussed in section 5.2.2.4  

2, that we had also detected blood vessels in green band using top hat transform. The 

top hat transform was effective in the sense that it did not detect the false positives in 

the optic disc region and region along the ROI of the fundus images. Thus it overcame 

the limitations in homogenized image. We compared all those pixels which were 

removed in the background estimated image as false positives with the blood vessel 

image obtained using top hat transform. Thus all those pixels were reinstated according 

to top hat transform based blood vessel image. In this way, the sensitivity of the 

proposed system was improved. 

5.3.3 Results on the Test Images 

Image by image results on test dataset of the developed system are presented in Table 

5.1. The best accuracy achieved is 0.9618 on image 19 while the worst case accuracy 

of 0.9369 was achieved. The average accuracy achieved is 0.9479. Figure 5.5 depicts 

the images achieving the best sensitivity (top row) and the best specificity (bottom row), 
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shown in column on the left are the color images while column on right are the 

segmented blood vessel. These results are based on first manual segmentation.  

 

Figure 5.5: Left column color images while right column segmented vessel. Shown in top row 
is image with the best sensitivity and bottom row image with the best specificity, green pixel 

are the FN and red are the FP 

While the results for the proposed system using second manual segmentation are 

presented in Table 5.2. Based on second manual segmentation the highest accuracy 

achieved is 0.9629 (image 5) while the lowest accuracy achieved is 0.9401 (image 13). 

Performance comparison of the proposed method with existing works is presented in 

Table 5.3. It can be noticed that the proposed method achieves similar accuracy as the 

state of the art algorithms. However, in terms of false positive rate the proposed system 

achieves lower false positive rate than the second observer. 

Table 5.1: Image by image results of the developed system on test dataset based on first 
manual segmentation 

Image No Accuracy Sensitivity Specificity MCC 

01 0.9479 0.7760 0.9738 0.7667 
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02 0.9513 0.7590 0.9852 0.7994 

03 0.9370 0.6929 0.97862 0.7311 

04 0.9490 0.6833 0.9899 0.7633 

05 0.9480 0.6903 0.9884 0.7625 

06 0.9408 0.6803 0.9836 0.7386 

07 0.9458 0.6816 0.9862 0.7470 

08 0.9405 0.62783 0.9854 0.7045 

09 0.9499 0.6973 0.9835 0.7425 

10 0.9496 0.7100 0.9821 0.7464 

11 0.9458 0.6936 0.9833 0.7435 

12 0.9480 0.7338 0.9787 0.7519 

13 0.9403 0.6701 0.9849 0.7362 

14 0.9489 0.7782 0.9717 0.7534 

15 0.9539 0.7300 0.97977 0.7428 

16 0.9471 0.7156 0.9820 0.7540 

17 0.9473 0.7139 0.9800 0.7432 

18 0.9507 0.7697 0.9742 0.7543 

19 0.9618 0.8163 0.9817 0.816 

20 0.9540 0.7891 0.9737 0.7598 

Average 0.9479 0.7205 0.9814 0.7529 

Bold in column 2 are the worst, the best, and average accuracy respectively 
while bold in bottom row represent the average values. 

 

 

 

 

Table 5.2:  Image by image results of the developed system on test dataset based on second 
manual segmentation 

Image No Accuracy Sensitivity Specificity MCC 

01 0.9520 0.7973 0.9748 0.7828 

02 0.9576 0.7841 0.9877 0.8243 

03 0.9485 0.7603 0.9766 0.7649 

04 0.9548 0.7153 0.9897 0.7830 

05 0.9629 0.7825 0.9870 0.8137 

06 0.9457 0.7064 0.9831 0.7531 

07 0.9597 0.7984 0.9784 0.7819 

08 0.9525 0.7262 0.9769 0.7231 
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09 0.9514 0.704 0.9841 0.7498 

10 0.9592 0.7868 0.9792 0.7780 

11 0.9567 0.7538 0.9845 0.7860 

12 0.9560 0.7879 0.9787 0.7843 

13 0.9401 0.6636 0.9876 0.7426 

14 0.9537 0.8226 0.9698 0.7695 

15 0.9505 0.7058 0.9802 0.7303 

16 0.9578 0.7717 0.9840 0.7965 

17 0.9577 0.7922 0.9777 0.7782 

18 0.956 0.7535 0.9875 0.8007 

19 0.9509 0.7265 0.9886 0.7890 

20 0.9478 0.7063 0.9852 0.760904 

Average 0.9536 0.7523 0.9821 0.7747 
Bold in column 2 are the best, the worst and average accuracy respectively,  

while bold in bottom row represent the average values. 
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Figure 5.6: Image achieving the best accuracy. Top row: left color image, right ground truth. 
Bottom row: left segmented BV while on the right, green pixel are the FN and red are the FP 
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Figure 5.7: Image achieving the worst accuracy. Top row: left color image and right ground 
truth. Bottom row: Left segmented BV, right, green pixel represent the FN and red are the Fp 

