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ABSTRACT 

A lot of textual data is generated daily due to the advent of technologies, such as social 

media networks. Characteristics of textual data introduces challenges in analysing the 

data such as selecting a suitable text representation method for varying complexity of 

dataset. Topic Modelling is a research area that focuses in addressing this issue, by 

establishing the assumption that textual data are clustered in topics, rather than simply 

independent words. Latent Dirichlet Allocation (LDA) is one of the method in Topic 

Modelling. LDA is a generative probabilistic method, which allows LDA to adapt to 

new and unseen data, without having to retrain the model on the entire dataset. To 

extract topic representations, LDA uses approximate inference algorithms, such as 

Variational Bayesian Inference (VB) and Gibbs Sampling (GS). These two inference 

algorithms are selected due to their high performance in extracting quality topic 

distributions. Each of the inference algorithm adapts differently to different complexity 

dataset. The inference algorithms also have hyperparameters which need to be tuned to 

increase fitness to a dataset. To address these two challenges, Adaptive Selection of 

Inference Method for Latent Dirichlet Allocation (ASIM-LDA) is proposed. The 

objective of this research is to overcome the challenge of adapting to varying 

complexity of dataset by introducing two stages of refinement, namely hyperparameter 

optimization of individual inference algorithm and establish selection filter of best 

inference algorithm based on topic coherence score. The proposed algorithm is tested 

on three textual datasets. It is then evaluated based on performance of classification 

task. In this evaluation, three parameters of classification performance which are, 

accuracy, precision, and recall, are analysed. Based on the results, it shows that the 

proposed method accomplishes improvement of average of 9% in comparison to other 

topic modelling algorithms, despite being tested on different levels of dataset 

complexity. ASIM-LDA adapts through the two stages of refinement, which effectively 

selects the best approximate inference algorithms and best set of hyperparameters for 

given dataset.  
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ABSTRAK 

Banyak data teks dihasilkan setiap hari dengan kehadiran teknologi, seperti media 

sosial. Ciri-ciri data telah menghasilkan banyak halangan dalam menganalisa data, 

seperti memastikan data mudah difahami oleh komputer. Selain itu, terdapat  cabaran 

untuk ekstrak maksud konteks dari data. Topic Modelling ialah bidang penyelidikan 

yang bertumpu untuk menangani masalah ini, dengan membuat anggapan bahawa data 

dikelompokkan dalam topik, bukan sekadar perkataan perseorangan. Salah satu 

algorithma Topic Modelling ialah Latent Dirichlet Allocation (LDA). Ciri LDA yang 

merupakan algoritma kebarangkalian, membolehkan LDA menyesuaikan diri dengan 

data baru tanpa perlu melatih model di seluruh data. Untuk mengekstrak topik, LDA 

menggunakan algoritma inferensi anggaran seperti Variational Bayesian Inference 

(VB) dan Gibbs Sampling (GS). Kedua-dua algoritma inferensi ini dipilih disebabkan 

prestasi yang tinggi dalam mengekstrak taburan topik yang berkualiti. Setiap algoritma 

inferensi mempunyai prestasi yang berbeza mengikut kerumitan data yang berbeza. 

Algoritma inferensi juga mempunyai hyperparameter yang perlu diubah suai untuk 

meningkatkan prestasi. Untuk mengatasi cabaran ini, kajian ini mencadangkan 

Adaptive Selection of Inference Method for Latent Dirichlet Allocation (ASIM-LDA). 

Objektif penyelidikan ini adalah untuk mengatasi cabaran untuk menyesuaikan LDA 

untuk kerumitan data yang berbeza-beza dengan memperkenalkan dua tahap 

penyempurnaan, iaitu pengoptimuman hyperparameter algoritma dan menetapkan 

pemilihan algoritma inferensi terbaik berdasarkan Topic Coherence Score. Algoritma 

yang dicadangkan diuji pada tiga set data. Ia kemudian dinilai berdasarkan prestasi 

tugas klasifikasi. Dalam penilaian ini, tiga ukuran prestasi klasifikasi, accuracy, 

precision, and recall, dianalisa. Hasil kajian telah menunjukkan bahawa kaedah yang 

dicadangkan mencapai prestasi yang lebih tinggi dalam purata 9% dibandingkan 

dengan algoritma pemodelan topik lain, walaupun diuji pada tahap kerumitan kumpulan 

data yang berlainan. ASIM-LDA mampu meningkatkan kemampuan menyesuaikan 

LDA terhadap kerumitan kumpulan data yang berbeza-beza.  
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

There has been a surge of data growth all over the world. This is partly due to the 

advent of new technologies such as social media platforms [1-4], the Internet of Things 

(IoT) [5-7] and general relevancy of internet usage [8], among others. Majority of these 

data points are from unstructured data. This unstructured data differs from structured 

data as the data is not inherently bound or confined to a set of predefined structure. 

Within the unstructured data realm, the processing of textual data has been touted to 

have a lot of potential to be unlocked. Textual data is defined as a collection of data 

which normally consists of natural language such as English and easily comprehend by 

a human being. Few examples of textual dataset are e-mails, documents, and reports. 

Due to the characteristics of the data, textual data is a challenging dataset to be analysed, 

understood, and leveraged on. Figure 1.1 depicts the unstructured-structured data 

continuum, depicting text data as one of the challenging highly unstructured data in 

comparison to other types of data. 

 

Figure 1.1: Unstructured-Structured Data Continuum, highlighted Text Data [8] 
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With realisation that there is a lot of potential and knowledge that can be extracted 

from the textual data, a lot of research is being conducted in this specific area. This 

research, Natural Language Processing (NLP), is applied in various fields, including 

the financial services [9], software engineering and development [10-12], news [13, 

14], and medical sciences [15-17]. NLP research focuses on this problem, by leveraging 

computer science, statistics, and machine learning, to extract meaning from human 

language dataset. NLP aims to obtain the understanding of the textual dataset and use 

the knowledge extracted to perform either descriptive, predictive, or prescriptive 

analytics. One of the prominent areas where NLP in use as a predictive analytics 

enabler, is in financial markets. In this specific area, sentiment analysis, which is part 

of NLP, is actively used as one of the predictors for market trends [18]. Sentiment 

analysis has been proven to be a powerful indicator of how the market views a particular 

company or product, either positively or negatively. To enable this capability, various 

text representation algorithms are used. Text representation algorithms, or vectorizers, 

provide a representation of the textual dataset in a manner that a computer would 

understand. Text representation algorithms mainly use probabilities to represent the 

dataset into numerical format. One of the most popular techniques is Term Frequency 

(TF) [19]. TF represents the textual dataset in the form of counts, of how many 

occurrences of the words in the dataset. However, this is inadequate to represent the 

true meaning of the textual dataset. This is because of the inconsistent nature of data in 

real-world situations. Most of the time the real context or semantic meaning of the 

textual dataset are beyond than number representation of the words in the data [20].This 

challenge is further amplified by the complexity of the textual dataset. Dataset 

complexity is measured by the number of unique words in a textual dataset. Having 

many unique words in the document can increase the perplexity, a measure of how 

surprise a model seeing a before unseen data [21]. This problem is very evident in social 

media, where a lot of new words and usage of slang which will result to higher 

complexity of data [22]. 

Topic modelling is one of the family of algorithms used in representing the textual 

dataset. Topic modelling is a statistical model which assume that textual datasets are a 

part of a bigger pool of textual datasets. For example, a document is not considered 

independent of other document, it is assumed that there is a higher meta-class or 
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category that this document falls into. This assumption enables the algorithm to 

establish relationship beyond word-level, by extracting topic-level information. Topic-

level relationship is useful in understanding useful patterns in a document or even 

understanding the interaction of words in different kind of document. For example, the 

word ‘pool’ might have a different meaning if it comes from an Information 

Technology (IT) related article in comparison of the exact same word in a sports 

magazine. Topic modelling has also established itself as a powerful technique to 

perform topic discovery or semantic mining from unordered or unlabelled textual 

dataset. This is because topic modelling is an unsupervised machine learning technique, 

which does not require labelled dataset for it to learn from. Due to this nature, it has 

seen a popular usage in understanding customer reviews [23-26] and linguistic sciences 

[27]. 

Latent Semantic Analysis (LSA) was an early breakthrough in topic modelling 

research area. The aim of LSA is to solve the main challenge of extraction of meaning 

from textual dataset [28, 29]. By establishing the distinction of lexical level and 

semantic level of the textual dataset, LSA can develop a degree of meaningful feature 

extraction. The main idea of LSA is to map documents to a vector space of reduced 

dimensionality, the latent semantic space. LSA consists of two main processes, which 

are the development of Document-Term Matrix (DTM) and Singular Value 

Decomposition (SVD). DTM is a matrix that contains the frequency of words or terms 

that occur in a dataset. After that, SVD is applied which identify and form semantic 

generalisations from the textual dataset. Based on the SVD output, the dimensionality 

of the semantic space is lower than the number of unique words in the textual dataset. 

This is one of the good features of LSA, as the size of the output is smaller, projecting 

relationship of words co-occurring in other documents in the textual dataset. 

Documents that share no words would have no projection on each other in a space 

where each word was allocated its own dimension, but in the semantic space created 

through LSA, they do, which means that they can be compared with.  

However, LSA have some challenges such as its inability to adapt to new and 

unseen data, without having to perform retraining on the entire new dataset. This is 

because of the deterministic nature of LSA, which develop boundary of different classes 
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or clusters in the dataset, solely based on the trained dataset. Based on the explicit nature 

of the boundaries set, LSA might not be able to adapt to words that were not in the 

original training data. Another issue with LSA is its usage of SVD. SVD assumes that 

the data is normally distributed. In real-world situation, LSA might not be a suitable 

choice due to the presence of non-normally distributed data.  

Based on the gaps found in LSA, a growing amount of research focuses on a 

generative approach. Generative approach allows the relaxation of the clustering 

process. The important feature of the generative approach is the assumption that the 

dataset being trained is part of a bigger dataset. To adhere to this assumption, generative 

model includes the distribution of the dataset.  Generative topic modelling algorithms 

used is the Latent Dirichlet Allocation. Latent Dirichlet Allocation (LDA) is a 

generative probabilistic topic modelling algorithm [30]. To cluster the data, LDA 

observes data in textual forms as mixtures of words. These mixtures of words belong 

to specific topic or clusters.  Figure 1.2 depicts how LDA views text data. 

 

Figure 1.2: How LDA views Data[31] 

 

The general intuition of how LDA clusters the data can be understood based on 

Figure 1.2. Each of the word in Seeking Life’s Bare (Genetic) Necessities is assigned 

into topics. For the sake of simplicity, the figure highlighted several keywords and its 

corresponding topic assignment. Different topics are denoted by different shades of 
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circles on the right-side of the figure. Two main outputs of LDA can be seen via this 

example. Referring to Figure 1.2, LDA observes that there are multiple topics in a single 

document. The topic proportions, denoted by the histogram on the right-side of the 

figure, varies according to the document analysed. This enables the identification of 

ambiguous words. Ambiguous words are defined as words that can be interpreted 

differently in different scenarios or situation. For example, the word well in normal 

conversation would mean healthy but in the context of oil and gas it is a chamber (hole) 

in the Earth. The existence of multiple topics solves this issue by assigning weightage 

to words that belongs to different topics. Multiple topics assignment also allows LDA 

to adapt to new and unseen data, whereby different documents would have different 

topic probabilities and assignments.  

As LDA is a generative probabilistic algorithm, it assumes that words are generated 

from random distribution of topics. This provides the basis on understanding the 

generative processes on how the data is being generated. To understand the inner 

workings of LDA, we need to understand several processes and assumptions made by 

the algorithm. Figure 1.3 depicts the generative processes that is assume by LDA. 

 

Figure 1.3: Generative Process of LDA  

LDA assumes that a distribution of topics is randomly chosen. From this list of 

distribution of topics, a topic is randomly chosen. Based on the selected topic, a word 

is randomly chosen. This process repeats until there all words belong to the selected 

topic are exhausted. After this iterative process is complete, it is repeated for different 

topic. At the end, the data generated will be comprising of multiple topics. In real-life, 

the topics are not explicitly labelled in each of the documents. These topics are latent 

which is defined as hidden and unobservable [32]. In this situation, LDA is more useful 

on extracting the topic proportion and assignment for each word. To extract these latent 

structures of the data, LDA performs inference or parameter estimation. Through 

inference process, multiple latent knowledge on the data can be extracted. These latent 

knowledges (which include topic proportion and assignments) are inferred by a joint 
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distribution of all the unobserved variables and the observed words. The process is 

called as Bayesian inference. The goal of Bayesian inference is to understand or predict 

the posterior distribution based on observable evidence. In this context, the posterior 

distribution is the latent structure of the data, which are the topic proportion and topic 

assignment for each of the words in the document.  

Inference process in LDA estimates the posterior distribution through Maximum a 

Posteriori (MAP) assignment. MAP performs inference or parameter estimation 

through maximizing the posterior distribution of the parameters that ensures the best fit 

to the data. MAP extends the typical parameter estimation algorithm, Maximum 

Likelihood (ML) by including prior information into consideration in estimating best 

posterior distribution. In LDA, the posterior distribution that needs to be inferred are 

the topic proportions and topic assignments. However, in LDA, it is not possible to infer 

the parameters analytically. This is because of the intractability of the marginal 

likelihood term. The marginal likelihood term is used as the normalizing constant, 

which is impossible to compute as it needs to consider all possible and probable value 

of the topic proportions and topic assignments. This leads to the inability to perform 

exact inference in retrieving the latent structure of the data. To solve this problem, 

approximate inference algorithms are applied in the inference process. Two widely used 

approximate inference algorithms are Gibbs Sampling (GS) and Variational Bayesian 

(VB) inference [33]. Both approaches are applied differently. GS focuses on 

approximating the posterior distribution via sampling method. VB approximates the 

posterior distribution via converting the inference problem into an optimization 

problem [34]. 

VB emerged as one of the algorithms for inferring the posterior distribution.  As it 

approximates the posterior distribution using simpler and more tractable distribution, 

VB is usually used in analysing large corpora or text documents [35, 36]. 

Implementations of VB shown consistently outperforms other types of inference 

algorithms in terms of performance [37]. One of the reasons why VB can approximate 

the posterior distribution faster is that VB selectively approximate the posterior 

distribution. By selectively approximate the posterior distribution, VB only consider a 

family of tractable distribution in inferring the posterior distribution. One of the 
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examples of the tractable family of distribution is mean-field distribution. Through this 

process, VB simplifies the posterior distribution estimation by considering only 

tractable family of distribution. This removes the complex approximation needed for 

the posterior distribution. However, this creates another challenge. VB only consider 

the selected family of distribution [38]. This means that the approximation of posterior 

distribution does not consider other types of distributions [39]. By not considering other 

family of distributions, it can reduce the accuracy of the approximated posterior 

distribution. However, if the selected family of distribution conforms to the target 

distribution, the resulting inference could be of high accuracy[35]. 

In contrary, GS focuses on approximating the posterior distribution via sampling 

method. This method provides a more exact result as it provides an exact approximate 

of the target distribution[40]. However, to achieve the almost exact approximate of the 

target distribution, it requires higher computational usage in comparison to VB. 

Generally, the usage of GS is more viable in handling small dataset. This trade-off 

between speed and accuracy between using VB and GS creates a situation whereby a 

person who wants to use LDA to model their data needs to know the parameters 

involved in their computation.  

Another factor that can influence the performance of inference algorithm is the 

selection of hyperparameters. To perform approximate inference on the data, prior 

information must be initialised on each of the inference algorithm. The prior 

information or concentration hyperparameters can affect the fitness of inference 

algorithm to a dataset. Most of the research focuses on setting a fixed concentration 

hyperparameters which might not be the best selection for the given dataset. Different 

complexity of textual dataset has seen to have different characteristics which requires 

different set of prior information. To address the different complexity of textual dataset, 

both the selection of inference algorithm and the process of optimizing the 

hyperparameters are important. 
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1.2 Research Motivation 

Textual dataset complexity is measured by the count of unique words residing in a 

particular dataset. For example, textual dataset coming from social media is a high 

complexity dataset as there are a lot of unique words being generated daily. The 

complexity of textual dataset presents challenges in analysis and extracting knowledge 

from it, as mentioned in Section 1.1. One of the biggest challenges in analysing high 

complexity data is in building the suitable text representation. Textual dataset with high 

complexity can lead to text representation model to be perplexed when tested with new 

and unseen data.  Perplexity is a measure of how well the text representation model 

learn on the textual dataset, tends to increase with higher complexity of textual dataset. 

