STUDY OF BONDING STRENGTH OF INORGANIC FILLERS BASED INTUMESCENT COATING

by

MUHAMMAD SYAHMI HAMIZOL

Dissertation submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons) (Mechanical Engineering)

JANUARY 2012

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Study of Bonding Strength of Inorganic Fillers Based Intumescent Coating

By

Muhammad Syahmi B. Hamizol

A project dissertation submitted to the Mechanical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (MECHANICAL ENGINEERING)

Approved by,

(Assoc. Prof. Dr Faiz Ahmad) FYP Supervisor Universiti Teknologi PETRONAS

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK January 2012

CERTIFICATION OF ORIGINALLY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the reference and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified source or persons

MUHAMMAD SYAHMI HAMIZOL

ABSTRACT

Intumescent coating is an insulating system designed to decrease heat transfer from fire to substrate structure to maintain its integrity. Zinc phosphate will be used as primer coating on steel coupons to increase adhesive of cooling and protect corrosion from occurs. The coating was based mainly are carbon source, acid source, blowing agent, binder and hardener. The main intumescent coating will be tested at high temperature for certain period and it is found very stable and well bound with the steel substrate. However, in this experiment work some additive which is, an inorganic filler will be added into the main formula as reinforcement for the coating. Different formulations with additive will be developed to study the bonding strength of coating with steel substrate. Fire test and shear test will be conduct to achieve the objective of this experimental work. Scanning Electron Microscope will be used to study microstructure and bonding mechanism of coating with the substrate before and after fire test. The results are expected to show whether the additive gives a better bonding with substrate or not.

ACKNOWLEDGEMENT

I have taken efforts in this project. However, it would not have been possible without the kind support and help of many individuals and organizations. I would like to extend my sincere thanks to all of them.

I am highly indebted to Assoc. Prof Dr Faiz Ahmad for his guidance and constant supervision as well as for providing necessary information regarding the project & also for their support in completing the project.

I would like to express my gratitude towards my parents which are Mr. Hamizol Ngah and Mrs Hasnah Abdul Majid for their kind co-operation and encouragement which help me in completion of this project.

My thanks and appreciations also go to my colleague in developing the project and people who have willingly helped me out with their abilities.

TABLE OF CONTENT

CERTIFICATION	N OF A	PPRO	VAL	•	•	•	•	•	•	ii
CERTIFICATION	N OF O	RIGIN	NALLY		•	•	•	•	•	iii
ABSTRACT .	•	•	•	•	•	•	•	•	•	iv
ACKNOWLEDG	EMENI	Γ.	•	•	•	•	•	•	•	v
CHAPTER 1:	INT	RODU	UCTION	•	•	•		•	•	1
	1.1	Bac	kground	of Study	· .					1
	1.2	Pro	blem Stat	ement						2
	1.3	Obj	ective and	d Scope	of Stu	dy		•	•	2
CHAPTER 2:	LITI	ERAT	URE RE	VIEW	•	•	•	•	•	4
	2.1	Intu	mescent	Coating	•					4
	2.2		etest			•		•		6
	2.3	She	ar test	•	•	•		•	•	9
CHAPTER 3:	MET	THOD	OLOGY	•	•				•	11
	3.1 R	lesearc	h Methoo	lology						11
			Activities	U .						12
	3.3 Gantt Chart								15	
			lestone				•		•	15
CHAPTER 4:	RES	ULTS	AND DI	SCUSS	ION					16
		lesult			1011	•	•	•	•	16
		Discuss	-	•	•	•	•	•	•	39
CHAPTER 5:	CON		SION AN	D REC	OMM	END	ATION	•	•	48
REFERENCES	•	•	•	•	•	•	•	•	•	49
APPENDICS .	•	•	•	•	•	•	•	•	•	51

