

UNIVERSITI TEKNOLOGI PETRONAS

FINAL EXAMINATION JANUARY 2023 SEMESTER

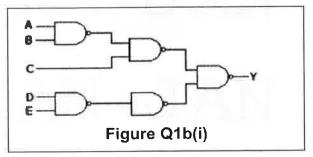
COURSE	:	TFB1053 - COMPUTER SYSTEMS
DATE	:	12 APRIL 2023 (WEDNESDAY)
TIME	:	9:00 AM - 12:00 NOON (3 HOURS)

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions in the Answer Booklet.
- 2. Begin **EACH** answer on a new page in the Answer Booklet.
- 3. Indicate clearly answers that are cancelled, if any.
- 4. Where applicable, show clearly steps taken in arriving at the solutions and indicate **ALL** assumptions, if any.
- 5. **DO NOT** open this Question Booklet until instructed.

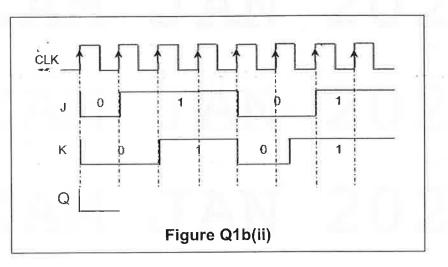
Note :

- i. There are **EIGHT (8)** pages in this Question Booklet including the cover page .
- ii. DOUBLE-SIDED Question Booklet.


Universiti Teknologi PETRONAS

a. List **THREE (3)** main components in Central Processing Unit (CPU).

1.


[3 marks]

b. i. Given the logic circuit diagrams in Figure Q1b(i). Derive the expression for Y in the simplest form. Show your work.

[3 marks]

 Given the timing diagram for a JK Flip Flop in Figure Q1b(ii). Draw the waveform for the output Q (Continue from the initial waveform given).

[3 marks]

c. Draw the memory hierarchy diagram and describe the differences between various memory types in terms of size, speed, and cost.

[6 marks]

d. Suppose we are considering an enhancement to the processor of a web server. The new Central Processing Unit (CPU) is 20 times faster on search queries than the old processor. The old processor is busy with search queries 70% of the time. Compute the speedup gained by integrating the enhanced CPU. Show your work.

1.162

[5 marks]

2. a. Convert the hexadecimal numbers in **Table Q2(a)** below into binary, octal, and decimal equivalent. Assume all are unsigned numbers.

Table Q2(a)

Hexadecimal	Equivalent	Equivalent	Equivalent
number	Binary number	Octal number	Decimal number
A10			
15.A8			

[6 marks]

b. Convert the decimal numbers in **Table Q2(b)** below into 2's complement representation in binary and hexadecimal format.

Table Q2(b)

Decimal number	Binary equivalent	Hexadecimal equivalent
-138.625	0	
31.6875		

[4 marks]

c. Assume 8-bit number system that uses 2's complement technique, compute the addition of two numbers given in **Table 2(c)** below. Indicate whether overflow occurs or not with Yes or No respectively.

Table Q2(c)

Number 1	Number 2	Overflow occur?	Result of Addition
01011100	01001110		
10100100	10110010		
01011100	10110010		

[6 marks]

d. Determine the range of signed numbers that can be represented in 6 bits system using one's complement.

[4 marks]

a. Fill in the blanks in **FIGURE 3Q** to develop a program in Little Man Computer (LMC) Assembly Language for displaying the maximum number from a series of 0 or positive numbers entered by the user. Whenever a ZERO (0) is entered, the program will stop and display the maximum number. Assume negative numbers will not be entered.

	INP	
	STA MAX	
	BRZ STOP	
LOOP	INP	
	-	
	BRA LOOP	
STOP	BRA LOOP	

[10 marks]

b. List the **FIVE (5)** main steps performed by LMC for the ADD instruction in the Fetch and Execute phases. Use PC, MDR, IR, A for Accumulator register, etc. in describing the steps.

[5 marks]

c. Describe the operations of Indirect Addressing Mode and Register Indirect Addressing Mode by drawing their Instruction formats and relationship with memory location or register content.

[5 marks]

3.

4. Consider the memory map and events of processes in **FIGURE Q4** for a computer system that uses Dynamic Partitioning Memory Management.

P1	
<free> 30 K</free>	Sam 1
P2	
<free> 20 K</free>	
P3	
<free> 50 K</free>	転行
P4	

and and	Step	Event	Required contiguous Memory size (K)
	1	Process 5 arrives	16
210	2	Process 6 arrives	40
200	3	Process 7 arrives	20
exist.	4	Process 8 arrives	14
	5	Process 5 leaves	-
	6	Process 9 arrives	30

Figure Q4

a. For each memory allocation techniques in First-fit, Best-fit, and Worst-fit, WITHOUT compaction, draw the memory map after event of step 4 has completed but before event of step 5 occurs.

[6 marks]

For each memory allocation techniques in First-fit, Best-fit, and Worst-fit,
WITH compaction, draw the memory map after event of step 6 has completed (starting from step 1 again).

[6 marks]

- c. Suppose the computer system uses the Paging Memory management with Associative registers.
 - i. Explain how the logical addresses are translated to physical addresses.

[4 marks]

 Calculate the Effective memory access time if Associative register access time is 50 nanosec, memory access time is 250 nanosec, and hit ratio is 80%.

[4 marks]

Based on TABLE Q5(a), compute the average waiting time and average turnaround time for Round Robin with a time quantum of 4, and Shortest Remaining Time CPU Scheduling algorithms.

Job Number	Arrival Time (ms)	CPU Cycle (ms)
1	0	10
2	1	2
3	2	3
4	3	1
5	4	5

TABLE Q5(a)

[8 marks]

b. Suppose a hard disk cylinder has five tracks, numbered 0 through 4 and each track contains five sectors also numbered 0 through 4. If it takes 5 msec to move the read/write head from one track to the next, 5 msec to rotate, and 1 msec to transfer data, calculate the seek time, search time, and transfer time for the Request List given in **Table Q5(b)**.

Track	Sector	
1	0	
2	4	
2	2	
3	4	
2	0	
3	3	
4	4	
0	2	

Table Q5(b)

[6 marks]

5.

7

- c. Describe the advantages and disadvantages of the following File storage techniques:
 - i. Contiguous

[2 marks]

[2 marks]

ii. Noncontiguous

iii. Indexed

[2 marks]

- END OF PAPER -

8