This is because it is generally impossible for text representation model to learn all the 

unique words based on just training data as there might be new and unseen words in the 

testing dataset. Besides perplexity, another challenge of textual dataset is that most of 

textual dataset are unlabelled. This requires an unsupervised approach in the extraction 

of text representation. Based on Section 1.1, it has been recognized that Topic 

Modelling algorithm are being researched to address this issue. Topic modelling, being 

an unsupervised algorithm, can address non-labelled data. The design of LDA depends 

heavily on the inference algorithms. Inference algorithm such as VB and GS are used 

as they generally provide robust posterior. However, it is noted that different inference 

algorithm adapts differently to different complexity of textual dataset. There is also the 

room for improvements to optimize the inference algorithm selected in terms of tuning 

the hyperparameters. The hyperparameters selected, both the concentration parameters 

and the number of topics will have an effect to the fitness of the inference algorithm to 

data. Thus, the motivation of this research arises from identifying the best inference 

algorithm for varying complexity of textual dataset, by considering both GS and VB as 

well as optimizing its hyperparameters. 

There is on-going research on the inference methods for LDA. This research mainly 

focuses on improving the efficiency of the inference algorithm. Research on 

improvements on GS are done through block updating of GS [41], perform parallel 

inference [42], perform batch Gibbs sampler, incremental Gibbs sampler. Research on 

improvements on VB are done through collapsed VB, incremental learning on VB, Map 
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Reduce LDA (Mr. LDA). As these research focuses more on improving the efficiency, 

there is a gap in improving the fitness of inference algorithm to the dataset. There is 

also some research gap in focusing on the utilising both VB and GS.  

1.3 Problem Statement 

Textual data has become more advent. As these types of data are constantly being 

generated daily, especially due to rise social media platforms, it creates a challenge in 

the pursuit of analysing and extracting knowledge from it. A few of the challenges in 

processing textual data is that most of the data generated are not labelled, and the 

difficulty in effectively extracting the context of the textual data. Traditional text 

representation methods which would not be able to extract the contextual meaning of 

textual dataset [19, 20]. Topic modelling emerges as one of the methods that can handle 

non-labelled data as it is an unsupervised algorithm [43]. Topic modelling able to 

perform extraction of latent structure of the data, which can extract the context of the 

textual data. 

LDA is one of the algorithms under the Topic Modelling family of algorithms [33]. 

LDA, being a generative and probabilistic based model, is highly adaptive to new set 

of data. This removes the need for LDA to retrain on the entire dataset again if it 

encounters new additional data. Given the pace of the data that are being generated, this 

is considered as a strong feature of LDA, where less time is needed to train. The 

effectiveness of LDA depends on the suitable inference algorithm used. VB and GS are 

distinguished as the inference algorithm that are both efficient and robust in inferring 

the posterior distribution. VB has been an efficient algorithm, managed to perform the 

computation of posterior distribution quicker than GS. However, an unoptimized VB 

performs less effectively compared to GS, to a given textual dataset. This challenge is 

aggravated by the varying complexity of textual dataset. The complexity of textual 

dataset measured based on number of unique words in the dataset presents a challenge 

in developing suitable text representation method [44, 45]. For varying complexity of 

textual datasets, selection of prior hyperparameters is a factor in the performance of the 

inference method. As mentioned previously in this section, the performance of an 
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unoptimized inference algorithm might be more inferior in comparison to an optimized 

one. The performance of the inference algorithm in this research is defined by the topic 

coherence score. 

1.4 Research Questions 

From the gaps found in the existing implementations of the Latent Dirichlet 

Allocation’s inference algorithm and problems defined in Section 1.1 and 1.2, the 

following research questions are identified and need to be addressed: 

i. How to improve the inference method to adapt to different complexity of dataset 

when hyperparameters are optimized based on topic coherence score? 

ii. How to formulate the Adaptive Selection of Inference Method for Latent 

Dirichlet Allocation to adapt to varying complexity of textual data 

environment? 

iii. What is the performance for the proposed design compared to the existing 

approach when modelling different complexity of textual dataset? 

1.5 Research Objectives 

The aim of this research is to design a high-performance inference method for LDA 

that utilizes both hyperparameter-optimized inference algorithms. The aim of this 

research is achieved by realising each of the research objectives mentioned below: 

i. To propose an adaptive selection of inference method for Latent Dirichlet 

Allocation (ASIM-LDA) based on maximizing topic coherence score with 

given textual dataset 

ii. To improve Latent Dirichlet Allocation’s inference method by combining 

random search and grid search in hyperparameter optimization to obtain the 

highest topic coherence score in textual data environment. 
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iii. To assess the performance parameters of ASIM-LDA, measured through 

accuracy, precision and recall analysis, through experimentation with different 

complexity of textual dataset. 

1.6 Scope of the Research 

In this section, the scope of this research is explained briefly. Table 1.1 exhibits the 

research scope mapping for this study.  

 

Table 1.1: Research Scope Mapping 

Scope Description 

Textual Dataset Textual dataset is defined as dataset that consists of natural 

human language such as English or Malay language. Textual 

datasets are predominant in areas such as reports, social media 

posts and news. Characteristics of the textual dataset which can 

be highly complex due to number of unique words residing in 

the dataset is the focus of the study in this research. 

Latent Dirichlet 

Allocation 

Latent Dirichlet Allocation (LDA) is the topic modeling 

algorithm used in this research. As the topic modeling 

algorithm, LDA is used for text representation technique prior 

to further processing. LDA provides the capability to establish 

relationship between words in the dataset, enabling the 

extraction of contextual meaning of the words. This is done 

through the assumption of the words belonging to a certain 

number of topics. LDA relies on approximate inference 

algorithms to extract these structures of the data, which is 

inherently hidden. 
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Approximate 

Inference Methods 

in Latent Dirichlet 

Allocation 

In LDA, two approaches of approximate inference algorithms 

are mainly used, namely deterministic approach and sampling 

approach. In this research, both techniques are studied, where 

one inference algorithm from each of the approaches are 

selected. VB is selected from the deterministic approach as it 

provides high efficiency in processing large amount of data. 

GS is chosen from the sampling approach as it guarantees the 

posterior distribution approximated to be asymptotically exact. 

Both inference algorithms are studied and the hyperparameters 

used in the inference algorithms are optimized. 

Hyperparameters optimization is done to maximize a defined 

an objective function.  

Topic Coherence 

Score 

Topic coherence score is selected as the objective function for 

the hyperparameter optimization of the inference algorithms. 

Topic coherence measure the quality of the topics generated 

by analysing the degree of semantic similarity between the top 

words in a particular topic. This has been noted as a good 

intrinsic measure of the fitness of inference algorithm to a 

particular dataset. 

Hyperparameter 

Tuning 

In this research, the improvements proposed is based on the 

hyperparameter tuning of LDA. The tuning approaches used 

are Grid Search and Random Search. These approaches are 

discussed in detail in Chapter 2. 

1.7 Significance of Study 

In processing textual data, it is generally infeasible for us to have a supervised 

algorithm due to lack of labelled data. Another challenge of analysing textual data is 

the need to have a robust text representation algorithm, that not only focuses on 

individual words as independent token, but also able to extract thematic structure of the 
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textual dataset. This also true for unsupervised techniques as it can work with non-

labelled dataset. LDA has since gain popularity usage in understanding of the dataset, 

without requiring any label in the data. Another advantage of LDA is that its ability to 

extract thematic structure of the textual dataset, which is otherwise hidden. This has 

become is strongest feature, as this allows the notion of hidden topics which can act as 

soft clusters of data in the textual dataset.  

One of the possible industries that would gain benefit from a high-performance 

clustering algorithm is the oil and gas sector. Studies have shown that data owned by 

oil and gas companies are largely unstructured[46]. Unstructured data is defined as data 

that is not managed by a structured database system or tagged by specific keywords[47]. 

Textual data and images are a few examples of unstructured data [48]. According to 

[49] , more than 80% of the data held by oil and gas companies are unstructured. 

Another characteristics of the oil and gas data is that it is not stored in a publicly 

accessed database [49]. This is to safeguard expensive datasets. The data such as 

geographic surveys cost millions to produce which make it one of the most valuable 

asset an oil and gas company owns[49]. 

These two characteristics of oil and gas data create a problem in searching 

accurately through the data [50]. The author in [50] stated that this problem consumes 

time as it takes a long duration to locate for the exact information. Based on a survey 

conducted by [46], oil and gas engineers often spend about 50% to 80 % of their time 

gathering and making sense of information at hand instead of utilizing their time to 

make decisions. This provides an excellent opportunity to utilize LDA in clustering the 

data for effective information retrieval. However, there have not been significant 

studies on clustering algorithm in oil and gas domain. Most of the implementations 

focused on biomedical [51], marketing [52], and social media [3]. Implementations in 

these fields have seen success in both retrieving correct information and reducing the 

time taken to make sense of the data. Thus, this research on developing efficient and 

effective inference algorithm will be able to provide significant impact on the domain 

on information retrieval for oil and gas industry. 
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1.8 Thesis Organization 

In this section, the high-level thesis organization is presented. Table 1.2 exhibits the 

description of each chapter in this thesis.  

 

Table 1.2: Thesis Organization 

Chapter Description 

Chapter 1 This chapter discusses the introduction of the thesis. Introduction 

to the research work on LDA, and approximate inference 

algorithms used is done. 

Chapter 2 This chapter describes the existing works on approximate 

algorithms used in inferring posterior distribution of LDA. Both 

VB and GS approaches are discussed. 

Chapter 3 This chapter presents the construction of adaptive selection of 

inference algorithm for Latent Dirichlet Allocation (ASIM-

LDA). The algorithm is explained in both algorithm and its 

mathematical foundation. 

Chapter 4 This chapter discusses the experiments done to evaluate the 

proposed algorithm based on different complexity of datasets. 

Chapter 5 This chapter presents the research findings and possible future 

work on improving inference algorithm. 

 

  



  

CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, the literature study conducted is discussed in more clarity. The 

literature review covers the review of existing implementations and analysed the 

research gap identified. Section 2.2 exhibits the comparison between Topic Modelling 

methods. Section 2.3 discusses the Latent Dirichlet Allocation in depth. Section 2.4 

elaborates on the existing works of Latent Dirichlet Allocation. Section 2.5 explains the 

inference process in Latent Dirichlet Allocation. Section 2.6 discusses the approximate 

inference algorithms used in Latent Dirichlet Allocation. In this section, the strength, 

and the weaknesses of each of the inference algorithms are explained. The gaps found 

from this study becomes the basis of development of ASIM-LDA. To develop the 

fundamentals of ASIM-LDA, hyperparameter tuning approaches and selection of 

objective function are further studied. Section 2.7 explores the different approaches of 

hyperparameter tuning. Section 2.8 discusses the selection of objective function for 

Latent Dirichlet Allocation, which compares between perplexity score and topic 

coherence score. Section 2.8 summarizes the chapter.  

2.2 Topic Modelling Methods 

Topic modeling is used to uncover hidden insights and underlying concepts of 

textual datasets and word documents [53]. It is developed to overcome the weakness of 

traditional text representation algorithms or text vectorizers which relies heavily on 

word frequency extraction. The main weakness with the traditional approach is its 

inability to extract contextual meaning of textual dataset. Due to the lack of 

consideration of hidden thematic context of the textual dataset, it does not provide 
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capability to retrieve information based on the underlying conceptual topic or meaning 

of the document. This is important to be addressed as documents are normally written 

with meaning and intentions [31]. Topic modeling is one of the approaches developed 

to consider the underlying semantic structure of the data in the retrieval process. 

Throughout the years, multiple topic modeling algorithms have been developed [33, 

54, 55]. Table 2.1 contains the comparison between four Topic Modelling methods.  

 

Table 2.1: Comparison between four Topic Modeling methods 

Methods Strengths Weaknesses 

TF-IDF TF-IDF is simple and does not 

require a lot of computational 

usage. Due to its simplicity, it 

provides an easy to understand 

metric to describe the query 

done[56, 57]. 

It is not able to create 

relationship with synonym 

words. This reduces its ability to 

extract full meaning of the 

textual dataset[58, 59]. 

Latent Semantic 

Analysis (LSA) 

LSA establishes semantic 

similarity measures between 

words. Through formalizing the 

semantic similarity measures,  it 

is able to detect better synonym 

words [32].   

LSA reduces the dimensionality 

of the textual data, as it 

incorporates Singular Value 

Decomposition. 

LSA is not able to handle 

polysemy terms. Polysemy term 

is a word that has multiple 

meanings[60]. It is not able to 

differentiate polysemy terms 

because each term in the dataset 

is represented as equal single 

point in the concept space. This 

reduces the ability to distinguish 

polysemy terms . 

Probabilistic 

Latent Semantic 

Analysis (pLSA) 

As an extension of LSA, pLSA 

is better able to handle 

polysemy. It is because pLSA 

pLSA tends to overfit to the 

training data[61]. This is 

because the number of 
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distributes the assignment of 

probabilities of a term 

corresponding to different 

meanings of a term[32] 

parameters in the model grows 

linearly with the size of the data. 

pLSA is a deterministic model, 

not a generative model. Due to 

this nature, it is not able to 

assign probability to unseen 

data without having to retrain on 

the entire dataset. 

Latent Dirichlet 

Allocation (LDA) 

LDA is a generative method by 

establishing the generative 

processes of how documents 

are created. The generative 

process assumes that the seen 

dataset is a subset of a bigger 

unseen dataset. This LDA to 

generate topic assignments for 

new unseen documents[53]. 

As it is a generative model, 

LDA is highly dependent on the 

inference algorithm that is 

selected.  

 

Based on Table 2.1, a literature analysis has been made between four different types 

of topic modeling methods. TF-IDF or Term Frequency-Inverse Document Frequency 

is one of the simplest topics modeling algorithm. It assigns weightage to each term in 

the document by analysing the occurrence in a document and comparing it to their 

respective occurrence in the whole document set or corpus. TF-IDF is relatively easy 

to implement[56]. However, it does not establish any semantic relation between the 

words in the document. This reduces its ability to extract the full meaning of the textual 

dataset as words might have contextual meaning across different documents or inter-

documents. Creating relationship with synonym words are also one of the challenges 

when implementing TF-IDF. It views the words as independently inside the document 

which restrict its capability to detect synonym words.  



 

18 

LSA improves by establishing the concept of semantic relationship. The semantic 

relationship is defined by the concept of larger text segment, where LSA introduces the 

notion of latent semantic structure of textual dataset. To extract the latent structure, 

LSA uses a two-step approach. The first step, LSA converts the textual dataset into a 

matrix representation. Subsequently, LSA applies Singular Value Decomposition 

(SVD) to the matrix generated[62]. By employing SVD in the process, LSA has been 

able to cluster together synonym words in the document. It also achieves dimensionality 

reduction which reduces the complexity of computation of the data. Polysemy is an 

issue that LSA does not able to address as it viewed the individual words as independent 

points in the context space.  

pLSA is a probabilistic extension of LSA. Through establishing basis of probability 

in the process, it is now able to distribute probability assignment to each term occurring 

in the documents. Based on the probability assignment, pLSA adopted the soft-

clustering approach, which provides the capability to address the polysemy issue. As it 

is not a generative model, it is not able to assign probability or topic assignment to 

unseen data without having to retrain the entire dataset. The number of parameters in 

the algorithm also grows linearly with the size of data. This could cause computational 

issue with large sets of data.  

LDA, having a well-defined generative feature, solves two main problems of pLSA. 

