
 

 

 

CHAPTER 3 

CORROSION MODELING 

 

3.1 Corrosion under Insulation 

 

CUI refers to external corrosion of piping and vessels fabricated from carbon 

manganese, low alloys and austenitic stainless steel that occurs underneath externally 

clad/jacketed insulation due to the penetration of water (European Federation of 

Corrosion, 2008). According to API 571 (API, 2003), CUI is described as “corrosion 

of piping, pressure vessels and structural components resulting from water trapped 

under insulation or fireproofing”. 

By definition, corrosion is the loss of material as a result of chemical reaction 

between a metal or metal alloy and its surroundings (Jones, 1996). In other words, 

corrosion is an electrochemical process and with ferrous materials, the corrosion 

process continuously develops and forms iron oxide, which lacks the strength of the 

original metal component. It is changed back into a material similar to iron ore. The 

consequences are material weakening and subsequent loss of strength and stability in 

load bearing components. 

Similarly, CUI is also considered as an electrochemical process that involves the 

transfer of electrically charged ions between the anode and cathode through the pore 

fluid of the insulation. The principles of the electrochemical corrosion for a basic 

corrosion cell require the same components as the electrolytic cell which includes the 

anode, the cathode and an electrolyte. In order for corrosion to occur, both anode and 

cathode must be connected in a manner that permits electron flow. 
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The electrochemical process of corrosion involves oxidation at the anode and 

reduction at the cathode as illustrated in Figure 3.1. The site where the base metal 

corrodes is called the anode. Metallic iron (Fe) from the steel oxidizes to produce 

ferrous ions and electrons are released according to Eq. (3.1) (Fontana, 1986). 

 

 

 

 

Figure 3.1: CUI mechanism - Corrosion cell in carbon steel covered by insulation 

 

   Anodic reaction: Fe  Fe
2+

 + 2e
-
                        (3.1) 

In order to maintain equilibrium of charges, an electrochemical reduction occurs 

at the cathode. In an acidic medium, the reaction taking place at the cathode is the 

reduction of hydrogen ions to hydrogen. However, insulation is highly alkaline (pH 7 

to pH 11) and usually has a sufficient supply of oxygen and water to form hydroxyl 

ions, as displayed in Eq. (3.2): 

   Cathodic reaction: O
2
 + 2H2O + 4e

-
  4(OH)

-
            (3.2) 

The current drives both the anodic and cathodic reactions to flow through a 

medium termed the electrolyte. The electrolyte conducts current primarily through 

ionic diffusion and must have specific minimum ion content and minimum water 

content to allow the flow of ions. In the case of CUI, the pore water in insulations acts 

as the electrolyte as a result of rain or even moisture condensed from the air. The 

combination of the anode and cathode processes results in the equations that 

transform the metallic iron (Fe) into hydroxides (rust) as shown in Eq. (3.3):  

   Fe + ½ O2 + H2O + 2e
-
  Fe

2+
 + 2(OH)

-
 + 2e

-
           (3.3) 
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Eq. (3.3) can be simplified to Eq. (3.4) as follows 

  Fe + ½ O2 + H2O  Fe
2+

 + 2(OH)
-
                         (3.4) 

The Fe
2+

 cation combines with the hydroxyl ions (OH)
-
 to form a fairly soluble 

ferrous hydroxide, Fe(OH)2, which is rust that possesses a whitish appearance. The 

reaction is shown in Eq. (3.5). With sufficient oxygen, Fe(OH)2 is further oxidized to 

form rust that has a reddish brown appearance. 

  Fe
2+

 + 2(OH)
-
  Fe(OH)2                           (3.5) 

For the transformation of metallic iron to rust to occur, all three of the following 

conditions must take place: (1) Iron must be available in a metallic state at the surface 

of steel; (2) During the anode process, oxygen, and moisture must be available; (3) 

During the cathode process, the electrical resistivity in the insulation must be low to 

facilitate electron to flow through the metal from anodic to cathodic areas. 

 

3.1.1 Factors for Corrosion under Insulation 

 

The triggering factor for CUI is always due to the presence of moisture. Three factors 

are necessary for CUI to occur: 

1. Water 

Water is the key point for corrosion to occur. Ordinarily, iron or steel corrodes in 

the presence of both oxygen and water, and corrosion does not take place in the 

absence of one of these factors (Schweitzer, 1989). Water normally contains dissolved 

oxygen (i.e. oxygen that is dissolved in water) and this dissolved oxygen may 

introduce corrosive environment. When the free oxygen dissolved in water is 

removed, the water is practically non-corrosive. If water is practically maintained 

neutral or slightly alkaline, it will also be non-corrosive to steel (Schweitzer, 1989). 

However, water that ingresses inside the insulation may contain chemical and acidic 

solution.   
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Normally, water can be introduced from two sources, external and internal. Water 

infiltrates from external sources such as rainfall, steam discharge, spray fire sprinkles 

or drift from cooling tower. External water enters an insulation system through breaks 

or damages of the insulation which can happen during insulation storage and/or 

installation, through ineffective waterproofing, through maintenance or through 

service lapses.  

Even if the external sources are eliminated, water can still be introduced in the 

insulated system by the internal sources such as internal system leaks (e.g. water leak 

and steam tracing leak) or condensation. Condensation occurs when temperature of 

the metal surface is lower than the atmospheric dew point and causes poultice to trap 

in between metal and insulation as illustrated in Figure 3.2. It is created when the 

temperature and the dew point of the air have become the same, or nearly the same. 

 

 

 

 

Figure 3.2: Illustration for water being introduced by internal sources in insulated 

systems 

 

2. Chemical content of water 

Chemical content of water plays an important factor for CUI to take place. 

Chlorides may be introduced by rainwater, plant and cooling tower atmospheres, 

misty sea (or road salt) environments or even portable water often used for fire 

fighting, deluge testing or wash downs. Besides, traditional thermal insulation 

materials contain chlorides (Corrosion under insulation, n.d.). If they are exposed to 

moisture, chlorides released may form a moisture layer on the pipeline surface, 

resulting in corrosion (i.e. pitting/stress corrosion cracking). Therefore, the quality of 

the materials used for the insulation has to be controlled in a way that these materials 
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will not contain certain „„acids‟‟ that can reduce the pH. “As the pH drops below 4, 

corrosion climbs dramatically. Such acidic corrosion is especially common with 

carbon steel. Consequently, quality assurance requirements often limit the pH of 

insulation to the neutral/alkaline range 7.0 to 11.7” (Corrosion, n.d). 

 

3. Temperature 

Operating temperature also contributes to CUI. According to API 581, equipment 

or piping systems operating in the temperature range between -12°C and 121°C are 

more susceptible to CUI, with temperature range of 49°C to 93°C being the most 

severe environment. API 581 and API 571 also provide several general guidelines as 

follows: 

 Service temperatures between 0°C and 100°C allow water to exist as a liquid. 

Within this temperature range, the corrosion rate doubles for every 15°C and 20°C 

temperature increase. The maximum corrosion potential generally lies between 

these two extremes. 

 As a general rule, plants located in areas with high annual rainfall or warmer, 

marine locations are more prone to CUI than plants located in cooler, drier, mid-

continent locations. 

 Regardless of the climate, units located near cooling towers and steam vents are 

highly susceptible to CUI. 

 CUI is particularly aggressive where operating temperatures cause frequent or 

continuous condensation and re-evaporation of atmospheric moisture. 

 Carbon steel systems that normally operate in-service above 121°C but are in 

intermittent service or are subjected to frequent outages. 

 Cold service equipment consistently operating below the atmospheric dew point. 

 Two temperature-corrosion conditions are of special note: 

o Cyclical temperatures which accelerate corrosion. For example, in 

regeneration process, the equipment or piping systems operate in cyclic 

operating temperature such as operating at 300°C and during normal condition 

it operates at ambient temperature; it is most likely that CUI will be triggered. 

Here, the warm temperature normally results in more rapid evaporation of  
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moisture and reduced corrosion rates. However, a surface that is covered with 

insulation will create an environment that holds in the moisture instead of 

allowing evaporation. 

o The lack of temperature extremes during extended plant shutdowns, where 

water accumulates without freezing or evaporating. 

