TABLE OF CONTENTS

ABSTRACT.	•	•	•	•	•	•	•	•	i
ACKNOWLEDG	EMENT	S.	•		•	•	•	•	ii
CHAPTER 1:	INT	RODU	CTION	J .	•	•	•	•	1
	1.1	Bac	kground	l of Stu	dy .	•	•	•	1
	1.2	Prol	olem Sta	atement	•	•	•	•	2
	1.3	Obj	ectives		•	•	•	•	2
	1.4	Scop	e of stu	dy	•	•	•	•	3
CHAPTER 2:	LITI	ERAT	URE R	EVIEV	v .	•	•	•	4
	2.1	Crit	ical revi	iew	•	•	•	•	4
	2.2	Sele	ection of	Heat E	Exchang	gers.	•	•	10
	2.3	Con	nmon Fa	ailure F	aced by	7			
		Hea	t Excha	nger in	Industr	у .	•	•	10
	2.4	Effe	ects of F	ouling		•	•	•	11
	2.5	Fail	ure Ana	lysis	•	•	•	•	15
CHAPTER 3:	MET	THOD	OLOG	Υ.	•	•	•	•	22
	3.1	Proj	ect Iden	tificatio	on .	•			22
	3.2	Pres	ssure Te	sting		•			24
	3.3	Fail	ure Ana	lysis M	ethodo	logy			24
	3.4	Roc	t Cause	Analys	is (RC	A) .	•	•	26
	3.5	Step	s of Re	search		•	•	•	28
	3.6	List	of Tool	s/Fanir	ments	Require	d		20

CHAPTER 4:	RESU	ULT &	z DISCU	JSSION	ν.	•	•	•	30
	4.1	Old 7	Γube Bui	ndle	•	•	•	•	30
	4.2	New	Tube Bu	ındle	•	•	•	•	44
CHAPTER 5:	HAPTER 5: CONCLUSION & RECOMMENDATION					•	51		
	5.1	Con	clusion		•	•	•	•	51
	5.2	Rec	ommend	lation	•	•	•	•	52
REFERENCES	•	•	•			•	•	•	53

LIST OF FIGURE

Figure 3.1	E-105 after being removed from the shell	23
Figure 3.2	Thick brownish/slimy deposit/fouling observed next to tubing	23
	and baffle plate intersection	
Figure 3.3	Coating damage and blister observed on E-105 tubing	23
Figure 3.4	Close-up of E-105 localized corrosion/pitting and groove/mechanical damage near baffle plate to tube intersection	23
Figure 3.5	Project Methodology work flow	27
Figure 4.1	As received E-105 with coating damage/blister	31
	on tubing external	
Figure 4.2	E-105 with trough wall pitting 5mm x 6mm located	31
	next to baffle plate and tubing intersection.	
	Smaller size pits observed in adjacent area	
Figure 4.3	Cross-section view of E-105 through wall pit	36
Figure 4.4	Microstructure photo of tube E-105 taken from pit internal	37
	to external surface (d) and close-up view (e)	
Figure 4.5	SEM photo from top surface E-105 pit hole	38
Figure 4.6	EDX analyses on corrosion product of E-105 tube	39
Figure 4.7	EDX analyses on black deposit	40
Figure 4.8	EDX Analysis on white deposit	41
Figure 4.9	XRD on black deposit	42
Figure 4.10	XRD on white deposit	43
Figure 4.11	Layer of deposits scale found at tubes and mostly accumulate at	44
	U-bend area [12]	

Figure 4.12	View of tube bundle noted in satisfactory condition.	45
	No sign of any abnormalities observed [12]	
Figure 4.13	Peeled off coating in some areas due to water jetting [12]	45
Figure 4.14	Touched-up peeled off coating after the contractor did	46
	hydro-jetting due to some damaged peeled off the existing	
	coating [12]	
Figure 4.15	View of tubes sheet found with thick layer of product residue	46
	and white residue stick at tubes sheet [12]	
Figure 4.16	New E-15 Leaking Mapping [12]	47
Figure 4.17	Old E105 Leaking Mapping [12]	48
Figure 4.18	Sticky blackish deposited noted entire tube sheet surface [12]	48
Figure 4.19	Magnetic test carried out at deposited surface [12]	49
Figure 4.20	Summary of RCA [12]	50

LIST OF TABLE

Table 3.1	LD1-11-E105 2 nd Stage Primary Heat Exchanger	22
Table 3.2	Tools/equipment required	29
Table 4.1	Tubing wall thickness measurement	31
Table 4.2	Tubing coating thickness measurement	32
Table 4.3	Cooling water analysis result	33
Table 4.4	Chemical composition analysis	34
Table 4.5	Tensile test result	35
Table 4.6	Micro-hardness measurement at different location from the pit	35
APPENDIO	CES	
Appendix 1	- Job Method Sheet PETLIN Turnaround 2009	I
Appendix 2	- Gantt chart for FYP 1	II
Appendix 3- Gantt chart for FYP 1I		
Appendix 4	- Pictures of Old E-105	IV
Appendix 5	- Performance of New Tube Bundle, E105	V
Appendix 6- Recommended Actions		