LDA can cope with unseen data, by generating or assigning topics to new data without 

having to retrain the entire dataset. By relying on latent variables in assigning topics to 

the documents, the number of parameters does not increase accordingly to the size of 

the data. However, through the introduction of latent variables into the process, LDA is 

highly reliant on the inference algorithm selected. Through the comparison between the 

topic modeling algorithms, LDA has been selected for this study. It is mainly because 

it addresses all the issues that have been found in the previous algorithms for topic 

modeling. It is both computationally efficient and able to handle new data effectively. 

Section 2.3 discusses more details on how LDA works. 



  

2.3 Latent Dirichlet Allocation 

LDA is a generative probabilistic method used to cluster collections of unstructured 

data [30, 33]. LDA is one of a variant of topic model, which cluster data based on 

themes [63]. The method selected can classify into their respective meaningful themes. 

It is generated based on an idea that documents are consisting of mixtures of latent 

topics and the topics are characterized by the distribution of words. Latent is defined as 

something which presence but not visible. LDA implements the bag-of-words model 

which ignores the order of the words [64]. Bag-of-words model is a model that tokenize 

every word regardless of the grammar and their word order. However, LDA will view 

the words independently and the occurrence of each word is utilized in training a 

classifier[65]. Figure 2.1 illustrates the graphical model of how LDA works.  

 

Figure 2.1: Graphical Model of LDA[31] 

 

In Figure 2.1, 𝑀 denotes the documents, 𝑁 represents the set of words in the 

document, 𝑤 represents the denoted words in the document, 𝑧 represents the topic for 

the denoted word, 𝜃 represents the topic distribution for the document, α denotes the 

parameters set for the topic distribution per-document and 𝛽 denotes the parameters set 

for the topic distribution per-topic word[66]. Based on Figure 2.1, it also depicts LDA 

as a three-level model. The three-level model can be further breakdown into following 

components: 
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i. For corpus-level, 𝛼 and 𝛽 are the respective parameters. These parameters are 

conditioned and sampled once per the entire collection of documents. 

ii. For document level, the parameter is θd, a draw from multinomial clustering 

variable. It is sampled once for each of the document. 

iii. For word-level,  zdn and wdnare the parameters. These parameters are sampled 

once for each of the words inside the entire collection of documents. 

 

For each document 𝑤, LDA assumes the following generative processes: 

i. For each 𝐷 documents:  

a. Draw 𝜃 ∼  𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼) 

b. For each 𝑁 words 𝑤𝑛:  

i. Draw a topic 𝑍𝑛 ∼  𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃)  

ii. Draw a word 𝑤𝑛 from 𝑝(𝑤𝑛|𝑍𝑛, 𝛽) 

 

 Based on the generative processes exhibited, there are two assumptions made on how 

the model view the data. The assumptions are: 

i. The dimensionality k of the Dirichlet distribution is assumed to be known. 

ii. Word probabilities are parameterized by 𝜷 is assumed to be fixed. 

As LDA is a generative probabilistic model, it is often expressed in the form of joint 

distribution as: 

 p(θ, z, w|α, β) =  p(θ|α) ∏ p(zn|θ)p(wn|zn, β)

N

n=1

 (2.1) 

To obtain the marginal distribution of a document, two processes need to be done 

which are, first integrating over the topic distribution, 

Process 1 

 p(z, w|α, β) =  ∫ p(θ|α) ∏ p(zn|θ)p(wn|zn, β)dθ

N

n=1

 (2.2) 

 

Then, through summation over z, the marginal distribution of a document: 
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Process 2 

 p(w|α, β) =  ∫ p(θ|α) (∏ ∑ p(zn|θ)p(wn|zn, β)

zn

N

n=1

) dθ (2.3) 

 

To find the probability of the collection of documents, or corpus, we take the product 

of marginal probabilities of each of documents:  

 

 p(D|α, β) =  ∏ ∫ p(θd|α)

M

d=1

(∏ ∑ p(zn|θ)p(wdn|zdn, β)

zdn

Nd

n=1

) dθd (2.4) 

 

As the aim of the algorithm is to extract the hidden structure or ’topic’, the parameters 

that of concern are θ and z. Both parameters are latent, which they are not observed 

from the data. Thus, the joint distribution of p(θ, z|w, α, β) is: 

 

 p(θ, z|w, α, β) =   
p(θ, z, w|α, β)

p(w|α, β)
   (2.5) 

 

By solving the joint distribution of  p(θ, z|w, α, β), the posterior distribution of data 

can be extracted. This posterior distribution is the representation of the structure of the 

data which are not observed directly. The ability of LDA to extract latent structure of 

any type of data makes it one of the most used data clustering method. In the next 

subsection, existing works in LDA are summarized and explained. 

2.4 Existing Works in Latent Dirichlet Allocation 

There are studies conducted on utilizing Latent Dirichlet Allocation in different 

areas of research. These researches are studied, and the summarization of the analysis 

are discussed in Table 2.2. 
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Table 2.2: Existing Works in Latent Dirichlet Allocation 

Author(s) 
Areas of 

Research 
Findings Future Work 

Guo, 

Barnes, 

Jia[67] 

User Reviews The inference part of the LDA is 

computationally intensive. 

To utilize a more robust 

inference engine for 

computing topic 

assignments. 

Tirunillai 

and Tellis 

[52] 

Online 

marketing 

reviews 

LDA can effectively analyse 

data at a highly granular level. 

To achieve high-quality 

inferring of topics, it is very 

computationally intensive 

Adopting or improving 

inference to achieve 

quality results. 

Moro et.al 

[68] 

Business 

Intelligence in 

Banking 

LDA’s inference is 

computationally intensive and is 

considered as NP-hard. 

Adopting effective 

inference for clustering 

data.  

Dyer, 

Lang and 

Lawrence 

[69] 

Economics Even though LDA can process 

large scale data, it requires 

efficient inference to be able to 

produce high quality topics 

Employ robust 

inference 

Eddy et.al. 

[43, 70] 

Feature location Time required by LDA to 

complete its task significantly 

depends on the performance of 

its inference. 

Identifying the best 

inference settings or 

technique 



 

23 

Table 2.2 depicts the analysis of the existing research on using Latent Dirichlet 

Allocation as means to cluster data in various domains. The findings from all the 

research consistently mentioned the importance of having a robust inference in LDA. 

This is because inference is a major part of the LDA algorithm. In the next subsection, 

the inference part of the LDA is explained. 

2.5 Inference in Latent Dirichlet Allocation 

The key problem of LDA is discovering or obtaining the posterior distribution. The 

process of obtaining the posterior distribution is defined as inference. Through 

inference, we reverse the generative process by generating the posterior distribution 

through sampling of every latent variable needed conditioned on the observed data. In 

LDA, it means solving the joint distribution of p(θ, z|w, α, β). 

As there is possibly a huge possible value of latent variables α and β, the posterior 

distribution makes it impossible to exactly infer the latent structure [31, 33]. In addition, 

the coupling between θ and β creates difficulty in computing the logarithm of joint 

distribution of  p(θ, z|w, α, β),  [71]. The normalization factor, p(w|α, β) also cannot 

be computed directly[40]. Thus, approximate inference algorithms are used. The 

process used in approximating the posterior distribution is Bayesian inference. 

Through Bayesian inference, we are able to infer posterior probability of a random 

variable given some observable observations[72]. This process focuses on making 

conclusions about a parameter θ or unobserved variable. It is done through probability 

statements which are made conditional on observed values y [73]. The statements are 

normally written as p(θ|y) or p(�̅�|𝑦).  

To make probability statements, p(θ|y) or p(�̅�|𝑦), a joint probability distribution 

must be made. The joint probability distribution is the product of two densities: the 

prior distribution p(θ) and p(y|θ). The product is written as: 

 p(θ, y) = p(θ)p(y|θ) (2.6) 
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The posterior distribution or density is obtained through conditioning the joint 

probability distribution with the observed data y [74]. This conditioning is possible 

through Bayes rule. The posterior distribution or density obtained is 

 

 p(θ|y) =
p(θ, y)

p(y)
=

p(θ)p(y|θ)

p(y)
 (2.7) 

 

Where p(y) is the sum over all possible values of θ. The posterior distribution can 

be re-written as: 

 p(θ|y) ∝ p(θ)p(y|θ) (2.8) 

After establishing how approximate inference going to infer the posterior 

distribution, Section 2.6 discusses the comparison of approximate inference algorithms 

utilized by Latent Dirichlet Allocation. 

2.6 Approximate Inference Algorithms for LDA 

Based on the explanations with regards to LDA inference process, there are latent 

parameters that needs to be taken into consideration. This makes it infeasible to evaluate 

the posterior distribution or compute exact inference for the given distribution. It is due 

to the high dimensionality of the latent space taken into consideration. As LDA deals 

with discrete variables, the marginalization involves summing over all possible 

configurations of the latent variables. As there is a possibility of exponentially many 

latent states, this will certainly cause exact calculation to be expensive. To address this 

challenge, LDA resorts to approximation inference algorithms.  

There are several approximation inference algorithms designed and implemented 

in approximating the posterior distribution for complex problems. In this subsection, 

several inference algorithms used in Latent Dirichlet Allocation are discussed. 

Inference algorithms used to approximate the posterior distribution for LDA can be 
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divided into two broad categories. The categories are the deterministic approximations 

method and stochastic sampling method. Table 2.3 shows the comparison between 

deterministic approximate inference algorithms and stochastic approximate inference 

algorithms. 

 

Table 2.3: Comparison between Deterministic Approximate Inference and Stochastic 

Approximate Inference 

Type of Approximate 

Inference Algorithms 

Strengths  Weaknesses 

Deterministic 

Approximate Inference 

Deterministic 

approximate inference 

algorithms tend to be 

more efficient when 

compared to stochastic 

approximate inference 

algorithms [75]. 

It tends to be stuck in local 

optima [34]. 

As deterministic approximate 

inference neglects the 

conditional dependencies, it 

often yields under-estimated 

posterior variance [36].  

Stochastic Approximate 

Inference 

Given unlimited 

computational resources, 

stochastic approximate 

inference can generate 

exact results [76]. 

Stochastic approximate 

inference algorithms are 

computationally demanding 

[77]. 

It is often limited to small-

scale problems. 

It is difficult to determine 

whether the samples 

generated independent from 

the required distribution [37]. 
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Deterministic approximate inference algorithms are family of approximate 

inference algorithm that are mainly used to compute posterior distribution through 

providing the analytical approximation of the said posterior distribution. This is done 

through converting the problem of computing the posterior distribution into an 

optimization problem. Deterministic approximate inference algorithm uses a much 

simpler family of distribution as an approximation of the true posterior distribution. As 

it is an optimization problem, the loss function defined for this technique is the 

Kullback-Leibler Divergence (KL Divergence). The KL Divergence is a measure of 

how different one probability distribution to another probability distribution is. By 

combining these two concepts, the aim of deterministic approximate inference 

algorithm is to compute the best posterior distribution, by using a simpler family of 

distribution that minimizes the KL divergence. The main technique used in 

deterministic approximate inference algorithm is the variational Bayesian inference. 

This technique is discussed in more detail in Section 2.5.1. 

Stochastic approximate inference algorithms approximate the posterior distribution 

by sampling from the desired posterior distribution. One of the mostly used technique 

in stochastic approximation, Markov Chain Monte Carlo (MCMC) sampling provides 

a process of systematic random sampling from high dimensional probability 

distributions. In general, MCMC provides approximation to the posterior distribution 

by drawing random and independent samples from the posterior distribution. Based on 

these samples, the expectation can be approximated by the finite sum of the random 

samples. By directly sampling from the posterior distribution, MCMC provides 

guarantee that it is asymptotically exact. The main technique used in the stochastic 

approximate inference algorithm is Gibbs Sampling. Gibbs Sampling is discussed in 

Section 2.5.2. 

In this research, both stochastic and deterministic approximate inference algorithms 

are used. This is since both techniques are complementary to each other. By leveraging 

both techniques, the adopted method can reap the benefits of the strength from both 

techniques. This also minimizes the drawback effect as both techniques are used. 
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2.6.1 Variational Bayesian Inference 

This inference algorithm is used in the original implementation of LDA. By using 

variational inference, tractable distribution is obtained through consideration of family 

of lower bounds. The family of lower bounds consists of variational parameters. This 

relaxed the distribution which allows adjustable lower bound on the likelihood of the 

exact posterior distribution. By approximating using variational inference, lower bound 

of the log likelihood is determined and iteratively tightened the bound [78]. To 

implement this, modification is done to the original probabilistic graphical model of 

LDA [53]. The modification removes the edges that caused the coupling between θ and 

β which are θ, z and w. Thus, the modified probabilistic graphical model is as depicted 

in Figure 2.2. 

 

Figure 2.2: Probabilistic graphical model of variational inference in LDA [75] 

Based on Figure 2.2, variational parameters are introduced γ and φ. Thus, the new 

joint distribution for each document is: 

 𝑞(θ, 𝑧|γ, ϕ) = 𝑞(θ|γ) ∏ 𝑞(𝑧𝑛|ϕ𝑛)

𝑁

𝑛=1

 (2.9) 

In this new joint distribution or posterior distribution, γ is the Dirichlet parameter 

and φ is the multinomial parameter. Both parameters are free variational parameters. 

The inference problem now evolved into optimization problem in obtaining optimal 

value of both γ and φ. As stated earlier, variational inference algorithm aims to find the 

tightest lower bound of the distribution. The problem of finding the optimal lower 

bound is:  



 

28 

The optimization problem is to minimize the Kullback-Leibler (KL) divergence 

between the exact posterior distribution and the modified variational distribution.  

KL divergence is a measure of the divergence between a revised prior distribution 

and posterior distribution . To achieve minimal value of KL divergence, iterative fixed-

point method is utilized [33, 79]. The update equations obtained in this method are:  

 

 (γ ∗, ϕ ∗)  =  arg min
(𝛾,𝜙)

𝐷 (𝑞(𝜃, 𝑧|𝛾, 𝜙)||𝑝(𝜃, 𝑧|𝑤, 𝛼, 𝛽)) (2.10) 

The update equation represents the Dirichlet update conditioned to the observed 

words and based on the variational distribution, E[zn|φn]. Thus, the aim of iteratively 

updating γ is to find the optimal multinomial distribution for the observed words.  

 𝜙𝑛𝑖 ∝ 𝛽𝑖𝑤𝑛
𝑒𝑥𝑝{𝐸𝑞[𝑙𝑜𝑔(𝜃𝑖)|𝛾]} (2.11) 

 

 𝛾𝑖 = 𝛼𝑖 + ∑ 𝜙𝑛𝑖

𝑁

𝑛=1

 (2.12) 

 

The expectation in the update for φni is computed as:  

 𝐸𝑞[𝑙𝑜𝑔(𝜃𝑖)|𝛾] = Ψ(𝛾𝑖) − Ψ (∑ 𝛾𝑗

𝑘

𝑗=1

) (2.13) 

Ψ is the first derivative of log Γ function. This is calculated using the Taylor 

approximation: 
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Ψ(𝑥) ≈ (((0.00416
1

(𝑥 + 6)2
− 0.003968)

1

(𝑥 + 6)2

+ 0.0083)
1

(𝑥 + 6)2
− 0.083)  \

1

(𝑥 + 6)2
+ 𝑙𝑜𝑔(𝑥)

−
1

2𝑥
− ∑

1

𝑥 − 𝑖

6

𝑖=1

 
(2.14) 

After both ϕ and γ are obtained, values of the hyperparameters α and β can be 

estimated. This is done through finding the optimal lower bound of the log likelihood 

of: 

 𝑙(α, β) = ∑ 𝑙𝑜𝑔

𝑀

𝑑=1

𝑝(𝑤𝑑|α, β) (2.15) 

Both steps, obtaining variational parameters and hyperparameters, are essential in 

variational inference. These steps are better known as Expectation- Maximization (EM) 

algorithm. The classification of the steps are as follows:  

Expectation Step: Finding optimal value for the variational parameters. This 

enables the expectation of log likelihood of the corpus.  

