
 

 

 

CHAPTER 4 

MODEL DEVELOPMENT 

 

4.1 Research Framework 

 

The research project focused on finding an appropriate quantitative model for the 

purpose of assessing the probability of failure for piping systems subject to CUI in 

RBI analysis. The study was driven by the type of data available for CUI where in this 

case the wall thickness data, which is typically used to assess corrosion failure, were 

found to be quite limited. Therefore, several mathematical models were explored to 

go well with the available data as shown in Figure 4.1. 

 

 

 

Figure 4.1: Research framework 
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From Figure 4.1, it can be seen that there are typically three types of CUI 

inspection data as follows: 

1) Visual inspection data: This data were collected after insulation was removed, 

however, no wall thickness measurements were being taken. Data was recognized 

as either CUI was found or CUI was not found i.e. pass or fail data. 

2) Wall thickness data: This data were collected after insulation was removed at the 

thickness measurement locations (TMLs). 

3) Design and operating data: Examples of design and operating data collected are 

design pressure and temperature as well as operating pressure and temperature. 

As discussed in Chapter 3, four models were proposed in this study which are as 

follows: 

1) Logistic regression model: This model was applied based on the visual inspection 

data which can be treated as binary data (1 = CUI was found; 0 = CUI was not 

found). 

2) Degradation analysis: This model was applied if the wall thickness data are 

available and the number of data is sufficient to carry out the degradation analysis. 

This model does not require the design and operating data. 

3) Structural reliability analysis: This model was applied when the wall thickness 

data are limited and it took the advantage of having the design and operating data.   

4) Continuous time Markov model: This model assumes the corrosion progresses 

through several states and in this study, the data required for this model was 

similar to the structural reliability model in determining the transition rates. 

 

4.2 Logistic Regression Model 

 

In developing a logistic regression model, several steps have been employed. Figure 

4.2 shows the framework. 

 

Step 1: Data Acquisition 

All information related to CUI was collected. 
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Figure 4.2: Logistic regression model flowchart for CUI 

 

Step 2: Variable definitions 

Based on the data collected, explanatory variables were identified. In this study, three 

explanatory variables, which were pipe age, operating temperature and insulation 

type, were employed for the logistic model development based on the availability of 

data in the inspection database.  
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Pipe age was classified as a continuous variable where data from three age groups 

were collected (i.e. pipe age 6, 10 and 15). Operating temperature was clustered based 

on API 581 operating temperatures and as such were defined as categorical variables. 

Categorical variables are the same as dummy variables which are artificial 

explanatory variables in a regression model. In this case, the dummy variables 

represent the categories of the operating temperature. Each dummy variable assumes 

one of two values, 0 or 1, indicating whether an observation falls in a particular group.  

Operating temperature more than 121°C was named as Group 6 and was referred 

as the reference group. Hence, five additional dummy variables were defined for 

operating temperature with respect to the reference as follow:   

 Group 1: 1 when operating temperature is in the range 49°C to 93°C, 0 otherwise 

 Group 2: 1 when operating temperature is in the range -12°C to 16°C, 0 otherwise 

 Group 3: 1 when operating temperature is in the range 16°C to 49°C, 0 otherwise 

 Group 4: 1 when operating temperature is in the range 93°C to 121°C, 0 otherwise 

 Group 5: 1 when operating temperature is less than -12°C, 0 otherwise 

Insulation type can be classified into two groups and therefore, was also defined 

as categorical variables in the logistic model. Table 4.1 shows the different 

requirements of the insulation that determines the different insulation material. There 

are two categories of insulation material: calcium silicate (type 1) and cellular glass 

(type 2). Considering insulation type 2 as the reference, there is only one dummy 

variable for insulation type as: 

 Type 1 insulation: 1 when insulation used is calcium silicate, 0 otherwise 

 

Table 4.1: Classification for types of piping insulation class (Engineering 

Specification for Thermal Insulation Design, 1994) 

Insulation requirement Temperature range 

(°C) 

Insulation 

material 

Insulation 

type 

Heat Input Control 0 to 650 Calcium silicate 1 

Heat Conservation 10 to 650 Calcium silicate 1 

Personnel Protection 65 to 650 Calcium silicate 1 

Cold conservation +10 to -180 Cellular glass 2 

Prevention of Surface Condensation 10 to ambient Cellular glass 2 
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The response variable is classified as binary response and may be classified as 

either CUI is found (  or CUI is not found ( .  