 

3.2 Piping Systems Inspection Strategy 

 

3.2.1 Inspection Strategy based on API 570 

 

According to API 570, the inspection frequency for piping system shall be established 

and maintained using the following criteria: 

a. Corrosion rate and remaining life calculations. 

b. Piping service classification. 

c. Applicable jurisdictional requirements. 

d. Judgment of the inspector, the piping engineer, the piping engineer supervisor, or 

a corrosion specialist, based on operating conditions, previous inspection history, 

current inspection results, and conditions that may warrant supplemental 

inspections covered in Section 5.4.5 in API 570. 

Inspection intervals for thickness measurements shall be scheduled based on the 

calculation of not more than half the remaining life determined from corrosion rates 

or at the maximum intervals suggested in Table 3.1 whichever is shorter. Table 3.2 

describes the meaning of each piping class. 
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Table 3.1: Recommended maximum inspection intervals for piping systems (API, 

2001)  

Type of circuit Thickness measurements Visual external 

Class 1 5 years 5 years 

Class 2 10 years 5 years 

Class 3 10 years 10 years 

Injection points 3 years By piping class 

Soil-to-air interfaces Not applicable By piping class 

 

Table 3.2: Description for the piping class (API, 2001) 

Class Description Examples 

1 Services with the highest potential of resulting in 

an immediate emergency if a leak were to occur is 

in Class 1. Such an emergency may be safety or 

environmental in nature. 

 Flammable services that may auto-

refrigerate and lead to brittle fracture. 

 Pressurized services that may rapidly 

vaporize during release, creating 

vapors that may collect and form an 

explosive mixture, such as C2, C3, 

and C4 streams. 

 Hydrogen sulfide (greater than 3 

percent weight) in a gaseous stream. 

 Anhydrous hydrogen chloride. 

 Hydrofluoric acid. 

 Piping over or adjacent to water and 

piping over public throughways. 

2 Services not included in other classes are in Class 

2. This classification includes the majority of unit 

process piping and selected off-site piping. 

 On-site hydrocarbons that will slowly 

vaporize during release. 

 Hydrogen, fuel gas, and natural gas. 

 On-site strong acids and caustics. 

3 Services that are flammable but do not 

significantly vaporize when they leak and are not 

located in high-activity areas are in Class 3. 

Services that are potentially harmful to human 

tissue but are located in remote areas may be 

included in this class. 

 On-site hydrocarbons that will not 

significantly vaporize during release. 

 Distillate and product lines to and 

from storage and loading. 

 Off-site acids and caustics. 

 

The remaining life shall be calculated as follow: 

                (3.6) 

where = the actual thickness measured at the time of inspection for a given 

location or component (in inches or mm),  = the required thickness at the 
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same location or component as the  measurement computed by the design 

formulas (e.g., pressure and structural) before corrosion allowance and manufacturer‟s 

tolerance are added (in inches or mm).  

The long-term (LT) corrosion rate of piping circuits shall be calculated from the 

following formula: 

                 (3.7) 

The short term (ST) corrosion rate of piping shall be calculated from the 

following formula: 

                 (3.8) 

where  = the thickness at the same location as  measured at initial 

installation or at the commencement of a new corrosion rate environment (in inches or 

mm),  = the thickness at the same location as  measured during one or 

more previous inspections (in inches or mm). 

The relationship between corrosion rate of insulated carbon steels with operating 

temperature and type of environment is also described by American Petroleum 

Institute in API 581. The type of environment is classified into three categories which 

are marine, temperate and arid based on the average rainfall. The marine area is 

defined as area having more than 1000 mm/yr of rainfall. For temperate area, the 

average rainfall is between 500 to 1000 mm/yr, whereas, the average rainfall for arid 

area is less than 500 mm/yr (Mokhtar & Che Ismail, 2008).  Imperial unit used in API 

581, which is mil/yr, has been converted to rounded metric unit, mm/yr, as shown in 

Table 3.3. According to API 581, “…the corrosion rate used in API 510 or API 570 

calculation to determine the remaining life and the inspection frequency. In some 

cases, a measured rate of corrosion may not be available. The technical modules will 

provide default values, typically derives from published data or from experience with 

similar processes, to use until inspection results are available”. 
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Table 3.3: CUI corrosion rate default matrix for carbon steel (API, 2000) 

Temperature Corrosion Rate (mm/yr) 

Marine Temperate Arid/Dry 

< -12 C 0 0 0 

-12 C to 16 C 0.13 0.08 0.03 

16 C to 49 C 0.05 0.03 0 

49 C to 93 C 0.25 0.13 0.05 

93 C to 121 C 0.05 0.03 0 

> 121 C 0 0 0 

 

External visual inspections for CUI should also be conducted at maximum 

intervals listed in Table 3.1 to evaluate the insulation condition such as insulation 

damage, missing jacketing/insulation, sealing derioration, bulging etc and shall be 

conducted on all piping systems susceptible to CUI. Piping systems that are known to 

have a remaining life of less than 10 years or that are inadequately protected against 

external corrosion need to be included for the NDE inspection recommended in Table 

3.4.  

 

Table 3.4: Recommended extent of CUI inspection following visual inspection (API, 

2001) 

Pipe 

class 

Approximate amount of follow-up 

examination with NDE or 

insulation removal at areas with 

damage insulation 

Approximate amount of CUI 

inspection by NDE at suspect area 

on piping systems within 

susceptible temperature ranges 

1 75% 50% 

2 50% 33% 

3 25% 10% 

 

Each piping system shall be monitored by taking thickness measurements at the 

thickness measurement locations (TMLs) which are the designated areas on piping 

systems where periodic inspections and thickness measurements are conducted (API, 

2001). TMLs are specific areas along the piping circuit where inspections are to be 

made. The nature of the TML varies according to its location in the piping system. 

The selection of TMLs shall consider the potential for localized corrosion and service-
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specific corrosion. The followings are the specific types and areas of deterioration 

(API, 2001): 

 Injection points 

 Dead legs 

 Corrosion under insulation (CUI) 

 Soil-to-air (S/A) interfaces 

 Service specific and localized corrosion 

 Erosion and corrosion/erosion 

 Environmental cracking 

 Corrosion beneath linings and deposits 

 Fatigue cracking 

 Creep cracking 

 Brittle fracture 

 Freeze damage 

Piping circuits with high potential consequences if failure should occur and those 

subject to higher corrosion rates or localized corrosion will normally have more 

TMLs and be monitored more frequently.  TMLs should be distributed appropriately 

throughout each piping circuit. Figure 3.3 illustrates the typical TMLs within the 

injection point piping circuits 
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Figure 3.3: Typical injection point piping circuit (API, 2001) 

 

The thickness at each TML can be measured by ultrasonic scanning, radiography 

or electromagnetic techniques. The thinnest reading or an average of several 

measurement readings taken within the area of a test point shall be recorded and used 

to calculate corrosion rates, hence assessing the remaining life. Where appropriate, 

thickness measurements should include measurements at each of the four quadrants 

on the pipe, with special attention to the inside and outside radius of elbows and tees 

where corrosion/erosion could increase corrosion rates. 

In selecting or adjusting the number and locations of TMLs, the inspector should 

take into account the patterns of corrosion that would be expected and have been 

experienced in the process unit. In theory, a piping circuit subject to perfectly uniform 

corrosion could be adequately monitored with a single TML. In reality, corrosion is 

never truly uniform, so additional TMLs may be required. More TMLs should be 

selected for piping systems with any of the following characteristics: 

 Higher potential for creating a safety or environmental emergency in the event of 

a leak. 

 Higher expected or experienced corrosion rates. 

 Higher potential for localized corrosion. 



34 

 More complexity in terms of fittings, branches, dead legs, injection points, and 

other similar items. 

 Higher potential for CUI. TMLs should be established for areas with continuing 

CUI 

 

3.2.2 Inspection Strategy based on Risk Assessment 

 

Alternatively, external visual inspection intervals can be established by using RBI 

assessment conducted in accordance with API 581. In API 581, CUI is treated as a 

special case of external damage mechanism as well as a special concern due to CUI 

can cause failures in areas that are not normally of a primary concern to an inspection 

program. The next section will discuss what RBI is and how CUI is assessed in RBI 

methodology. 