Maximization Step: Finding the tightest lower bound of the log likelihood of 

l(α, β) . This enables the maximization likelihood estimates. 

2.6.2 Gibbs Sampling 

This inference algorithm belongs to the family of Markov chain Monte Carlo 

(MCMC) . MCMC is a family of approximate inference algorithm that samples from a 

distribution in a Markov chain [76]. The Markov chain advantage is that it can sample 

from complex distributions, in this case the desired posterior distribution of LDA .By 

constructing a Markov chain for all possible distribution, the computation of the 

posterior distribution is possible through [80]: 
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 𝐸[𝑓(𝑠)]𝑃 ≈
1

𝑁
∑ 𝑓(𝑠(𝑖))

𝑁

𝑖=1

 (2.16) 

 

Where: 

𝑃 is the desired posterior distribution. 

𝑓(𝑠) is the desired expectation. 

𝑓(𝑠(𝑖))  is 𝑖 sample from the desired posterior distribution. 

In the context of LDA, Gibbs sampling is used by stimulating high-dimensional 

distribution through the sampling of low-dimensional parameters. The parameters are 

conditioned on each other’s value. The sampling is done iteratively until the sampled 

values closer to the target posterior distribution [42]. To achieve optimal posterior 

distribution (latent structure of document), Gibbs sampling sequentially sampled all 

parameters based on observed distribution conditioned to other states of distribution. 

To perform sampling, a full conditional distribution is needed to be define. This 

distribution is obtained through modification of the joint distribution of LDA. 

 𝑃(𝑧𝑖 = 𝑗|𝑧−𝑖) ∝
𝑛−𝑖,𝑗

(𝑤𝑖)
+ β

𝑛−𝑖,𝑗
(.) + 𝑊β

𝑛−𝑖,𝑗

(𝑑𝑖)
+ α

𝑛−𝑖,𝑗

(𝑑𝑖)
+ 𝑇α

 (2.17) 

Where:  

𝑛(. ) is the parameter ignoring the current 𝑧𝑖 − 𝑖  

𝑇 is the topic, where 𝑇𝑛 is the total number of topics in the data  

𝑊 is the word, where 𝑊𝑛 is the total number of words in the data 

(. ) are all other observed parameters.  
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Based on the full conditional distribution (16), the first ratio is the probability of 𝑤𝑖 

condition to topic 𝑗. The second ratio is the probability of 𝑗 in document 𝑑𝑖. Thus, the 

conditional distribution assigned a word to a topic based on both likelihood of that word 

for a topic and the likelihood of the topic to the document. Based on both ratios, the 

approximate topic proportion for topic 𝑗 is obtained by divide them by the sum of all 

topics 𝑇 [42].  

After the value of 𝑧 is obtained for every word, the value of 𝜑, word-topic 

distribution and 𝜃, topic-document distribution can be estimated. This is done through: 

 ϕ𝑗
(𝑤)

=
𝑛𝑗

(𝑤)
+ β

𝑛𝑗
(.) + 𝑊β

 (2.18) 

 

 θ𝑗
(𝑑)

=
𝑛𝑗

(𝑑)
+ α

𝑛.
(𝑑) + 𝑇α

 
(2.19) 

 

The results from both equations provide the distribution of unseen 𝑤𝑖 of 𝑗 and the 

distribution of unseen 𝑑𝑖 of 𝑗. The entire Gibbs sampling approach to approximate 

posterior distribution can be summarized into the following algorithm. First, the 

algorithm initializes random topic 𝑧 and assigns word token to it. For each sampling of 

the current word token, 𝑛 is reduced by one to exclude the current iteration. Next, new 

topic is sampled from the distribution computed. This process is iterated for all 𝑁 words 

in the document. In early iterations of the Gibbs sampling, it was found that they are 

poor estimates of the posterior distribution. Thus, burn-in period is introduced which 

removes the earlier iterations and only saves the iteration after the period. This provides 

a more accurate approximation to the desired posterior distribution. In the next 

subsection, the hyperparameters used by both the inference algorithms are explained in 

more detail. 
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2.6.3 Hyperparameters in LDA 

Hyperparameters can be defined as parameters that are used to better fit the 

machine learning model to different dataset. The selection of appropriate 

hyperparameters is important as it can affect the performance of the model, given 

different datasets. In LDA, there are multiple hyperparameters that are important in the 

improving the fitness of LDA. Table 2.4 below exhibits the list of hyperparameters in 

LDA. 

 

Table 2.4 LDA Hyperparameters 

Hyperparameters Description Valid Values 

Alpha A prior estimate on the topic probability Positive Float 

Beta A prior estimate on the word probability Positive Float 

Number of Topics The number of topics for LDA to extract 

from the data 

Positive Integer 

 

Table 2.4 lists out three LDA hyperparameters that affects the fitness of the LDA 

model to a particular dataset. The first hyperparameter, alpha, is a prior estimate on the 

topic probability assigned by LDA. This affects the document-topic density of the final 

probability distribution. A high alpha value will result in more topics being considered 

in a document. Vice versa, a low alpha value will signify a lower number of topics in a 

document. The second hyperparameter, beta, is a prior estimate on the word probability. 

This affects the topic-word density of the final probability distribution. A high beta 

value will result in more words being considered as a topic, while a low beta value will 

result in topics with less words. The last hyperparameter, number of topics, is the 

number of topics to be extracted from the dataset.  
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These three hyperparameters values highly affects the resulting quality of topics 

extracted by LDA. Different values of hyperparameters are best for different sets of 

textual datasets. To optimize these values for a given dataset, hyperparameter tuning 

methods are employed. The hyperparameter tuning approaches are further discussed in 

Section 2.7. 

2.7 Hyperparameter Tuning Approaches 

Both Gibbs Sampling and Variational Bayesian Inference use hyperparameters to 

better fit to different sets of textual datasets[31, 33]. In general, hyperparameters are 

used to configure various aspects of the learning algorithm. The values can have strong 

effects on the resulting model and its performance. It is important to assign the best 

value for hyperparameters for a given algorithm or model. Hyperparameter search or 

optimization can be generally defined mathematically as: 

 ℎ∗ = arg 𝑚𝑖𝑛ℎ 𝐹(𝑋; 𝑀, 𝐿) (2.20) 

 

Where: 

ℎ∗ is the best hyperparameters value. 

arg 𝑚𝑖𝑛ℎ is the argument that minimizes. 

𝐹(𝑋; 𝑀, 𝐿) is the objective function or score, given set of data 𝑋 and model 𝑀.  

Based on the above equation, the objective function F takes a tuple of 

hyperparameters ℎ  and returns the associated loss  𝐿. The data 𝑋 are given and the 

model 𝑀 and loss function L are chosen. To search for the best hyperparameter value, 

researchers employ multiple different techniques or methods. A few popular methods 

used for hyperparameter optimization are rule-of-thumb, grid search and random 

search. Table 2.3 discusses the main strengths and weaknesses between the three main 

methods used for hyperparameter optimization. 
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Table 2.5: Approaches for Hyperparameter Tuning 

Approach Strengths Weaknesses 

Rules-of-thumb The set of hyperparameters 

are predefined based on 

successful trials of 

experiments. 

Lower computational 

requirement. 

Rules-of-thumb 

hyperparameter tuning is 

simple to implement. 

The set of hyperparameters 

recommended might not be the 

best if tested on different 

dataset. 

The reproducibility of the 

experiments results conducted 

based on the recommended 

hyperparameters are often 

difficult to achieve. 

Grid Search Grid search is simple to 

implement. 

Grid search is parallelizable. 

Grid search is reliable in low 

dimensional data. 

The search of hyperparameters 

is limited to the search space 

initialized. 

The time taken to find the best 

hyperparameters are highly 

dependent on the size of the 

search space. 

Random Search Random search is more 

efficient in high-dimensional 

space. 

Random search is better at 

achieving generalization in 

different dataset in 

comparison to grid search and 

rules-of-thumb method. 

Random search might miss out 

on incremental improvement 

as it takes samples from the 

search space, instead of testing 

every combination. 
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Based on Table 2.5, there are three main types of hyperparameters tuning, rules-of-

thumb, grid search and random search. Rules-of-thumb is the simplest technique in 

hyperparameter tuning. Through this approach, the sets of hyperparameters used are 

based on existing research or experiments conducted. As it does not require any search 

space or experimentations to get the best hyperparameters, it does not use a lot of 

computational resources. However, the result achieve from the selected 

hyperparameters might not be the same as what has been achieved by other researchers. 

It is because there are different factors that can affect the results, such as the domain 

and complexity of the datasets. Based on this reason, rules-of-thumb approach might 

not be the best approach for hyperparameter tuning. 

Grid search is a hyperparameter tuning technique which uses and defines a search 

space as a grid of hyperparameter values. Based on the defined search space, grid search 

will evaluate all the positions in the grid. This allows an exhaustive evaluation of all 

possible combination of hyperparameter values defined in the search space. As each 

combination of hyperparameter are independent from one to another, grid search can 

be parallelizable. The main weakness of grid search is that the time taken to find the 

best hyperparameter will be highly dependent on the size of the search space. Due to 

this factor, grid search is normally used in low dimensionality search space. Another 

drawback of grid search is that the set of hyperparameters taken into consideration in 

evaluation is limited to the ones defined in the search space. To cater to this 

shortcoming, random search is proposed. 

Random search is a method that uses a bounded domain of hyperparameters instead 

of grid of hyperparameter value as its search space. Based on the bounded domain of 

hyperparameters, random search will randomly sample different set of hyperparameter 

values. This randomly sampled hyperparameter values are evaluated and the loss 

function of each testing are collected. This presents the major strength of random search 

method, which is that it is more efficient in high dimensionality space of 

hyperparameters. Based on this feature as well, random search is better at achieving 

generalization on different dataset. This is important as different datasets might require 

different sets of hyperparameters, which might not be within confined of grid search’s 
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search space. However, random search might miss out on incremental improvements 

due to the random sampling of hyperparameters. Random search does not test all 

possible combinations of hyperparameters.  

Based on findings from three different techniques of hyperparameter tuning, the 

two most promising techniques are grid search and random search. Grid search allows 

an exhaustive search of all possible combination of hyperparameters, in comparison to 

random search which only evaluate random samples of hyperparameter. On the other 

hand, random search is highly efficient in high dimensionality space in comparison to 

grid search which is only efficient in low dimensional search space. In this research, 

both techniques are incorporated into ASIM-LDA. This is to utilize both techniques 

strengths. Random search is utilized as an exploratory search and discovery of possible 

hyperparameters bound space. Once this is completed, a search space is defined based 

on the results obtained from the random evaluations. Based on this search space, grid 

search is employed to exhaustively evaluate all possible combinations of 

hyperparameters. To find the best hyperparameter for ASIM-LDA, an objective 

function must be defined. This is further discussed in Section 2.7. 

2.8 Objective Function for Latent Dirichlet Allocation 

Intrinsic evaluation of topic models ideally needs a manually annotated corpus with 

the topics; however, such annotations are very expensive to produce, and the gold 

standard topics reflect the subjectivity in the annotators’ topic comprehension. 

Objective function for LDA has been developed to quantify the quality of topic models 

by measuring the coherence of words in each topic. There are multiple objective 

functions used in the intrinsic evaluation of how well the model fit to a particular 

dataset. These objective functions are described in Table 2.6. 
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Table 2.6: Objective Functions for Optimizing Latent Dirichlet Allocation 

Objective Function Strength Weakness 

Perplexity It is a quantitative measure 

to compare different 

performance of models. 

 

 

It does not correlate with 

the extrinsic evaluation 

score. 

 

Topic Coherence It is highly correlated to 

extrinsic evaluation 

scores, such as accuracy 

and precision. 

The time taken to compute 

topic coherence score is 

more in comparison to 

perplexity score. 

 

Perplexity is the result of one of the earliest works on intrinsically evaluating 

learned topics of LDA. To evaluate based on perplexity score, a model is learned on a 

collection of training documents, then the log probability of the unseen test documents 

is computed using that learned model. Usually perplexity is reported, which is the 

inverse of the geometric mean per-word likelihood. Perplexity is useful for model 

selection and adjusting parameters (number of topics K) and is the standard way of 

demonstrating the advantage of one model over another. However, perplexity score is 

not highly correlated with extrinsic evaluation score. Extrinsic evaluation score is score 

that is measured through human-in-the-loop. Based on this approach, human is used to 

interpret the results obtained from the learned topics. Due to this problem, topic 

coherence score is developed. 

Topic coherence score is a measure of how coherent the words are residing in a 

particular learned topic. Through this evaluation, a more correlated score to an extrinsic 

evaluation can be obtained. As the computation of the topic coherence score requires it 

to take into consideration all the words residing in a topic, it generally takes a lot more 

time to compute in comparison to perplexity score.  
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2.9 Summary 

Based on the literature review conducted, the main research gap is on selecting the 

right inference algorithm for LDA in any given textual dataset. It is noted that 

variational inference tends to be faster in most cases [37]. This is an important feature 

if user’s intent to analyse large and complex data [63].Gibbs sampling is slower as it 

approximates the posterior distribution via the application of stochastic transition 

operator for large number of times [81]. Even though its slower, Gibbs Sampling has 

the advantage of being asymptotically exact. This gives a closer and more accurate 

approximation of the posterior distribution in comparison to variational inference. 

Through these findings, there is a gap found in finding the right type of inference 

algorithms to be utilized with different complexity of textual data. This creates a need 

to utilise the strength of the approximate inference algorithm in inferring the robust 

posterior distribution. As each inference algorithm has their own hyperparameters to be 

selected, hyperparameters tuning approaches are explored. Based on literature study 

conducted, both grid search and random search are selected. Grid search is selected due 

to its ability to exhaustively search all possible combination of hyperparameters in a 

pre-defined search space. On the other hand, random search is more superior in high 

dimensional search space. This is mainly due to the nature of the search space of random 

search, which only specify the upper and lower bound of the hyperparameter values, 

instead of their exact values. These findings serve as the foundation for the development 

of the methodology. This methodology is developed to address the research problems 

that have been designed earlier. This also includes the proof of concept that provided a 

direction on the development of the final model. Next, the research timeline is discussed 

in terms of the phases involved during the entire project. Lastly, the entire pipeline of 

data processing utilizing the methodology is explained in detail. 

 

 

 

 

 

 

 

 

 



  

CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 Introduction 

In this chapter, the methodology developed for this research is discussed in detail. 

The methodology developed is based on the findings discussed in Chapter 2. Section 

3.2 provides an overview of the research framework. This includes the activities 

conducted in this research. Section 3.2 outlines the main methodology developed in this 

research, Adaptive Selection of Inference Method for Latent Dirichlet Allocation 

(ASIM-LDA). In this section, the concepts of the methodology are explained. ASIM is 

developed with the basis of which it can intelligently select the appropriate inference 

algorithm for different set of data. This discussion covers the flowchart and the 

pseudocodes of the methodology. Section 3.3 introduces the overview of ASIM-LDA 

in general. Section 3.4 deliberates the design and implementation of ASIM for LDA. In 

this section, each component of ASIM-LDA, from data pre-processing until the final 

output of ASIM, are discussed. Section 3.5 exhibits the implementation of ASIM-LDA. 

Section 3.6 discusses the significant of the study and development of ASIM for LDA. 

Lastly, Section 3.7 summarizes the chapter.  

3.2 Research Framework 

This section details out the research framework for the design and development of 

Adaptive Selection of Inference Method for Latent Dirichlet Allocation (ASIM-LDA). 

The fundamental basis of ASIM-LDA is the development of two stages of optimization 

which are the hyperparameter optimization of individual inference algorithms and the 

selection filter between two optimized inference algorithms. This enables the selection 

of the best inference algorithm. Research framework is as depicted in Figure 3.1. 
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Figure 3.1: Research Framework for the Design and Development of Adaptive 

Selection of Inference Method for Latent Dirichlet Allocation (ASIM-LDA) 
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Based on Figure 3.1, there are five main stages in the Research Framework 

developed for ASIM. The first stage consists of the literature review on the inference 

algorithms used by LDA. This literature review is to study on the different inference 

algorithms, mainly the strengths and weaknesses of each of the inference algorithms 

used. In this literature study, two main inference algorithms are studies, namely Gibbs 

Sampling and Variational Bayesian Inference.  

