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ABSTRACT 

Natural gas plant operations contribute hugely to the economies of many developed 

nations that depend on hydrocarbon resources. The plant operation is usually 

subjected to continuous variations in upstream conditions, such as flow rate, 

composition, temperature and pressure, which propagate through the plant and affect 

its stable operations. As a result, decision making for optimal operating conditions of 

an in-operation plant is a complex problem and it is exacerbated with the changing 

product specifications and variations in energy supplies. This work presents a new 

solution method to the problem, which is based on chance constrained optimization 

method. A deterministic model is initially developed from process simulation using 

Aspen HYSYS and later converted to a chance constrained model. The probabilistic 

model is then relaxed to its equivalent deterministic form and solved for optimum 

solution using GAMS. The optimum solution is determined probabilistically using 

chance constraints that are held at a user-defined confidence level. Optimal solution is 

represented graphically as a trade-off between reliability of holding the process 

constraints and profitability of the plant. Three case studies are presented to 

demonstrate the new method. Optimization results show that uncertainty of plant 

parameters significantly affect the economic performance of the plant operation. The 

solution approach developed in this work is able to increase the reliability of 

maintaining the profit by more than 95% confidence level. As a result, the risk of 

constraints violation is reduced from more than 50% using the typical deterministic 

optimization to less than 5% with the chance constrained optimization approach. In 

addition, the results from this study indicate that the variation of material flow from 

the plant inlet has greater impact by more than 85.5% on profit compared to variation 

from the plant outlet, which is less than 2%. The variations of energy flow affect on 

profit is mainly changes with confidence level measurement higher than 95%, 

although material flow uncertainty is more sensitive to profit changes than uncertainty 

in energy flow. Final computational results also highlight the advantage of the 

developed chance constrained approach, which combines both the profit and the 
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reliability of the process constraints, over “worst case” and two-stage programming 

approaches. Decisions from the “worst case” approach may reach to more than 99% 

confidence level which can drastically decrease the profit while the optimal decision 

from the two-stage programming does not clearly show to how much extent that the 

profit has been held. The developed solution approach in this work can aid as 

guidelines to flexible plant operation decision making for the in-operating plant by 

satisfying all the process constraints at certain confidence level. 
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ABSTRAK 

Operasi loji penapisan gas adalah penyumbang besar kepada ekonomi ke banyak 

negara membangun yang bergantung kepada hasil dari sumber hidrokarbon. Cabaran 

mengendalikan operasi loji gas selalunya berpunca dari perubahan keadaan huluan 

yang bertenusan, seperti kadar alir, komposisi, suhu dan tekanan. Kesan dari keadaan 

yang berubah-ubah ini meningkat ketika melalui unit-unit di dalam loji dan akhirnya 

membawa kesan buruk kepada kestabilan operasi loji. Justeru itu, proses membuat 

keputusan untuk keadaan operasi loji yang optimum merupakan masalah yang 

kompleks dan ini dipertingkatkan lagi dengan spesifikasi produk yang berubah-ubah 

serta variasi dalam perbekalan tenaga. Tesis ini mencadangkan suatu kaedah 

penyelesaian baru untuk masalah operasi loji kompleks berdasarkan kepada kaedah 

pengoptimuman kesempatan terhad. Sebuah model deterministik pada awalnya 

dikembangkan dari simulasi proses menggunakan perisian Aspen HYSYS dan 

kemudian diubah menjadi model pengoptimuman kesempatan terhad. Model ini 

kemudian dikendurkan untuk membentuk model setara deterministik dan diselesaikan 

menggunakan perisian GAMS. Penyelesaian optimum ditentukan secara 

kebarangkalian pada had kebolehpercayaan yang ditetapkan pengguna. Penyelesaian 

optimum dipamerkan secara grafik sebagai “trade-off” antara kebolehpercayaan 

memegang tingkat had dan keuntungan operasi loji. Tiga kajian kes dianalisa untuk 

menunjukkan kaedah penyelesian baru dalam tesis ini. Keputusan penyelesaian 

optimum menunjukkan bahawa ketidakpastian parameter loji memberi kesan terhadap 

prestasi ekonomi operasi loji. Pendekatan penyelesaian yang dibangunkan dalam tesis 

ini mampu meningkatkan kebolehpercayaan keuntungan operasi loji pada tingkat 

kebolehpercayaan melebihi 95%. Akibatnya, risiko menyalahi had berkurangan 

daripada lebih 50% menggunakan kaedah biasa pengoptimuman deterministik kepada 

kurang dari 5% dengan kaedah pengoptimuman kesempatan terhad. Selain itu, hasil 

dari kajian ini menunjukkan bahawa variasi aliran material huluan loji mempunyai 

kesan yang lebih besar melebihi 85.5% ke atas keuntungan dibandingkan dengan 
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variasi dari hiliran kesempatan terhad, yang menggabungkan keuntungan dan 

kebolehpercayaan had proses, dari kaedah "kes terburuk" dan kaedah pengaturcaraan 

dua-tahap. Keputusan dari kaedah "kes terburuk" boleh mencapai tingkat kepercayaan 

lebih dari 99% yang secara drastik boleh mengurangkan keuntungan sedangkan 

keputusan yang optimum dari pengaturcaraan dua-tahap tidak jelas menunjukkan 

kepada kuantiti tahap keuntungan dipegang. Pendekatan penyelesaian yang 

dibangunkan dalam tesis ini dapat membantu sebagai panduan untuk proses membuat 

keputusan operasi loji yang lebih fleksibel di samping memenuhi semua had proses 

pada tahap kepercayaan yang tertentu. 
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CHAPTER 1 

INTRODUCTION 

Natural gas, also called “the prince of hydrocarbons”, is the fastest growing energy 

source in the world [1]. Recent reports showed that the industrial consumption of 

natural gas in U.S has increased by 7.4 percent [2]. Out of the 7.4 percent growth, the 

projected 6.7 percent is contributed from increased industrial production index. The 

production of natural gas by itself involves a number of unit operations before the 

feed is converted into saleable products. The safe operations of the plant as well as its 

optimality are very important in order for the plant to generate a higher profit. 

Moreover, the operation of the plant should also be flexible enough to allow for any 

variations that arise from both internal and external factors. This chapter presents the 

basics of natural gas, the main processes involved in gas processing plant, operational 

issues related to gas processing plant and the different optimization approaches.  

1.1 The basics of natural gas 

Natural gas is a mixture of gaseous hydrocarbons that developed organically from 

fossil fuels, remains of plants and animals as well as microorganisms that lived 

million of years ago. It is formed under pressure, buried several kilometers beneath 

the earth‟s surface and obtained either associated or non-associated gas. Associated 

gas is produced together with a crude oil, while non-associated gas contains little or 

no crude oil. Raw natural gas comprises varying amounts of light hydrocarbons. 

Methane makes up 80-90% of most natural gas mixtures. The balance is made up of 

those hydrocarbons in decreasing amount towards higher carbon molecules. These 

gases are sold as natural gas liquids (NGLs) in the form of ethane, propane, butane, 

LPG and condensate (C5+). In addition, raw natural gas may contain non 

hydrocarbons such as hydrogen sulfide, helium, water, nitrogen and carbon dioxide.  
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Nowadays, natural gas has become an important fuel in the world due to its steady 

growth rate, wide availability, clean burning characteristics and easy transportation 

[3]. Based on the recent assessment made by the U.S. energy information 

administration, the world demand for natural gas is expected to almost double by 

2030 and by then, natural gas is forecasted to overtake oil as the dominant fuel in 

industrial sector [4]. The share of natural gas and NGLs out of the total world energy 

resources is shown in Fig. 1.1 [5]. These two form the second most energy sources of 

the world. 

 

Fig 1.1: Primary sources of energy in the world  

The products from natural gas have a number of applications in different sectors 

as shown in Fig. 1.2. Sales gas is used in residential consumers, transportation and 

power plants. The NGLs from natural gas are important feedstocks for petrochemical 

and refinery industries. For example, ethane is used as a petrochemical feedstock to 

produce ethylene in petrochemical complex plant. Propane is also widely used as a 

heating and transportation fuel.  Beside this, propane can be used as a feedstock for 

the production of ethylene and propylene. Butanes are also important feedstock in 
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refinery processes such as alkylation, MTBE (methyl tertiary-butyl ether) and TAME 

(tertiary amyl methyl ether) production as well as blending stock for gasoline. 
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Fig 1.2: Product utilization of natural gas 

1.2 Gas processing plant (GPP) 

A typical gas processing plant comprises of the following main processes: a) pre-

treatment unit (PTU); b) acid gas removal unit (AGRU); c) condensate treatment unit 

(CTU); d) low temperature separation unit (LTSU); e) sales gas compression unit 

(SGCU) and f) product recovery unit (PRU). The simplified schematic representation 

of a gas processing plant for the main processes involved is shown in Fig. 1.3. The 

pretreatment operation is the first step to be performed in the gas processing plant 

after receiving the raw natural gas from the gas production fields. The presence of 

impurities such as chlorine, hydrogen sulfide, nitrogen, carbon dioxide, water and 

heavier hydrocarbons have a profound effect on the performance of the plant. 

Chlorine and hydrogen sulfide are removed from natural gas because they are toxic 
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and corrosive. Water is removed from the feed gas to prevent hydrate formation in 

processing facilities and pipelines. Nitrogen, carbon dioxide and heavier 

hydrocarbons are removed because they can significantly affect the heating value of 

sales gas by lowering its level. 

After the pretreatment operation, the outlet stream is divided in to two. The top 

stream enters to the acid gas removal unit after it has been expanded. The acid gas 

removal operation uses Benfield process to capture carbon dioxide and hydrogen 

sulfide in the feed gas.  The presence of carbon dioxide has also an effect on 

downstream equipment units by exposing them to plugging and corrosion. In addition, 

the removal carbon dioxide is also important for ethane product to acquire the 

required specification.  
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 Fig 1.3: Simplified flowsheet for a gas processing plant 

The bottom stream from the pretreatment unit then enters to the condensate 

treatment section. Two main operations, namely water washing and condensate 

stabilization are performed. Depending upon the associated water quality, the 
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condensate may require water wash to remove salts and additives. The water often 

contains high concentrations of methanol or ethylene glycol, which is added to 

prevent formation of hydrate.  After removal of free water, the condensate is sent to a 

stabilizer, where the lighter hydrocarbons are stripped to the demethanizer column. 

The heavier hydrocarbons from the bottom of the stabilizer are directly sent to the 

depropanizer column for further separation. 

The outlet stream from the acid gas removal unit is treated using separators to 

remove mercury before it enters in the low temperature separation unit.  Later, the 

stream is then passed through the cold boxes for cooling.  The outlet stream from the 

cold box is flashed and further chilled in the expander before it finally enters as a top 

feed in the demethanizer column. The demethanizer is designed to produce an 

overhead methane vapor stream and a bottom liquid product NGLs. The overhead 

methane vapor from the demethanizer is compressed and used to cool the overhead 

vapor stream from the pretreatment section. The methane vapor stream is then sent to 

the sales gas compression section for a recompression process. The resulting methane 

vapor produced from this section is sold as sales gas in the market. 

The bottom liquid from the demethanizer column is sent to the product recovery 

unit. This section is well known for its energy intensive process due to its high utility 

requirement for the separation [6].  It consists of a number of fractionation columns to 

produce the desired products. The fractionation step takes the advantage of difference 

in volatility of various hydrocarbons for separation. The fractionators usually contain 

trays with overflow weirs and downcomers. Reflux from the top of the tower flows 

across the top tray, into the downer, then across the next tray. The vapor passes up 

through the tower holes in the trays. In this manner, the vapor and liquid phases are 

thoroughly contacted, allowing the components to vaporize and condense easily and 

accomplished the desired separation. The products produced from this section include, 

ethane from deethanizer column, propane from depropanizer column, butane and 

condensate from debutanizer column.  
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1.3 Operational issues in GPP 

Changes in feed flow rate and composition are normally expected in a real plant [7]. 

The feed streams in a gas processing plant originate from upstream production 

facilities. These facilities may be remote and in turn take their feed directly from gas 

reservoirs or crude stabilization units [8]. As a result, the plant is usually subjected to 

variations in upstream conditions such as, feed flow rate and composition, pipeline 

pressure and ambient temperature [9]. An important requirement in a gas processing 

plant is that for the process to be flexible to accommodate for a range feed flow rates 

and compositions which vary from time to time [10]. A sample of different types of 

feed taken from a real plant operation is shown in Table 1.1. 