5.3.4 Discussion and Comparison 

The images with the best and worst case accuracies are shown in Figure 5.6 and Figure 

5.7 respectively. Here white color are TP, red are FP and green are FN. Based on width 

of the blood vessel, we can divide them into three groups: big/thick vessel (width>8 

pixels), medium vessel (3<width<9 pixels) and very fine vessel (width<3 pixels). It can 

be observed that all the big/thick vessels detected by the proposed system are very 

accurate with negligible number of FP or FN pixels. It can be noticed that even in the 

worst case, the proposed system is able to accurately detect the width of thick blood 

vessels. The system in this case has however over-estimated the medium blood vessels. 

Thus it can be said that the proposed system has the ability to accurately detect the 

widths of the thick blood vessels. For the second case of blood vessel, which we call 
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medium vessel, the proposed system has lower accuracy in comparison with thick blood 

vessel. This lower accuracy is due to the over-estimation of blood vessels in many cases 

while in some cases as a result of missing the blood vessels. Thus in case of medium 

width blood vessel, we have many FP but fewer FN, whereas for the case of fine vessel, 

the developed system is unable to detect many of these resulting in very low accuracy 

in comparison with the first two cases.  

The FP in the developed system can be categorized into three categories 

1. Those on the edges of the medium width blood vessel 

2. The edges of the Optic disc region  

3. Lesions (bright/dark)  

Table 5.3 contains the comparison results of the proposed method with other 

methods. The average sensitivity of the proposed system is found to be with average 

accuracy of 0.9479, while the average FPR and MCC values of the proposed system 

are 0.0186 and 0.7529 respectively. Based on the MCC values in Table 5.3, it is clear 

that the proposed system achieved the best value among all the reported studies and it 

is only second to human observer. In terms of the specificity, it can be said that the 

proposed system has very -low false positive rate with comparative sensitivity.  

On DRIVE test dataset, segmented vessel images of Soares et al. [94] available on 

(https://sourceforge.net/projects/retinal/) were compared with those segmented using 

the proposed method. It is observed that the two systems perform similar in detecting 

the fine vessels. However, we see that the proposed system has slightly better overall 

average accuracy (0.9466 vs. 0.9479). The Soares system performed better in detecting 

medium blood vessels. Also in terms of FPR, the proposed system has better FPR with 

average of 0.0186 while Soares system has average FPR of 0.0212. In some of the cases, 

they are not able to differentiate between two very closely positioned ve- 

  

 

Table 5.3: Comparative performance of the proposed method with existing works 
Methods ACC TPR FPR AUC CAL MCC 

2nd Observer 0.9473 0.7761 0.0275 - 0.849 0.760 
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Marin et al. [134] 2011 0.9452 0.7067 0.0275 0.959 - - 

Soares et al.  [94] 2006 0.9466 0.7283 0.0212 0.961 0.751 0.749 

Niemeijer et al. [140] 2004 0.9416 0.6898 0.0304 0.929 0.686 0.718 

Staal et al. [119] 2004 0.9442 0.6780 0.0170 0.952 0.716 0.732 

Fraz et al. [141] 2012 0.9480 0.7406 0.0193 0.975 - - 

Jianget al. [142] 2003 0.9212 - - 0.933 - - 

Mendonça. [101] 2006 0.9463 0.7315 0.0219 - - - 

Zana et al. [100] 2001 0.9377    0.640 0.724 

Martinez-Pere. [143] 1999 0.9344 0.7246 0.0345 - 0.578 0.662 

Al-diri et al. [144] 2009 0.9258 - - - - - 

Zhang et al. [89] 2010 0.9382 0.712 0.0276 0.788 - - 

Li et al. [145] 2012 0.9310 0.6455 0.0337 - - - 

Bankhead et al. [97] 2012 0.9371 0.7027 0.0283 0.782 0.625 0.706 

Yin et al. [146] 2014 0.9475 0.7556 0.0344 - - - 

Zhao et al. [115] 2015 0.953 0.744 0.0220 0.861 - - 

Oliveira et al. [114] 2016                       
Weighted mean using 
ORSF 
Weighted mean using   
FCM 
 Median ranking  

