CERTIFICATION OF APPROVAL

ANALYSIS ON PROCESS PARAMETERS OF SLS RAPID PROTOTYPING PROCESS by

Najwa Sofwani Mohamad Shiham.

A project dissertation submitted to the
Mechanical Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(MECHANICAL ENGINEERING)

Approved by,	
(Dr. T. V. V. L. N. Rao)	

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

Jan 2012 CERTIFICATION OF ORIGINALITY This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

NAJWA SOFWANI MOHAMAD SHIHAM.

LIST OF FIGURES

FIGURE 1:	Example Prototype of Rapid Prototyping Process	1
FIGURE 2:	Schematic representation of SLS process	4
FIGURE 3:	Methodology Process Flow	9
FIGURE 5:	Temperature Distribution in X direction(30mm)	15
FIGURE 6:	Temperature Distribution in X direction (60mm)	15
FIGURE 7:	Temperature Distribution in Z direction (30mm)	16
FIGURE 8:	Temperature Distribution in Z direction (60mm)	16
FIGURE 9:	Shrinkage % with different Hatch Length	17
FIGURE 10:	ANOVA Pie Chart in X Direction	18
FIGURE 11:	ANOVA Pie Chart in Y Direction	19
FIGURE 12:	ANOVA Pie Chart in Z Direction	19
FIGURE 13:	ANOVA Pie Chart in X Direction (3 parameters)	20
FIGURE 14:	ANOVA Pie Chart in Y Direction (3 parameters)	21
FIGURE 15:	ANOVA Pie Chart in Z Direction (3 parameters)	21
FIGURE 16:	Mean Shrinkage Vs Energy Density	23
FIGURE 17:	Mean Shrinkage Vs Energy Density [LR]	23
FIGURE 18:	Shrinkage (%) in X direction	25
FIGURE 19:	Shrinkage (%) in Y direction	25
FIGURE 20:	Shrinkage (%) in Z direction	26
LIST OF TAE	BLES	
TABLE 1:	Rapid Prototyping Process Parameters and Levels	12
TABLE 2:	Taguchi L16B Orthogonal Array	12
TABLE 3:	Shrinkage (%) for each experiment in X, Y and Z Direction	13
TABLE 4:	S/N Ratio for each experiment in X, Y and Z Direction	13
TABLE 5:	Polyamide material properties	14
TARLE 6.	ANOVA Table in X Direction	18

TABLE 7:	ANOVA Table in Y Direction	19
TABLE 8:	ANOVA Table in Z Direction	19
TABLE 9:	ANOVA Table in X Direction (3 parameters)	20
TABLE 10:	ANOVA Table in Y Direction (3 parameters)	21
TABLE 11:	ANOVA Table in X Direction (3 parameters)	21
TABLE 12:	Energy Density for Each Experiment	22
TABLE 13:	Mean Shrinkage in X direction	24
TABLE 14:	Mean Shrinkage in Y direction	24
TABLE 15:	Mean Shrinkage in X direction	25
TABLE 16:	Optimum Process Parameters	25
TABLE 17:	Multiple Regression Data in X direction	27
TABLE 18:	Multiple Regression Data in Y direction	28
TABLE 19:	Multiple Regression Data in Z direction	29
TABLE 20:	Multiple Regression Data in X direction(3 parameters)	30
TABLE 21:	Multiple Regression Data in Y direction(3 parameters)	31
TABLE 22:	Multiple Regression Data in Z direction(3 parameters)	32

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude to ALLAH The Mightiest for His blessing & guidance for me in completing Final Year Project.My honest and highest appreciation goes to my supervisor; Dr Tadimalla Varaha Venkata Lakshmi Narasimha Rao for his effort in supervising & guiding me towards completing my Final Year Project as partial fulfillment of the requirement for the Bachelor of Engineering (Hons) of Mechanical Engineering.Thousands of appreciations are also extended to my family and friends for their full support, kindness, assistance, guidance and criticisms during the whole period of finishing my project.Last but not least, thank you very much to anyone who has assisted me directly or indirectly in making my Final Year Project a success.

ABSTRACT

This paper shows the final year project regarding the Analysis of Process Parameters for SLS Rapid Prototyping Process. Selective laser sintering (SLS) is a layered manufacturing process that builds prototypes by selective sintering of materials in powder form, like thermoplastic polymer powder, using a CO2 laser. Objectives of this project are to analyze the effect of process parameters on the part accuracy and to produce the optimal model of process parameters that result in less shrinkage. Prototypes made by SLS are widely used in product development as they can be used for product testing. However the wider application of SLS has been limited due to their lack of accuracy. SLS prototypes should have high accuracy in order to satisfy functional requirement. Shrinkage is one of the major factors which influence the accuracy of the SLS parts. Therefore, continuous process improvement is necessary. Improved understanding of the parameters effects on the process response is expected to lead to process advances. The relationship between shrinkage and the various process parameters such as laser power, beam speed, hatch spacing, part bed temperature and hatch length have been investigated. Optimum shrinkage condition are obtained by analysis of variance (ANOVA) and linear regression. ANOVA is used to understand the significance of process parameters affecting shrinkage and energy density analysis is study to find its relationship with shrinkage effect. Solidworks simulation is also used to show shrinkage effect for different hatch length.

TABLE OF CONTENT

CER	TIFICATION OF APPROVAL	i
CER	TIFICATION OF ORIGINALITY	ii
LIST	T OF FIGURES	iii
LIST	T OF TABLES	iv
ACK	KNOWLEDGEMENT	v
ABS	TRACT	vi
TAB	BLE OF CONTENT	vi
СНА	APTER 1: INTRODUCTION	1
1.1.	Project Background	1
1.2.	Problem Statement	3
1.3.	Objective	3
СНА	APTER 2: LITERATURE REVIEW	4
СНА	APTER 3: METHODOLOGY	9
3.1.	Process Flow Diagram	9
3.2.	Gather Experiment Results	10
3.3.	Do solidworks simulation	10
3.4.	Do Analysis of Variance (ANOVA)	10
3.5.	Do energy density analysis	11
3.6.	Linear Regression to derive Empirical Models	11
СНА	APTER 4: RESULTS & DISCUSSION	12
4.1.	Preliminary Dara Before Experiment	12
4.2.	Result from Each Experiment	13
4.3.	Analysis of the result gathers	
	4.3.1 Analysis using solidworks	14
	4.3.2 Analysis of Variance 5 parameters	18
	4.3.3 Analysis of Variance 3 parameters	20

4.3.	4 Energy density analysis	22
4.3.	5 Linear Regression 5 parameters	27
4.3.	6 Linear Regression 3 parameters	29
Disc	cussion	32
CHAPTER	5: CONCLUSION & RECOMMENDATIONS	33
REFEREN	CES	34
APPENDIX	X	36