Table 1.1 Typical natural gas feeds used in gas processing plant 

Feed  types 1 2 3 4 5 6

Temperature, °C 243.878 129.846 199.155 175.129 183.593 156.672

Pressure, kPa 6707.710 6956.647 6647.088 6878.301 6791.521 7012.446

Flowrate (ton/h) 356.670 345.499 332.810 290.954 297.682 347.691

Composition (Mole % )

C1 81.271 77.768 75.676 71.942 66.569 48.251

C2 7.394 7.821 7.197 11.015 13.523 22.142

C3 3.460 3.810 2.989 5.362 6.754 12.180

iC4 0.794 0.875 0.630 0.966 1.154 1.551

nC4 0.728 0.877 0.638 0.944 1.080 1.538

iC5 0.247 0.341 0.229 0.411 0.488 0.751

nC5 0.185 0.173 0.136 0.225 0.287 0.384

C6+ 0.264 0.323 0.153 0.438 0.511 0.767

N2 0.364 0.509 0.546 0.396 0.429 0.221

CO2 5.289 7.499 11.802 8.295 9.200 12.210

 

From Table 1.1 in the above, the temperature, pressure, flow rate and 

compositions for the different types of feeds vary hourly. The feeds generally can be 

classified as lean and rich based on the compositional value of C2 and C3.  If the C2 

content of the feed is greater than 10 percent or the C3 content greater than 4 percent, 

the feed is considered as rich. Otherwise the feeds are taken as lean. Based on this, the 
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first three feeds (Feed 1-3) in Table 1.1 are classified under lean feeds, while the latter 

three feeds (Feed 4-6) are considered as rich feeds.  

In order to reduce the effect of the variation in feed composition, different 

operating mode has been practiced in gas processing plant. Most of the previous 

works to handle such uncertainty focus on lay out of the sequences from the process 

design aspect [10, 11]. For instance, for the plant to operate in ethane rejection mode, 

it follows a different process scheme from the normal mode of operation. Similarly, 

for ethane recovery, another process scheme is preferred to improve the production 

level. However, the majority of the time that process engineers spend is not on the 

design part, but trying to make the existing process work. Hence, the major problem 

for a process engineer is to address on how to make the process become feasible 

under such uncertain conditions. 

At the plant outlet, some of the compositions of the products have also uncertain 

product requirements. The plant may seek to maximize the revenue by boosting the 

production level based on the market conditions. However, due to the competitive 

nature of the market environment for some of the products, there exist certain 

restrictions on reliability of meeting the product requirements and quality 

specification. Due to this, gas processing plant operators want to know long term 

specifications for the quality of the product to be delivered to their customers. For 

example, the C3 and C4s content in propane and butane products may vary depending 

on the customer‟s specification. Sometimes, it may be also advantageous to produce 

liquefied petroleum gas (LPG) based on the market outlook. During such situations, 

the plant may be operated using the depropanizer column only and the debutanizer 

column may be shut down for energy saving. As a result, the amount of C3 and C4s in 

the LPG may also have different specification. Hence, the need to make an optimal 

decision under such uncertainty is a major issue which needs to be addressed well. 

On the other hand, the continuous variation in operating conditions may aggravate 

the instability of the plant operation [12, 13]. In industrial practice, such variations are 

usually handled using trial and error methods. However, this would increase the 

workload of plant engineers by spending more time in fine tuning the plant. 

Furthermore, the utility flow to the plant is also another factor which can significantly 
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affect the plant performance. Hence, it is clearly vital for process engineers to be able 

to quantify the ability of the plant to be operated feasibly in the presence of 

uncertainties and to have systematic methods for the plant operation that are both 

economically optimal and flexible [14]. 

1.4 Process optimization 

Process optimization is a systematic method to determine the most effective and 

efficient solution to a process problem while meeting all possible operational and 

design constraints. It is a well known quantitative tool to aid decision making in 

industries. A wide variety of problems in design, operations, and analysis of industrial 

processes can be resolved by optimization. A process can be represented by 

mathematical equations developed from physical principles or experimental data. If a 

single performance criterion is set, such as maximizing profit, then the goal of process 

optimization is to find the values of the variables in the process that yield the best 

value of the performance criterion. 

In process operations, benefits arise from improved plant performance such as 

higher yields of valuable products, lower energy consumption, higher production 

rates, and longer operation times between shutdowns. However, this requires a critical 

analysis of the process operation in order to obtain useful information. The process 

operation can be represented by developing an appropriate mathematical model. The 

developed model represents “the essence” of reality that captures the behavior of the 

plant operation [15]. If the mathematical model is well developed, then the solution 

obtained from the model should also be the solution to the system problem. Thus, the 

effectiveness of the results of the application of any optimization technique is largely 

a function of the degree to which the model represents the system studied. The major 

optimization techniques can be classified as deterministic and optimization under 

uncertainty. These two optimization approaches will be discussed below. 
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1.4.1 Deterministic programming 

Most conventional process models nowadays in use are largely based on a 

deterministic framework. The goal of a classical deterministic optimization problem is 

to determine the values of decision variables that maximize some aspect of the model 

[16]. The body of the optimization model consists of objective function and 

constraints. The generalized iterative solution procedure for this classical 

deterministic optimization problem is illustrated schematically in Fig. 1.4. The model 

simulates the flow sheet and calculates values for the decision variable as well as 

values of the objective function and constraints. The information is then utilized by 

the optimizer to calculate a new set of decision variables. This iterative sequence is 

continued until the optimization criteria are satisfied. 

OPTIMIZER 

PROCESS MODEL 

Decision

Variables 

Objective

function &
constraints

Optimization

loop

Initial

values

Optimal

Solution

 

Fig 1.4: Deterministic optimization framework 

A number of studies on gas processing plant optimization have also used this 

deterministic approach. Most of these works have been applied for the turbo-expander 

section of the plant such as the works in Bandoni et al. [17], Fernández et al. [18], 

Diaz et al. [19-21], Gomes and Wolf-Maciel [22], and Bullin and Hall [23]. In 

deterministic approach, the expected values of the uncertain parameters are usually 
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employed to hold the constraints. However, in reality, the uncertain parameters will 

deviate from their expected values. As a result, constraint violation may occur and 

finally the solution becomes not only non-optimal but also infeasible [24, 25]. Such 

kinds of decisions are usually referred as aggressive decisions. On the other hand, few 

works have also been done using the “worst case” strategy such as Eliceche et al.  

[26] and Diaz et al. [9]. In “worst case” approach, the uncertain parameters are 

expressed in terms of the minimum and maximum displacement from their nominal 

values. This solution strategy may be very helpful in holding the process constraints; 

however, the achievable profit will be drastically decreased [27]. Such kind of 

decisions is referred as conservative decisions. 

In some works, the uncertain parameters are provided by specific bounds such as 

the works by Grossmann and Sargent [28], Grossmann and Halemane [29], and 

Varvarezos et al. [30]. Most of these works have been used for process design 

problems under uncertainty. Sometimes, it is also common to couple the uncertain 

parameters with feasibility test such as the works in Halemane and Grossmann  

[31]and flexibility index by Swaney and Grossmann [32, 33], Grossmann and Floudas 

[34], Pistikopoulos and Grossmann [35-37], and Varvarezos et al. [38]. However, 

there still exist possibilities for violation of constraint to occur since the uncertain 

parameters are not considered as a continuous variable. In addition, most of these 

works may not guarantee the optimal profit value by comprising the reliability of 

holding the process constraints. Furthermore, the optimal solution from such kind of 

approaches may probably lead to either a conservative or aggressive decision. 

1.4.2 Optimization under uncertainty  

The optimization techniques used in dealing with uncertainty can be categorized as 

stochastic programming and fuzzy programming [39]. Stochastic programming also 

consists of two-stage programming with recourse formulation and probabilistic or 

chance constrained programming as discussed in the following sections. 
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1.4.2.1 Fuzzy programming  

In fuzzy programming approach, fuzzy numbers are defined on a fuzzy set to 

represent uncertain parameters in a model. In this approach, some constraint violation 

is allowed and the degree of satisfaction of a constraint is defined as the membership 

function of the constraint [40]. Even though fuzzy programming approach gives a 

better solution compared to the deterministic approach, it has still some limitations 

compared to stochastic programming.  

The main difference between fuzzy programming and stochastic programming is 

in the way that the uncertainty is modeled. Fuzzy programming considers random 

parameters as fuzzy numbers and constraints are treated as fuzzy sets [41]. In 

addition, Liu & Sahinidis [42] have conducted the comparison of fuzzy programming 

and stochastic programming. Accordingly, fuzzy programming is easier to solve but 

stochastic programming provides a more rigorous means of solving the optimization 

problem. 

1.4.2.2 Two-stage programming  

In two-stage programming approach, the first stage variables are to be decided before 

the realization of the uncertain variables. Subsequently, the second-stage variables are 

used as corrective measures or as recourse against any infeasibilities arising during 

the realization of the uncertainty. In this approach, the random data are represented 

through a set of discrete outcomes called scenarios with a probability that represent 

their importance in the overall problem.  

One of the limitations of this approach is that the iteration between the first and 

the second stage variables requires expensive computational effort especially when 

the size of the problem becomes large [24]. In addition, violation of constraint is 

allowed but compensated using a penalty term in the objective function. However, the 

solution with the compensation provides no obvious information on the relation 

between profitability and reliability of the process which are very crucial in decision 

making purpose. Some of the works using this method includes the one by Liu and 

Sahinidis [42], Paules and Floudas [43], Pistikopoulos and Ierapetritou [44], Ahmed 
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and Sahinidis [45], Gupta and Maranas [46], Rooney and Biegler [47], and Khor et al. 

[48]. 

1.4.2.3 Chance-constrained programming  

Chance-constrained programming is another stochastic approach which becomes a 

very competitive tool for optimization under uncertainty [24]. It ensures not only the 

optimality and flexibility of the plant operation but also the reliability of the process 

by satisfying the constraints at certain probability or confidence level. The method 

was initially introduced by Charnes and Copper [49] and later modified by Miller and 

Wagner [50], Prékopa [51, 52], and Kall and Wallace [53]. The application has been 

widely used in different disciplines for optimization under uncertainty [54]. In process 

system engineering, however, very few works can be found using chance constrained 

programming where most of the applications are limited to theoretical basis such as 

Schwarm and Nikolau [55], Li et al. [24, 27, 56-58], Wendt et al. [59], Henrion and 

Möller [60], Arellano-Garcia and Wendt [61].  

Li et al. [24] have reported their recent development in the works of chance 

constrained programming. The authors have extended and employed the method to 

deal with optimization problems under uncertain operating conditions as well as 

model parameters. The solution strategy is to relax the probabilistic problem into an 

equivalent deterministic problem so that it can be solved using the available 

commercial software routines. The main challenge in solving chance constrained 

programming is however the computation of the probability and its derivatives of 

satisfying the inequality constraint. As the number of uncertain variables increases, 

multivariate integration is required to compute the probability value. Moreover, the 

probability computation also needs to be developed on a computer program unless 

there is an available function already built in the software routines. However, some 

approximation approaches can be used alternatively to represent the probability 

computation numerically. For gas processing plant, in which, the operation of the 

plant is challenged with a number of uncertain conditions, the application of this 

method has a significant importance in dealing with those uncertain variables. 
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1.5 Problem statement  

The increasing uncertainty, complexity and size of process models pose a constant 

challenge in today‟s research environment. Up to now, works regarding to gas 

processing plant operations under uncertain conditions are seldom reported. In reality, 

however, the variation in feed conditions, product requirement, operating conditions 

and utility flows are highly uncertain. Developing an efficient optimization method to 

solve such operational problems related to uncertainty is one of the major issues 

usually raised by process engineers. In industrial practice, heuristic optimization 

approach based on trial and error are employed to solve those problems. The main 

reason for such kind of decision is due to lack of system analysis of the objective 

functions as well as the reliability of holding the process constraints. As a result, 

sometimes, aggressive decision may be preferred due to high profit expectation. 

However, this strategy will deteriorate the objective function and later leads to 

constraints violation. Therefore, a systematic method is required to evaluate the trade-

off between profitability and reliability of holding the process constraints. This 

requires an efficient optimization approach which incorporates the stochastic 

description of the uncertain parameters and guarantees the flexibility of the plant 

operation. 

1.6 Research objectives  

This thesis combines probabilistic analysis with optimization to solve major problems 

related with the operation of a gas processing plant. The proposed method represents 

an original effort to apply chance constrained programming to a real gas processing 

plant. In this thesis, a probabilistic optimization solution approach is developed, 

which is also applicable to any other plant. The importance of the problem can be 

measured by a number of literatures that exists on this topic. The main motivation in 

this work is that the possibilities of obtaining optimal profit by taking into account the 

reliability of the process under such uncertain condition. This thesis not only builds 

upon the existing literatures, but also introduces original method and models not used 

before to solve those problems. Thus, the objectives of the research are:  
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 To introduce a solution method for gas processing plant operation that is 

capable of quantifying the ability of the plant to be operated feasibly in the 

presence of uncertainties by incorporating all the stochastic description.  

 To find the optimum trade-off between the reliability and profitability of the 

plant which are very crucial in decision making purpose.  

 To implement a solution strategy that can provide as guidelines for flexible 

decision making purpose in plant operations.  

To achieve the aforementioned objectives, a rigorous HYSYS [62] model for the 

whole plant operation has been developed to study parameter and plant performance. 