 

3.2.2.1 Risk-Based Inspection 

 

For more than 100 years, it is believed that through inspection, potential failures can 

be detected and therefore, inspection has been regarded as an important activity in 

industry (Noori & Price, 2006). The traditional view of inspection is that by doing 

inspection, the probability of an unexpected failure should be reduced. The term 

„inspection‟ refers to the planning, implementation and evaluation of examinations to 

determine the physical and metallurgical condition of equipment or a structure in 

terms of fitness-for-service (Wintle et al., 2001). Risk-based approach to inspection, 

or being well-known as RBI, is a method for using risk as a basis for managing an 

inspection program. The American Petroleum Institute, in the Base Resource 

Document API 581 (2000), defined RBI as a method for using risk as a basis for 

prioritizing and managing the efforts of an inspection program. 

The concept of risk is used to target inspection and maintenance resources at areas 

of the plant where they can have the greatest effect in reducing risk, the occurrence 
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and consequence of unplanned failures. The concept also aims to reduce the cost of 

unproductive inspections. Accordingly, RBI identifies 10% to 20% of items that cover 

80% to 95% of the risk exposures of the equipment (Lee & Teo, 2001). RBI has been 

an industry standard for prioritizing inspection of static equipment, such as pressure 

vessels, tanks, heat exchanger, piping systems, relief valves and control valves. 

Although, the application of RBI is more on static equipment, it has also been applied 

to rotating equipment (Fujiyama et al., 2004). RBI provides many advantages, which 

include (1) an increase in plant availability, (2) a decrease in the number of failure 

occurrences, (3) a reduction in the level of risk due to failure, and (4) a reduction in 

the direct inspection cost of the plant (Khan et al., 2006).  

In theory, risk is defined as the product of the probability of failure and its likely 

consequences as in Eq. (3.9):  

             Risk = Probability of failure  Consequence of failure                         (3.9) 

Therefore, the main steps in RBI modeling are the estimation of the probability of 

failure and its consequences. 

 

3.2.3 Principles of Failure Probability Assessment 

 

According to Giribone and Valette (2004), the main driver for scheduling periodical 

inspection is the probability of failure. The probability of failure is defined as the 

mean frequency or rate with which the specified failure event would be expected to 

occur in a given period of operation, normally one year (Wintle et al., 2001). It is also 

defined in API 581 as the likelihood of a specific outcome, measured by the ratio of 

specific outcomes to the total number of possible outcomes (API, 2000).  Estimating 

the probability of failure is an important input to RBI analysis in aiming to develop 

the inspection program. Giribone and Valette (2004) stated in estimating the failure 

probability, it is important to clearly identify the origin of the data and the expected 

outcome. They also outlined the situation of the various techniques in the spectrum of 

failure probability estimation. Below are several possibilities that can arise: 
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1. The expected outcome is clearly defined, and its probability of occurrence is 

firmly established on solid statistical grounds: e.g. failure rate of an electronic 

component in specified working conditions: in that case, the classical approach 

based on failure frequency is applicable.  

2. The outcome is clearly defined but probabilities estimates can hardly rely on 

statistical data because situations under concern are not generic enough. This is 

typically the case of structural reliability as no two structures are really similar. 

3. It can happen that such a procedure is not possible but that, fortunately, tests can 

be used. This is typically the case of medical diagnosis and industrial inspection. 

Several approaches may be used such as Bayesian approach. 

4. It can also happen that no probability estimates whatever shaky or approximate is 

available. In that case, structured expert opinion elicitation can be used and 

integrated in a learning process (if any) with some benefit. 

The above situations are typical situations encountered in risk analysis. Besides, other 

possibilities are of concern: 

5. It can happen that no probability estimate is available whatsoever. This case 

(uncertainty) is in principle out of the scope of traditional risk analysis and is to be 

dealt with by some special techniques such as scenario analysis. 

6. It can happen that probabilities are more or less known but that the outcome itself 

is only but poorly defined. A typical situation is for example when the condition 

of a piece of equipment is only specified by a rather loose statement such as „not 

so good‟, etc. In this situation one must resort to the so-called „fuzzy logic‟, in 

which the degree of belonging of an attribute to a given category is itself subject 

to the usual rules of probability. 

7. Finally, the worst situation is when both probabilities and outcomes are 

problematic: a typical case is the controversial global climate change or the 

possible harmful effect of cellular phones on health. For this state, usually referred 

to as „ignorance‟, none of the strategies previously examined is relevant. In those 

cases, the so-called precautionary principle can be of some help. 

The schematic summary of the situation is shown in Table 3.5. 
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Table 3.5: Risk, fuzziness and ignorance (Giribone & Valette, 2004) 

Knowledge about outcomes  Outcomes well defined 

Outcomes 

poorly 

defined 

Knowledge about likelihood    

Firm basis for probabilities Risk (Frequentist approach) 

Fuzziness Shaky basis for probabilities 

but learning process 

Quantitative use Risk (Bayesian approach) 

Qualitative use 
Risk (Elicitation of expert 

opinions) 

No basis for probabilities Uncertainty Ignorance 

 

To relate the above mentioned principles to CUI scenario, it is found that the 

expected outcome for CUI is clearly defined. However, its knowledge about 

likelihood is rather shaky since it cannot be firmly established on solid statistical 

grounds due to lack of failure data. Therefore, possibility 2 and 3 are the closest to 

describe the knowledge about CUI. In this study, the structural reliability analysis will 

be explored (possibility 2). For possibility 3 where a test can be used if a procedure is 

impossible, the degradation analysis will be investigated. 

 

3.2.4 Failure Probability Approaches in RBI Methodology 

 

There are different approaches, from qualitative to quantitative, to assess the failure 

probability in RBI methodology. In qualitative failure probability assessment, the 

probability of failure is primarily based on engineering judgments made by experts. 

The failure probability is described using terms such as very unlikely, unlikely, 

possible, probable or highly probable where subjective scores are assigned to different 

factors which are thought to influence the probability of failure. Criteria for the 

descriptive categories should be defined to ensure that this term will be used 

consistently. 

In semi-quantitative failure probability assessment, the probability of failure 

should generally be more numerically based and detailed than the qualitative 

approach, but still contain a large element of engineering judgments. The common 

method is based on the guidelines by American Petroleum Institute, API 581 Risk-
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based Inspection Base Resource Document (API, 2000) which will be discussed in 

detail in the next section. 

In a fully quantitative failure probability assessment, the approach is to 

statistically estimate the failure probability based on the actual data collected such as 

historical failure data and/or inspection data. Using this analytical approach, the 

numerical data are then analyzed using suitable models such as using a mathematical 

model, logic flow diagram and others. 

 

3.2.5 Quantitative Failure Probability Assessment in API 581 

 

It is important to understand the quantitative approach used to assess the failure 

probability using the standard API 581 because the expected results generated from 

the proposed models will be compared to those generated using the standard. The 

probability of failure analysis in API 581 is calculated using Eq. (3.10): 

             (3.10) 

where  is the adjusted failure frequency,  is the 

generic failure frequency, FE is the equipment modification factor and FM is the 

management systems evaluation factor. 