 
 

0.9356 

 
 

0.7988 

 
 

0.0475 

 
 

0.912 

 
 

0.702 

 
 

0.694 

 
0.9402 

 
0.9106 

 
0.0569 

 
0.912 

 
0.553 

 
0.704 

0.9464 0.8644 0.0444 0.951 0.683 0.743 

Proposed Method 0.9479 0.7205 0.0186 0.942 0.67 0.753 

 

Figure 5.8: 1st and 2nd column are respectively colored and green patches of the image, 3rd  
and 4th column patches represents the vessel detected using Gabor wavelet method and the 

proposed method respectively 
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-ssel and their system detected them as one lump vessel while the proposed system is 

able to differentiate the very close blood vessels. Few of such instances are shown in 

Figure 5.8, green pixels represent the missed vessel pixels while red represent the false 

positives and white are the true positives. Encircled in blue are the examples where two 

vessels are mistakenly merged. 

While working on MA detection, we observed that most of the false positives are 

from blood vessels. Moreover it has been noticed that due to non-uniform illumination, 

low and varying contrast, the overall sensitivity at low FPR (FPR≤0.03) in vessel 

segmentation has been affected severely. Thus to overcome the stated problems which 

are inherent in the color fundus images, we proposed a new method based on image 

homogenization. Hessian and regional features are extracted from the homogenized 

image to segment the blood vessel. It was believed that the vessel segmented in such a 

way might achieve a very good sensitivity. Although the developed blood vessel 

segmentation system has very good sensitivity (0.7205 for DRIVE dataset) but failing 

in the case of fine vessels. As such, we did not apply the developed blood vessel 

segmentation system for removing the blood vessel in automated MA detection[85] 

because it has poor sensitivity in detecting fine blood vessel.  In addition, in MA 

detection system, those FP which are hard to remove are from the fine vessel. Therefore, 

the proposed vessel segmentation will have similar performance as the Gabor wavelet 

used in automated MA detection system of Shah et al. [85].  

5.4 Summary 

In this chapter, methodology, results and discussion about blood vessel segmentation 

system have been presented. For blood vessel segmentation, to overcome the problem 

of low and varying contrast, images were homogenized. However the procedure is 

sensitive to variation in intensity, thus produced many false positives especially on the 

boundary of ROI and near the optic disc. To overcome this shortcoming, it has been 

proposed to use the mathematical morphology in parallel so that the developed  blood 

vessel segmentation system have false positive rate similar to state of the art methods 

but with better sensitivity. Using LMSE classifier and Hessian features at multiple scale 

and regional features, the proposed algorithm achieves sensitivity of 0.77 with false 
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positive rate of 0.0283 and accuracy of 0.9459. The sensitivity and FPR is similar to 

human observer. But at a comparable accuracy of 0.9479, we have sensitivity of 0.7205 

with 0.0186 average FPPI. Thus it proves the hypothesis that addressing the issue of 

low and varying contrast and by using multiscale feature based technique can improve 

automated BV segmentation.  In next chapter, conclusion and future work will be 

described.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK  

6.1 Overview 

This chapter describes the summary of all the work presented in this thesis. In section 

6.2, conclusion of MA detection system is presented while in section 6.3 conclusion 

about the blood vessel segmentation system is presented. Section 6.4 discusses about 

the future work. 

6.2 Conclusion of the Microaneurysms Detection System 

This thesis aims to design a tool for diagnosing diabetic retinopathy. Microaneurysm 

(MA), one of the earliest signs of DR, is important to be detected not only for screening 

purposes but also for monitoring the progression of DR. Thus MA detection is of 

paramount importance. Therefore, our target was to design a system which can have 

high sensitivity while keeping the comparable average false positives per image. 

Therefore, the two main parameters which are color and shape of the MA are utilized 

in effective way to optimize the overall sensitivity of the developed system. In any 

automated MA detection system, most of the false positives come from background and 

blood. Hence we have specialized stages for removal of each type of false positives. To 

remove false positives due to background, we have estimated the background and using 

only two parameters we could remove most of the false positives from the background. 