All the optimization models have been built on a computer program using GAMS 

(general algebraic modeling system) [63]. Thus, the main contributions of the work 

reported in this thesis are: 

 Most of the previous works for gas processing plant optimization have used 

deterministic approach. However, this does not match with reality since it 

involves an arbitrary approximation for the uncertain parameters. Thus, 

instead of using such deterministic approach, the proposed model determines 

the optimal solution probabilistically by using chance constraints. The 

constraints are held at specified probability level using a user-defined 

parameter called confidence level. For each of the user-defined confidence 

level, the corresponding values of the uncertain parameter are obtained from 

probabilistic analysis using statistical data measurements. The decision maker 

can take the risk level based on the priority between the profitability and 

reliability holding the process constraints.  

 For other optimization approaches used in gas processing plant, such as “worst 

case” in which the value of the uncertain parameter is statistically displaced by 

a certain level, the solution approach developed in this thesis proves by how 

far that such kind of decisions can significantly affect the economic 

performance of the plant. In addition, unlike the two-stage programming 

where the uncertain parameters are considered as a discrete variable, the 

solution approach developed in this thesis treats the uncertain variable to be 
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continuous. This can better reflect reality since the uncertain variables are 

continuously varying from time to time.  

 Most of the chance constrained programming approaches that exist in process 

system engineering are based on theoretical applications. Moreover, the 

objective function is considered as deterministic optimization without 

considering the cost evaluation for the uncertain variables. However, this also 

significantly affects the economic performance of the plant. Hence, the 

evaluation should incorporate both objective function and constraints, which 

are the main body of the optimization problem. In this thesis, the cost 

emulation for the uncertain variables in the objective function has been 

considered. 

 Most of the previous researches on gas processing plant focus on layout the 

process in sequence in order to solve problems related with uncertain 

parameters. Even though it is possible to find many structural organizations 

from the design aspect, a robust decision is required for the plant engineers to 

overcome those problems using a systematic approach in order to ensure the 

feasible operation of the plant as well as its flexibility under such 

circumstances. Thus, in this work, a solution method is introduced which can 

guarantee not only the optimal operation of the plant but also its flexibility by 

accommodating any variation that arises from external factors.  

 An investigation has been made to observe the effect of each uncertain feed 

and product components by employing the method developed in this thesis. 

This is also very important especially to identify those components which can 

significantly affect the overall plant performance.  In addition, the use of LPG 

column also has been introduced for the plant to shift load when there is a high 

market demand for LPG product. This has not been investigated before and 

the results of this research prove in finding the optimal decisions to generate a 

high profit for the plant.  



 

16 

 

1.7 Scope of the research  

This research mainly focuses on introducing a solution method to a gas processing 

plant under uncertain: a) feed conditions; b) product requirements; and c) operating 

conditions and utility flows. The developed approach uses statistical data 

measurements from a real plant for a steady state operation instead of using or 

approximated values of the uncertain parameters. The data have been analyzed and 

used in the case study part to test the performance of the developed method. 

Generally, the findings from this research ought to be able to demonstrate the 

usefulness of the method in determining the optimal operation of the plant by 

considering not only the profitability but also the reliability of the process constraints. 

1.8 Overview of the thesis 

Chapter 2 provides extensive review on uncertainty and their consideration during 

optimization in chemical process plant. It also presents previous works in gas 

processing plant both from design aspect and optimization approaches. 

Chapter3 presents the solution approach developed in this thesis. The chapter 

discusses on the formulation of deterministic and their corresponding chance 

constrained models used for gas processing plant. 

Chapter 4 considers three case studies from a real plant operation. The first case 

study focuses on the uncertainty of the feeds from the plant inlet. The second case 

study discusses for the uncertainty of the products from the plant outlet. The third 

case study presents on uncertain utility and energy product flows.  

Chapter 5 summarizes by discussing on the main finding and conclusions made 

from the research. The chapter also discusses about the future research direction 

suggested in this thesis. 

 

 



  

CHAPTER 2 

LITERATURE REVIEW 

This chapter can be treated in to three main sections. The first section focuses on a 

review for uncertainty and optimization in chemical process plants. This includes the 

sources of uncertainties in chemical process plant and their analysis, sampling and 

sensitivity approach. In addition, it also presents a review on how these uncertainties 

are considered during optimization. The second section discusses on related works on 

gas processing plant which has been addressed before. Here, the review focuses on 

the different process scheme options and various optimization algorithms applied for 

gas processing plant to solve the existing problem. Finally, the third section 

summarizes the chapter by discussing the main issues from the previous sections. 

2.1 Uncertainty in chemical process plant 

In industrial practice, there are always uncertainties due to variations in design 

conditions, loading and material properties, physical dimensions and operating 

conditions. Due to the multivariate and correlated stochastic sequences, these 

uncertainties or disturbances have a significant influence like a chain effect to each 

unit operation of the production line. The common practice to avoid these 

uncertainties is by first considering the nominal values of the uncertain parameters 

and then applying empirical overdesign factors to the solution obtained. However, 

such kinds of corrections are somehow arbitrary and hence may lead to an infeasible 

and non-optimal solution. 

Several approaches have also been proposed based on optimization formulations to 

address uncertainties in process design. In these approaches, the uncertain parameters 

are described using a probability distribution functions and the problem design is 

formulated based on the probabilistic decision criterions. The solution obtained from 

the optimization represents the best decision in the face of actual knowledge available 
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about the process. Other approaches have also been developed to incorporate 

operational issues such as process flexibility and robustness as well as controllability. 

The process flexibility is based on the ability of the plant to operate feasibly under 

variable inputs. The robustness of the process is measured on how the plant responds 

to the variable inputs with relatively invariable outputs. The controllability of the 

plant refers to the ability of the plant to respond efficiently to the disturbances of the 

input variables. 

In addition, issues related to decision theory to reduce the effect of uncertainty has 

also been addressed. In terms of applications, the optimization under uncertainty tools 

initially developed for process synthesis and design problems have also been extended 

to other process system engineering problems, such as process planning, design and 

operation of batch processes and product design. The following section discusses the 

sources of and classification of uncertainties and their analysis and how they are 

incorporated in the optimization problem by reviewing previous works. 

2.1.1 Uncertainty sources and classifications 

From process operation point of view, the sources of uncertainty may be internal such 

as inaccurate model parameter or external such as unknown future feed stock. From 

the context of process system engineering, Ierapetritou et al. [64] categorized the 

different uncertainty that involved in process models as follows: 

 

i)  Model-inherent uncertainty: this includes kinetic constants, physical 

properties and transfer coefficients. Information regarding to such 

uncertainty is obtained from experimental or pilot scale data. The 

uncertainty is described either in a range of possible realizations or some 

approximation of probability distribution function. As a result, the model 

may not be able to predict the actual process [65]. Furthermore, process 

models developed by considering such uncertainties are usually an 

approximation and thus can not describe the real behaviours of the process 

exactly [66]. 
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ii)       Process-inherent uncertainty: this consists of flowrate, composition, 

temperature, pressure variations as well as product specifications, stream 

quality fluctuations and so on. Such uncertainties are usually described by 

probability distributions obtained from on-line measurements of the 

uncertain parameters. The realization of these uncertain parameters for any 

desired range could in principle be achieved through the implementation of 

a suitable control scheme [67].  

 

iii)       External uncertainty: this includes uncertainties beyond the production 

process such as feed stream availability, product demands, prices and 

environmental conditions. In addition, the outlet stream from an upstream 

unit and the recycle stream from a downstream unit are also considered as 

external uncertain parameters [12]. Usually, forecasting techniques based 

on historical data, customers orders and market indicators are used to 

obtain approximate ranges of uncertainty levels or the corresponding 

probability distribution.   

 

iv)        Discrete uncertainty: this is mostly used to describe equipment availability 

and other random discrete events. The probability distribution function of 

such uncertain parameters commonly obtained from available data and 

manufacturers‟ specifications [67]. 

 

Another classification can also be made by considering the uncertain time 

dependence in the future horizon. Thus, the representation of the uncertainty is an 

important modelling question and in order to reduce it to a negligible level, a complex 

modelling effort is required. The developed approach in this thesis concentrates on 

those of process inherent and external uncertainties.  

2.1.2 Uncertainty analysis and sampling  

Uncertainty analysis describes the propagation of uncertainty in model parameters and 

model structure to obtain reliable information for the risk. Such analysis also offers 

quantitative measures of the strengths of certain relationships between the uncertain 
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parameter and the predicted output result. The sampling approach is usually used to 

obtain a representative values from the parameter space frequently. This is especially 

used when performing uncertainty analysis of regression models. The main objective 

is to acquire a reliable result for the output distribution of the parameter analyzed. A 

number of works have been well discussed on the properties of uncertainty analysis 

and sampling. A comprehensive review has been presented below. 

 

Maranas [68] studied a systematic method that quantitatively assesses the property 

prediction of uncertainty on optimal molecular design problems. Accordingly, the 

uncertainty has been explicitly quantified using multivariate probability distribution 

functions for modeling the different realizations of the group contribution of the 

parameters. The author has indicated the property predictions of the uncertainty which 

have a profound effect in optimal molecular design problems. Furthermore, the 

performance of the objectives, probability of meeting the objectives as well as the 

chances of satisfying design specifications offers a systematic guideline for optimal 

molecular design problems with respect to the property prediction of uncertainty. 

 Vasquez and Whiting [69] used a Monte Carlo sampling (MCS) technique to 

separate and study the effects of systematic and random errors in thermodynamic data 

for chemical process design and simulation. Accordingly, the authors pointed out the 

presence of systematic errors in thermodynamic data. Based on this, for the systematic 

error analysis, the data were perturbed systematically with a rectangular probability 

distribution. For analyzing the random errors, the perturbation was carried out 

randomly with normal probability distributions. Later, thermodynamic models were 

obtained from the appropriate regression methods. These parameters were used to 

simulate for a given unit operation as well as to obtain cumulative frequency 

distributions. In addition, the parameters provide a quantitative risk assessment and 

better understanding of the role uncertainty in process design and simulation. Even 

though Monte Carlo sampling techniques is most commonly used and easy to employ, 

it requires numerous model evaluations for accurate results. As a result, it may not be 

efficient for sampling a large number of input uncertainty factors. 
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Vasquez and Whiting [70] also introduced a new approach called equality 

probability sampling (EPS) for analyzing uncertainty and sensitivity analysis in 

thermodynamic models. Accordingly, the EPS method produces more realistic results 

in uncertainty analysis than methods based on other sampling techniques such as 

Latin hypercube sampling (LHS) or shifted Hammersley sampling (SHS). This is 

especially when the parameters are highly correlated. However, when the parameters 

are uncorrelated, EPS will reduce to the LHS method. The developed EPS can be 

extended to any regression model for various physical applications. It can be used also 

as a better tool for estimating more reliable safety factors in design and simulation of 

chemical process. Even if the EPS method performs better than LHS and SHS, there 

is no explanation presented for which distribution that the method is more efficient. 

For example, there are times where the Hammersley sequence sampling (HSS) 

proposed by Diwekar and Kalagnanam [71] exhibits a high efficiency for uncertainty 

analysis and optimization under uncertainty.  

Tayal and Diwekar [72] presented a novel sampling approach for stochastic 

optimization which incorporates property-prediction uncertainty effects in a robust 

generalized optimization framework. Accordingly, the authors have addressed a 

detailed analysis of uncertainty using a number of case studies for various issues in 

computer-aided molecular design under uncertainty. Sensitivity analysis of 

uncertainties for the model parameters was also made to identify the uncertainty 

effect. In addition, the wider applications of solving problems involving various forms 

of uncertainties have been discussed. The results from the case studies indicate how 

the property-prediction uncertainty can significantly impact the optimal molecular 

designs. 

Ulas and Diwekar [73] studied the unsteady state nature of a batch distillation 

unit. The authors addressed the importance of optimal control in batch distillation 

which allows optimizing the column operating policy by selecting a trajectory for the 

reflux ratio. However, due to the uncertainties in thermodynamic models, the reflux 

ratio obtained is often suboptimal. Hence, the authors have proposed a general 

approach to handle both dynamic and static uncertainties in thermodynamics for more 

complex non-ideal systems. Based on this, the unsteady state nature of batch 

distillation translates these static uncertainties into time-dependent uncertainties. 
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Moreover, the authors pointed out the uncertainty effect of the relative volatility 

which was previously considered as a deterministic parameter. However, more work 

is required to address on how these time-dependent uncertainties can be handled 

during optimization. Other related works on uncertainty analysis can be found in 

Diwekar and Rubin [74, 75], TØrvi and Hetzberg [76], Phenix et al. [77], Terwiesch 

et al. [78], Whiting [79], Saltelli et al. [80] and Diwekar [16]. 

2.1.3 Uncertainty and optimization 

A number of works have discussed on how to incorporate uncertainties during 

optimization. The techniques mainly differ in a way of handling the sources of 

uncertainty or solving the resulting problem. A comprehensive review of uncertainties 

and optimization has been presented below. 