It begins with a database of generic failure frequencies which is based on a 

compilation of available records of equipment failure history from a variety of 

sources. For equipment item that has not operated long enough to experience a failure, 

it is necessary to turn to larger equipment pool to find enough failures to provide a 

reasonable estimate on the true failure probability. This generic equipment pool is 

used to produce a generic failure frequency. Generic failure frequencies have been 

developed using records from all plants within a company or from various plants 

within an industry, from literature sources, past reports, and commercial data bases 

for each type of equipment and each diameter of piping. A generic database is 

presented in Table 3.6.  
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Table 3.6: Suggested generic failure frequencies for piping systems (API, 2000) 

Piping Size Leak frequency (per year for four hole sizes) 

¼ in. 1 in. 4 in. Rupture 

Piping 0.75 in. diameter, per ft 1  10
-5

   3  10
-7

 

Piping 1 in. diameter, per ft 5  10
-6

   5  10
-7

 

Piping 2 in. diameter, per ft 3  10
-6

   6  10
-7

 

Piping 4 in. diameter, per ft 9  10
-7

 6  10
-7

  7  10
-8

 

Piping 6 in. diameter, per ft 4  10
-7

 4  10
-7

  8  10
-8

 

Piping 8 in. diameter, per ft 3  10
-7

 3  10
-7

 8  10
-8

 2  10
-8

 

Piping 10 in. diameter, per ft 2  10
-7

 3  10
-7

 8  10
-8

 2  10
-8

 

Piping 12 in. diameter, per ft 1  10
-7

 3  10
-7

 3  10
-8

 2  10
-8

 

Piping 16 in. diameter, per ft 1  10
-7

 2  10
-7

 2  10
-8

 2  10
-8

 

Piping > 16 in. diameter, per ft 6  10
-8

 2  10
-7

 2  10
-8

 1  10
-8

 

 

If enough data were available for given equipment item, true failure probabilities 

could be estimated from actual observed failures. However, if data is null, the RBI 

method recommends a generic failure frequency to be used to “jump start” the failure 

probability analysis. A data source should be chosen that represents plants or 

equipment similar to the equipment being modeled. For example, much high-quality 

generic data can be derived from nuclear power plant databases; however, the data 

may not be appropriate to be applied in refineries or petrochemical plants because of 

the differences in maintenance and inspection quality, and the nature of the service. 

These generic frequencies are then modified by two factors, the equipment 

modification factor (FE) and the management systems evaluation factor (FM), to yield 

an adjusted failure frequency, as follows:   

1. The equipment modification factors (FE) examines details on each equipment 

item and to the environment in which that item operates, in order to develop a 

modification factor unique to that piece of equipment.  FE includes: 

 the technical module that examines materials of construction, the environment 

and inspection program 

 universal conditions that affect all equipment items at the facility 

 mechanical considerations that vary from item to item 

 process influences that can affect equipment integrity 
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2. The management systems evaluation factor (FM) adjusts for the influence of the 

facility‟s management system on the mechanical integrity of the plant. FM is used 

to describe direct impact that inspection, maintenance, process and safety 

personnel have on the equipment failure frequency. This adjustment is applied 

equally to all equipment items. 

In API 581, Technical Modules is a systematic method used to assess the effect of 

specific failure mechanisms on the probability of failure (generic failure frequency). 

The Technical Modules serve four functions: 

1. Screen the operation to identify the active damage mechanisms. 

2. Establish a damage rate in the environment. 

3. Quantify the effectiveness of the inspection program. 

4. Calculate the modification factor to apply to the generic failure frequency 

The Technical Module evaluates two categories of information which are (1) the 

deterioration rate of the equipment item‟s material of construction, resulting from its 

operating environment and (2) the effectiveness of the facility‟s inspection program to 

identify and monitor the operative damage mechanisms prior to failure. Inspection 

techniques required to detect and monitor one failure mechanism may be totally 

different from those needed for another mechanism. These differences are addressed 

by creating a separate Technical Module for each damage mechanism. The Technical 

Module for CUI follows the external damage technical module as represented in 

Appendix A. 

 

3.3 Logistic Regression Model 

 

Typically, for corrosion failure mode, the wall thickness data collected during 

inspection period are used to assess the probability of failure by analyzing the data 

statistically. However, the wall thickness data is not always available for statistical 

methods to be used. Typically what is usually available in CUI inspection reports is 

the result from inspection after insulation removal which is corrosion was found and 
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treated, or corrosion was not seen as illustrated in Figure 3.4. These types of data are 

classified as binary responses with 0 and 1. Binary responses can be used to predict 

the probability of CUI occurrence by analyzing binary data using logistic regression 

model (Hosmer & Lemeshow, 1989). 

 

Figure 3.4: Data picture of CUI for logistic regression model 

 

In statistics, logistic regression is used for prediction of the probability of 

occurrence of an event by fitting data to a logistic curve. It is a generalized linear 

model used for binomial regression. Like many forms of regression analysis, it makes 

use of several explanatory variables that may be either numerical or categorical.  

Prior to engaging in a study of logistic regression modeling, it is important to 

understand that the goal of using logistic regression for data analysis is the same as 

that of any model-building technique used in statistics, that is, to find the best fitting 

and most parsimonious model. As in regression, a logistic regression model, 

sometimes called a logistic model or a logit model, describes a relationship between a 

response and a set of explanatory variables. A response is also known as a dependent 

variable or an outcome. Explanatory variables are also often referred to as covariates, 

independent variables or predictors. 

The methods employed in an analysis using logistic regression follow the same 

general principles used in linear regression. However, there are two main differences 

in logistic regression compared to linear regression. The first difference is that in 

FUTURE… 

What is desirable? 

 Metal loss to determine corrosion rate 

 Susceptible location for failure 

 Data equipment installed and number of the 
inspection mode 

 Remaining life 

 

Insulation 

          CUI 

NOW 

By human inspection: 

 Corrosion is either present or not (binary) 
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logistic regression, the response variables are categorical where the values are binary, 

with 0 or 1, rather than continuous. 0 is classified as a „„success‟‟ and 1 is a „„failure‟‟.  

Another major difference between logistic and linear regression is that the 

response variable is assumed to follow a binomial distribution rather than a normal 

distribution for response variable in linear regression. For observations on a 

categorical variable with two categories, the binomial distribution applies to the sum 

of the outcomes when the following three conditions hold true (Agresti, 1990): 

 For a fixed number of observation , each falls into one of two categories. 

 The probability of falling in each category,  for the first category and  for 

the second category, is the same for every observation. 

 The outcomes of successive observations are independent; that is, the category 

that occurs for one observation does not depend on the outcomes of other 

observations. 

The binomial distribution for binary random variables specifies probabilities            

 and  for the two outcomes. The binomial 

probability mass function is 

               (3.11) 

where  = 0 or 1 and  is the observation number. When evaluating the piping 

systems subject to CUI, the interest is the present or absence of CUI. Therefore, the 

binary response is either CUI is present (Y = 1) or CUI is not present (Y = 0). 

To better explain the concept of logistic regression, the logistic function that 

describes the mathematics behind this regression should be defined. The logistic 

function f (z) is as follows: 

                                                    (3.12) 

The logistic function  ranges between 0 and 1. Plots of  yield an S-

shaped curve resembling the cumulative distribution plot for a random variable, as 

illustrated in Figure 3.5. 
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Figure 3.5: Logistic function 

 

From the logistic function, the logistic regression model is obtained through the 

parameter z that can be written as the linear sum of the explanatory variables as 

follows: 

               (3.13) 

where  are defined as the independent variables of interest and 

 are the coefficient representing unknown parameters. Estimates of the 

parameters   are obtained using a mathematical technique called 

maximum likelihood. Refer to Appendix B for further explanation on maximum 

likelihood technique. 

Newton–Raphson is an iterative method that is used to obtain parameter 

estimation for maximum likelihood. Basically, this concept of iteration is embedded 

with MATLAB software in order to solve the likelihood estimation. The Newton-

Raphson concept will also be explained in Appendix B. For this concept, 

theoretically, it will choose initial estimates of the regression coefficients, such as 

. At each iteration , it will update the coefficient and this iteration will stop 

when the percentages of error decrease to the smallest value which approximately 

becomes zero. 
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A regression can simultaneously handle both quantitative and qualitative 

explanatory variables. In the logistic regression model, the response variable is a 

binary variable whereas the explanatory variables can be either quantitative or 

qualitative variables. The quantitative variables are pipe age and operating 

temperature and the qualitative variable is type of insulation.  

The quantitative variable can be further classified as a continuous variable, one 

that takes any value within the limits of variable ranges. In this model, age or year of 

service is considered under continuous variable (i.e. 6, 10 and 15 years of services). 

The quantitative variable can also be considered as a categorical variable such as 

operating temperature. For example, the pipe having operating temperature 290 C can 

be categorized in group of pipes having operating temperature more than 121 C.   

The qualitative variable such as types of insulation is also considered as 

categorical covariates. Here, dummy variable needs to be used in order to overcome 

the weakness of the categorical variable as it cannot be meaningfully interpreted in 

regression model. Dummy variables are artificial explanatory variables in a regression 

model whereby the dummy codes are a series of numbers assigned to indicate group. 