Based on the literature review conducted, research gaps have been identified in the 

existing implementations of the inference algorithms for LDA. There is a gap in 

identifying the best inference algorithm for the given input data. There are two main 

areas that the research aims to study, in solving the research gaps. First, in optimizing 

the hyperparameters of the individual inference algorithm. Hyperparameters are the 

parameters used by the inference algorithm to adjust their fit given the input data. 

Second, in selection of inference algorithm once each of the inference algorithms are 

optimized based on a defined objective function. Subsequently, the problem statement 

is derived based on the research gaps identified. Research questions and research 

objectives are developed to address the problems identified. Identification of suitable 

hyperparameter optimizing technique and selection filter is done based on further 

literature studies.  

Subsequently, data preparation and pre-processing are conducted. In this stage, 

appropriate data is selected for the experiments. For this research, textual data is 

selected as it is the most suitable form of data for processing using LDA. Next, the 

selected textual data is pre-processed to ensure that it is suitable for processing by the 

developed method. The pre-processed data is split into two types, training data, and 

testing data. 

After data pre-processing is completed, the next phase is the design and 

development of the proposed methodology, ASIM-LDA. ASIM-LDA consists of two 

main stages; the hyperparameter optimization of individual inference algorithm using 

combination of random search and grid search, and the selection filter to select the best 

inference algorithm based on the defined objective function, topic coherence score. This 

enables the selection of the best inference algorithm given any types of input textual 

data. 
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Lastly, the performance evaluation of the proposed methodology is performed. 

Performance evaluation is conducted through series of experiments with different types 

of textual data. Performance of the selected inference algorithm is defined as the best 

fit to the given input textual data based on the objective function defined.  

3.3 Overview of Adaptive Selection of Inference Method for Latent Dirichlet 

Allocation  

 

Method proposed is the Adaptive Selection of Inference Method for LDA (ASIM-

LDA). ASIM-LDA is an algorithm that adaptively select suitable inference algorithm 

for the respective textual datasets. This algorithm analyses the text data and select the 

appropriate inference algorithm to be used in inferring the topics from the data, whether 

it is Gibbs Sampling or Variational Bayesian Inference. Full flow of the proposed 

method is as depicted in Figure 3.2. 
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Figure 3.2: Overview of the Adaptive Selection of Inference Method (ASIM) for 

LDA 
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Based on Figure 3.2, ASIM-LDA consists of two main stages, which are data 

preparation and the ASIM-LDA stage. ASIM-LDA stage consists of two sections, 

which are the hyperparameter optimization of individual inference algorithm through 

combination of random search and grid search, and the selection filter between 

inference algorithms. Based on the results from the selection filter, the final output from 

the process is obtained. The main contribution of this research is the ASIM-LDA stage, 

which incorporates two layers of hyperparameter optimization for individual inference 

algorithms and the selection filter between inference algorithms. This stage allows the 

consideration different possible combinations of hyperparameters of each individual 

inference algorithm and selects the best inference algorithm based on these optimized 

hyperparameters. This combination of hyperparameter optimization techniques 

provides the flexibility of not having to initially define an exhaustive list of 

hyperparameters. The second module in ASIM-LDA is to select among the best 

instance of individual inference algorithm based on the objective function defined.  

The proposed methodology, ASIM-LDA uses two inference algorithms which are 

Gibbs Sampling and Variational Bayesian Inference. Both inference algorithms are 

used as each of the inference algorithm is suitable for different types of datasets. The 

inner workings of ASIM-LDA are explained in more detail in Section 3.4. The input 

for ASIM-LDA is pre-processed textual data. Data pre-processing is explained in 

Section 3.4.3, after explanation of the main method. Output of ASIM-LDA is the best 

instance of inference algorithm which has two main characteristics, the best inference 

algorithm, and the best set of hyperparameters. This enables a more accurate 

representation of textual data using LDA. 

3.4 Design of ASIM-LDA 

ASIM-LDA consists of two stages of refinement. The two stages of refinement are 

the hyperparameter optimization of individual inference algorithms and the selection 

filter after the hyperparameter optimization. These two stages enable a more refined 

selection of inference algorithm which are adaptive to the textual data trained and 

tested. Figure 3.3 depicts the processes involves in ASIM. 
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Figure 3.3: Adaptive Selective of Inference Method (ASIM) 
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Based on Figure 3.3, there are two main stage which are indicated by the first stage 

and the second stage. ASIM computes the topic coherence score for each of the 

individual inference algorithm according to the selected hyperparameters. Topic 

coherence score denotes the fitness of the inference algorithm to the input data. As 

different data fits differently to either Gibbs Sampling or Variational Bayesian 

Inference, the topic coherence scores of both the inference algorithms are considered. 

By incorporating the two different inference algorithms, the method can adapt to 

different types of data such as the complexity of the textual data and the size of the data. 

The best topic coherence scores for individual inference algorithms become for the 

second stage of ASIM. The second stage of ASIM selects the best topic coherence score 

between either of the inference algorithm and subsequently filter the best inference 

algorithm as the final model of LDA. Algorithm 3.1 explains in detail the entire process 

involves in the two stages of ASIM. 

 

Input: Pre-Processed Data 

Output: Topic Coherence Score 

01 Initialization Random RangeHyperparameters = [alpha, eta, num_topic] 

02 Foreach hyperparameters in RangeHyperparameters do 

03     Train LDAGibbsSampling with hyperparameters 

04     Compute topic_coherence for LDAGibbsSampling 

05              Store topic_coherence and hyperparameters in list_GS 

06     Train LDAVariationalBayesian with hyperparameters 

07     Compute topic_coherence for LDAVariationalBayesian 

08     Store topic_coherence and hyperparameters in list_VB 

09 Foreach result in list_GS: 

10     if index == 1: 

11        best_res_GS = result 

12        best_hyp_GS = hyperparameters 

13     else: 

14        if result > best_res_GS: 

15           best_res_GS = topic_coherence 

16           best_hyp_GS = hyperparameters 

17 Foreach result in list_VB: 

18  if index == 1: 

19   best_res_VB = result 

20             best_hyp_VB = hyperparameters 

21  else: 

22   if result > best_res_VB: 

23    best_res_VB = result 

24                   best_hyp_VB = hyperparameters 
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25 Initialize disprobVB based on best_hyp_VB 

26 Initialize disprob_GS based on best_hyp_GS 

27 Foreach hyperparameters in best_hyp_GS do 

28     Train LDAGibbsSampling with hyperparameters on Pre-Processed Data 

29     Compute topic_coherence for LDAGibbsSampling 

30     Store topic_coherence and hyperparameters in list_GS 

31 Foreach hyperparameters in best_hyp_VB do 

32     Train LDAVariationalBayesian with hyperparameters 

33     Compute topic_coherence for LDAVariationalBayesian 

34     Store topic_coherence and hyperparameters in list_VB 

35 Foreach result in list_GS: 

36     if index == 1: 

37        best_res_GS = result 

38        best_hyp_GS = hyperparameters 

39     else: 

40        if result > best_res_GS: 

41           best_res_GS = topic_coherence 

42           best_hyp_GS = hyperparameters 

43 Foreach result in list_VB: 

44  if index == 1: 

45   best_res_VB = result 

46             best_hyp_VB = hyperparameters 

47  else: 

48   if result > best_res_VB: 

49    best_res_VB = result 

50                   best_hyp_VB = hyperparameters 

51 if best_res_VB > best_res_GS: 

52  best_res = best_res_VB 

53 else if best_res_GS > best_res_VB: 

54  best_res = best_res_GS 

Algorithm 3.1: Algorithm of ASIM-LDA 

Based on Algorithm 3.1, Line 01 depicts the initialization random hyperparameters 

used in ASIM. This initialized list is used to stores the list of sets of hyperparameters 

which are alpha, beta and the number of topics.  

Line 02 to Line 50 shows the steps involve in the first stage of ASIM which is the 

hyperparameter optimization of individual inference algorithms. Within these lines, the 

two hyperparameter search algorithms are combined. First, the inference algorithms go 

through the random search phase, which uses the randomly initialized hyperparameters 

Using these randomly initialized hyperparameters, both inference algorithms are 

trained, and the topic coherence scores are computed. Based on the best topic coherence 
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score from the random search, a new distribution of hyperparameters is initialized. The 

distribution is initialized based on the best hyperparameters selected. This enables the 

exploration of space of optimization for the inference algorithm. Section 3.4.1 contains 

the explanation of the hyperparameter optimization of individual inference algorithms.  

Line 51 to Line 54 exhibits the second stage of ASIM. The second stage provides 

the selection of the best instance of inference algorithm based on the results from the 

first stage. 3.4.2 discusses the selection filter used to pick the best instance inference 

algorithm for LDA.  

3.4.1 First Stage: Hyperparameter Optimization of Individual Inference 

Algorithms  

First stage of ASIM is the hyperparameter optimization of individual inference 

algorithms. Each of the inference algorithms, either Gibbs Sampling or Variational 

Bayesian Inference has its own strengths and weaknesses depending on different types 

of datasets inputted into the algorithm. For example, Gibbs Sampling might perform 

better with small datasets but will be significantly slower if used in large datasets. 

However, there are certain cases where a well-defined and optimized hyperparameters 

for Variational Bayesian Inference algorithm outperforms unoptimized version of 

Gibbs Sampling. Thus, using ASIM, it explores each of possibility of sets of 

hyperparameters in each of the inference algorithm. The hyperparameter optimization 

of inference algorithm is as depicted in Figure 3.4. 
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Figure 3.4: First Stage: Hyperparameter Optimization of Inference Algorithms 
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Figure 3.4 depicts the processes involve in the first stage of ASIM which the inner 

optimization of inference algorithm is. ASIM performs inner optimization of inference 

algorithms by iteratively train based on the input textual data using different sets of 

hyperparameters. These sets of hyperparameters are randomly initialized in the 

beginning of the first stage. Once all the initial hyperparameters are exhausted, a new 

batch of the hyperparameters are initialized based on the best hyperparameters selected 

from the first round. Section 3.3.1.1 discusses the hyperparameter initialization process. 

3.4.1.1 Hyperparameter Initialization of ASIM-LDA 

To perform the hyperparameter optimization, ASIM-LDA employs two steps 

approach in searching the best set of hyperparameters. The first step, random search, 

uses random initialization of hyperparameters. This step provides the ability of not 

having to set a fixed set of hyperparameters in the beginning. The hyperparameters are 

initialized based on the probability distribution listed in Table 3.1. 

 

Table 3.1: Probability Distribution of Hyperparameter 

Hyperparameter Probability Distribution 

Alpha Log-Normal Distribution 

Beta Log-Normal Distribution 

Number of Topics Discrete Uniform 

Distribution 

 

Based on Table 3.1, the hyperparameters Alpha and Beta use log-normal probability 

distribution. This is because hyperparameters Alpha and Beta only accepts positive 

float numbers. Hyperparameters for number of topics is initialized based on the discrete 
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uniform distribution. The utilization of discrete uniform distribution to randomly 

generate the hyperparameters is since number of topics only accepts integer value. 

Based on the values generated, ASIM-LDA randomly samples from the initialized list 

to train on the dataset. Once the first step is completed, the best hyperparameters are 

used as the basis of next generation of search, the grid search. To construct the search 

space for grid search, the generation of hyperparameters are configured based on Table 

3.2. 

 

Table 3.2: Grid Search Hyperparameters Generation Setting 

Hyperparameter Probability Distribution Basis from Random 

Search 

Alpha Log-Normal Distribution Best Alpha is set as the 

mean of the Log-Normal 

Distribution 

Beta Log-Normal Distribution Best Beta is set as the 

mean of the Log-Normal 

Distribution 

Number of Topics Discrete Uniform 

Distribution 

Best number of topics is 

set as the mean of the 

Discrete Uniform 

Distribution 

 

Based on Table 3.2, the hyperparameters Alpha and Beta are re-initialized using the 

same probability distribution used in the first step, log-normal distribution. In this step, 

the best Alpha and Beta are used respectively as the mean of the generation of log-

normal distribution. This provides the ability to discover new range of hyperparameters 

which potentially be a better fit to the dataset being trained. The same applies to number 



 

52 

of topics, where the best number of topics from the first step is used as the mean of the 

generation of discrete uniform distribution.  

To determine the best set of hyperparameters, it is important to calculate the 

objective function. Objective function used in this hyperparameter optimization is the 

topic coherence. Section 3.4.1.2 discusses the objective function for ASIM-LDA. 

3.4.1.2 Objective Function for ASIM-LDA 

Objective function is a function that the algorithm evaluates itself against different 

values of hyperparameters. It gives a score of best fit of the algorithm to the given 

dataset. The objective function for the first stage is defined as follows: 

 (𝑎, 𝑏, 𝑐)  =  𝑎𝑟𝑔 𝑚𝑎𝑥
(𝑎,𝑏,𝑐)

𝑡𝑜𝑝𝑖𝑐𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝐿𝐷𝐴[𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑎, 𝑏, 𝑐)]) (3.1) 

Notations used in this Equation 1 are listed in Table 3.3. 

 

Table 3.3: Notations for Objective Function 

Notation Description 

a alpha (hyperparameter) 

b beta (hyperparameter) 

c Number of topics (hyperparameter) 

topicCoherence topic coherence score computation 

inference selection of inference algorithm between [Gibbs 

Sampling, Variational Bayesian Inference] 

 

Topic coherence score is derived to measure the fitness of the inference 

algorithm to different data. In this model development, topic coherence score 
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enables the algorithm to assess whether the best instance of the inference algorithm 

is selected for the given textual datasets.  

3.4.1.3 K-Fold Cross Validation 

To ensure that the model is not overfitted to the input data, the method used for 

hyperparameter optimization is the K-Fold Cross Validation technique. One example 

visualization of the result from K-Fold Cross Validation is as depicted in Figure 3.5. 

 

Figure 3.5: Cross Validation  

Based on Figure 3.5, K-Fold Cross Validation able to reduce the overfitting of the 

inference algorithm to the training data. In this example, graph a show an overfitted 

model which K-Fold Cross Validation denotes it as not a good model. For graph b, K-

Fold Cross Validation denotes it as a good model, and it does not overfit to the training 

data. This ensures that the inference algorithm will be able to generalize to new unseen 

data and not only limited to the existing training data. K-Fold Cross Validation 

technique provides an estimation of the ability of the inference algorithm against unseen 

data. This would enable a fair evaluation of the objective function as the inference 

algorithm would not see the whole set of data during training. Instead, the inference 

algorithm is trained using the divided training data and evaluated against the unseen 

dataset.  

Figure 3.6 illustrates how the K-Fold Cross Validation splits the data into individual 

folds.  
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Figure 3.6: Example of K-Fold Cross Validations Folds 

Based on Figure 3.6. the entire training dataset is split into 10 separate folds. For 

the first iteration, the algorithm only trains on the first 9 folds and held out the last fold 

for testing. This process repeats for the entire folds, to ensure that each of the held-out 

fold is tested. In this experiment, there is 10 iterations in total to complete the testing of 

the entire dataset. For each of the iteration, the objective function calculates the topic 

coherence score. After completing all iterations, the topic coherence scores are 

aggregated. To understand how K-Fold Cross Validation works, the algorithm for K-

Fold Cross Validation technique is depicted in Algorithm 3.3. 