Grossmann et al. [81] developed optimization strategies for flexible chemical 

processes. The optimization strategies are mainly used for designing chemical 

processes. Accordingly, for steady state operations, the feasible region ensures the 

existence of optimal solution exposed to parameter variations. Based on this, two 

major areas were considered. The first area discusses on optimal design with fixed 

degree flexibility whereas the second area presents for design with optimal degree 

flexibility. However, the major challenge in this problem still lies in the development 

of efficient solution procedures for large scale nonlinear programs. Moreover, for 

attaining the feasible solution, the economic performance may significantly be 

affected and hence the solution leads to a conservative decision. 

Pistikopoulos and Grossmann [36] addressed on determining minimum cost 

modifications for redesigning existing process flowsheet. Accordingly, the authors 

developed a novel computational strategy for nonlinear models. The proposed method 

relies on the iterative solution of an optimal design formulation which features as a 

relaxed constraint of the feasibility function for the specified region of flexibility. The 

method has been applied for models that are bilinear in the uncertain parameters and 

control variables. On the other hand, Pistikopoulos and Grossmann [37] reported on 

establishing trade-off between investment costs for retrofit and expected revenue that 
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results from increasing flexibility in systems described by nonlinear models. Based on 

this, a procedure has been proposed for cost vs flexibility curve. Later, a stochastic 

optimization has been presented for evaluating the expected optimal revenue with the 

specified degree of flexibility. This can allow one to identify the level of flexibility 

that maximizes the expected profit in a retrofit design. However, in both of the 

flexibility works, the uncertain parameters are not considered as a continuous 

variable, still defined with a certain specific bound. Flexibility may be achieved, but it 

does not show to how much extent that this flexibility affect the economic 

performance. Hence, such kind of solution approach may also leads to a conservative 

decision. 

Pistikopoulos and Ierapetritou [44] presented theoretical developments on a novel 

approach for optimization of design models under uncertain parameters. Based on 

this, the authors studied the general probability distribution functions which describe 

process uncertainty and variations. Later, the problem was formulated with two-stage 

programming in which the objective was to determine the design that maximizes 

profit by simultaneously measuring design feasibility. Uncertainty in process design 

and operations has been addressed also by Pistikopoulos [82]. The work here mainly 

focuses on process formulating process optimization problems by linking together 

various components such as characterization and quantification of uncertainty. 

Similarly, other works can be found related to process design and operations under 

uncertainty such as Dantizg [83], Wellons and Reklaitis [84], Shah and Pantelides 

[85], Straub and Grossmann [86], Ierapetritou and Pistikopoulos [87],  Petkov and 

Maranas [88].  

On the other hand, some works have also been reported on process planning 

problems under demand uncertainties. Ahmed and Sahinidis [45] have used two-stage 

programming approach for robust planning problems under uncertainty. Accordingly, 

the authors introduced a robustness measure that penalizes second-stage costs that are 

above the expected cost. Gupta and Maranas [46] have also used a two-stage 

programming for incorporating demand uncertainty for a multisite midterm supply-

chain planning problems. The authors have developed a bi-level decision-making 

framework. Based on this, the first production decisions are made „here and now‟ 

prior to realization of the uncertainty. However, the uncertain supply-chain decisions 
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are postponed in a „wait and see‟ mode. Even though two-stage programming 

approach is more suitable for planning problems under uncertain product demand, one 

of the disadvantages is that it requires a penalty function to describe the relation 

between the constraint violation and the achievable profit. Moreover, some of these 

penalty functions are not usually available in practice. Hence, in such situations, it is 

usually not preferred to compensate for violation of constraints using additional cost; 

however, to maintain a high level of reliability to satisfy the constraints with a 

probability exceeding some pre-selected value [67]. 

Based on this, some other methods have been developed to keep the reliability of 

the constraints. Prékopa [52] proposed an efficient approach for linear systems which 

consists of stochastic variables with correlated multivariate normal distribution. The 

proposed approach combines both numerical integration and sampling techniques. 

The chance constraints during optimization are computed using sampling techniques. 

However, the disadvantage of the sampling approach is that it requires a lot of effort 

on optimizing when the approximation is not accurate [89]. In most stochastic 

optimization problems also, the main bottleneck is the computational time spent on 

evaluating the objective function and the probabilistic constraints especially for 

correlated uncertain variables. In addition, the accuracy of estimate for the mean and 

standard deviation is important to obtain a realistic value for the economic 

performance criteria. However, such accuracy also depends on the number of samples 

and uncertain parameters taken. For optimization problems, the number of samples by 

itself depends on the location of a trial point in the solution space [67]. Kim and 

Diwekar [90] have developed a combinatorial optimization algorithm that can 

automatically selects the number of samples and provides a trade-off between 

accuracy and efficiency. 

Sahinidis [40] provided an extensive review for optimization problems under 

demand uncertainty. The author has discussed on a large number of problems in 

production planning, scheduling and other applications for decision making in the 

presence of uncertainty. Accordingly, the author argued that a key difficulty in 

optimization under uncertainty is in dealing with an uncertainty space which is huge 

and frequently leads to a very large-scale optimization models. Furthermore, the 

authors have also discussed and contrast the different types of optimization used 
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under uncertainty. Applications and state-of- the art- in computations have also been 

presented. Another review on process scheduling under uncertainty has also been 

presented by Li and Ierapetritou [41]. The authors here described uncertainty as a 

major concern which can cause infeasibilities and production disturbances. Based on 

this, the uncertainties have been analyzed and discussed with the different 

mathematical approaches that exist to describe the process uncertainties. 

Verderame et al. [91] recently presented a review for planning and scheduling 

problems with specific emphasis on the effect of uncertainty. Here, the authors argued 

that even if the objectives and physical constraints present in the problem formulation 

may vary greatly from one sector to another; however, all the problems share a 

common attribute for modeling parameter uncertainty in an explicit manner. Other 

related works regarding process planning under uncertainties have been presented in 

the works of Subrahmanyam et al. [92], Ierapetritou and Pistikopoulos [93], 

Ierapetritou et al. [94], Liu and Sahinidis [42], Clay and Grossmann [95], Acevedo 

and Pistikopoulos [96], Gupta and Maranas [97], Chufu et al. [98], Papageorgiou [99], 

Verderame and Floudas [100], Verderame et al.[101].  

2.2 Process scheme options and optimization algorithms in GPP 

Uncertainties are major issues in chemical process plant as discussed earlier. In gas 

processing industries, a number of process scheme options have also been proposed to 

improve the overall plant performance. Most of these process scheme options have 

arisen to allow more rigorous optimization variables such as operational flexibility, 

CO2 tolerance and capital and operating cost. Based on this, the selection of the 

optimum process scheme depends on conditions and compositions of the inlet gas, 

cost of fuel and energy, product specifications and relative product values [102]. On 

the other hand, a number of optimization algorithms have also been developed for gas 

process plant. However, most of these optimizations concentrate on improving the 

existing plant performance rather than incorporating the uncertainty effect. In the 

following sections, a comprehensive review for the different process scheme 

alternatives and optimization algorithms applied in gas processing plant has been 

discussed below. 
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2.2.1 Gas plant process scheme options 

Technology trends in gas processing industries have emerged since early 1900‟s. 

During those times, heavier hydrocarbons from natural gas streams are removed by 

compression and cooling methods. However, a number of changes have been made 

after that to improve the process efficiency which contributes to the incentive for high 

recoveries of the desired products from the plant such as refrigerated oil-absorption 

[103]. A major leap in gas processing technologies was the recovery of NGL in 1970 

using a turbo-expander plant as shown in Fig. 2.1. Accordingly, the inlet gas is first 

treated to remove water and contaminates. The stream is then cooled and flashed 

before it enters to the demethanizer column. The top vapor from the demethanizer 

column is then compressed to sales gas after cooling using the inlet gas. Even though 

turbo-expander process scheme has a major break-through in gas processing 

industries, it has certain limitation in terms of the operational flexibility and overall 

recovery performance. As a result, a number process schemes have emerged after that 

and the comprehensive review of these process schemes has been presented below. 
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Fig 2.1: The 1970-vintage turbo-expander process scheme 
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Campbell and Wilkinson [104] introduced the gas sub-cooled process (GSP) 

scheme for high NGL recovery as shown in Fig. 2.2. Such process scheme has also 

been implemented at the PETRONAS gas GPP-A facilities in Malaysia by Ortloff 

Company [105]. The process uses the novel-split-vapor concept where a small portion 

of the non-condensed vapor as top reflux is introduced to the demethanizer after a 

substantial condensation and sub-cooling. As a result, it reduces the compression 

horsepower requirements and the risk of CO2 freezing. Even though the GSP can be 

operated to reject ethane, propane recovery efficiency suffers significantly when 

operated in this mode. This is mainly due to the higher concentration of propane 

present in the top feed. 
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Fig  2.2: The gas sub-cooled process scheme 

Buck [106] proposed an overhead-recycle process (OHR) scheme to improve 

propane recovery as shown in Fig. 2.3. In this process, the overhead vapor from the 

de-ethanizer column is condensed and recycled to the top of the demethanizer. This 

scheme is typically employed in a two-column arrangement with the de-methanizer 

comprising only the rectification section like an absorber. The absorber bottoms liquid 
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is pumped to the top the de-ethanizer. This process provides more efficient recovery 

of propane and heavier hydrocarbons than the GSP scheme. However, this process 

scheme is not suitable for high ethane recovery. 
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Fig 2.3: Deethanizer overhead recycle process scheme 

 Montgomery [107] introduced a cold residue gas-recycle (CRR) process 

scheme as shown in Fig. 2.4. Both the previous GSP and OHR process are limited by 

the capability of the split vapor concept to overcome the equilibrium limitations. 

Based on this, the CRR scheme uses recycling a portion of residue gas as a top reflux 

to the demethanizer column. As a result, a very high ethane recovery, in excess of 

98%, is economically achievable with the CRR process. However, the cryogenic 

compressor can be very expensive. Later, a recycle split-vapor process (RSV) which 

requires less capital investment has been stated by Campbell et al. [108]. A 

modification of the RSV process, which is the recycle split-vapor with enrichment 

process (RSVE), has also been introduced by Campbell et al. [109]. In this scheme, 

the recycle stream is withdrawn from the recompressed residue gas and mixed with a 

split vapor feed before being condensed.  As a result, it can avoid a separate 

exchanger or exchanger passage. 
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Fig 2.4: Cold residue recycles process scheme 
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Fig 2.5: Enhanced NGL recovery process scheme 
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Yao et al. [110] introduced an enhanced NGL recovery process (IPSI scheme) a 

shown in Fig. 2.5. The GSP, OHR, CRR, RSV and RSVE process schemes mainly 

focus on improving the reflux stream to the demethanizer column. However, IPSI 

scheme gives a process enhancement that focuses on the bottom of the demethanizer 

column. It utilizes a slipstream from or near the bottom of the tower as a mixed 

refrigerant stream. The stream is used to cool the inlet gas, thereby reducing or 

eliminating the need for propane refrigeration. The vapor portion is then recycled 

back to the bottom of the tower where it serves as stripping gas. One of the limitations 

with the IPSI process scheme package is that when the plant capacity increases, it 

requires additional refrigeration to maintain NGL recovery level. Hence, more 

recompression and additional reboiler duty are also required to retrofit the existing 

process scheme. However, this can be achieved using a stripping gas refrigeration 

system which replaces the conventional refrigeration system with a self refrigeration 

system as reported in the works of Bai et al. [111]. 

Aggarwal and Singh [11] studied on how processing conditions and product 

specification affect the best method to recover NGLs. Accordingly, the authors 

pointed out important factors that can influence the selection of processing scheme 

used for NGLs. These factors includes: product recovery and separation requirements, 

amount of heavier components in the feed, flexibility to process feed with varying 

composition, feed gas availability at NGL plant battery limit,  pressure requirement 

for the sales gas, carbon dioxide content in the feed gas as well as in ethane product. 

The authors pointed out that whenever there is a frequent feed composition changes 

from the plant inlet, it is advantageous to use a combination of different process 

schemes such as turbo-compression/expansion and mechanical refrigeration. This 

combination helps to compensate the increase in the heavier component (C5+) 

concentrations by raising the feed gas refrigeration duty and vice versa. However, 

such combination requires careful design specifications which should recognize the 

temperature limits achievable by refrigeration.  

Mehrpooya et al. [112] proposed a new process configuration for recovery of 

hydrocarbon liquids from natural gas. The refrigeration required in this configuration 

is achieved by a self-refrigeration system, which is open-closed cycle. The authors 

have pointed out the most important characteristic of the proposed configuration. 
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Accordingly, high performance of multi-stream heat exchangers, high recovery levels 

of the hydrocarbon liquids and low required compression power. The authors have 

also investigated for various feed composition and argued that the process can work 

efficiently with different feeds. Furthermore, in order to analyze the need of external 

refrigeration by a close or open cycle related to the composition of the inlet gas, 

another configuration with external refrigeration has been designed. In fact, it may be 

possible to overcome the variation of feed composition by employing different 

process scheme or configuration. However, from operational aspect, the 

implementation such process scheme has to be considered carefully. In addition, it 

should also be studied for the main parameters which can significantly affect the plant 

performance. Furthermore, such types of configuration may also require additional 

equipment to be installed, which may also increases the capital cost of the plant. Other 

related works on process scheme options can be found in the works of Campbell and 

Wilkinson [113], Wilkinson and Hudson [114], Pitman et al. [115], Lee et al. [116, 

117], Hudson et al. [118],  and Jibril et al. [10]. 