Also the color of MAs is very important for distinguishing between MA and false 

positives due to non-red objects. As we selected the initial candidates based on local 

thresholding, we have many false positives due to none-red objects also. So using color 

features is very effective in removing non-red objects. For removal of blood vessel and 
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other elongated objects, the two stage strategy is, by using 2-D Gabor wavelet and 

Hessian based features. The blood vessels could have been removed using Gabor 

wavelet only but many of the MAs near the blood vessel were also removed resulting 

in unintentional loss of MAs. We proposed to remove the blood vessel in two steps. By 

keeping the higher thresholds in blood vessel segmentation helps in keeping MAs near 

the blood vessel intact. Thus many of the MAs near the blood vessel were preserved, 

while removing the blood vessels. The consequences of the of higher threshold results 

in many broken vessel parts as false positives. To remove those parts and other 

elongated objects, Hessian features have been utilized. In this way we are able to detect 

those MAs which are near the blood vessels and would be otherwise removed as part 

of blood vessel. Further false positives were removed in the Curvelet transform stage. 

In Curvelet transform stage, aspect ratio, circulatory, mean energy, and standard 

deviation of energy were used to differentiate between MA and non-MAs. As 

hypothesized in chapter one, we could keep the maximum number of the 

microaneurysms if the false positives were addressed by category and Curvelet 

transform was used. The results proved that the hypothesis was true. 

6.3 Conclusion of the Blood Vessel Detection System 

Ocular manifestations of different medical conditions like arteriosclerosis, 

cardiovascular disease, stroke, glaucoma, DR hyper tension etc. are important in 

confirming the diagnosis. Also the accuracy of any automated DR detection system can 

be improved if blood vessels were properly detected. Therefore, automated detection 

and analysis of retinal blood vessels is an extremely important task. The second aim of 

this thesis is to accurately detect and segment blood vessels. While working on MA 

detection, we realized the fact that it is very important to get rid of low and varying 

contrast which is inherent in color fundus images. Therefore, we have designed a 

preprocessing strategy to homogenize the images. We used gray channel in which red 

objects such as blood vessels and red lesions have low intensity values. In the first step, 

we multiplied the gray band image with itself. The multiplication of gray band image 

with itself will lower intensity values for dark objects, which results in improved 

contrast for blood vessel with background. While in second step of preprocessing, we 

calculated the contrast image using 5x5 window on contrast enhanced image. The 
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homogenized image thus obtained has almost uniform contrast. However, since this 

operation is dependent on variation in intensity, the homogenized image contains 

generally false edges near the boundary of optic disc and around the round ROI of the 

fundus images and the areas with change in intensity, no matter these are bright or dark 

areas. Thus regional and Hessian features and very simple classifier (LMSE) were 

utilized in combination. We achieved very good sensitivity but with accuracy not as 

good as expected. Many false positives were there. Such a post processing scheme was 

designed to keep maximum number of the vessel pixels and remove most of false 

positive. Thus we achieved comparable accuracy with the state of the art methods, but 

using not as many features and a simple classifier. Thus it proves the hypothesis that 

addressing the issue of low and varying contrast and by using multiscale feature based 

technique can improve automated BV segmentation. 

6.4 Future Work 

This section presents some of the limitations in the algorithms designed for the 

detection of MA and blood vessel along with guidelines for future work.  

6.4.1 MA Detection  

We observed that the main sources/contributors of FPs in automated MA detection such 

as proposed one are image background and BVs while hemorrhages are the third 

category of FPs although with fewer in numbers. The proposed system has a high 

sensitivity and is able to detect MAs near the BVs. However the number of false 

positive per image was still high. Therefore, improvement can made in the reduction of 

false positives. Also the system is not able to differentiate between hemorrhages and 

MAs. One more area to be investigated is the removal of fine vessels. The analysis of 

designed MA detection on other datasets such as DIARETDB1 etc should be explored. 

The designed MA detection is based on rule-based classifier. One of the possible future 

works will be the implementation of supervised classifier such as Support Vector 

Machine (SVM) or Neural Network (NN). Other possible approach to improve the 

sensitivity and specificity of the MA detection system is the utilization of multispectral 

imaging (MSI) approach. Applications of MSI have shown promising results in 
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different areas of biomedical image analysis. Nowadays deep learning is getting very 

popular due to its outstanding performance in computer vision and image analysis 

tasks[147]. Thus it is believed that utilization of deep learning can improve the 

sensitivity of the automated MA detection system and it may also result in reduction of 

false positives.  