 

Step 3: Model development using MATLAB 

The logistic model was developed in MATLAB R2009a using two main functions; 

glmfit and glmval functions. The glmfit function is used to estimate the coefficients of 

the parameters in the logistic regression model. The syntax is as follows: 

 = glmfit (data, Y, 'distr') 

where ,  is a vector of coefficients, data is a vector of the predictors, Y is a vector of 

observed responses and 'distr' is the distribution that can be any of the following 

strings: 'binomial', 'gamma', 'inverse gaussian', 'normal' (by default), and 'poisson'.  

The glmval function is used to compute the predicted values for the generalized 

linear model with link function ‘link' and predictors X. The syntax is as follows: 

yfit = glmval (b, data, 'link') 

where  is a vector of coefficients estimated as returned by the glmfit function, data is 

a vector of the predictors and 'link' is the link function that can be any of the strings 

used in the glmfit function. Refer to Appendix B for further explanation. 

 

Step 4: Model verification 

To verify the logistic regression model developed using MATLAB, data taken from 

Evans Country case study (Kleinbaum et al., 1982) was used.  In the case study, the 

data was fitted to the logistic regression model using Java Script developed by 

Sullivan  and Pezzullo (2007). The results generated by MATLAB were compared to 

the results generated via Java Script.  

 

Step 5: Parameter Estimation 

Once a logistic regression is specified with its parameter and data have been collected, 

one is in a position to evaluate its goodness of fit, that is, how well it fits the observed 

data. Goodness of fit is assessed by finding the parameter value of a model and the 

procedure is known as parameter estimation (Agresti, 1990).  Estimates of the 

parameters can be found by using a mathematical technique called Maximum 

Likelihood Estimation (MLE). 
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Step 6: Testing the significance of each parameter  

After generating the parameters for each variable, it is necessary to test the statistical 

significance of each parameter in the model. In the formulation of a logistic model, 

Wald test was performed on each variable or model parameter to investigate its 

significance (Yang et al., 2005). Wald tests are based on the chi-square statistics that 

tests the null hypothesis that a particular variable has no significant effect given that 

the other variables are included in the model. 

 

Step 7: Backward Stepwise Elimination 

If the parameters obtained from result analysis are not significant, then a backward 

stepwise elimination method will be conducted to eliminate the parameter which is 

insignificant. Backward stepwise elimination method is an iterative variable-selection 

procedure where it begins with a model containing all the independent variables of 

interest. Then, at each step the variable with biggest -value is deleted (if the -value 

is bigger than the chosen cutoff level). Refer back to Chapter 3. 

 

Step 8: Sensitivity analysis 

The objective of the sensitivity analysis is to validate the proposed model and to test 

the reliability of the model by evaluating its sensitivity to minor changes in the data 

set. In order to conduct sensitivity analysis, new logistic models are developed using 

80% and 90% of the set of data based on the proposed method by Ariaratnam et al. 

(2001).  Then, these new models will be compared to the 100% data set (i.e. original 

data). 

To show that there is no difference among these three models from statistical 

point of view, Kruskal-Wallis test was performed. Kruskal-Wallis test is used to 

evaluate the differences between three or more treatment conditions (or populations) 

and this test was performed to test the following hypotheses: 

 : The models are equal (no significant difference between models) 

 : The models are different. 

 

Step 9: Estimate the probability of CUI occurrence to be used in RBI analysis 

Once an appropriate model was validated, then the probability of CUI occurrence was 

estimated for inspection planning purpose. 
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4.3 Degradation Analysis Framework 

 

The steps shown in Figure 4.3 were followed in order to perform degradation 

analysis. The steps were based on the methodology outlined in Meeker and Escobar 

(1998). 