In dummy variable, it will be dichotomous variable as each variable is assumed one of 

two values, 0 or 1, indicating whether an observation falls in a particular group.  

For dummy variable to be used, if there are  groups, one needs to have  

dummy variables to represent  groups. Let say, if there are six operating temperature 

groups, one needs to have 5 dummy variables to represent the group which one of the 

groups will not be represented as dummy variable. It will be considered as a reference 

to which each of the group should be compared. 

 

3.3.1 Wald Test 

 

After generating the parameters  (coefficient for each variable), it is 

necessary to test the statistical significance of each coefficient in the model. A Wald  
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test calculates a Z statistic, which is:  

                                              (3.14) 

In other words, a Wald test is carried out by using the coefficient divided by its 

standard error (SE). The Wald tests are based on chi-square statistics that tests the null 

hypothesis that a particular variable has no significant effect given that the other 

variables are included in the model. 

 

3.3.2 Backward Stepwise Elimination 

 

Once a full logistic regression model is developed, the backward stepwise elimination 

procedure will be used to eliminate the explanatory variable with insignificant 

coefficient. The backward stepwise elimination procedure begins with a full model. 

Then, the variables which are found to be insignificant are eliminated from the model 

in an iterative process. The fit of the model is tested after the elimination of each 

variable to ensure that the model still adequately fits the data. When no more 

variables can be eliminated from the model, the analysis has been completed. The 

following steps describe the procedure:  

Step 1:  Assume the original model with all possible covariates is 

 

Then, the following  tests are carried out, , 

. The lowest partial F-test value  corresponding to 

 or t-test value  is compared with the preselected significance values  

and . One of two possible steps (step2a and step 2b) can be taken.  

Step 2a:  If   or  , then  can be deleted and the new original model is 

 

 Go back to step 1. 

Step 2b: If  or , the original model is the model we should choose. 
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Hypothetical example 

 

Suppose the preselected significance level is  = 0.1. Thus,   

Step 1: The original model is 

 

  corresponding to  is the smallest partial F value. 

Step 2a:  

 Thus,  can be deleted. Go back to step 1. 

Step 1: The new original model is 

 

 corresponding to  is the smallest partial F value. 

Step 2a:  

Thus,  can be deleted. Go back to step 1. 

Step 1: The new original model is 

 

  corresponding to   is the smallest partial F value. 

Step 2b: . Thus, 

 

is the selected model. 

 

3.3.3 Kruskal Wallis Test 

 

Kruskal–Wallis test is employed to check the sensitivity of the model. In statistics, the 

Kruskal–Wallis test is a non-parametric method for testing equality of population 

medians among 3 or more groups. Since it is a non-parametric method, the Kruskal-

Wallis test does not assume a normal population. However, the test does assume an 

identically-shaped and scaled distribution for each group, except for any difference in 

medians. The test procedure is as follows (Ariaratnam et al., 2001):  

1. Rank all the  observations for all the  number of the data sets (i.e.  is the total 

samples).  
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2. Let  be the rank of all observations,   (i = 1, 2, . . . , n and j = 1, 2, . . . , t) 

where  is the number of sample in one data set and  is the number of the data 

sets. 

3. Let   be the sum of the rank of each data set. 

4. Compute the test statistic Kruskal-Wallis using the following equation: 

                                                                         (3.15) 

where  = total samples and  = sample size for data set/group . 

5. Under the null hypothesis , Kruskal-Wallis follows approximately the chi-

square distribution with  degrees of freedom. 

6. Reject  at -level (i.e., 5% for this test) if . 

 

3.4 Degradation Analysis 

  

In a situation where the mean time between failures (MTBF) data are scarce, 

degradation analysis is useful for the analysis of failure time distributions in reliability 

studies. The key to the analysis is the perceived link between the degradation 

measurements and the failure time. By assuming a stochastic model for the 

degradation, the lifetime distribution is implied. For equipment or piping systems 

subject to corrosion, the wall thickness is typically measured at the thickness 

measurement location (TMLs) during each inspection period as the collection of wall 

thickness data has become necessary in assessing the failure probability for systems 

subject corrosion using them in degradation analysis. 

  

3.4.1 Degradation models 

 

Degradation models vary markedly across the fields of reliability modeling. A level of 

degradation at which a failure is said to have occurred needs to be defined first. The 

use of the term failure in this context is defined as when the wall thickness reaches the 

minimum wall thickness allowed. Here, the failure can be defined as when the 
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corrosion defect reaches a pre-specified threshold value. For piping system, the pipe 

failure is characterized when the pipe wall thickness reaches the minimum wall 

thickness specified. In assessing the reliability for systems subject to corrosion, the 

actual failure data are replaced by these “time-to-failure” data. 

The extrapolation typically can be done using the one of the following models: 

Linear model  :              (3.16) 

Exponential model :               (3.17) 

Power model   :               (3.18) 

Logarithmic model :             (3.19) 

where  represents the wall thickness at time  ,  represents time and  and  are 

model parameters to be solved for. Once the model parameters have been estimated, 

time-to-failure can be extrapolated, which corresponds to the defined level of 

failure . The computed  at each TMLs can now be used to as the mean time-to-

failure data for the life data analysis. Figure 3.6 shows the illustration. 

 

Figure 3.6: Illustration of time-to-failure using linear degradation model 

 

For this study, a linear model is assumed for CUI degradation. Therefore,  

represents the corrosion rate and  represents the pipe nominal thickness. Linear 

model is always becomes preferable in estimating the rate of corrosion degradation 

(refer to Eq. (3.7) and Eq. (3.8) which are based on the standard API 570) especially 

Years in service 
Time-to-failure 

Wall thickness 

Linear degradation model 

Minimum wall thickness 
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for long term prediction. Noor et al. (2007) and Yahaya, et al., (2009) also employed a 

linear model to assess the corrosion rate. 

 

3.4.2 Lifetime Distribution 

 

Life data analysis is one of the well-known engineering tools for analyzing failure 

data and becomes the tool of choice for many reliability engineers. In life data 

analysis, the mean life is determined by analyzing time-to-failure data. For the case of 

the piping reliability, the time-to-failure data are extrapolated using an appropriate 

degradation model.  

There are several distribution models that have been successfully applied to 

failure data such as Weibull, exponential, lognormal and many other distributions. 

Figure 3.7 illustrates the concept of a distribution model for failure data. 

 

Figure 3.7: The concept of a distribution model for failure data 

Weibull analysis is a powerful tool for a reliability assessment that can be used to 

classify failures and to model failure behavior. The very common forms of the 

Weibull distribution are: 

Probability density function, :                    (3.20) 

Cumulative density function, :                          (3.21) 
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where  is the time-to-failure. The distribution is characterized by two parameters, the 

scale parameter  and the shape parameter . The value of the parameter   identifies 

the mode of failure. For example,  means infant mortality (decreasing failure 

rate),  indicates random failure (constant failure rate) and  describes wear-

out failure (increasing failure rate). The scale parameter  is defined as the life at 

which 63.2% of units will fail. 

Once the Weibull parameters are known, then it is easier to estimate the failure 

rate defined as the frequency with which a system or component fails, expressed as 

failures per unit time. For example, the failure rate may be expressed as  

failures/year. It is often denoted by the Greek letter  (lambda) and the failure rate 

function is  

                           (3.22) 

 If the failures exhibit a constant failure rate, then the time-to-failure data fits 

an exponential distribution which is described as follows. 

                                           (3.23) 

The mean time between failures of exponential distribution is 

                             (3.24) 

Another common distribution is a lognormal distribution. The general forms of 

the lognormal distribution are: 

Probability density function, :         (3.25) 

Cumulative density function, :                 (3.26) 

where  is the time-to-failure,  is the mean,  is the standard deviation and  is 

the is the standard normal cumulative density function. 
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3.5 Structural Reliability Analysis 

 

One of the probabilistic engineering approaches for supporting the structural integrity 

analysis of structures and components under service loads is structural reliability 

analysis. This probabilistic approach is capable in incorporating the uncertainties in 

the reliability assessment. Uncertainties in the reliability assessment may be divided 

in several categories but only a few will be highlighted as follows: 

1. Modeling uncertainty: Model uncertainty is the uncertainty related to imperfect 

knowledge or idealizations of the mathematical models used or uncertainty related 

to the choice of probability distribution types for stochastic variables. 