6.4.2 Blood Vessel Segmentation 

The proposed system is able to detect the big and medium vessels but most of the fine 

vessels are missed. Also in the case of medium vessel, many of these vessels were over 

estimated. Thus there is room for improvement both in sensitivity and specificity which 

will ultimately result in better accuracy. The proposed system for blood vessel 

segmentation is very accurate at detecting the width of blood vessel. Thus this system 

can be tested for the datasets where width of the vessel detected are measured for 

diagnosis of different medical conditions. The other direction for future work could be 

the hierarchical system for high sensitivity in which medium and big vessels are 

detected using the designed system and some mechanism for fine vessels detection 

could be developed and results are combined to get highly sensitive system. One other 

direction will be the utilization of some high performance classifier such as SVM/NN.  
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APPENDIX B 

FUNDUS IMAGES DATASETS 



  

 

Some of the well-known datasets for evaluation of the Blood Vessel segmentation 

I. DRIVE: DRIVE which stands for Digital Retinal Images for Vessel Extraction 

is publically available dataset. It enables comparative studies on segmentation 

of blood vessels in retinal images. Forty images are randomly selected from 400 

images from a diabetic retinopathy screening program in The Netherlands. Out 

of these forty images, seven images show signs of mild early diabetic 

retinopathy. Each image has been JPEG compressed. These 40 images are 

divided into 20 training images and 20 test images. The dataset can be 

downloaded from:  

 

http://www.isi.uu.nl/Research/Databases/DRIVE/ 

 

II. STARE: STructured Analysis of the Retina (STARE) is publically available 

dataset for blood vessel segmentation. It contains 20 images with ground truth. 

Out of the 20 images, 10 images contain retinal abnormality. The dataset can be 

downloaded from:  

 

http://cecas.clemson.edu/~ahoover/stare/ 

 

 

III. CHASE DB: Child Heart And Health Study in England (CHASE) is another 

publically available dataset for blood vessel segmentation. It consists of 28 

images of UK children of different origins. It is a detailed investigation of 

patterns of risk factors for cardiovascular disease and type 2 diabetes. The 

dataset can be downloaded from: 

 

http://www.chasestudy.ac.uk/ 

 

Some of the well-known datasets for evaluation of the Microaneurysm detection 

I. ROC: Retinopathy Online Challenge (ROC) is publically available dataset for 

microaneurysm (MA) detection. 100 images are selected from 150,000 images. 

The images are taken at multiple resolution. Therefore MA detection is very 

challenging task in ROC dataset. Following is the link to download the dataset: 

 

http://webeye.ophth.uiowa.edu/ROC/ 

 

IV. DIARETDB: Diabetic Retinopathy Database (DIARETDB) is another 

publically available dataset. It consists of 89 color images. Out of 89, 84 images 

http://www.isi.uu.nl/Research/Databases/DRIVE/
http://cecas.clemson.edu/~ahoover/stare/
http://www.chasestudy.ac.uk/
http://webeye.ophth.uiowa.edu/ROC/
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contains MA while 5 of the images does not contain any diabetic retinopathy 

signs. Images are taken at single resolution. The dataset can be downloaded 

from: 

 

http://www.it.lut.fi/project/imageret/diaretdb1/ 

 

II. MESSIDOR :Methods to evaluate segmentation and indexing techniques in the 

field of retinal ophthalmology or  Messidor dataset is another publically 

available dataset. It is composed of 1200 color fundus images acquired using a 

variety of retinographs. Medical experts provide two diagnoses for each image 

ie Retinopathy grade and Risk of macular edema. Following is the link for 

dataset: 

 

http://www.adcis.net/en/Download-Third-Party/Messidor.html 

http://www.it.lut.fi/project/imageret/diaretdb1/
http://www.adcis.net/en/Download-Third-Party/Messidor.html
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APPENDIX C 

TECHNICAL TERMS 



  

A confusion matrix is basically a table where the performance of a classifier is described 

and or visualized. It consists of rows and columns. The values in columns are the 

predicted values of a classifier whereas those in rows are the actual values. In the current 

research work (for MA detection and blood vessel segmentation), we have a two-class 

problem i.e. in case of automated MA detection it can be MA or non-MA or in case of 

BV segmentation it can be BV or non-BV. Therefore, the confusion matrix is formed 

for two-class problem only. As shown in the Figure C below, for two-class or binary 

classification problem, it consists of two rows and two columns.  

 

 

 

 

 

The predicted value of a classifier can be True Positive, False Positive, True Negative 

or False Negative.  

True Positive (TP):  classifier predicts Class B and actually, it is Class B.  