2.2.2 Gas plant optimizations algorithms 

While most of the previous works focus to improve the overall plant performance 

using various process schemes, there were also some efforts put to overcome those 

problems using different optimization techniques. During the 1980‟s, many 

optimization projects were implemented successfully in non-gas processing industries 

such as Rhemann et al. [119], Sourander et al. [120] and White [121]. These projects 

simulated a variety of processes using correlation-based models with the objective to 

reduce computational time. Early plant optimization techniques reduced large 

problems into a series of smaller and more manageable problems that were solved 

using graphical or slide techniques [122]. As computer speed increased, the trend 

shifted to using large models based upon the fundamental underlying chemical and 

physical phenomena to predict the plant performance [123].  

In gas processing plant, different optimization approaches have also been 

implemented since 1985. The different types optimization algorithms used in gas 

processing plant can be categorized into seven. These are statistical method, equation-
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based method, model predictive control, sequential modular simulation technique, 

simulator response modeling technique and Genetic algorithm, and Taguchi method. 

A comprehensive review of these approaches has been presented below. 

2.2.2.1 Statistical method  

In statistical method, a large quantity of plant data are usually employed for plant 

optimization, inventory management, advanced process control and regulatory control 

purposes. Sometimes, an adaptation of factorial statistics is used to analyze data and 

compute a set of operating parameters based on the variance from the controlled 

sampling set [124]. Later, the controlled samples set are used to reference economic 

conditions and determine the current plant profitability. The technique includes also 

both primary and cross term interactions in the variance calculations. Based on this, 

the factorial approach is capable of evaluating the dependencies and 

interdependencies parameters. 

The advantage of statistical approach is that it can adapt and build with the history 

database [122]. However, difficulties may arise in distinguishing interactive effects 

between control variables and the fact that majority of the plant data also may appear 

within a narrow range of operating point. Furthermore, it may be difficult also on 

screening large sets of data to identify measurement errors and unsteady state 

operations. 

2.2.2.2 Equation based method 

In case of equation based approach, the process models which represent the 

fundamental chemical and physical phenomena of thermodynamics and unit 

operations is rearranged with the plant economics as follows:  

                                                        0)( YH                                                       (2-1) 

In the above equation, H is an m dimensional vector of equations, while Y is an 

n  dimensional vector of variable. It should be noted that during optimization nm  . 
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Equation (2.1) can be alternatively expressed using the known general mass balance 

equation as follows: 

    0 naccumlatio  nconsumptio  generation- in flow mass - out flow mass     (2-2) 

Equation (2.2) can be solved using Newton‟s method, which is usually used for 

solution of equation-based models [123, 125]. Accordingly, a first order Taylor‟s 

series expansion is developed around the current value of Y and the resulting linear 

system is solved as: 

                                        nnsnn YHJYY 1

1



                                                 (2-2) 

where nY  is the current value of Y , 1nY is the new value of Y , and nJ  is the 

Jacobian matrix of the first derivatives of the function H with respect to the variable 

Y evaluated at nY . The parameter s  is the line search parameter. Equation based 

approach may have several advantages. One of the unique advantageous of this 

method is that the ability to solve the entire system of process equations at one time 

by eliminating the need for repeated convergence loops. The other advantage is that 

its high accuracy and capable of representing any process or economic scenario. 

However, the main disadvantage is the complexity associated with large scale 

optimization problem in which the iteration may take longer time and may not give 

also an optimal solution.  Some of the works have been discussed below. 

Wang [126] presented the application of equation based approach in which a 

systematic search is carried out on optimum processing conditions for a turbo-

expansion plant. The simulation result showed that a combination of turbo-expansion 

and refrigeration leads to minimum energy requirements. Moreover, the author argued 

that the processing should be carried out at highest practical pressure. However, 

working at high pressure reduces the expansion ratio in the expander and results the 

temperature profile to rise in the de-methanizer column by making the heat integration 

to be difficult. In addition, the definition of the proper process scheme requires a 

detailed study for each particular case. 

In another work, Bandoni et al. [17] simplify the selection process alternatives for 

extracting ethane and NGL from natural gas based on energy analysis over the cold 
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section of a gas processing plant. Accordingly, a large number of variables 

characterize each particular ethane and NGL recovery problem. Some of the key 

design variables are: inlet pressure, residual gas pressure, liquid gaseous state of the 

products, recovery levels, feed flow rate, feed composition and average ambient 

temperature. The simulation of the entire plant was carried out using SIPREQ 

(process simulator owned by the plant) and the Soave-Redlich-Kwong (SRK) 

equation of state has been applied for the calculation of thermodynamic properties. 

However, this may raise a question on the capabilities of the process simulator used. 

For a reliable simulation, the process simulator should enable the user good flexibility 

in order to vary the different independent parameters and observe their effects of on 

the dependent parameters. Process simulator such as, HYSYS and ASPEN PLUS 

offers a high degree of flexibility since they have multiple ways to accomplish 

specific tasks. Furthermore, the selection of the fluid package is also another factor 

which highly contributes on the results of the entire simulation. For instance, effects 

of pressure and temperature may drastically alter the accuracy of the simulation. 

However, HYSYS can quickly view and change the particular parameter associated 

with any of the property package.  

Gomes and Wolf-Maciel [22] developed a methodology to make a simulation to 

be possible to reproduce and optimize the operating conditions of natural gas 

processing unit. The unit process used was refrigerated absorption, which is studied 

for its energetic optimization and the reduction of absorption oil molecular weight. 

The simulation was built with the help of commercial software HYSIM [127]. The 

methodology developed was based up on O‟Connell correlation [128] which helps to 

incorporate column stage efficiencies and to bring near the column internal flows and 

temperatures to the real values. Thus using optimization, the authors proposed to 

reduce the molecular weight of the absorption oil to approach to the molecular weight 

of natural gasoline (C5+). The possible reduction of the fuel gas was found to be 

30.7% and 5.8% savings in total power consumption. It was also argued that using 

Pinch technology it is possible to economize fuel gas consumption by 16.4%.  

However, the use of oil absorption may not successfully recover the required ethane 

and propane amounts and it is one of the early technologies used before. In addition, 
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using the empirical O‟Connell correlations requires a repetitive iteration in order to 

calculate the tower efficiency. 

2.2.2.3 Model predictive control 

The application of computer-based multivariable control was first applied to natural 

gas processing plant by Cutler and Ramaker [129]. Perino and Moran [130] has also 

discussed the most popular multivariable control approaches based on dynamic linear 

models, matrix mathematics and linear programming. The method developed 

incorporates the dynamic behavioral models of the plant based upon plant reactions to 

a series of step or impulse perturbations of significant control variables. This was 

achieved by setting all the process controlled variables to a particular value and 

allowing the plant to reach steady state. After the steady state condition has been 

achieved, one of the control variables at a time is perturbed and the output response is 

recorded as a function of time. 

Most of the time, model predictive control methods include economics on three 

levels (lowest, intermediate and top). The lowest economic model uses only linear 

economic terms with respect to the manipulated variables in the objective function. 

The objective function is also constrained with maximum and minimum value of the 

controlled and manipulated variables. Thus, the technique may give the multivariable 

controller a high degree of robustness and permits the multivariable controllers to 

handle a large combination of process conditions. It also provides the economic 

solution when the feed costs, utility costs, and product flow rates are known [122, 

131]. The intermediate level of economic modeling rests up on top of the lower level 

based up on reduced order process modeling and reduced-order economics. This level 

of modeling may have nonlinear parameters. As a result, it is slightly more 

sophisticated than linear equations compared to the lower level. However, it still 

retains the simplicity, speed and robustness of reduced order model. The top level of 

economic modeling resides above all the other levels and is based upon rigorous and 

first-principles modeling of both the process and economics. 
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Some of the drawbacks of the first-principle model include difficulties associated 

with equation-based models, such as poor convergence, slow execution and 

distinguishing infeasible or trivial solutions. In addition, plants with simple economics 

can realize the majority of the optimization benefits using only a low level economic 

modeling. It is obvious that gas plant with complex economic conditions may receive 

increased revenue with each level modeling. However, the increased revenue is offset 

by the rising implementation and software costs due to the complexity of the model 

and by other unexpected problems associated with the solution of more difficult 

problems. 

2.2.2.4 Sequential modular simulation technique 

The sequential modular simulation technique uses first principles modeling approach 

to predict the behavior of the process units. It combines the material and energy 

balances, complex thermodynamic relationships between components, and equipment 

specific information in order to predict plant performance. The method begins from 

the plant inlet and follows the material flows throughout the plant in such a way that 

when a unit operation is encountered, the sequential modular approach simulates its 

performance and predicts the conditions of the stream(s) leaving the unit. This 

procedure continues until the entire plant is simulated. 

Economic optimization using sequential modular simulation techniques provides 

advantages of high model accuracy and flexibility for extrapolating to new scenarios. 

The main advantage of this method over equation based approach is that it can avoid 

the problems associated with solving large systems. In addition, caution must be taken 

with online-steady-state simulation models since it has got convergence problems. As 

a result, it may not yield a sensible answer. Furthermore, operating in the gas 

processor‟s time frame of a few minutes requires steady state operation to be reached 

and adding considerable expense as well as complexity [130]. Some of the works 

which uses this optimization algorithm have been presented below (most of the works 

have been made by Diaz et al. [9, 19-21]. 
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In the works of Diaz et al. [19], mixed integer nonlinear programming (MINLP) 

model was used for debottlenecking problem in an ethane extraction plant from 

natural gas. The plant is based on a turbo-expansion process at cryogenic 

temperatures. Accordingly, the low temperatures associated to the process require 

proper consideration of CO2 contents in natural gas. Equipment capacities and the 

conditions of CO2 precipitation in the demethanizer are handled as constraints for the 

optimization problem, while the main continuous optimization variables are directly 

related to actual plant‟s manipulated variables. The optimization program used was an 

extension of the outer approximation algorithm [132, 133] to directly interface a 

simulator. They found out that ethane recovery can be increased from 80% to 92% in 

the structural and operative optimum. The algorithm they used normally requires 

successive solutions of NLP sub-problems followed by MILP problems. However, the 

feasible region and the objective function for a maximization problem are 

overestimated. Even though the algorithm guarantees convergence to global optimum 

for convex problem, outer approximations may cut off parts of the feasible region and 

converge to locally optimal solutions for non-convex problems.  

Some improvements have been made also by Diaz et al. [20]. The authors have 

extended their previous model Diaz et al. [19] to rigorously represent the compression 

and separation areas. In the improved work, a superstructure model is proposed which 

includes the cryogenic sector of turbo-expansion processes. The model was 

formulated as MINLP problem where continuous optimization variables are related to 

operating conditions and binary variables represent discrete decisions. The plant 

mathematical model constitute the set of nonlinear equation and solved using „‟ad-

hoc‟‟ simulator. The process specifications and bounds on equipment capacities were 

handled as nonlinear constraints. Unlike their previous work [19] which mainly 

focuses on the cryogenic sector to maximize production, a rigorous simulation model 

for turbo-expander together with the introduction of new optimization and process 

variables has been presented. Even if they used the algorithm for a real plant 

application and reached convergence in small number of iteration, it still has go a 

limitation to achieve global optimum convergence for non-convex problem. 

In a later work, Diaz et al. [21] presented a strategy for process configuration 

design and debottlenecking of natural gas processing plant based on turbo-expansion. 
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The approach they used combines a rigorous process simulation model for the 

cryogenic sector and a mixed-integer nonlinear programming (MINLP) optimization 

methodology that embeds different expansion alternatives within a superstructure. A 

wide range of natural gas mixtures with 6-25% of condensable components (C5+) has 

been studied in order to determine the optimal plant topology and operating 

parameters under different process conditions. The inlet feed gases by varying CO2 

content are also be analyzed to evaluate the impact on plant design and operation. 

Accordingly, they stated that proper design and operating conditions for different inlet 

feed compositions can be automatically determined by means of the proposed design 

strategy. The implementation of the outer approximation algorithms performs better 

than the previous algorithm especially when the current operating point is selected as 

initial point for the MINLP problem. At this time, the first MILP problem of the outer 

approximation algorithm already determines the best configuration and the entire 

MINLP problem converges in two major iterations. It should be highlighted that with 

the limitation of the outer approximation, optimization algorithm built with rigorous 

simulations packages may also have solution difficulty when the plant conditions 

changes automatically.  

In their next work, Diaz et al. [9] addressed a flexibility study on natural gas 

processing plant through the integration of a process simulator to a “worst-case” 

flexibility strategy. The plant consists of a gas sub-cooled turbo-expansion design, 

which is suitable for working in dual operation mode. The two modes of operations 

are ethane production or ethane rejection for propane production. Four uncertain 

parameters comprising feed flow rate, condensable hydrocarbons content, carbon 

dioxide content, and ambient temperature based on the impact which brings to the 

process operating conditions. The authors assumed that well-defined upper, lower and 

nominal values for the uncertain parameters are available.  