 

Figure 4.3: Degradation analysis framework to estimate reliability of piping system 

subject to CUI 

 

Step 1: Data collection  

The data collection phase includes identifying the piping systems which are 

susceptible to CUI based on API 581 guideline and gathering all the necessary 

information that need to be used in degradation analysis model. The required data are 

as follows: 

 the nominal wall thickness  (from design data) or the initial wall thickness 

 (wall thickness measured at the commencement of the piping system) 

 the actual wall thickness measures  after being in service for  number of 

years 

 the minimum required wall thickness  (from design data) 

Selection of piping system 

Collection of actual wall thickness at each TML 

Degradation analysis 

 Identify degradation model  

 Extrapolate the data to get the mean time-to-failure data 

Life data analysis using mean time-to-failure data 

Estimate the corrosion rate 

Estimate the failure frequency for RBI 

Data validation 
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Step 2: Estimation of corrosion rate 

CUI corrosion rates were then determined. The long-term corrosion rate was then 

estimated using Eq. (3.7). The reason why the short-term corrosion rate was not used 

is because of, for insulated piping systems, the wall thickness was not measured at 

each TML during each inspection period. Therefore, the information in hand was only 

the actual wall thickness after being in service for  number of years in service. 

Moreover, since the initial thickness  is not always available, the nominal 

thickness  will replace  for Eq. (3.7). In the case where  is 

available,  will replace . Thus, the corrosion rate formula is stated as: 

                                  (4.1) 

where  = corrosion rate (in mm/yr), = the nominal pipe thickness, = 

the actual pipe thickness and  = number of years in service. 

  

Step 3: Perform degradation analysis 

The degradation model for corrosion was identified. In this study, the linear model 

was assumed (i.e. using Eq. (4.1)) and the extrapolation of the time-to-failure for each 

TML is based on this linear model. Failure is defined as when the wall thickness 

reaches the minimum wall thickness specified. 

 

Step 4: Perform life data analysis 

The mean time-to-failure data generated in Step 3 was fitted to an appropriate 

distribution using Weibull++ software in order to estimate the distribution parameters. 

Then, the distribution fitting was checked by comparing the log-likelihood values 

generated for each distribution. The largest log-likelihood value indicates the best fit. 

 

Step 5: Estimate the probability of failure for RBI analysis 

Once an appropriate distribution was validated, then the failure probability and the 

failure frequency were estimated to be used in RBI analysis. The cumulative density 

function for failure probability is estimated using Eq. (3.21) for Weibull distribution, 

Eq. (3.23) for exponential distribution or Eq. (3.26) for lognormal distribution. The 

failure frequency/rate is estimated using Eq. (3.22). 
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4.4 Structural Reliability Analysis Framework 

 

The following steps illustrate the process used to develop structural reliability analysis 

methodology.  

 

Step 1: Identify the limit state function 

A limit state function needs to be defined where this function expresses the criterion 

for failure of the pipe. Often it is common for the limit state function to be the 

difference between resistance and the load. For corrosion failure in pipe, the thinning 

model proposed by Khan et al. (2006) was used as the limit state function in this 

study. Khan et al. (2006) stated that the thinning model can be used for both internal 

and external corrosions; however, the corrosion rate may differ from one case to the 

other. The limit state function can be defined as 

                                                      (4.2) 

where R is material resistance (in MPa), St is the applied stress (in MPa), S is material 

yield strength (in MPa),  is corrosion rate (in mm/yr), P is operating pressure (in 

MPa), D is the diameter of the component (in mm), t is the material thickness (in mm) 

and  is number of years in service (in year). 

 

Step2:  Identify the basic random variables 

Based on the thinning model, the following were the basic random variables: S is 

material yield strength,  is corrosion rate,  is operating pressure,  is the 

diameter of the component and  is the material thickness. 
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Step 3: Data collection 

The data collection phase includes gathering all the necessary information that need to 

be used in structural reliability analysis including the corrosion rate for CUI. 

Corrosion rate is estimated using Eq. (4.1). 

 

Step 4: Estimation of probability distribution and its parameter 

In this step, the variability of the random variables S, , P, D and t was reviewed and 

estimation of their probability distributions and their parameters are made. Further 

explanation on how to estimate the distributions and their parameters can be found in 

Appendix D. 