False Positive (FP):  classifier predicts Class B and actually, it is Class A 

True Negative (TN):  classifier predicts Class A and actually, it is Class A  

False Negative (FN): classifier predicts Class A and actually, it is Class B  

Sensitivity or True Positive Rate (TPR): Fraction of class B correctly classified as class B. 

Mathematically it can described as: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦⁡𝑜𝑟⁡𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (C.1) 

 

 Based on values in the confusion matrix, sensitivity is 0.952 (100/105) 

 

Specificity: Fraction of class A correctly classified class A. Mathematically it can be 

described by: 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (C.2) 

Based on values in the confusion matrix, specificity is 0.833 (50/60) 

 

  Predicted 

  Class A Class  B 
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 Class A TN = 50 FP = 10 

Class B FN = 5 TP  = 100 

Figure C: Confusion matrix 
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False Positive Rate (FPR): Fraction of class A incorrectly classified as class B. 

Mathematically it can be described by: 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
⁡⁡𝑜𝑟⁡⁡(1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) (C.3) 

 

Based on values in the confusion matrix, FPR is 0.167 (10/60) 

 

Average number of False Positives Per Image (FPPI):  Average number of false 

positives per image is defined as the total number of false positives in all the images 

divided by total number of images. For example in dataset of 10 images, if there are 

250 false positives detected in total, then the FPPI will be 25 (250/10). 

 

Mathematical morphology 

 In case of mathematical morphology, images are treated as a set and by probing the 

image with a known shape, desired objects are extracted. This probing shape is called 

the Structuring Element (SE) [148]. The SE can have different shapes and sizes 

depending upon the objects to be extracted as shown in Figure C.1. The origin of SE is 

marked by a ring. In each case the origin is marked by a ring around that point. Note 

that for illustration purpose, Figures explaining dilation, erosion and opening are on 

binary images. 

 

 

Figure C.1 : Examples of different structuring elements 
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To understand Top Hat Transform (THT), we need to define the following operators: 

1. Morphological Dilation: This morphological operation causes objects to grow 

in size. How much and how it will grow depends on the SE. Let’s say we have 

image A and structuring element B, dilation of A by B  can be described as :  

 

 𝐴B = {Z|
zB)ˆ( ⁡  A } (C.4) 

where B̂ : the reflection of B about its origin and shifting this reflection by z. 

The effect of this operator is to enlarge the foreground pixel boundaries 

gradually. This results in growth of foreground pixels and making holes smaller 

within those regions, as shown in Figure C.2. In case of grayscale image, 

dilation corresponds to local maximum over the area defined by the structure 

element. 

2. Morphological Erosion: This morphological operation causes objects to shrink. 

And similar to morphological dilation, it also depends upon SE. The operation 

of erosion for image A by SE B is defined as 

 BAΟ = ABz z )ˆ(|  (C.5) 

To find the erosion of an image, each of the foreground pixels is considered in 

turn. For each foreground pixel, SE is superimposed on top of the image such 

that the origin of the SE coincides with the input pixel coordinates. If all the 

pixels under the SE are foreground pixels, then the corresponding pixel in the 

image is kept as it is otherwise it is set to background pixel. Figure C.3 illustrates 

the operation of erosion. While in case of grayscale image, erosion corresponds 

to local minimum over the area defined by the structure element. 
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Figure C.2: Morphological dilation with 3x3 square structuring element. (a) Original 
image (b) image obtained after dilation by 3x3 square element [149] 

 

Figure C.3: Morphological Erosion.  (a) Original object (b) Using a 3×3 square SE, a 
layer of pixels have been stripped away from an object [149] 

3. Morphological Opening: An opening is defined as an erosion followed by a 

dilation using the same structuring element for both operations. The opening 

operator therefore requires two inputs: an image to be opened, and a structuring 

element. Mathematically, it can be described as: 

 

 
BBABA = )Ο(  

            ABBBA zz = )(|)(  
(C.6) 

 

Shown in Figure C.4, left (original image) and right is the result of binary 

opening using 3x9 and 9x3 structuring elements respectively.  
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Figure C.4: Opening by 3x9 and 9x3 respectively [149] 

 

4. Morphological Closing: It is defined as dilation followed by erosion using the 

same structuring element. It smoothens sections of contours but it generally 

fuses narrow breaks and long thing gulfs, eliminates small holes, and fills gaps 

in the contour. Opening is the opposite of closing, i.e. opening the foreground 

pixels with a particular structuring element is equivalent to closing the 

background pixels with the same element. Mathematically it can be described 

as: 

 𝐴• 𝐵 = (𝐴𝐵)Ο𝐵 (C.7) 
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