LIST OF FIGURES

Figure 2.1.1	Time-Temperature Curve for Furnace Test	7
Figure 2.1.2	Bunsen Burner Diagram	8
Figure 2.3.1	Shear Test Diagram	9
Figure 2.3.2	Test Specimen Diagram	10
Figure 4.1.3.1	Graph of Intumescent Coating without Fillers	27
Figure 4.1.3.2	Graph of Intumescent Coating with 2% of ATH	27
Figure 4.1.3.2	Graph of Intumescent Coating with 4% of ATH	28
Figure 4.1.3.4	Graph of Intumescent Coating with 6% of ATH	28
Figure 4.1.3.5	Graph of Intumescent Coating with 2% of Fumed Silica	29
Figure 4.1.3.6	Graph of Intumescent Coating with 4% of Fumed Silica	29
Figure 4.1.3.7	Graph of Intumescent Coating with 6% of Fumed Silica	30
Figure 4.1.3.8	Graph of Substrate Steel without Intumescent Coating	30
Figure 4.1.4.1	Graph of Intumescent Coating without Inorganic Filler	33
Figure 4.1.4.2	Graph of Intumescent Coating with ATH 2%	33
Figure 4.1.4.3	Graph of Intumescent Coating with ATH 4%	34
Figure 4.1.4.4	Graph of Intumescent Coating with ATH 6%	34
Figure 4.1.4.5	Graph of Intumescent Coating with Fumed Silica 2%	35
Figure 4.1.4.6	Graph of Intumescent Coating with Fumed Silica 4%	35
Figure 4.1.4.7	Graph of Intumescent Coating with Fumed Silica 6%	36
Figure 4.1.5.1	TGA Result for ATH	36
Figure 4.1.5.2	TGA Result for Fumed Silica	37
Figure 4.1.5.3	Comparison TGA Result between A_2 , F_2 and O_1	38
Figure 4.2.1	Comparison of reference, ATH and Fumed Silica of Purchase Gra	phite
	on Furnace Test	40
Figure 4.2.2	Comparison of Reference, ATH, Fumed Silica for Treated Graphic	te on
]	Furnace Test	41

-	Shear Test	46
Figure 4.2.3	Comparison of Reference, ATH, Fumed Silica for Treated Graphite	on
Figure 4.2.4	XRD Result for F ₂	45
Figure 4.2.3	XRD Result for A_2	44

LIST OF TABLES

Table 3.2.3.1	Formulation of Intumescent Coating	13
Table 3.2.3.2	Formulation of Intumescent Coating with Fumed Silica	14
Table 3.2.3.3	Formulation of Intumescent Coating with ATH	14
Table 3.3	Gantt Chart	15
Table 3.4	Key Milestones	15
Table 4.1.1.1	Initial Thickness	16
Table 4.1.1.2	Final Thickness	16
Table 4.1.1.3	Comparison of Intumescent Coating without Inorganic Filler	16
Table 4.1.1.4	Initial Thickness	17
Table 4.1.1.5	Final Thickness	17
Table 4.1.1.6	Comparison Characteristic of ATH	18
Table 4.1.1.7	Initial Thickness	19
Table 4.1.1.8	Final Thickness	19
Table 4.1.1.9	Comparison Characteristic of Fumed Silica	20
Table 4.1.2.1	Initial Thickness	21
Table 4.1.2.2	Final Thickness	21
Table 4.1.2.3	Comparison Characteristic of Treated Graphite	22
Table 4.1.3.1	Comparison Characteristic of Fire Bunsen Burner Test	24
Table 4.1.3.2	Visual Inspection on F ₂ and F ₃	25
Table 4.1.3.3	Initial Measurement of Fire Bunsen Burner Test	26
Table 4.1.3.4	Final Measurement of Fire Bunsen Burner Test	26
Table 4.1.3.5	Heat Shielding for Each Sample	31
Table 4.1.4.1	Initial Data for Sample Shear Test	31
Table 4.1.4.2	Final Visual Inspection of Shear Test	32
Table 4.2.1	Char Expansion for Purchase Graphite	39
Table 4.2.2	Char Expansion for Treated Graphite	40

Table 4.2.3	Outer Layer of A ₂ and F ₂	42
Table 4.2.4	Inner Layer of A ₂ and F ₂	42
Table 4.2.5	Percentage of Difference in Thickness.	43
Table 4.2.6	Final Result of Shear Test	46