2. Physical uncertainty: Physical uncertainty is related to the natural randomness of 

a quantity, for example the uncertainty in the yield strength of the material due to 

production variability and the variability of the physical dimensions of the 

structural components. 

3. Statistical uncertainty: Statistical uncertainty is the uncertainty due to limited 

sample sizes of observed quantities. Statistical estimators (e.g. sample mean and 

coefficient of variation) can be typically estimated from available data and then 

used to suggest an appropriate probability density function and associated 

parameters. Generally, the observations of the variable are not represented 

perfectly and as a result there may be bias in the data as recorded. Moreover, 

different sample data sets usually produce different statistical estimators. 

Statistical uncertainty can be incorporated in a reliability analysis by repeating the 

analysis using different values of the parameters to indicate sensitivity. 

In assessing the reliability of structures, the following steps are typically followed:  

1. To identify the limit-state function that defines the failure,  

2. To assess the variability that lies in the input variables of the limit-state function. 

  

3.5.1 Limit State Function 

 

Structural reliability analysis requires a limit state function, which defines failure or 

safe performance. Also known as a failure function or a performance function, the 
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limit states could relate to strength failure, serviceability failure, or anything else that 

describes unsatisfactory performance. The limit state function,  is defined as 

    Safe 

    Failure surface  

   Failure 

where  are the basic random variables and  is the number of random 

variables. The basic random variables are the variables employed in a structural 

analysis such as dimensions, materials, loads and material strengths. Often it is 

common for the limit state function to be the resistance minus the load as follows 

                             (3.27) 

where  is the resistance and  is the load. 

In structural reliability analysis,  are considered to be random and 

statistically distributed with known distribution type and distribution parameters. The 

failure probability  can then be calculated as follows with the failure domain : 

                                       (3.28) 

where  represents the probability densities of the respective basic variables , 

which for the sake of simplicity are assumed to be stochastically independent i.e. any 

(Melchers, 1999). This assumption means that the distributions for the random 

variables are independent. 

In the case where a pipe has more than one corrosion defect and assume that these 

defects are designated at location 1, 2, 3,...,  and the corresponding failure 

probabilities are by , respectively. If it is assumed that the individual 

failures are mutually independent (which implies that the failure of any one of them is 

sufficient to cause pipe failure) then the failure probability of the pipe can be 

approximated from: 

                              (3.29) 
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3.5.2 Reliability Analysis Methodologies 

 

There are many random variables in the reliability assessment of corroded piping 

systems such as the corrosion rate, pipe thickness and pipe diameter. To simulate the 

failure probability, the appropriate probabilistic model must be employed so that it 

can take account the influential variables. Many probabilistic analyses are generic and 

therefore, applicable for assessing the probability of failure of piping systems subject 

to CUI.  Several methods to measure the reliability of a structure are as follows 

(Tong, 2001): 

1. Strength-load interference method: Using this basic structural reliability method, 

the uncertain parameters are modeled by one characteristic value. The problem 

considers only one load effect  resisted by one resistance  which are described 

by a known probability density function,  and , respectively. The 

structural element will be considered to have failed if its resistance  is less than 

the load effect   acting on it. The probability of failure   of the structural 

element can be stated in any of the following ways: 

                                               (3.30) 

                                                                                               (3.31) 

                                                                                                     (3.32) 

The probability of failure becomes: 

                          (3.33) 

where  is the joint probability density function of  and  and  

describes the failure domain. When  and  are independent, then 

. Eq. (3.33) becomes 

                                        (3.34) 
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This method of failure probability analysis is one of the oldest methods in 

structural reliability analysis and it continues to be popular due to its simplicity 

and its ease of use. The major disadvantage of this method is the assumption that 

load and resistance are statistically independent which may not be valid for some 

problems when there is a correlation between load and resistance (Tong, 2001). 

2. Second-Moment methods: The Second-Moment‟ methods are approximation 

methods which are popular due to their inherent simplicity. In these methods, the 

probability density functions of each variable are simplified by representing them 

only by their first two moments (i.e. mean and variance). In this case, the 

probability density function is described by the normal distribution function. The 

higher moments, such as skewness and flatness of the distribution, are ignored. 

Then, the next useful step is to transform these variables to their standardized 

normal distribution with zero mean  and unit variance . This 

transformation and approximation of the random variables via standard normal 

distribution completely simplifies the integration procedures in determining the 

failure probability, and hence, all the useful properties of the normal distribution 

can be utilized.  

Typically when involved with complex problems, the limit state function is 

often non-linear. However, the limit state function can be linearized to allow 

further simplification and the technique is known as the „first-order‟ method. 

Thus,  the first limit state and second moment random variables approximation 

techniques are brought together to give the First-Order Second Moment (FOSM) 

reliability method and it is the basis of this reliability method.  

FOSM technique yields the exact probability of failure when the random 

variables are normally distributed and when the limit-state is linear. However, it is 

not always the case in most reliability problems where the distribution of some of 

the variables is not normal. Moreover, the failure probability determined using 

FOSM, is commonly taken as the nominal failure probability rather than the „true‟ 

probability of failure (Melchers, 1999). 

To overcome these disadvantages, one of the extensions of the second moment 

and transformation methods is First-Order Reliability method (FORM). FORM is 
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well equipped to handle this type of problem and hence will be employed in this 

study. Details of FORM will be discussed in the next section. 

3. Monte Carlo simulation (MCS): MCS involves „sampling‟ at „random‟ to simulate 

a large number of experiments and to observe the results. MCS involves sampling 

each random variable randomly to give a sample value . Then, the limit state 

function   is checked. If the limit state is violated, the structure or 

structural element has failed. The experiment is repeated many times, each time 

with a randomly chosen sample value. If  trials are conducted, MCS estimates 

the probability of failure by      

                                                                                                             (3.35) 

where  is the total number of trials where failure has occurred and  is the total 

number of trials conducted. 

MCS exhibits the following characteristics: it can be applied to many practical 

problems, allowing the direct consideration of any type of probability distribution 

for the random variables; it is able to compute the probability of failure with the 

desired precision; it is easy to implement. However, despite the advantages it 

presents, the use of this method is not widespread in structural reliability because 

it is not efficient when compared to second-moment methods.  

This is due to MCS requires a great number of trials for the analysis in order to 

evaluate the probability of failure of a structure with a prescribed precision. The 

number of trials depends on the order of magnitude of that probability. As the 

values of the probability of failure associated to the ultimate limit states vary 

normally between  and , the number of analyses to be performed for 

ensuring a 95% likelihood that the actual probability be within 5% of the 

computed one must be at least  to , according to (Shooman, 

1968).  
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3.5.3 First-Order Reliability Method 

 

FORM has been applied in the reliability analysis of stress corrosion cracking (Cizelj 

et al., 1994), creep and fatigue failure (Mao, 2000). FORM is a process which can be 

used to determine the probability of a failure given the probability distribution of the 

basic random variables and the limit state function. For this approach, the variables 

need to be characterized only by their means and variance. In the case where the 

variance is hardly determined due to lack of data, the coefficient of variation (COV) is 

commonly applied. COV is a normalized measure of dispersion of a probability 

distribution and is defined as the ratio of standard deviation  to the mean  as shown 

in Eq. (3.36). For simplicity, it will be assumed, that these variables are mutually 

independent. 

                            (3.36) 

FORM uses a first order approximation of the limit state function and therefore, 

the calculated probability of failure is also approximate. FORM method is based on 

the Hasofer-Lind reliability index where this method involves linearising the limit 

state function at the design point and then determining the value of the reliability 

index,  which satisfies the failure function, corresponding to the linearized limit state 

function (Low et al., 2004). The Hasofer–Lind reliability index and FORM have been 

well-documented in Ditlevsen (1981), Shinozuka (1983), Ang and Tang (1984), 

Madsen et al. (1986), and Tichy (1993), for example. The continuing interest in 

FORM is also evident in Melchers (1999), Haldar and Mahadevan (1999), Nowak and 

Collins (2000). 