 

Input:  Training Dataset 𝐷 = (𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚) 

    Set of Hyperparameter Values Θ =  𝜃1, … , 𝜃𝑛 

    Inference Algorithm 𝐴 

    Integer 𝑘 

Output: Best hyperparameter values 𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃[𝑠𝑐𝑜𝑟𝑒(𝜃)] 

    Best instance of inference ℎ𝜃∗ = 𝐴(𝐷; 𝜃∗) 

01 Partition 𝐷 into 𝐷1, … , 𝐷𝑘 

02 Foreach 𝜃 ∈  Θ do 
03  Foreach 𝑖 = 1 … 𝑘 
04   ℎ𝑖,𝜃 = 𝐴(𝐷𝑖 ; 𝜃) 
05  𝑠𝑐𝑜𝑟𝑒(𝜃) =  

1

𝑘
∑ 𝐴𝑠𝑖

(ℎ𝑖,𝜃)𝑘
𝑖=1  

06 Return 𝜃∗ 𝑎𝑛𝑑 ℎ𝜃∗ 

Algorithm 3.3: Algorithm for K-Fold Cross Validation 

 

Based on Algorithm 3.3, the training of the inference algorithm is done on multiple 

partitions of the training data. Line 01 denotes the partitioning of the training data into 



 

55 

k partitions of data. Line 02 repeats the function inside for every set of hyperparameters 

value in the list of hyperparameters. Line 03 repeats the function inside for each 

partition of the data. Line 04 calculates the objective function defined based on the 

results from the inference algorithm. Line 05 aggregates and find the average score of 

the objective function based on each partition of the data. After each value of 

hyperparameters are explored, K-Fold Cross Validation returns the best set of 

hyperparameters value and the best instance of the inference algorithm. The best set of 

hyperparameters is the one that returns the best topic coherence score given the data. 

After the best instance of individual inference algorithms is defined, ASIM-LDA 

proceeds to the Second Stage which is the selection filter among the results from the 

individual inference algorithms.  

3.4.2 Second Stage: Selection Filter for Best Instance of Inference Algorithms 

 

The second stage of refinement in ASIM deals with selecting the best inference 

algorithm among Gibbs Sampling and Variational Bayesian Inference. This refinement 

enables the selection of not only the best set of hyperparameters for individual inference 

algorithm but also the best inference algorithm given the best set of hyperparameters. 

The selection of optimized inference algorithms enables the selection of best among the 

best inference algorithm given the input textual data. Figure 3.7 depicts the flow of the 

selection filter for the individual inference algorithms. 
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Figure 3.7: Second Stage: Selection Filter   

 

Based on Figure 3.7, best instances for each individual inference algorithms, Gibbs 

Sampling and Variational Bayesian Inference are used as input. An example of the input 

for this selection filter is as in Table 3.15. 

These optimized individual inference algorithms are compared among each other 

based on the earlier defined objective function results. In the filter, the inference 

algorithm which has better results in terms of the objective function is selected. The 

best result is defined as the one that achieve a higher topic coherence score among the 

two. Subsequently, this selected instance of inference algorithm is used to infer and 

model the test data. This test data went through the same pre-processing which the 

training data used as well. Section 3.4.3 explains on the data pre-processing involves in 

the textual data used. 
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3.4.3 Data Pre-Processing 

Raw data are pre-processed prior fitting into ASIM. Pre-processing ensures noises 

in text data used are reduced. After the reduction of noises, the processing of the data 

using the main model will generally be more efficient. Flow of pre-processing steps are 

depicted in Figure 3.8. 

 

Figure 3.8: Data Pre-Processing 

3.4.4 Stop Words Removal  

Stop words are removed from the content. Stop words are defined as words that do 

not have or bring any additional meaning to the context of the content. In this scope of 

research, stop words used are limited to those defined in English such as function words 

(e.g., the, is, a). As stop words commonly occur in the content of the text data, it must 

be removed to prevent more noise entering the topic modelled later. If stop words are 

not ignored in the modelling process, it might lead to dummy topics being created which 

consists mostly of this contextless words. 

As stop words are required to be defined first, an existing dictionary of English stop 

words is used. The NLTK library for stop words is used in this removal process. The 

process can be defined as in Algorithm 3.2. 
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01 Initialization of NLTK Stop Words Library as stop_words 

02 Processed_words = [] 

03 For word in input_data: 

04  If not word in stop_words: 

05   Processed_words.append(word) 

06 Return processed_words 

Algorithm 3.2: Stop Words Removal Algorithm 

Based on Algorithm 3.2, the stop words removal algorithm iteratively read and 

evaluate each word in the input data. A new list is instantiated to store the processed 

words. The algorithm populates the processed_words list with words that is not in the 

stop_words defined. The processed_words list is inputted to the next process of data 

pre-processing.  

3.4.5 Stemming of the Words 

After removal of stop words, stemming is applied to the remaining words. 

Stemming is the process of reducing the words to its root words or base form. An 

example of words being stemmed to its base form is shown in Table 3.4. 

 

Table 3.4: Example of Stemmed Word (Argue) 

Original Word Base Form 

arguing argue 

 

The word argue still denotes the same meaning. Stemming prevents the topic 

modelling algorithm seeing the same meaning words as a different word, which will 

lead to redundant words in their corresponding topics. In this research, porter stemmer 

is used. The usage of stemming is also coupled together with the lemmatization 

algorithm. This is to correct any accidental change of the stemming process done 

towards the words. Lemmatization provides dictionary form of the word if the stemmed 
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word does not match with any of the words found in the English dictionary used by the 

lemmatization algorithm. 

Subsequently, n-gram is applied to the text data, specifically bigram. Bigram 

analysis combines two words that co-occur together regularly in the document into one 

word. This is to ensure the context of the words are intact before transformation process. 

There is possibility of loss of context if n-gram is not applied as the data will be 

transformed into bag of words.  

Next, the text documents are transformed into document term matrix (DTM). DTM 

is a representation of the bag of words which in turn represent the data. This conversion 

is done to obtain the vectorized form of the data. Vectorized form of the data is the 

input for LDA. The output of this process is the DTM; which contains the ID of the 

words and their corresponding occurrences in the document and the dictionary; which 

contains the unique words and their corresponding ID. An example of DTM is as 

depicted in Figure 3.9. 

 

Figure 3.9: Document Term Matrix 

Based on Figure 3.9, three documents (Doc 1, Doc 2, Doc 3) are converted into 

DTM format. In this example, there are five unique words occurred (intelligent, 

applications, creates, business, processes). The numbers in the matrix represents the 

number of corresponding word occurrences in the respective doc. For example, the 

word intelligent occurs twice in Doc 1 but only once in Doc 2 and did not occur in Doc 

3. DTM is the final form of pre-processed data. This will be the input data for ASIM. 

3.5 Implementation of ASIM-LDA 

In this section, the implementation of ASIM-LDA is discussed in more clarity in 

terms of how the method works given a textual input data. Section 3.5.1 describes the 
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input textual data used in this research. Section 3.5.2 elaborates on how the pre-

processing works and the data looks like before and after the pre-processing. Section 

3.5.3 provides overview on how ASIM works given the pre-processed textual data. This 

subsection also presents the output of ASIM which is the selection of best inference 

algorithm based on the topic coherence score. 

3.5.1 Dataset 

In this research, three different textual datasets are used. These datasets are 

differentiated based on their complexity. Complexity, as defined in Section 3.4.1, is 

measured based the count of pre-processed words in the dataset. Pre-processed words 

only consist of unique tokenized words, in comparison of the raw count of words which 

contains noises and repetition of words. Different degree of complexity of data is used 

to ensure fair evaluations of the proposed method. Details on the datasets used in the 

experiments are summarized in Table 3.5. 

 

Table 3.5: Overview of the Datasets[82]  

Dataset 

Name 

Dataset 

Complexity 

Count of 

Words 

Count of Pre-

Processed Words 

Percentage of 

Noise Removed 

20 

Newsgroups 

High 342 521 327 632 4.4% 

Twitter 

Airline 

Sentiment 

Medium 173 446 166 478 4.07% 

Spam Data Low 86 335 80 583 6.6% 

 

Based on Table 3.5, three datasets that are used are the 20 Newsgroups, Twitter 

Airline Sentiments and Spam Data. These three datasets are denoted as High 
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Complexity, Medium Complexity and Low Complexity, respectively. As all the dataset 

in their raw formats contain noises or anomalies, they were first pre-processed. The pre-

processed steps involved are removal of the stop words, performing bigram analysis 

and lemmatization. Pre-processing ensures that the datasets are cleaned and only 

contains the truly unique tokenized words. For all the three datasets, the average 

percentage of noise removed is 5.02%. An example screenshot of the raw dataset in 

comparison with the pre-processed dataset is illustrated in Figure 3.10. 

 

 

Figure 3.10: Screenshot of Original Data and Pre-processed Twitter Airline Sentiment 

Data (Medium Complexity) 

 

Based on Figure 3.10, the raw dataset is grouped under the text column and the pre-

processed dataset is grouped under the pre-processed column. Pre-processed dataset 

contains only unique tokenized words which are ready for further processing. Next, pre-

processed dataset is split into train and test datasets. To split the datasets, K-Fold cross 

validation method is used. As mentioned in Section 3.4, K-Fold cross validation is a 

method to validate a model through evaluating the model’s ability to predict new unseen 

data.  For each of the different folds of the dataset, the datasets are pre-processed. K-

fold cross validation is used to avoid biasness.  

The datasets used in these experiments includes respective labels. The labels are 

important for evaluating classification performance of the optimized model. Table 3.6 

depicts the label class for each of the datasets. 
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Table 3.6: Labels for Each of the Datasets 

Dataset 

Name 

Label Class Labels Number 

of Labels 

20 

Newsgroups 

News 

Categories 

'rec.autos','comp.sys.mac.hardware', 

'rec.motorcycles','misc.forsale', 

'comp.os.ms-windows.misc', 

'alt.atheism','comp.graphics', 

'rec.sport.baseball', 

'rec.sport.hockey','sci.electronics', 

'sci.space','talk.politics.misc', 

'sci.med','talk.politics.mideast', 

'soc.religion.christian','comp.windows.x', 

'comp.sys.ibm.pc.hardware', 

'talk.politics.guns','talk.religion.misc', 

'sci.crypt' 

20 

Twitter 

Airline 

Sentiment 

Sentiment 

Class 

Positive, Negative, Neutral 3 

Spam Data Is Spam Spam, Not-Spam 2 

 

Based on Table 3.6, the 20Newsgroups dataset contains the label class of news 

categories. The news categories denote the types of news that were reported. Twitter 

airline sentiment dataset contains the airline sentiment label class. As this is a Twitter 

dataset, the labels consist of positive, neutral, and negative sentiment labels. Spam data 

has the least number of labels in its label class, which are only spam and non-spam. The 

label class is generated based on a spam filter. The raw datasets are stored as comma 

separated value (.csv) files. These csv files consist of the content of the datasets and 

their respective labels.  
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The raw data is extracted in the form of csv. This raw data consists of textual data 

which have their original topics tagged with their respective data. An example of the 

textual data extracted is as depicted in Figure 3.11. 

 

Figure 3.11: Example of Raw Textual Dataset 

Based on Figure 3.11, the raw textual dataset is segregated based on its original 

topics (target_names). It is important that the contents are separated from the topics 

tagged as the topics tagged would not undergo the data pre-processing steps. The 

characteristics of the textual input data can be described as in Table 3.7. 

 

Table 3.7: Textual Dataset Characteristics 

Characteristics Description 

Complexity Complexity is described as the number of individual unique words 

inside the training/testing textual dataset [44, 45]. 

Size Size is measure by the number of rows of training/testing textual 

dataset. 

Topics Topics is defined as the semantic clusters of the documents. 
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3.5.2 Data Pre-processing 

In this stage, the extracted raw textual data is pre-processed before it is processed 

by ASIM. First, the textual data is split into individual tokens. This process eases further 

pre-processing and processing steps in this methodology. An example of tokenization 

is as in Table 3.8: 

Table 3.8: Tokenized Data 

Original Textual Data Tokenized Data 

I am driving to work “I”, 

“am”,”driving”,”to”,”work” 

 

Next process involves the removal of stop words. The list of stop words used 

extracted from the NLTK library in Python. Some examples of the stop words used in 

this process are as listed in Figure 3.12: 

 

["i", "me", "my", "myself", "we", "our", "ours", "ourselves", "you", "your", 

"yours", "yourself", "yourselves", "he", "him", "his", "himself", "she", "her", 

"hers", "herself", "it", "its", "itself", "they", "them", "their", "theirs", 

"themselves", "what", "which", "who", "whom", "this", "that", "these", "those", 

"am", "is", "are", "was", "were", "be", "been", "being", "have", "has", "had", 

"having", "do", "does", "did", "doing", "a", "an", "the", "and", "but", "if", "or", 

"because", "as", "until", "while", "of", "at", "by", "for", "with", "about", 

"against", "between", "into", "through", "during", "before", "after", "above", 

"below", "to", "from", "up", "down", "in", "out", "on", "off", "over", "under", 

"again", "further", "then", "once", "here", "there", "when", "where", "why", "how", 

"all", "any", "both", "each", "few", "more", "most", "other", "some", "such", "no", 

"nor", "not", "only", "own", "same", "so", "than", "too", "very", "s", "t", "can", 

"will", "just", "don", "should", "now"] 

Figure 3.12: Example of Stop Words List in NLTK 
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Based on the stop words list from the NLTK library, each of the stop words are 

removed from the tokenized string. An example of the tokenized words without stop 

word is depicted in Figure 3.13. 

 

Tokenized Words Stop Words Removed Words 

“I”,“am”,”driving”,”to”,”work” “driving”,”work” 

Figure 3.13: Removed Stop Words  

Subsequently, the tokenized words without stop word are further pre-processed 

with stemming. As stemming provides the morphological variants of the base words, it 

will reduce the word to a root word. An example based on the tokenized without stop 

words is as shown in Figure 3.14. 

 

Stop Words Removed Words Stemmed Word 

“driving”,”work” “driv”,”work” 

Figure 3.14: Stemmed Words 

Based on Figure 3.14, the word driving is stemmed into driv. This also shows the 

limitation of stemming. It provides a crude heuristic process which removes the ends 

of the words processed. Sometimes, through this action, it also removes the derivational 

affixes. This renders the word to be wrongly spelled. To fix this, lemmatization is 

applied to the each of the words. An example of lemmatized words are shown in Figure 

3.15. 

 

Stop Words Removed Words Lemmatized Word 

“driv”,”work” “drive”,”work” 

Figure 3.15: Lemmatized words 
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Figure 3.15 shows the word driv after lemmatization process. As lemmatization 

lookup the root word in a defined vocabulary, this provides an accurate representation 

of root word. Next, bigram analysis is applied to lemmatized words. An example of a 

bigram word after analysis is depicted in Figure 3.16. 

 

Original Words Bigram Word 

“rainy”,”day” “rainy_day” 

Figure 3.16: Bigram words 

Based on Figure 3.16 , if the words rainy and day occur together regularly in the 

documents, both words are concatenated together to become rainy_day. After the 

bigram analysis, the pre-processing steps are complete and ready for the processing by 

ASIM. 

3.5.3 ASIM-LDA 

After pre-processing steps applied towards the raw textual dataset, the pre-

processed dataset is processed by ASIM. ASIM, which consists of two stages, adapts 

to the dataset, and iteratively refined its processes to ensure best fit to the dataset. 

Section 3.4.3.1 and 3.4.3.2 explained how the processes involved in ASIM. 

3.5.3.1 First Stage: Hyperparameter Optimization of Individual Inference Algorithm 

In the first stage, ASIM iterates through all possible combinations of 

hyperparameters for each of the inference algorithms. The first part of the first stage 

consists of randomly initializing the range of hyperparameters, which consists of ranges 

values of alpha, number of topics and beta. List of ranges of hyperparameters are as 

listed in Table 3.9. 
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Table 3.9: Random Initialization of Hyperparameters (Random Search) 

Hyperparameters Range 

Alpha 0.09,0.18,0.11,0.98,0.24,0.47,0.74,0.88,0.12,0.05 

Beta 0.13,0.42,0.06,0.18,0.04,0.07,0.98,0.85,0.21,0.12 

Number of Topics 10,20,30,40,50,60,70,80,90,100 

 

Based on the list initialized, ASIM-LDA randomly selects combinations of 

hyperparameters to initialize the individual inference algorithms. An example of 

initialization of inference algorithm is listed in Table 3.10. 