 

Step 5: Development of FORM model in using spreadsheet 

FORM model was built using Microsoft Excel and Visual Basic for Application. A 

practical procedure presented by Zhao and Ono (1999), Low and Tang (2004) and 

Low and Tang (2007) was used to develop FORM model in Microsoft Excel. The 

reliability index was obtained by calling Excel’s built-in optimization program, 

Solver, with the objective function to minimize the reliability index subject to the 

constraint that the limit-state function, g(x) = 0. The probability of failure is then 

calculated. Refer to Appendix D for the FORM model framework built in Microsoft 

Excel and the code for Visual Basic Application. 

 

Step 6: Validation of developed FORM model 

The FORM algorithm developed was validated using two case studies published in 

the literature (Cardoso et al., 2008; Teixeira et al., 2008). Both case studies were not 

about CUI; however, they were on assessing reliability of pipelines with corrosion 

defect. 

 

Step 7: Running FORM model using CUI data 

Once the FORM model was validated, data on CUI samples were run using the 

model.   
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Step 8: Results verification 

The results were verified using Monte Carlo simulation approach. The results were 

also compared to another limit state function that typically used for corroded piping 

and pipelines which is the difference between the pipe failure pressure   and the 

pipe operating pressure  as stated (Caleyo et al., 2002; Vinod et al. 2003; Teixeira 

et al., 2008): 

                   (4.3) 

A failure pressure model  that is typically used to determine the failure 

probability is the ASME failure model, the modified B31G (Vinod et al., 2003; Escoe, 

2006). The modified B31G failure pressure model is defined as 

                 (4.4) 

where 

            (4.5) 

where  is depth of corrosion (in mm),  is the material yield strength (in MPa),  

is the thickness of the pipe (in mm),  is the outer diameter of the pipe (in mm),  is 

the corrosion rate (in mm/yr),  is the operating pressure (in MPa),  is the time of 

inspection (in year) and  is the axial length of corrosion defect (in mm). It is assumed 

that the depth of corrosion,  is 

                  (4.6) 
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4.5 Continuous-Time Markov Model Framework  

 

The following steps described the process employed to develop a continuous Markov 

model. 

 

Step 1: Identify the Markov model to be used 

This study proposed a three-state Markov model for CUI damage mechanism. The 

proposed model was based on a three-state Markov model for general wall thinning 

model proposed by Fleming (2004). 

 

Step 2: Identify the definition for each state 

Fleming model consists of three states reflecting the progressive stage of pipe failure 

mechanism: the state with no damage, development of detectable damage and the 

occurrence of leaks. In this model, the occurrence of leaks is defined as a failure 

which does not mean there are actual leaks but rather the thickness of wall has 

reached the minimum wall thickness specified. 

The definitions given for each state in Fleming model were very general. 

Therefore, this study proposed the definition shown in Table 3.7 in Chapter 3.  The 

definition of states can be based on the depth of corrosion defects. 

 

Step 3: Develop the differential equations 

The Markov model was solved by setting up the differential equations (refer to 

Chapter 3) and the solution of the differential equations was obtained using Laplace 

transforms as can be seen in Appendix C. 

 

Step 4: Determine the state probabilities 

Once the solutions for abovementioned differential equations were obtained, the 

calculations were performed via spreadsheet. 

 

Step 5: Estimate the transition rates using FORM model 

The transition rates are determined using FORM model based on the formulation of 

the limit state functions discussed in Chapter 3. Also, the repair rate for corrosion 
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defects was estimated based on the characteristics of inspection and mean time to 

repair corrosion defects upon detection. 

 

Step 6: Model verification and validation 

The developed Markov model using spreadsheet was validated by comparing the state 

probabilities generated with the results generated using MATLAB (i.e. MATLAB was 

used to solve numerically the differential equations). 

 

Step 7: Running Markov model using CUI data 

Once the Markov model was validated, data on CUI samples were run using the 

model. 

 

4.6 Concluding Remarks 

This chapter outlines the research methodology for the four proposed models in 

assessing quantitatively the probability of failure due to CUI which are logistic 

regression, degradation analysis, structural reliability analysis and continuous-time 

Markov model. Each step is discussed in details.  

  