The Hasofer-Lind reliability index,  can be described as the minimum distance, 

in standard deviation units, between the mean value point to the limit state function as 

shown in Figure 3.8.  is defined by 

          for             (3.37) 
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where  is a representing the set of random variable values,  is the mean values,  is 

the standard deviation and  is the correlation matrix of the variables. It should be 

noted here that  is a measure of factor of safety, a term describing the structural 

capacity of a system beyond the applied loads or actual loads. 

 

Figure 3.8: Design point and equivalent normal dispersion ellipsoids illustrated in 

the plane (Low & Tang, 2004) 

 

The method to determine  is based on an iterative technique and the iteration is 

continued until a desired convergence is obtained. Since the determination of   is an 

iterative process to find the minimum value of a matrix calculation subject to the 

constraint that the values result in a system failure, common Solver routines found in 

several software packages (e.g. Excel) can easily arrive at the solution.  

Once  is found, the pipe failure probability corresponding to the corrosion defect 

can be determined from: 

               (3.38) 

where  is a distribution function of a variable and this function is assumed to 

be distributed normally with zero mean and unit standard deviation. 
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FORM also allows non-normal distributed functions to be incorporated into this 

technique. When the basic random variables are non-normal, the approach known as 

the Rackwitz–Fiessler equivalent normal transformation will be used to transform the 

non-normal distribution to normal distribution (Rackwitz & Fiessler, 1978). The 

following two functions are used to do the transformation:  

Equivalent normal standard deviation:                        (3.39) 

Equivalent normal mean:              (3.40) 

where  is the original non-normal variate,   is the inverse of the cumulative 

density probability of a standard normal distribution,  is the original non-normal 

cumulative density probability evaluated at ,  is the probability density function 

of the standard normal distribution, and  is the original non-normal probability 

density ordinates at . For details of Rackwitz–Fiessler equivalent normal 

transformation, refer to Rackwitz & Fiessler (1978). 

The advantage of the FORM technique over the numerical integration and Monte-

Carlo simulation is its simplicity in calculating or approximating the probability of 

failure. Having many random variables describing the structural reliability problem 

will create a problem for integration methods. However, this is not so critical for 

FORM technique. 

 

3.5.4 Bootstrap Method 

 

One of the random variables that are required to estimate the probability of failure for 

corroded piping systems using the structural reliability analysis is the corrosion rate. 

Not much attention has been focused by researchers for developing models for CUI 

corrosion rates. There is no empirical and semi-empirical model which has been 

developed to determine CUI corrosion rate found in the literature that is based on field 

data (e.g. inspection data). Moreover, no published data, neither experimental data nor 
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field data, have been found on the mean and variance of CUI corrosion rate as well as 

its statistical distribution.  

The corrosion rates data collected during inspection period (after insulation is 

being removed) are available, even though, the quantity of data is limited. Using this 

data, fortunately alternative approaches exist and the bootstrap re-sampling approach 

is an alternative method that can be employed when the data is limited (Chernick, 

2008). Bootstrap sampling allows the empirical cumulative distribution function for 

CUI corrosion rates to be obtained from random sampling results generated from the 

measured CUI corrosion rate. Introduced in 1979, the bootstrap method is a very 

general re-sampling procedure for estimating the distributions of statistics based on 

independent observations. The bootstrap method is shown to be successful in many 

situations. For example, this method was applied to predict the time of first repair and 

subsequent rehabilitation of concrete bridge decks subject to chloride-induced 

corrosion (Kirkpatrick et al., 2002). 

For the mathematical description of the bootstrap re-sampling procedure, the 

following nomenclature is used: hats  denotes estimates, asterisks  denotes 

quantities related to bootstrap samples,  is the sample size,  is the number of 

bootstrap simulations (Riesch-Opperman et al., 2007). 

Consider the problem of estimating CUI corrosion rate by the bootstrap re-

sampling method. Suppose the original sample of corrosion rate consists of  

of independent data points, from which a statistic of interest  is 

computed. are independent and identically distributed (iid) samples from a 

-dimensional population distribution . A schematic representation of the bootstrap 

re-sampling procedure is shown in Figure 3.9.     
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Figure 3.9: Schematic representation of the bootstrap resampling procedure 

(Riesch-Oppermann et al., 2007) 

 

A bootstrap sample  is obtained by randomly sampling,  times, 

with replacement, from the original data points , i.e. each data point carries 

equal probability weight for sampling. If this procedure is repeated  times, we obtain 

a large number  of independent bootstrap samples , each of size . As 

indicated in Figure 3.9, this procedure can be regarded as artificially inventing a so-

called bootstrap population by replicating the original sample a large number of times. 

From each bootstrap sample , a bootstrap replication which is a statistic of 

interest, , is calculated. After ordering according to increasing values of , 

an empirical distribution function  is obtained from which quantiles of the 

distribution of  can be  obtained.  

In the present application, the statistic of interest is the mean and coefficient of 

variance (COV) of CUI corrosion rate,  from the set of bootstrap samples of CUI 

corrosion rates. The bootstrap replications for the mean and variance lead to an 

empirical distribution function  reflecting the scatter of CUI corrosion rates. 

The  percentile interval for corrosion rate is defined by the  - and 

-quantiles of . From  independent bootstrap samples, the percentile confidence 

intervals by taking the th value in the ordered list of  the  bootstrap 

replications of the estimated  as the lower limit and the th value in the 
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ordered list of  the  bootstrap replications of the estimated  as the upper limit of 

the confidence interval. Typically,  = 200 to 1000 bootstrap samples  are appropriate 

to obtain stable confidence interval (DiCiccio & Epron, 1996; Riesch-Opperman & 

Walter, 2001; Riesch-Opperman et al., 2007). Selecting 5% and 95% quantiles from 

the  distribution, a 90% confidence interval for  is obtained. 

 

3.6 Markov Model 

 

Markov model is a well-established, powerful mathematical tool for reliability 

modeling. Markov model is a discrete random process having Markov property. A 

discrete random process means a system that can be in various states and can change 

randomly in discrete steps. The Markov property states that the probability 

distribution for the system at the next step only depends on the current state of the 

system and is independent of past states. In other words, the description of the present 

state fully captures all the information that could influence the future evolution of the 

process. In Markov model, the probability of moving into a state at time  only 

depends upon the state at time . 

Being a stochastic process means that all state transitions are determined by 

random chance where at each step, the system may change its state from the current 

state to another state (or remain in the same state) according to a probability 

distribution. The changes of state are called transitions, and the probabilities 

associated with various state-changes are called transition probabilities. Transition 

probabilities indicate the likelihood that the condition of the system will change from 

one state to another state in a unit time. A typical transition probabilities matrix P has 

the following general structure where the sum of probabilities in each row must be 1. 

                                                                 (3.41) 
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where  = transition probability from state  to state ;  and 

. Based on the Chapman-Kolmogorov equation, the probability of the 

system moving from State  to State  after   periods (   transitions), that is the -

step transition probability matrix, , can be obtained by multiplying the matrix P 

by itself   times (Ross, 2000). Thus: 

                                                                                                               (3.42) 

Let the initial state vector be the probability that the Markov chain is in state 

 at time 0. Then, the state vector  which is the probability that the chain in state  

after  transitions, can be expressed as    

                                                                                                      (3.43) 

where   = condition vector at stage  ;  = probability of being 

in State  at time 0. 

Markov model described above is a discrete-time Markov chains. Another type of 

Markov chain model is a continuous-time Markov chain. Normally, the degradation 

process can be modeled as a continuous-time Markov chain and will be described as 

follows. 

 

3.6.1 Continuous-Time Markov chains 

 

In continuous-time Markov chain, there are no smallest time steps and hence one-step 

transition probability matrices are no longer valid. If one is at state   at time , 

then one can ask for the probability of being in a different state   at time ,  

                                                                        (3.44) 

Consider  is a very small value where . For , . Assume that 

 is differentiable at 0, the information about  at the origin is its derivative  
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                                  (3.45) 

and can be written as 

                                                             (3.46) 

 is a abbreviation for any function with the property that , the 

function is of smaller order than . This notation denotes the actual function  where 

 might be different one in each line, but there is no need to invent a new name for 

each occurence. 