The solution strategy in Diaz et al. [9] comprises of two-level of optimizations. 

The first level is the outer optimization where a fixed value of the uncertain 

parameters usually assigned to nominal or average value. The second level is the inner 

optimization which assumes the optimization variables to be fixed at the optimal 

value of the outer level optimization. In the inner optimization level, the largest 

violation of constraint is obtained by maximizing each single inequality constraint 
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over the uncertain parameters. Thus, the constraints that are violated at this level are 

added as a new constraint at the outer level problem, and the sequence of outer and 

inner sub-problems is repeated in an iterative way. The algorithm stops when no 

constraint violation is determined at the inner level, and the current solution of the 

previous outer loop represents a point that remains feasible if the uncertain parameter 

realization lies inside the specified bounds. In terms of performance, the algorithm is 

robust but requires large computational time. The computational time may be reduced 

to great extent by using KS aggregation function [134]. However, the problem needs 

to be solved several times. Moreover, fixing the uncertain parameter at their nominal 

value may result to aggressive decision. As a result, there will be a high possibility for 

violation of constraint to occur.    

2.2.2.5 Simulator response surface modeling technique 

Response surface modeling technique explores the relationships between several 

explanatory variables and one or more response variables. Several statistical designs 

are available to minimize the number of data points required to solve models of a 

given order. Response surface modeling techniques are usually preferred to identify 

the detailed dependence of different factors on a response using a full quadratic 

model. Accordingly, the full quadratic model for two factors 1x and 2x  can be 

represented as:                                      

             errorxxxxxxResponse 3210  2

25

2

142121                       (2-4) 

where  represents constants and x  is a continuous optimization variable. This 

modeling technique has been used by Bullin [122] for gas processing plant 

optimization by correlating the key process variables with the residue composition 

using a rigorous process simulator. Accordingly, the two types of modeling designs 

which are effective for residue stream modeling are: central composite designs and 

Box-Behnken designs as shown in Fig. 2.6 and 2.7.  
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 Fig 2.6: Three factor inscribed central composite design [122] 

According to the significant adjustable process variables, one of the response 

modeling designs is selected. A central composite design is selected if the plant 

operation of the adjustable variables is near the corners of the constraints on normal 

operation. The box-Behnken design is chosen if the process variables are 

predominantly in the middle of normal operating ranges. 

 

Fig 2.7: Three factor box-Behnken design [122] 

Upon selection of the modeling design, rigorous simulation of the plant is 

performed for each set of the process variables. Parameters are suggested by response 

surface modeling design. The mole fraction of carbon dioxide, ethane, and propane in 

the residue stream are the desired outputs of the simulation run. The simulation results 

are correlated to relate the mole fractions to the process using coefficient of multiple 
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determination of 2R . The value of 2R is always increases with the additions of 

coefficients.  However, for a given number of variables, the 2R  statistic can identify 

the best fit. The adjusted 2R value is related to the standard 2R  as follows: 
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where dn is the number of data points and mp is the number of parameter in the 

model. The adjusted 2R value is equivalent to searching for the model with lowest 

mean square error. Even though the methodology developed by Bullin [122] yields a 

fast and reliable model of gas processing plant by maintaining simplicity, small errors 

are incorporated into the process model because of the absence of purely rigorous 

model. Furthermore, the process model also requires a moderate amount of work 

initially for model creation and verification. 

2.2.2.6 Metaheurstic algorithms  

Metaheurstic algorithms are based on nature-inspired or bio-inspired since the 

algorithms are developed based on the successful evolutionary behavior of natural 

systems [135]. Modern metaheurstic algorithms used in engineering application 

includes genetic algorithms (GA), simulated annealing (SA), particle swarm 

optimization (PSO), ant colony algorithm, bee algorithm, tabu search (TS), harmony 

search (HS), firefly algorithm (FA) and many others. Some of the optimization 

algorithms among these have also been applied for gas processing plant. These works 

are discussed below. 

The genetic algorithm is based on the process of Darwin‟s theory of evolution. By 

starting with a set of potential solutions and changing them during several iterations, 

the GA hopes to converge on the most „fit‟ solution. The process begins with a set of 

potential solutions or chromosomes (usually in the form of bit strings) that are 

randomly generated or selected. The entire set of these chromosomes comprises a 

population. The chromosomes evolve during several iterations or generations. New 
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generations or offspring are generated using techniques such as crossover and 

mutation.  

Mehrpooya et al. [136] applied the genetic algorithm method to perform a 

parametric optimization for NGL recovery plant. Accordingly, they determined the 

optimum operating conditions, in which the objective function was based on cost 

analysis. In addition, different turbo-expansion processes were analyzed and the best 

flow sheet was selected based on capital analysis and operating limitations. The 

authors found that the best revamping alternative was the turbo-expander exchanger 

process, which was selected among external refrigeration, Joule-Thompson 

expansion, and absorption processes. The profit for the optimum solution has 

increased by 28%. The GA developed uses HYSYS simulation program to evaluate 

the objective function. The MATLAB program is also linked with HYSYS for 

optimization purpose as shown in Fig. 2.8. During the optimization process, the data 

switch between these two softwares (HYSYS and MATLAB). Eventually, the 

information is transferred to the GA. Once, the ranges of values of the independent 

variables are defined, the values of parameters of the genetic algorithm were varied to 

achieve optimum fitness value or to verify to a good approximation. Consequently, 

the value obtained is a global maximum in the defined fields of variables. 
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Fig 2.8: Implemented architecture GA algorithm [133] 
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The advantage of GA is that it works well during global optimization especially 

with poorly behaved objective functions such as those with discontinuous or multiple 

extreme points. The disadvantages of GA includes computational problem in which it 

talks longer time by comparing the results to get the best one. In addition, it is also 

difficult to predict the required number of generations for obtaining a solution within 

a certain level of accuracy. This may result to an excessive computational burden. 

Other related works can also be found in Wang et al. [137, 138] and Jang et al.  [139]. 

The other metaheurstic approach which is recently applied to GPP is tabu search 

(TS). Tabu search uses a local search procedure to iteratively move from one solution 

to another in the local area until some stopping criteria has been satisfied. Hence, it 

modifies the local structure of each solution as the search progresses. The works by 

Aspelund et al. [140] used a tabu search technique together with the Nelder-Mead 

Downhill simplex (NMDS) method. The authors argued that the local search usually 

converges faster to the best solution in the area when the TS is used with NMDS than 

by itself. The developed approach has been applied to find the total refrigerant flow 

rate, composition, refrigerant suction and condenser pressures that minimize the 

energy requirements of a Prico process (a simple LNG process).  

The optimization tool used consists of a combined TS and NMDS which are 

connected to a process simulator Aspen HYSYS via Microsoft Excel using Visual 

basic for applications (VBA). It is observed that the majority of the time spent during 

computation is in running the simulation compared to running the search algorithm. 

Hence, the Visual basic (VBA) is very important in terms of the surrounding layer 

since it can provide the necessary means to get access to the component object model 

(COM) functionality of HYSYS. The Microsoft Excel is used in such a way that it can 

include the input data, the TS and NMDS settings and numerical as well as graphical 

results. The VBA routine consists of the HYSYS simulation and the error handling 

which helps to calculate the objective value. On each cycle run, all the corresponding 

values are given to HYSYS and this continues until it converges. Later, some of the 

calculated values are retrieved and the feasibility status is checked to utilize the 

information for obtaining a single objective value.   
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The advantage of TS relative to other metaheurstic approaches such as GA and 

SA is that it can escape the local minima. The GA and SA depend on random 

numbers to go from one local minimum to another. However, the TS uses history or 

memory for such kind of moves and hence can be considered as a learning process. 

One of the shortcomings of this approach is that the algorithm does not guarantee to 

find optimum solution. This is due to the fact that the search uses only one solution 

which can easily miss some promising areas in the search space, and hence a larger 

set of parallel solutions does not exchange information [141]. 

2.2.2.7 Taguchi method   

Taguchi method is a systematic parametric design approach used for optimization of 

various parameters with respect to performance, quality and cost. In most recent 

works, it is commonly used for design of experiment, signal-to-noise ratio (SNR), 

analysis of means (ANOM) and analysis of variance (ANOVA) for accomplishing 

different objectives such as to identify and rate optimization variables under various 

disturbances. In addition, it is also used to determine optimum configuration of 

optimization and disturbance variables. Furthermore, it can also be used to estimate 

and validate the maximum profit with the specified constraints [142, 143]. The most 

recent work applied to a refrigerated gas plant (RGP) has been discussed below. 

Yusoff et al. [143] presented a systematical procedure for selecting optimization 

variables in a refrigerated gas plant using Taguchi method. Accordingly, a dynamic 

RGP model has been developed under HYSYS environment, which can be used as a 

test bed. Based on this, nine variables with three levels each are employed for 

optimizing RGP profit. The optimization variables are selected due to their 

significance as manipulated variables to control the process. The optimal 

configuration of the optimization and manipulated variables were then validated. The 

results obtained from HYSYS simulations shows a good agreement with analysis of 

means (ANOM).  

The advantage of Taguchi method is that it can allow for analysis of many 

different parameters without prohibiting a large number of experimentation.  Thus, 



 

45 

 

the key parameters that have the most effect on the performance characteristic value 

can be identified. As a result, further experimentation on those variables can be 

performed and those parameters which have little effect can be ignored [144]. The 

main disadvantage of Taguchi method is that the results obtained from 

experimentation are relative. Hence, it does not exactly signify which parameter has 

the highest effect on the performance characteristic value. Taguchi method has also 

been criticized in literatures for its difficulty to describe interactions between 

parameters. In addition, it may be applied at the early stage of process development, 

but after the design variables are specified, it will be less cost effective to use it. 

2.3 Summary 

As it has been discussed in this chapter, uncertainty is an inherent characteristic of 

any chemical process plant. However, handling of such uncertainties especially in the 

presence of operational constraints using more advanced approaches have not been 

addressed well. Thus, uncertainty is usually considered as the main bottleneck in 

applying optimization techniques for a real chemical process plant.   

A number of different process schemes in gas process plant have been employed 

in order to tangle the variation of main process parameters such as feed composition 

and flow rates. Based on this, there have been a number of significant achievements 

made in improving the overall plant efficiency. However, handling the variation in 

process condition by altering different process schemes may not be preferred as the 

best option to overcome those uncertainties. This is due to some of the process 

scheme options may require the plant to be shut down for revamping stage. In 

addition, it may also require additional equipments to be installed, which also 

increases the capital cost of the plant. 

The optimization algorithms developed in gas processing plant mostly based on 

deterministic approach as shown in Table 2.1, which mainly targets the economic 

objective function rather than considering the uncertainty effect. However, question 

might be raised also about the operability and reliability of the process which are 

more crucial than the economic objective function. Moreover, the process engineers 
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need to control the whole plant by implementing a systematic approach to handle any 

variations that arise from both external and internal factors. Thus, implementing such 

a solution technique substantially helps to avoid any conservative and aggressive 

decision for the plant performance. 

Table 2.1: Classification of all gas plant optimization algorithms 

Gas plant optimization algorithm types Optimization classification

Statistical method Deterministic programming

Equation-based method Deterministic programming

Model predictive control Deterministic programming

Sequential modular simulation technique Deterministic Programming /“worst case”/ 

Simulator response modeling technique Deterministic Programming

Genetic algorithm Stochastic Programming

Taguchi method                              Deterministic Programming

 

 



  

CHAPTER 3 

DEVELOPMENT OF CHANCE-CONSTRAINED OPTIMIZATION METHOD 

FOR GPP 

This chapter presents a detailed discussion of the solution method proposed for gas 

processing plant optimization. The chapter starts by defining some of the preliminary 

terms in chance constrained optimizations. Later, identifying and representing all the 

inflows and outflows in a gas processing plant. Based on this, a deterministic 

formulation is initially established as a basis. The corresponding probabilistic model 

is then formulated by incorporating the stochastic formulation of the uncertain 

variables. The developed probabilistic model is then relaxed to their equivalent 

deterministic form so as to be solved with the available commercial optimization 

routines. Finally, a summary of the developed approach is provided at the end of the 

chapter.  