 

Table 3.10: Initialization of Individual Inference Algorithms 

Inference Algorithm Hyperparameters 

Variational Bayesian Inference Alpha: 0.09 

Beta: 0.13 

Number of Topics: 10 

Gibbs Sampling Alpha: 0.09 

Beta: 0.13 

Number of Topics: 10 

 

 Referring to Table 3.10, each inference algorithm is initialized with their 

respective hyperparameters. After initialization, each inference algorithm trains the pre-
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processed textual dataset. This training process outputs a topic coherence score. An 

example of the output after one training process is as in Table 3.11. 

 

Table 3.11: Output of a Single Training Process 

Inference Algorithm Hyperparameters Topic Coherence Score 

Variational Bayesian Inference Alpha: 0.09 

Beta: 0.13 

Number of Topics: 10 

0.33 

Gibbs Sampling Alpha: 0.09 

Beta: 0.18 

Number of Topics: 10 

0.27 

 

 The training process iterates for each combination of hyperparameters based on 

the earlier list of hyperparameters initialized. After ASIM-LDA finishes training each 

hyperparameters, it stores the computed topic coherence scores in a list. An example of 

the final list of topic coherence scores is as listed in Table 3.12. 

 

Table 3.12: Final List of Topic Coherence Score (Random Search) 

Inference Algorithm Hyperparameters Topic Coherence Score 

Variational Bayesian 

Inference 

Alpha: 0.09 

Beta: 0.13 

Number of Topics: 10 

0.33 
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Alpha: 0.11 

Beta: 0.06 

Number of Topics: 30 

0.58 

Gibbs Sampling Alpha: 0.09 

Beta: 0.13 

Number of Topics: 10 

0.20 

Alpha: 0.18 

Beta: 0.85 

Number of Topics: 30 

0.50 

 

Based on Table 3.12, ASIM-LDA selects the best topic coherence score for the 

individual inference algorithm. The hyperparameters associated with the best topic 

coherence score are used as the basis of the grid search’s search space. A sample of the 

generation of grid search’s search space is as in Table 3.13.  

 

Table 3.13: Initialization of Hyperparameters (Grid Search) 

Hyperparameters Range 

Alpha (Variational Bayesian Inference) 0.02, 0.003, 0.10, 0.11, 0.24, 0.31, 0.39 

Alpha (Gibbs Sampling) 0.07, 0.10, 0.15, 0.18, 0.21, 0.33, 0.37 

Beta (Variational Bayesian Inference) 0.01, 0.005, 0.03, 0.06, 0.08, 0.10, 0.12 

Beta (Gibbs Sampling) 0.23, 0.37, 0.69, 0.85, 0.98, 0.86, 0.87 
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Number of Topics (Variational Bayesian 

Inference and Gibbs Sampling) 

5, 11, 23, 30, 35, 46, 59 

 

Based on Table 3.13, ASIM-LDA iteratively selects different combinations of 

hyperparameters to be used in training the LDA. The training process is the same as the 

one conducted the in the random search. For each of the iteration of different 

combination, the topic coherence scores are calculated. An example of the final list of 

topic coherence scores is as listed in Table 3.14. 

 

Table 3.14: Final List of Topic Coherence Score (Grid Search) 

Inference Algorithm Hyperparameters Topic Coherence Score 

Variational Bayesian 

Inference 

Alpha: 0.02 

Beta: 0.21 

Number of Topics: 35 

0.65 

Alpha: 0.11 

Beta: 0.06 

Number of Topics: 30 

0.58 

Gibbs Sampling Alpha: 0.18 

Beta: 0.98 

Number of Topics: 59 

0.51 

Alpha: 0.18 

Beta: 0.85 

0.50 



 

71 

Number of Topics: 30 

 

Based on Table 3.14, ASIM-LDA selects the best hyperparameters for 

individual inference algorithm based on the topic coherence score. In this example, the 

grid search improves the topic coherence score for both Variational Bayesian inference 

as well as for the Gibbs Sampling. This selection becomes the basis of the second stage 

of ASIM-LDA. 

3.5.3.2 Second Stage: Selection Filter 

The input used in the second stage of ASIM-LDA consists of the results from the 

first stage. An example of the input for the second stage is as depicted in Table 3.15. 

 

Table 3.15: Input for Second Stage: Selection Filter 

Inference Algorithm Hyperparameters Topic Coherence Score 

Variational Bayesian Inference Alpha: 0.02 

Beta: 0.21 

Number of Topics: 35 

0.65 

Gibbs Sampling Alpha: 0.18 

Beta: 0.98 

Number of Topics: 59 

0.51 

 

Based on Table 3.15, there three inputs for the selection filter from the first stage. 

ASIM-LDA only uses one of the inputs from the table, which is the topic coherence 
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score. ASIM-LDA compares the topic coherence score for individual inference 

algorithm and pick the best score. Based on this example, ASIM-LDA selects 

Variational Bayesian Inference with its respective hyperparameters.  

3.6 Significance of ASIM-LDA 

Section 3.3 and Section 3.4 has laid out explanation on the processes involve in 

ASIM-LDA which is applied in LDA. ASIM-LDA which comprises of two stages of 

selection in determining the best inference algorithm instances is described based on 

the flow chart of processes involved. Before ASIM-LDA starts, raw textual data is pre-

processed. Pre-processing enables accurate representation of the textual data prior to 

the processes in ASIM. 

Pre-processed textual data is then used as the input for ASIM-LDA. In ASIM-LDA, 

the data is inputted in both Gibbs Sampling and Variational Bayesian Inference for 

training using LDA. Results from the inference algorithm are further refined to get the 

best possible result among the inference. To achieve best results, ASIM uses two stages 

of refinement which are the inner optimization in each of the algorithm and selection 

filter based on the results obtained from individual inference algorithm. 

The significant of this method is the two stages of refinement in ASIM. As 

explained in Section 3.1, through these stages of refinement, ASIM enables increase of 

performance of LDA in terms of best possible topic model instance. 

3.7 Summary 

In this chapter, activities involved in this research are detailed out. Research 

activities done starts with literature review conducted. This initial stage is vital to gain 

insights and understanding on LDA and the importance of inference algorithms in the 

modeling. Based on the literature review, research gap was identified. This becomes 

the foundation for this research. Research objectives and research questions were 

developed to scope down this research to address the earlier identified research gaps. 

Subsequently, the methodology, Adaptive Selective Inference Method for LDA 
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(ASIM-LDA) was proposed. ASIM-LDA was designed and developed through Python 

programming language. Experiments and evaluation of ASIM-LDA were completed 

and refinements were made. Final model of ASIM-LDA was built based on these 

refinements and the research activities are completed after results from the 

experimentations were completed. 

Next, the methodology developed for this research, Adaptive Selection of Inference 

Method for LDA (ASIM-LDA), is explained. Throughout the chapter, each of the 

components entailed in ASIM has been discussed. The discussion includes the design 

of the entire processes, from data pre-processing to results. Data Pre-processing is done 

through several stages such as stop words removal and stemming. These pre-processed 

textual data become the input for each of the inference algorithm in ASIM-LDA.  

In ASIM-LDA, each of inference algorithm is optimized to the input data received. 

Through every optimization iteration, the best set of hyperparameters are selected based 

on the highest topic coherence. The best set of hyperparameters represent the best 

possible modeling instance for the corresponding inference algorithm. Based on the 

best results from individual inference algorithm, ASIM performs a selection filter 

which selects the “best among the best” inference algorithm instance. The final instance 

of inference algorithm employs the best set of hyperparameters are used.  

ASIM employs two steps of refinement, inner optimization in each of the inference 

algorithm and the selection filter which selects “the best among the best”. The two steps 

of refinement enable a more informative selection of inference algorithm which leads 

to better performance of LDA. Evaluations on ASIM for LDA has been conducted and 

explained in next chapter, Chapter 4. 

 

 

  



  

CHAPTER 4 

RESULTS AND DISCUSSION 

The objective of this chapter is to validate the performance of the proposed 

improved inference algorithm for LDA. This is to address the third research question 

posed by this research which is to assess the performance of ASIM-LDA, measured 

through accuracy, precision and recall analysis, when trained and tested with different 

complexity of textual dataset. This chapter is organized as follows. Section 4.1 provides 

the introduction to this chapter. Section 4.2 discusses of the experimentation set-up. In 

the experimentation set-up, the evaluation metrics used to evaluate the proposed 

method are explained. Section 4.4 explains the experimentation results of the proposed 

method. Section 4.5 summarizes the chapter. 

4.1 Introduction 

In Chapter 1, the research objectives have been explained and deliberated in detail. 

In this chapter, the final research objective that has been proposed is discussed in more 

clarity. The objective is to assess the performance of ASIM-LDA, which are measured 

through accuracy, precision and recall when trained and tested with different 

complexity of textual dataset. To perform the assessment of the performance of ASIM-

LDA, an experiment set-up has been established and is explained in Section 4.2. 

Subsequently, the results of the performance of ASIM-LDA, which comprised of 

evaluation of accuracy, precision, and recall, are discussed more in Section 4.3. 
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4.2 Experiment Set-Up 

Figure 4.1 explains the flow of the experimentation set-up for the evaluation of 

ASIM-LDA.  

 

Figure 4.1: Experimentation Set-Up  
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Based on Figure 4.1, the raw textual dataset is pre-processed, to remove data 

outliers and anomalies. The pre-processed dataset contains only truly unique tokenized 

words. Subsequently, the data is split based on the K-Fold Cross Validation method. 

The value of K used in this research are 3, 5 and 10. These values are based on existing 

research on evaluating performance of text classification using LDA [65, 83, 84]. More 

than 1 value is tested to reduce the biasness of the result [85, 86]. Result will be not 

bias with only one set of dataset’s split and ensure that the results obtained from the 

experiments are robust and correctly represent the real-life results. Only the dataset fold 

tagged as training dataset is used for training the ASIM-LDA. Once model training is 

completed, the trained model is used to infer the testing dataset. Based on the inference 

results on the testing dataset, the performance of ASIM-LDA is evaluated. To evaluate 

the performance of ASIM-LDA, extrinsic evaluation methods are used. 

4.2.1 Evaluation Method – Performance in Classification Task 

Extrinsic evaluation is performed to evaluate the performance of the model in creating 

features for classification task. It is coined as extrinsic as it is a proxy measurement of 

the performance of the model. This evaluation is done by using the features generated 

by ASIM-LDA to classify the textual dataset based on their respective class of labels. 

In this extrinsic evaluation, three different types of metrics are being tested, which are 

accuracy, precision, and recall.  

To evaluate these three metrics, a confusion matrix is constructed for each of the 

classification task completed. An example of a confusion matrix is as shown in Figure 

4.2 : 
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Figure 4.2: A Confusion Matrix 

Based on Figure 4.2, the confusion matrix consists of four different classes, namely, 

True Positive, False Positive, True Negative and False Negative. The true cases denote 

when the algorithm can classify correctly based on its respective classes. The false cases 

denote when the algorithm is not able to classify the classes correctly. An example of 

the derivation of these values from an experiment is as tabulated in Table 4.1: 

 

Table 4.1: Example of Confusion Matrix Classes with Results 

Actual Result Predicted Result Class 

Yes Yes True Positive 

Yes No False Negative 

No Yes False Positive 

No No True Negative 

 

Based on Table 4.1, the classes in confusion matrix earlier are shown to be resulting 

from the comparison of actual result and predicted result. These classes are important 

in the calculation of all three of the evaluation metrics as they denote the actual 

condition of the model, regardless of the predicted results. 
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The first metric, accuracy, is defined as how well the classifier can classify correctly 

based on the true labels. Accuracy is calculated based on this formula: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

 

Based on the formula, accuracy considers how many true results against the entire set 

of results obtained. Precision is a measure of how well the classifier can classify true 

positive correctly. Precision is calculated based on this formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 

Based on the formula, precision measures whether the positive predicted by the 

classifier is positive, between all actual positive results. Precision also measures the 

consistency the model in predicting or classification task. The third metrics being 

evaluated is recall which is calculated as follows: 

  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

 

Recall provides a measure of how well the model predicts relevant results compared 

with the rest of results being predicted by the model, whether it is true positive or false 

negative. To grasp the performance of the model in classification task, it is important 

to assess all three metrics. It is because all three metrics provide different type of 

measurement of performance, providing a holistic view on the performance of ASIM-

LDA. In Section 4.2.2, the scope of the experimentation is discussed. 
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4.2.2 Scope of Experimentation 

The scope of the experiments’ dataset is only limited to the textual dataset. No 

figures, tables or images are used in the experiments. This is because only fully 

structured English sentences are used in the modelling. The algorithms used in the 

experiments are also focused only on the textual dataset as LDA was developed to solve 

textual datasets problem. The scope of these textual datasets does not include images 

or tables as it is not readily structured for application using this algorithm. In Section 

4.2.3, the platform used to develop and to evaluate ASIM-LDA are explained. 

4.2.3 Platform 

The experiments are developed in Python programming language. Each of the 

experiments conducted is tested with all the datasets explained in Section 3.5.1. The 

computer specifications that are used in these experiments are shown in Table 4.2. 

 

Table 4.2: Computer Specifications 

Items Specifications 

Processor Intel® Core™ i7-6600U CPU @ 2.60 GHz 

RAM 8.00 GB 

System Type 64-bit Operating System 

Operating System Windows 10  

IDE Microsoft Visual Studio Code 

Python Version Python 3.6.8, Anaconda Edition 
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4.3 Results on Accuracy, Precision and Recall on Classification Task  

In this section, the results from each of the metrics specified in Section 4.2 are 

explained. As extrinsic performance evaluation is a proxy measurement of the model 

performance, a classification algorithm is used for the classification tasks. The 

algorithm used for all the datasets is fixed, which is Support Vector Classifier.  

In this experiment, features created based on ASIM-LDA are compared with 

features created by other topic modelling methods, LDA with Gibbs Sampling (LDA-

GS), LDA with Variational Bayesian Inference (LDA-VB), Latent Semantic Analysis 

(LSA), and Hierarchical Dirichlet Process (HDP). Each of the evaluation metrics are 

tested with the three different datasets that have been mentioned in Section 3.5.1.  

4.3.1 Accuracy Analysis of ASIM-LDA on Classification Task 

The accuracy score for each of the datasets are recorded based on the actual tagging 

from the extracted dataset, compared with the tagging predicted by the classification 

algorithm. For each of the method of feature engineering, varying sizes of training 

datasets are used. The low, medium, and high complexity dataset result for accuracy 

analysis is as depicted in Figure 4.3. 
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Figure 4.3: Accuracy Analysis for Low, Medium and High Complexity Dataset 

 

For the accuracy analysis for the low complexity dataset, ASIM-LDA shows the 

highest accuracy score of 0.97. This shows a 3.613% improvement compared to the 

second-best algorithm, LSA. LSA at score of 0.94 has a comparatively same 

performance as LDA-GS which scores at 0.94. LDA-VB scored of 0.88, which is 6.27% 

lower compared to LDA-GS. HDP scored the lowest which is at 0.81.  

On the accuracy analysis for medium complexity dataset, ASIM-LDA obtained the 

highest accuracy score of 0.73. In comparison to its performance in the low complexity 

dataset, in medium complexity dataset, ASIM-LDA gained 8.22% performance 

improvement compared to the second-best algorithm, LDA-VB which scored 0.68. The 

second runner-up, LSA obtained accuracy score of 0.66. The other two algorithms, 

LDA-GS and HDP attained accuracy score of 0.65 and 0.64, respectively.   
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Referring to Figure 4.3., three LDA algorithms used with high complexity dataset 

achieved the best three accuracy score in comparison to other algorithms. ASIM-LDA 

achieves accuracy score of 0.89, which is the highest. This is a significant difference in 

terms of accuracy score with LDA-GS which obtained accuracy score of 0.76. LDA-

VB scored 0.65, while LSA attained accuracy score of 0.43. Consistently with the low 

complexity and medium complexity dataset, HDP achieved the lowest accuracy score 

of 0.29. 