The Markov property states that if one knows the state  then all additional 

information about  at times prior to  is irrelevant for the future: for all , 

 and , 

             (3.47) 

In other words, given that one is in state  at time , it does not matter how one get 

there and it does not matter what  is, the probability that in time  one is in state  is 

some number  depending only on ,  and . 

Let a matrix  which contains all the information about the 

transitions of the Markov chain . This matrix is called the -matrix of the Markov 

chain. The properties of  -matrix are as follows: 

 All off-diagonal entries , are positive. 

 All diagonal entries  are negative.  

 The sum over the entries in each row is zero. 

 is the transition rate at which one tries to enter state  when one is at state , 

sometimes called as the jump intensity from state  to state . Since the Markov chain 

has the memoryless property, the only continuous random variables which have the 

memoryless property are exponential random variables. Hence it can be deduced that 

in continuous-time Markov chain, the amount of time one waits at each state has an 

exponential distribution. 
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For example, consider a continuous time Markov chain having three states S = {0, 

1, 2} as shown in Figure 3.10. 

 

Figure 3.10: Example of a three-state continuous time Markov model 

 

having the transition rates 

 

The corresponding rates at which the chain leaves the states are , , 

and . This means that if one is currently in state 0, one will wait, on average, 

1/3 time units until the next transition; if one is currently in state 1, one will wait, on 

average, 1/5 time units until the next transition; if one is currently in state 2, one will 

wait, on average, 1/2 time units until the next transition. 

A three-state Markov model for general wall thinning proposed by Fleming 

(2004) will be employed in this study, as shown in Figure 3.11. The state transition 

rates are denoted by  and . He defined the three states as follows: 

 State 1: No detectable damage 

 State 2:  Detectable flaw (wall thinning)  

 State 3: Failure (leak or rupture)  

0 1 2 

3 

2 1 

1 

2 

1 
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Figure 3.11: Three state continuous time Markov model (Fleming, 2004) 

 

3.6.2 Solution to Differential Equations 

 

The associated differential equations for the three-state Markov model can be written 

as 

                                                     (3.48) 

                                              (3.49) 

                                                                    (3.50) 

The solution for Eqs. (3.48) - (3.50) can be obtained using Laplace transforms or 

other suitable technique, such as the eigenvalue method, as so long as the boundary 

conditions are specified. It is assumed as the piping are inspected to verify they are 

free of detectable flaws at the beginning of commercial operation, the appropriate 

boundary conditions are 

                                                

                                                

Thus, the time dependent solutions for the state probabilities are given by  

                                                         (3.51) 

                                                                                      (3.52) 

1 2 3 
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                                                                        (3.53) 

where the term 1r and 2r  are defined as  

                                                                               (3.54) 

and 

                                                                               (3.55) 

The solution using Laplace transform is provided in Appendix C. Once such 

solutions were obtained the calculations could be performed very easily via 

spreadsheet. 

 

3.6.3 Method to Estimate the Transition Rate 

  

An important prerequisite to ensure the successful application of the Markov-chain 

model is the availability of reasonably good estimates of the transition rates. Ideally, 

the transition rate is created based on comprehensive analyses of historical data of the 

system condition. Fleming (2004) used inspections data and service data for the 

selected failure in order to estimate the transition rate. However, the method proposed 

by Fleming (2004) is applicable in the case of CUI due to none or very few CUI 

failure data recorded. Therefore, direct estimation on the parameter is impossible.  

To estimate the transition rates  and ,  first-order reliability method (FORM) 

was used where the method was adopted by Vinod et al. (2003). FORM requires an 

appropriate limit-state function and the limit-state functions were developed based on 

the illustration in Figure 3.12 where the states were defined as in Table 3.7. Refer to 

Section 3.5.3 on how FORM is used. The strategies for estimating Markov model 

parameters can be observed in Table 3.8. 

To determine the different transition rates  and , the limit state functions, based 

on strength and resistance. The first limit state function is formulated to estimate the 
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transition rate  represents the transition rate from State 1, in which corrosion defect 

is less than 0.125 of the pipe nominal thickness , to State 2, in which the 

corrosion defect is . 0.125 of the pipe nominal thickness  was assumed to be 

the undetectable defect in this study based on the value proposed by Vinod et al. 

(2003). This value can be considered as it has been found that for radiography, the 

minimum variation of the thickness that this technique can be detected is 1 % to 2% 

of the sample thickness (Bardal & Drugli, 2004).  The limit state function can be 

defined as: 

                                    LSF1:                  (3.56) 

where  (in mm),  is the corrosion rate (in 

mm) and   is the time of inspection which usually 10 years. 

The second limit state function is used to estimate the transition rate  represents 

transition rate from state 2, which has already crossed the detectable range  to the 

state 3, in which the wall thickness is beyond the minimum wall thickness allowed . 

The LSF for this case would be 

                                   LSF2:                                      (3.57) 

where   (in mm). 

Note that, in this model, the failure stage 3 does not specify the actual leak, but 

represents a stage where the corrosion defect reaches the minimum wall thickness. 
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Figure 3.12: Illustration for the limit-state functions used to estimate the transition 

rates 

 

Table 3.7: Description for the three-state Markov model 

State Definition 

1  less than  

2  is between  and  

3  is more than  

Note:  is the depth of corrosion,  ,   

 

  

 

 

 

State 3 

State 2 

State 1 
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Table 3.8: Strategies to estimate Markov model parameters 

Symbol Parameter definition Strategy for estimation 

 Occurrence rate of a flaw Estimate using FORM with limit state function  

  

 Occurrence rate of a leak from a 

flaw state 

Estimate using FORM with limit state function  

 

 Inspection and repair rate of a flaw 

state 

Model of Eq. (3.49) and estimates of , , ,  

 Probability per inspection interval 

that the pipe element will be 

inspected 

Estimate based on specific inspection strategy; usually 

done separate for ASME Sec XI and RISI inspection 

programs 

 Probability per inspection that an 

existing flaw will be detected 

Estimate based on NDE reliability performance data 

and difficulty of inspection for particular element 

 Flaw inspection interval, mean time 

between in-service inspections 

Normally 10 years for ASME Section piping systems 

 Mean time to repair the piping 

element given detection of a critical 

flaw or leak 

Estimate of time to tag out, isolate, prepare, repair, 

leak test and tag in-service; if to be conditioned for at 

power, can be no longer than technical specification 

limit for operating with element tagged out of service 

 

The repair rates  are estimated using the model given in Eq. (3.58), 

                                                                    (3.58) 

where 

 = the probability that piping element with a flaw will be inspected per inspection 

interval. The value will be 1 if it is in the inspection program or else it will be 0 

(Vinod et al., 2003). 

 = the probability that a flaw will be detected given this element is inspected. This 

parameter is related to the reliability of Non Destructive Examination (NDE) 

inspection which is often referred to as Probability of Detection. For most NDE, its 

values are between 0.84 and 0.95 (Vinod et al., 2003). 

= the mean time between inspections for defects (For piping system, the inspection 

interval proposed by API 570 is either 5 or 10 years depending on the piping class. 

Refer to Table 3.1) 



70 

 = the mean time to repair once detected (For this study, it is assumed to be 14 days 

based on the input from plant experts). 

 

3.6.4 Hazard Rate for Markov Model  

  

One way to determine the failure rate or hazard rate is to determine the system 

reliability function for the model. Next is to derive the hazard rate as a function of the 

reliability function according to the definition of the hazard rate as explained below. 

Using this concept, the reliability function for Markov model  is given by  

                          (3.59) 

From this, the hazard rate  is the time dependent frequency of pipe leak and can 

defined for pipe leak as  

              (3.60) 

or 

                (3.61) 

 

3.7 Concluding Remarks 

This chapter discusses the mechanism of CUI, state-of-art of CUI inspection strategy 

and techniques used to assess the probability of failure. The basic theories for the four 

models namely logistic regression, degradation analysis, structural reliability analysis 

and continuous-time Markov model are also discussed in detailed. 