3.1 Preliminary terms 

The term chance-constrained or probabilistic programming represents optimization of 

a function subject to certain conditions where at least one is formulated so that a 

condition, involving a random variable, should hold with a prescribed probability 

[52]. The generic representation of an optimization problem under uncertainty can be 

given as: 

 ,,,min xwsf   

                                      Subject to 

  0,,, xwsh  

  0,,, xwsg  

                                                  maxmin xxx 
                                                (3-1)
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where the term f  represents for the objective function, which is a performance 

criterion to be optimized.  The expressions   ,,, xws  represent for differential 

state, constrained output, optimization and uncertain variables, respectively. The 

vectors h  and g  represent for the equality model equation and inequality constraints, 

respectively. minx  and maxx  are the lower and upper bounds for the optimization 

variable, respectively. In order to convert the above optimization problem in to a 

general chance constrained problem, it requires a certain steps. Based on equation 

(3.1), the inequality constraint g  can be described using a user-predefined probability 

level or confidence level  as: 

                                             0,Pr xg                                                      (3-2) 

where Pr  represent the probability operator. The probability operator Pr  defines 

the reliability of complying with the inequality constraint g . Here, x and   are the 

decision and uncertain variables, respectively. The value of  is in the range 

of 10  . It is possible to choose different levels of   and make a compromise 

between the objective function value and the constraints. For the output variable w , it 

is usually a common practice in engineering to restrict using inequality constraint 

between its maximum and minimum value as: 

                             
maxmin

jj www  ,         Jj ,...,1                                           (3-3) 

where 
min

jw  and 
max

jw  represent the lower and upper bounds for the output 

variable w , respectively. Such constraints are also employed to ensure safe production 

operation. Thus, the output constraints in equation (3.3) can be converted to the 

corresponding single and joint chance constraints as follows:  

                                    jjjj wxww   maxmin ,Pr  ,   Jj ,...,1                          (3-4)       

                                       Jjwxww jj ,...,1 , ,Pr maxmin
                               (3-5)  

In equation (3.4) above, the chance constraint represent single probabilities of 

ensuring the inequality output variable w . In this constraint, different confidence 
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levels can be assigned for the different output variable w based on the requirement. 

For the joint chance constraint shown in equation (3.5), all the inequalities constraints 

are included in the probability computation and satisfied simultaneously with a certain 

confidence or probability level. For evaluating the objective function, the expected 

value and the variance of the objective function have been used [24, 145]: 

                                ,,,,min wsfVarwsf                                                  (3-6) 

where  and Var  are operators of expectation and variation, respectively. The 

letter   represents a weight factor between the two terms. Based on this, the 

objective function in equation (3.6) is converted to a deterministic function using the 

two operators andVar . Thus, the general single chance constrained problem can be 

represented as: 

      ,,,,min wsfVarwsf   

                           Subject to 

  0,,, xwsh  

   jjjj wxww   maxmin ,Pr , Jj ,...,1  

                                                   maxmin xxx                                                         (3-7) 

Similarly, the general joint chance constrained problem representation is then 

given as: 

      ,,,,min wsfVarwsf   

                               Subject to 

  0,,, xwsh  

     Jjwxww jj ,...,1 , ,Pr maxmin
 

                                              maxmin xxx                                                              (3-8) 

The two types of chance constraints described in equation (3.4) and (3.5) are 

usually used to classify the different chance constrained problems that appear in 
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process system engineering [24].  The classification is based on the properties of the 

process, uncertainty and constraints. Initial letters can be used to denote each 

problem. For example, Linear Steady-state process with Constant uncertainties under 

Single chance constraint (LSCS). Alternatively, for a linear Dynamic process with 

Time- dependent uncertainties under Joint chance constraints (LDTJ). Based on this, 

the different linear chance constrained problems have been shown in Fig. 3.1.     

Linear chance constraint problems

Processes

Steady state (S)                  Dynamic (D)

Uncertainty

Constant (C)                  Time-dependent (T)

Constraints

Single (S)                  Joint (J)

 

 Fig 3.1: Classification of linear chance constrained problems 

3.2 Inflows and outflows 

A gas processing plant (GPP) produces outflows by processing some inflows as 

shown in Fig. 3.2. On the plant inlet side, the inflows consist of certain raw materials 

R  as feed streams which may be brought from upstream suppliers. In addition, the 

inflow also consists of certain utilities U which may be supplied from the nearby 

cogeneration plant such as, electrical power, heating steam and cooling water. Some 

of the inflows may be supplied as much as demanded by the GPP. In this case, the 

inflows are certain and can be decided. However, the supply of other inflows may be 
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fluctuating due to some degree of uncertainty. These uncertain raw material and 

utilities inflows are represented as R̂ andÛ , respectively. 

GPP

Certain raw material and 

utility flows to be 

decided

Certain material and                      

energy product flows 

to be decided

Uncertain material and 

energy product flows 

Uncertain raw material 

and utility flows 

R

U

R̂

Û

P

Q

P̂

Q̂

 

Fig  3.2: A schematic representation for inflows and outflows of GPP 

On the plant outlet side, the amount of certain material product P and energy 

products Q  outflows can be treated as decision variables. Additionally, the amount of 

uncertain material P̂ and energy products Q̂ outflows may depend on the random 

demands of the customers. As a result, the demands of those products will become 

unknown in the future time period. Thus, the material and energy flows are the basic 

factors that determine the performance of the plant. Moreover, the analysis of both 

material and energy balances significantly help to optimize the consumption of raw 

material and energy by pursuing systematically internal flows in the production 

process. Furthermore, Li et al. [27] argued that a linear mass and energy balance is 

usually preferred in industrial practice in order to model the internal mass and energy 

flows. Hence, it is important first to model the inflows and outflows from the plant. 

3.3 Modeling material inflow and outflow 

The feeds entering to a gas processing plant involve multiple inlet streams that are 

combined and processed to produce the desired products as shown in Fig. 3.3. The 

separation of the raw gas into different products is based on the difference in boiling 

point. Hence, during separations, some of the components are not affected by the 

variation in process conditions.  For instance, the separation in deethanizer column is 

mainly between ethane and propane. The other components such as methane and 
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carbon dioxide may exist at some quantities. However, butanes and heavier 

hydrocarbons possess a small quantity. Based on this, the overall material balance for 

the whole plant can be reduced into a linear form using the volatility of components 

and product specifications [23].  
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Fig 3.3: A schematic representation for material inflows and outflows of GPP 

During steady state operation, the flow rate of component k into the process as a 

raw material stream is equal to the amount of component k leaving in the product 

streams: 

                               m

M

m

mki

I

i

ikl

L

l

lkj

J

j

jk RbRbPaPa ˆˆˆˆ

1

,

1

,

1

,

1

, 


                                 (3-9) 

In equation (3-9), k is the index for components in the raw materials and products. 

The indices i and j  represent for certain raw material and product flows to be 

decided, respectively. m and l are indices for uncertain raw material and product 

flows, respectively. The terms iik Rb ,  and mmk Rb ˆˆ
,  are the mass flow rate of component  

k  for certain and uncertain inlet streams, respectively. Similarly, jjk Pa , and llk Pa ˆˆ
, are 

the mass flow rate of component k  for certain and uncertain out streams, respectively. 

The feed and product streams in gas processing plant are expressed in terms of the 

following components C1, C2, C3, C4s, C5+, N2 and CO2. The material balance 

equations for these main seven components are shown below: 
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For 1k , C1 or methane balance: 

      
    

    

indexm

MM

indexi

II

indexl

LL

indexj

JJ

RbRbRbRbRbRbRbRb

PaPaPaPaPaPaPaPa









ˆˆ,...,ˆˆˆˆˆˆ,...,

ˆˆ,...,ˆˆˆˆˆˆ,...,

,133,122,111,1,133,122,111,1

,133,122,111,1,133,122,111,1

         (3-10)    

For 2k , C2 or ethane balance: 

      
    

    

indexm

MM

indexi

II

indexl

LL

indexj

JJ

RbRbRbRbRbRbRbRb

PaPaPaPaPaPaPaPa









ˆˆ,...,ˆˆˆˆˆˆ,...,

ˆˆ,...,ˆˆˆˆˆˆ,...,

,233,222,211,2,233,222,211,2

,233,222,211,2,233,222,211,2

     (3-11) 

For 3k , C3 or propane balance: 

      
    

    

indexm

MM

indexi

II

indexl

LL

indexj

JJ

RbRbRbRbRbRbRbRb

PaPaPaPaPaPaPaPa









ˆˆ,...,ˆˆˆˆˆˆ,...,

ˆˆ,...,ˆˆˆˆˆˆ,...,

,333,322,311,3,333,322,311,3

,333,322,311,3,333,322,311,3

      (3-12) 

For 4k , C4s or butanes balance: 

          

    

    

indexm

MM

indexi

II

indexl

LL

indexj

JJ

RbRbRbRbRbRbRbRb

PaPaPaPaPaPaPaPa









ˆˆ,...,ˆˆˆˆˆˆ,...,

ˆˆ,...,ˆˆˆˆˆˆ,...,

,433,422,411,4,433,422,411,4

,433,422,411,4,433,422,411,4

  (3-13) 

For 5k , C5+ or heavier hydrocarbons balance: 

    
    

    

indexm

MM

indexi

II

indexl

LL

indexj

JJ

RbRbRbRbRbRbRbRb

PaPaPaPaPaPaPaPa









ˆˆ,...,ˆˆˆˆˆˆ,...,

ˆˆ,...,ˆˆˆˆˆˆ,...,

,533,522,511,5,533,522,511,5

,533,522,511,5,533,522,511,5

        (3-14) 
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For 6k , N2 or nitrogen balance: 

         

    

    

indexm

MM

indexi

II

indexl

LL

indexj

JJ

RbRbRbRbRbRbRbRb

PaPaPaPaPaPaPaPa









ˆˆ,...,ˆˆˆˆˆˆ,...,

ˆˆ,...,ˆˆˆˆˆˆ,...,

,633,622,611,6,633,622,611,6

,633,622,611,6,633,622,611,6

  (3-15) 

For 7k , CO2 or carbon dioxide balance: 

      
    

    

indexm

MM

indexi

II

indexl

LL

indexj

JJ

RbRbRbRbRbRbRbRb

PaPaPaPaPaPaPaPa









ˆˆ,...,ˆˆˆˆˆˆ,...,

ˆˆ,...,ˆˆˆˆˆˆ,...,

,733,722,711,7,733,722,711,7

,733,722,711,7,733,722,711,7

     (3-16) 

Thus, the steady state component material balance equations for each component 

can be represented in such a way. Here, the uncertain variables are incorporated in 

order to obtain a more robust as well as profitable production. Moreover, such kind of 

linear representation of mass flows also significantly helps for modeling and 

simulation in current industrial practice [27]. 

3.4 Modeling energy inflow and outflow 

The utility inflows to a gas processing plant and energy product outflows from the 

plant are represented in Fig. 3.4. The general energy balance equation which involves 

all energy inflows to the plant and outflows from the plant is given as: 

                       
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UUQQ                                             (3-17) 

where the prime indices 'i and 'j  represent for certain utility and energy product 

flows, which can be decided, respectively. 'm and 'l  are indices for uncertain utility 

and energy product flows, respectively.  
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Fig 3.4: A schematic representation for energy inflow and outflow of GPP 
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Fig 3.5: A typical conventional distillation column used in gas processing plant 
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Since most of the energy consumed and produced rely on the distillation columns, 

it is important first to calculate the amount of energy consumed by the columns in 

order to represent the utility and energy products flows. A conventional distillation 

column which consists of the rectifying and stripping section is shown in Fig. 3.5. The 

energy requirement for each distillation column is obtained using the Underwood 

equation [23]. Accordingly, the Underwood method calculates the minimum reflux 

ratio for a distillation column based upon constant volatility and constant mass 

overflow (CMO).  The CMO approximation is the basis for the application of the 

shortcut distillation approach in which the mass flows and relative volatility are 

assumed to be constant at each column stages. In addition to Underwood equation, 

other correlation can also be used such as Edmister, Hengstebeck-Geddes, Fenske, 

Gilliland and Kirkbride. All these shortcut distillation correlations are shown in 

Appendix A.  In order to estimate the energy consumption by a distillation column, 

the reflux ratio should be obtained. The reflux ratio is defined in the following 

equation: 

                                     
min









s

o
c

s

o
flx D

L
D

L
R                                               (3-18) 

where oL and sD represent the reflux and distillate flow rates, respectively. flxR is 

the reflux ratio and c is a constant value, usually in the range of 1.2 to 1.5. A typical 

one is to use 2.1c . However, it is usually preferred to overestimate than 

underestimate the reflux ratio. For instance, using 5.1c  gives a more sensible and 

good choice especially for optimization purpose [146]. The Underwood method 

consists of two parts. The first is to evaluate the correlating parameter   using the 

following equation: 

                                         
  

 
 


K

k kk

kF Fz
q

F

1

,

/
1


                                               (3-19) 

where  is the relative volatility of each component k . The letter 
F

q represent for 

the feed quality, which is the mass or mole fraction of the feed that is liquid. Usually 

for saturated liquid feed, the value of 
F

q is equal to one. Hence, the parameter  is 
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used for adjusting the left hand side of the equation (3-19) to be zero. Based on this, 

the minimum reflux ratio 
min

flxR is obtained using the following equation: 

                                                
  

 
 


K

k kk

sDk

flx

Da
R s

1

,min

/
1


                                  (3-20) 

Thus, the minimum reflux ratio can be used to perform an energy balance on the 

condenser. The energy balance for the condenser and reboiler gives the heat duty as a 

function of the specific enthalpy of the mixture and the vapor flow. This is shown in 

the following equations: 

                                     o

flx

flx

D

L

oD

V

oC V
R

R
hhhhq

ss
















1
                                (3-21) 