Based on the accuracy analyses on all three complexity datasets, ASIM-LDA 

consistently achieved higher accuracy score to other algorithms tested. On average, 

ASIM-LDA achieved 9% improvement of accuracy score in comparison to the second-

best algorithm. Despite varying complexity of dataset, ASIM-LDA managed to adapt 

to each of the dataset and retrieve the most accurate results in comparison to its peers. 

ASIM-LDA has also managed to take advantage of the hyperparameter optimization 

feature of the base inference algorithms. This is evident when tested with high 

complexity dataset, where both of LDA-GS and LDA-VB achieved second and third 

best accuracy score, while ASIM-LDA managed to improve further by optimizing the 

hyperparameter of both LDA-GS and LDA-VB, selecting the best as the final 

algorithm. Next, Section 4.3.2 discusses the precision analysis of ASIM-LDA on the 

same classification task. 

4.3.2 Precision Analysis of ASIM-LDA on Classification Task 

Precision analysis is conducted to analyse what is the performance of the 

classifier in retrieving the relevant positive classes, based on all predicted positive 

classes. This analysis is important in ensuring that the best algorithm selected retrieves 

the greatest number of correct positive classes, among all the positive classes it 

predicted. Figure 4.4 shows the precision score achieved by each of the algorithms 

when tested with the low, medium, and high complexity dataset. 
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Figure 4.4: Precision Analysis for Low, Medium and High Complexity Dataset 

Based on Figure 4.4, the highest precision score for low complexity dataset is 

achieved by ASIM-LDA, at 0.965. The second highest precision score, 0.948 is scored 

by LDA-GS. This records an improvement of 1.89%. LSA obtained precision score of 

0.941 and LDA-VB attained precision score of 0.911. The lowest precision score for 

low complexity dataset is achieved by HDP, at 0.843 

For precision analysis on medium complexity dataset, ASIM-LDA scored 0.934. 

This is an improvement of 9.62% in comparison to the second-best algorithm, LDA-

VB, which scored 0.852. The third best algorithm when tested with medium complexity 

dataset is HDP, scored 0.812. The other two algorithms, LSA and LDA-GS, scored 

lesser than 0.8, at 0.797 and 0.782, respectively.  
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Based on Figure 4.4, ASIM-LDA maintained as the best algorithm for high 

complexity dataset, achieving precision score of 0.89. The second-best algorithm tested 

with high complexity dataset is LDA-GS, which scored 0.78. The percentage difference 

between the best algorithm and the second-best algorithm stands at 13.9%. LDA-VB 

obtained a precision score of 0.75, while LSA attained precision score of 0.66. The 

lowest precision score for high complexity dataset is obtained by HDP at 0.38. 

All the precision analysis results show that ASIM-LDA obtained the best result. On 

average, ASIM-LDA achieved an improvement of 8.47% to the second-best algorithm, 

regardless of the dataset complexity. This shows that ASIM-LDA can capture more 

relevant results in comparison to the other algorithms, consistently with increasing of 

dataset complexity. With the extraction of relevant features, ASIM-LDA can classify 

more relevant positive classes, while reducing the number of false positive in the 

classification process. ASIM-LDA also utilized the generative nature of LDA, which 

can adapt to unseen data better in comparison to LSA. Section 4.3.3 discusses the recall 

analysis of ASIM-LDA on the classification task. 

4.3.3 Recall Analysis of ASIM-LDA on Classification Task 

Recall Analysis is conducted to gauge how is the performance of the methods in 

classifying all the positive classes in the dataset. Recall score is measured by the number 

of positive classes identified based on all the positive classes present in the dataset, 

regardless of whether it is classified or not. Figure 4.5 depicts the recall analysis result 

for different vectorizers on low complexity dataset. 
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Figure 4.5: Recall Analysis for Low, Medium and High Complexity Dataset 

Based on Figure 4.5, ASIM-LDA achieved the highest recall score for low 

complexity dataset against all the other vectorizers, by scoring 0.97. The second-best 

algorithm, LSA achieved recall score of 0.92, having a percentage difference of 5.1%. 

Both LDA algorithms, LDA-GS and LDA-VB scored 0.91 and 0.79, respectively. The 

worst performing algorithm in the precision analysis is HDP, which scored 0.78.  

For recall analysis on the medium complexity dataset is achieved by ASIM-LDA, 

scoring 0.737. This shows an improvement of 8.06%, when compared to the next best 

algorithm, LDA-VB which achieved recall score of 0.682. The third best algorithm, 

LSA attained recall score of 0.664. The last two algorithms, HDP and LDA-GS both 

achieved scores lesser than 0.66, at 0.656 and 0.645 correspondingly.  
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 ASIM-LDA is also the best algorithm in the recall analysis for high complexity 

dataset, achieving recall score of 0.889. This is a significant improvement in 

comparison to LDA-GS, the second-best algorithm, which achieved recall score of 

0.767. Next, LDA-VB attained recall score of 0.657. The rest, LSA and HDP managed 

to only attain recall score of below 0.5. LSA scored 0.440 and HDP managed to score 

0.290. 

Based on all the recall analysis results, it is evident that ASIM-LDA is consistently 

the best algorithm out of all the algorithms tested. ASIM-LDA shows an average 

improvement percentage of 9.67% against the second-best algorithm in each of the 

dataset complexity. This shows that despite varying dataset complexity, ASIM-LDA 

has been able to predict the greatest number of relevant positive classes, in comparison 

to the other algorithms. The improvement is mainly possible due to adaptiveness feature 

of ASIM-LDA, which utilizes both Gibbs Sampling and Variational Bayesian 

Inference. Based on results when tested with medium complexity and high complexity 

dataset, it is evident that LDA-VB is more suited with the former, while LDA-GS is 

better with the latter. ASIM-LDA takes advantage of this feature and can perform better 

than each of the component inference algorithm.  

Based on the analysis done, ASIM-LDA has consistently established its ability to 

adapt to varying dataset. This is demonstrated by the algorithm achieved the best score 

in accuracy analysis, precision analysis and recall analysis. The sets of experiments are 

done to answer the third research question investigated in this study, which is to assess 

the performance of ASIM-LDA, which are measured through accuracy, precision and 

recall when trained and tested with different complexity of textual dataset. Section 4.4 

summarizes Chapter 4. 

4.4 Summary  

In this chapter, the validation of the performance of the proposed ASIM-LDA has 

been presented and discussed. The experiment set-up is discussed, which comprises of 

the evaluation method used, scope of experimentation and the platform used for the 

experiments. Evaluation method used in validating the performance of ASIM-LDA is 
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based on extrinsic evaluation method, through classification task. The classification 

task is done against different complexity of dataset to gauge the consistency of 

performance. Measurements used in the experiment are accuracy, precision, and recall. 

All three analyses are important as each of the analysis measure different aspect of the 

performance. The scope of experimentation is limited to the textual dataset which does 

not include any numerical information.  

Three different datasets are used in the experiment, which are represented as low, 

medium, and high complexity datasets. As complexity is gauged by the number of 

unique words occurring in the dataset, each of the dataset has varying complexity. This 

is to test the algorithm ability to adapt to each of the dataset, irrespective to the 

complexity of the dataset. ASIM-LDA is tested against with four other algorithms, 

LDA-GS, LDA-VB, LSA and HDP in all the evaluation analysis. Based on the results 

discussed, ASIM-LDA is shown to be the best algorithm and managed to adapt to 

varying complexity of dataset. Next, Chapter 5 presents the conclusion and 

recommendation for the extension of this research. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

Section 5.1 condenses the research study conducted through discussing briefly on 

the outline of the research.  These includes brief explanations of literature review done, 

model design and development, model evaluation and the analysis of the results. 

Section 5.2 discusses on the contribution of this research. Section 5.3 explains on the 

limitations of this research. Section 5.4 concludes the thesis with suggestions on future 

directions.  

5.1 Research Summary 

This section briefly describes on the research work done by explaining the stages 

taken to complete this research. For each of the stages, summary of the work completed, 

and the findings acquired are explained. 

Literature Review: Domain of this research is in the textual dataset.  This research 

focuses on the improvement of the inference algorithm utilised by LDA, enable it to 

adapt to varying complexity of textual dataset. Chapter 2 is organised in funnel fashion, 

discussing on comparison of different text representation algorithms. Based on this 

discussion, topic modelling is further discussed, through comparison of different topic 

modelling algorithm. Next, LDA is discussed in clarity. A thorough study of both the 

theoretical and application of LDA is done. The research gap is found whereby there is 

two main inference algorithms mainly utilised by LDA, which performed differently 

depending on the complexity of the dataset. Hyperparameters of the inference algorithm 

used are also discussed as it has an effect to the fitness of LDA to selected dataset. 

Based on this finding, this forms the ground for the formulation of research questions 

and objectives.  

Research Methodology: Based on the finding from the literature review performed, 

the research methodology has been designed and developed. The research methodology 

consists of the action plan established to address the research questions. Chapter 3 is 
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organised into two main sections, discussing the overall research framework and the 

design of ASIM-LDA. The research framework describes the research activities 

conducted, which includes the key milestones of the research. Design of ASIM-LDA 

discusses the algorithm developed, the implementation of ASIM-LDA and the 

significance of ASIM-LDA. 

Results and Discussion: Evaluation of the proposed method, ASIM-LDA is described 

in Chapter 4. The performance of ASIM-LDA is measured through accuracy analysis, 

precision analysis and recall analysis. In each of the analysis, ASIM-LDA is compared 

with other topic modelling algorithms. To gauge ASIM-LDA ability to adapt to 

different complexity of textual dataset, three different level of complexity is used. In 

concluding the chapter, the results obtained from all the analyses are summarised and 

discussed. 

5.2 Research Contribution 

ASIM-LDA improves on the adaptability aspect of LDA in varying complexity of 

textual dataset. As the complexity of textual dataset is measured through the number of 

unique words, this poses a challenge to existing implementation of LDA’s inference 

algorithm. This is due to different type of inference algorithm works best with different 

complexity of textual dataset. Another gap found on the existing implementation of 

LDA’s inference algorithm is in finding the best set of hyperparameters. These sets of 

hyperparameters are crucial in improving the fitness of the inference algorithm to a 

given textual dataset.  

ASIM-LDA addresses both gaps found by introducing two stages of refinement of 

inference algorithm. In the first stage, ASIM-LDA performs hyperparameter 

optimization for both Gibbs Sampling and Variational Bayesian Inference. The 

hyperparameter optimization goal is to find a set of hyperparameters which enable the 

best fitness of model to the dataset. The fitness of model, or the objective function, 

employed in this optimization is finding the highest topic coherence score. Topic 

coherence score is selected as it has a strong correlation with the inference algorithm 

ability to adapt to a dataset. 
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The first stage of optimization technique used is a combination of random search 

and grid search. The random search initializes the list of the hyperparameters. ASIM-

LDA uses the list of hyperparameters to initialise each of the two inference algorithms. 

Once the inference algorithm is initialised with the hyperparameters, it is trained and 

tested on a given textual dataset. This process is done iteratively for each of the 

inference algorithm. After ASIM-LDA exhausts the list of hyperparameters, the best 

set of hyperparameters are selected for each of the inference algorithm based on their 

topic coherence score. Once this completes, grid search process starts. Grid search 

initialises another list of hyperparameters, based on the best hyperparameters selected 

from random search. This list is generated based on gaussian distribution, localised by 

the selected hyperparameter. Then, ASIM-LDA iteratively train and test each of the 

inference algorithm until all sets of hyperparameters are used. Again, the best set of 

hyperparameters is selected based on the best topic coherence score achieved by the 

inference algorithm. This completes the first stage of refinement.  

The second stage of refinement consists of selection of inference algorithm based 

on their respective topic coherence score. This is an important feature of ASIM-LDA 

as it takes into consideration both Gibbs Sampling and Variational Bayesian Inference 

and select the best of the two. This eliminates the guesswork of which inference works 

best for different dataset. Once selected, ASIM-LDA uses the best inference algorithm 

with the best hyperparameter. 

To assess the performance of ASIM-LDA in real life application, an extrinsic 

evaluation is conducted. This extrinsic evaluation is done to evaluate the performance 

of ASIM-LDA in generating robust text representation for text classification task. The 

evaluation is done on varying complexity of textual dataset. Based on the result 

obtained, two conclusions can be made. First, ASIM-LDA evidently improved on both 

Gibbs Sampling and Variational Bayesian Inference, by employing the hyperparameter 

optimization. Second, ASIM-LDA managed to adapt to varying dataset complexity, 

which is enabled by the second stage of refinement, which only select the best inference 

algorithm based on the given dataset. The results prove the ability of ASIM-LDA to 

achieve superior performance despite tested in varying complexity of dataset.  
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Table 5.1 depicts the research contribution is mapped to the research objectives that 

have been stated earlier in Chapter 1. 

 

Table 5.1: Research Objective Mapping to Contribution 

Research Objective Research Contributions 

To propose an adaptive selection of 

inference method for Latent Dirichlet 

Allocation (ASIM-LDA) based on 

maximizing topic coherence score with 

given textual dataset 

 

This research proposed the two stages of 

optimization, random search, and grid 

search to maximize the topic coherence, in 

varying complexity textual dataset. The 

proposed framework is discussed in 

Section 3.2. 

To improve Latent Dirichlet 

Allocation’s inference method by 

combining random search and grid 

search in hyperparameter optimization 

to obtain the highest topic coherence 

score in textual data environment. 

 

In this research, the proposed framework 

which combines random search and grid 

search has been implemented. In this 

framework, both inference method, 

Variational Bayesian Inference and Gibbs 

Sampling, is considered to obtain the 

highest topic coherence score. The 

implementation of ASIM-LDA is 

discussed in Section 3.3 and 3.4. 

To assess the performance parameters 

of ASIM-LDA, measured through 

accuracy, precision and recall analysis, 

through experimentation with different 

complexity of textual dataset. 

In this research, performance analysis has 

been conducted on three complexity 

dataset, namely low, medium, and high 

complexity. Consistently, ASIM-LDA has 

obtained superior results in comparison to 

other implementations of topic modelling 

algorithms. The results are discussed in 

Section 4.3. 
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5.3 Research Limitation 

Based on the discussion in Section 5.2, the research contribution has been 

summarised in terms of the improvement of the proposed method in adapting to varying 

complexity of dataset. However, there are several areas that of limitations on the 

proposed method. These are listed as follows: 

i. The first stage of refinement, the hyperparameter optimization does not 

guarantee in avoiding the local minima problem. This research focuses on the 

two steps of hyperparameter optimization which might reduce the probability 

of meeting local minima, but it does not eliminate the possibility entirely. 

ii. This research did not explore on the effect of two stages of refinement to the 

time and space complexity of the entire algorithm. As the research only focused 

on achieving superior algorithm performance, there is a trade-off between 

algorithm performance and algorithm efficiency.  

iii. As this scope of this research is limited to textual dataset, ASIM-LDA ability 

to adapt to different type of data (such as numerical data and geospatial data) 

has not been tested. The usage of ASIM-LDA in these domains might require 

adopting different approach, especially in defining the fitness of the model to 

the dataset. 

5.4 Future Directions 

Referring to Section 5.3, there are certain areas of improvement to extend on this 

research work. Several suggestions of the future directions are as follows: 

i. The proposed method can be extended in exploring method that can further 

minimize the effect of local minima. To address this problem, different types of 

hyperparameter optimization algorithm can be tested and employed in the first 

stage of refinement. These include the usage of gradient boosting or Bayesian 

hyperparameter optimization.  
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ii. To reduce the time/space complexity of ASIM-LDA, dynamic programming 

can be employed in both stages of refinement. This includes memoization, 

where the program can store results of computationally expensive function 

calls. Cloud computing can also be utilised to cater to usage in big data, which 

can also improve the efficiency of ASIM-LDA. By utilising Spark or any of the 

big data framework, ASIM-LDA can be extended to work parallelly and use 

with big data.  

iii. ASIM-LDA can be extended to cater to different types of data by incorporating 

different measure of objective function that it maximizes. This is because the 

objective function defined in ASIM-LDA, the topic coherence score, might not 

be applicable to different type of dataset. A different objective function such as 

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) can be 

tested with these data. 
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