                                         N

L

NB

LV

NR Vhhhhq
tN 11 


                                       (3-22)                

where Cq and Rq  represent the heat removed in the condenser and the heat 

supplied to the reboiler, respectively. vh and Lh are the specific mass enthalpies for 

the vapor and liquid flows, respectively. The top and bottom vapor flow rates are 

represented by OV and NV , respectively. The Greek letter is for the boil up ratio. For 

the equations (3-21) and (3-22), some special forms of total condensers and partial 

reboilers can be considered. When the CMO approximation is applied, the condenser 

and reboiler duty becomes: 

                                          sflxooC DRVq 1                                                 (3-23) 

                                          tNNNR BVq                                                         (3-24) 

where sD and tB are the distillate and bottom flow rates, respectively. o and N  

are heats of vaporization evaluated at the condenser and reboiler conditions. The 

latent heat is approximated to account for the small heat effects on the condenser and 

reboiler based on CMO approximation. Thus, equation (3-21) and (3-22) are now 

replaced using equation (3-23) and (3-24), respectively.  
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The utility demand for the condenser and reboiler can be determined from the heat 

loads Cq and Rq . For instance, when cooling water is used as utility for the condenser, 

the heat load can be calculated easily from the inlet and outlet temperature. The range 

of this temperature usually lies between 30 to 50°C. However, when condensing 

steam is used to provide heating in the reboiler, there are often several pressure levels 

available which correspond to different temperatures and heats of vaporization. This 

time, the cooling and heating utilities flow are obtained from equation (3-23) and (3-

24): 

                                       o

Cp

o

Cp

C
cool V

TcTc

q
M







                                             (3-25) 

                                       N

stm

N

stm

R
heat V

HH

q
M







                                               (3-26) 

where M is the mass flow rate, T  is the saturation temperature in Kelvin and 

stmH represents the latent heat of the steam in kgkJ / .  From equation (3-25) and (3-

26), it can be seen that the heat duties and utility flows increase linearly with the 

vapor rates. Hence, it also increases linearly with the reflux and boil up ratios. Here, it 

should be noted that the energy outflow produced from the distillation column is 

actually the condenser duty. This energy can be recovered and used as heat source for 

the process or may also be exported to next door plant to generate revenue. 

The remaining plant‟s energy consumption for compressors, pump and heaters are 

either calculated based on stream flow rates or correlated with process parameters 

using equations formulated from rigorous steady state simulation. The energy transfer 

in cross-exchangers, in the LTSU section, is neglected since it is not a direct plant 

cost. In addition, the energy product from the expanders can be used as a potential 

energy option for some of the compressors.  
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3.5 Deterministic model formulation  

Deterministic model formulation largely emphasize on ensuring the feasibility of a 

solution over a given range of uncertain variable. Thus, one of the main optimization 

tasks in deterministic formulation may be to find the optimal stream flow rate that 

maximize the overall profit of the existing plant subject to a certain constraints. 

However, the optimal solutions of a deterministic programming problem may become 

infeasible even if the nominal data is slightly perturbed [147]. Moreover, Sen and 

Higle [148] reported that deterministic formulations in which uncertain variable are 

mathematically and statistically replaced by their expected values may not provide a 

feasible solution. However, developing the deterministic formulation initially helps to 

convert to the corresponding probabilistic problem. For clarity of the problem 

formulation, in the next sections, the uncertain parameters have been included in the 

deterministic formulation. Thus, the formulations for uncertainty from the plant inlet 

and outlet as well as utilities and operating conditions are presented below. 

3.5.1 Uncertain feed inflow 

In order to represent the uncertainty from the plant inlet, all the plant outlet material 

flows are considered to be decided.  Based on this, equation (3-9) can be re-defined 

as: 

                         


km

M

m

mki
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i

ikj
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jk rRbRbPa  


ˆˆ

1

,
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,

1

,    ,   K1,..., k                   (3-27) 

 where K

k  is a vector of the total uncertain feed component inflows and 


kr represent the total actual uncertain feed component flow rate which enter to the 

plant. Accordingly, the objective function from the deterministic formulation 

becomes: 
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where RC and PC are the expected price factors for certain raw material and 

product flows which can be decided, respectively. The expression RC
ˆ
 represent 

expected price factor for the uncertain raw material flow. The constraints from the 

plant material flows are described below:  

Inlet material flow distribution to the plant: 

                                            



I

i

iRR
1

,        



K

k

krR
1

ˆ                                           (3-29) 

Outlet material flow distribution from the plant: 

                                                        



J

j

jPP
1

                                                       (3-30) 

Availability of material flow constraint: 

                                      ki

I

i

ikj

J

j

jkk RbPar   
 1

,

1

, ,  K1,..., k                       (3-31) 

Total material balance: 

                                                           RRP ˆ                                                     (3-32) 

Material flow capacity restriction: 

           max,min, jjj PPP  ,    J1,..., j  ; max,min, iii RRR  ,  I1,..., i                  (3-33)      

In equation (3-31), the inequality constraint describes the resource availability of 

the total uncertain feed flows. During deterministic optimization, the expected or 

average value of the uncertain feed component flow   is usually employed. However, 

the decision from the deterministic optimization may violate the constraints by 50% 

[24]. Thus, such kinds of decision are usually referred as aggressive decision due to 

expecting a higher profit. On the other hand, the restriction for the uncertain feed 

component flow   may also be specified other than the expected value to make sure 

that there is no violation of constraint. This may also leads to a conservative decision 
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and thereby deteriorates the objective function. Such decisions are also called “worst 

case”, as discussed in the introduction section. Hence, it is important to know the 

optimum trade-off between profitability and reliability of holding the process 

constraints. This also requires studying the uncertainty effect of   to make decision 

under uncertain conditions. A similar approach can be adopted for the uncertain 

material outflow, utility inflow and energy product outflow, which are all presented in 

the following sections. 

3.5.2 Uncertain product outflow 

For representing the uncertainty from the plant outlet, all the plant inlet material flows 

are taken as a decision variable. Based on this, equation (3-9) can be re-written as: 

                         j
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ikl
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lkk PaRbPap 
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ˆˆ

 ,    K1,..., k                     (3-34) 

where K

k  is a vector of the total actual uncertain product component 

outflows and 

kp represent for the total uncertain product component flow rate which 

is produced from the plant. Thus, the objective function for the deterministic 

formulation is given as: 

                     
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Profit max                                (3-35) 

where PC
ˆ
is the expected price factor for the uncertain product flow. The 

constraints are described below. The capacity restriction defined in equation (3-33) 

remains the same: 

Inlet material flow distribution to the plant: 

                                                    



I

i

iRR
1

                                                           (3-36) 

Outlet material flow distribution from the plant: 
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ˆ                                          (3-37) 

Availability of material flow constraint: 
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ikk PaRbp   
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,

1

, ,  K1,..., k               (3-38) 

Total material balance: 

                                                           RPP  ˆ                                                     (3-39) 

3.5.3 Uncertain utility inflow  

For uncertain utility inflow, all the outflows from the plant are considered as decision 

variables. Based on this, equation (3-17) can be re-defined as: 
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where 
',MM is a vector of the total uncertain energy inflows. The subscript e  

represents index for energy flow types. 
eu  is for the total actual uncertain energy flow 

which enter to the plant. The objective function for the deterministic formulation is 

given as: 
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where uC is the expected price factor of the uncertain energy inflow. The 

constraints from the deterministic formulations are shown below:   

Inlet energy flow distribution to the plant: 
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Outlet energy flow distribution from the plant: 
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Availability of utility flow constraint: 
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Total energy balance: 

                                                           UUQ ˆ                                                    (3-45) 

Energy flow capacity restriction: 

          max,min, lll QQQ  ,   L1,..., l  ; max,min, mmm UUU  ,  M1,..., m          (3-46) 

3.5.4 Uncertain energy product outflow 

For representing the uncertain energy outflow, all the utility flows are considered as a 

decision variable. Based on this equation (3-17) can be re-written as: 
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where
',LL is a vector of the total uncertain energy outflows and q represent 

for the total actual uncertain energy product flow which is produced from the plant. 

The objective function for the deterministic formulation is given as: 
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where qC is the expected price factor for the uncertain energy outflow. The 

constraints for the deterministic formulation are given below; only the energy 

capacity restriction defined in equation (3-46) remain the same: 
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Inlet energy flow distribution to the plant: 
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Outlet energy flow distribution from the plant: 
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Availability of energy flow constraint: 
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Total energy balance: 

                                                           UQQ  ˆ                                                    (3-52) 

Thus, in such a way the deterministic formulation for all the uncertain material 

inflows and outflows as well as utility inflows and energy product outflows are 

represented. The formulation of such models significantly helps to develop the 

corresponding chance constrained model which is presented in the following section. 

3.6 Chance constrained model formulation  

The chance constrained model formulation mostly relies on deterministic model 

which is developed in the previous section. During deterministic optimization, the 

implementation of the result will violate the inequality constraint described in 

equation (3-31), (3-38), (3-44) and (3-51) with a probability of 50%. Thus, it is 

important to take the probability measurements of the uncertain variables , ,  and 

  in between 50% to 100%. The probabilistic measurement is expressed in terms of a 

unit called confidence level ( ), which is assigned by the user for each or the whole 

constraint(s). The constraints can be represented in terms of single or joint chance 

constraints as described in the following sections. 
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3.6.1 Single chance constrained 

An important instance of optimization problems with uncertain data occurs if the 

constraints depend on a stochastic parameter. In such circumstances, emphasis is 

shifted towards the reliability of a system by requiring a decision to be feasible at high 

probability level for each constraint. Thus, the higher the probability the more reliable 

is the modeled system [12]. The single chance constraint is used when some outputs 

are more critical than others. For example, considering propane and butane products, 

when the market for propane is high, while for butane is depressed, the plant may 

want to produce more amount of propane to satisfy the customer demand. As a result, 

more emphasis is given to individual constraints or single chance constraints to meet 

the required production level.  

The basic formulation for single chance constrained optimization can be 

developed from the deterministic formulation developed in Section 3.5.  Most of the 

formulations remains the same except for the constraints defined in equation (3-31), 

(3-38), (3-44) and (3-51). These constraints are defined for single chance constrained 

optimization as follows: 
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where Pr is the probability operator holding the constraints and  is the user-

defined confidence level for holding the individual constraints. Thus, in such a way 

the single chance constrained model can be formulated based on the previous 
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developed deterministic formulations. The joint chance constrained model 

formulation is presented in the next section. 

3.6.2 Joint chance constrained  

Joint chance constraints express the condition that at minimum confidence level ( ), 

certain trajectories satisfy the given constraints over the whole interval [12]. 

Basically, passing from individual probabilistic constraints to joint chance constraints 

involves a number of inequality constraints to be turned to a single inequality. As a 

result, the problem may become more complex. However, by introducing one-

dimensional uncertain variables, the joint chance constraint will hold all the individual 

constraints into one inequality constraint at certain confidence level. 

The joint chance constrained mostly used for the safe production of the planned 

operation. For example, when the market for LPG (liquefied petroleum gas) is high, 

both propane and butane products are highly required to be produced. At this time, the 

production of these two products can be held jointly at a certain confidence level to 

acquire the planned production level. For joint chance constrained formulation, most 

of the formulations from the deterministic model remain the same. However, the only 

change is on the probabilistic constraint in equation (3-31), (3-38), (3-44) and (3-51). 

These constraints are now defined as follows: 
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In order to solve both the single and joint chance constrained models, it requires 

evaluating the probabilistic constraints defined in equation (3-53) to (3-60). However, 

this needs also to relax all the probabilistic constraints to their corresponding 

equivalent deterministic form. On the other hand, the objective function in equation 

(3-28) and (3-34), (3-41) and (3-48) have now been defined as a continuous variable 

for the uncertain flow cases. However, in the recent works of Li et al. [24], the 

evaluations for such uncertain variables in the objective function have not been 

considered. The objective function was defined similar to a deterministic optimization 

approach. However, this significantly affects the economic performance of the plant 

since the cost of such uncertain variables should be included.  The relaxations of the 

probabilistic constraints defined in equation (3-53) to (3-60) are presented in the 

following section. 

3.7 Relaxed deterministic model formulation  

The relaxation of a probabilistic problem into deterministic equivalent has to be 

formulated such that the problem could be solved using the available commercial 

software routines. The chance constraints defined in equation (3-53) to (3-60) have to 

be treated carefully. These constraints can not be solved unless they are relaxed to 

their equivalent deterministic form. The relaxation starts from the probability 

computation for both single and joint chance constrained. The probability 

computation allows in quantifying the uncertain inflows and outflows using a known 

probability density function. Based on this, the probability computation for the 

uncertain variables for 
kr , 

kp , 
eu  and 

eq becomes: 
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                            ee
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In the above equations (3-61) to (3-64),  refers to the probability density 

function for the uncertain variables , ,  and  . The symbol  is the probability 

distribution function with   =1. The probability distribution of different uncertain 

variables can be different and their distribution is usually obtained in three ways [24, 

149]: (i) contractual formulation provided by suppliers and customers; (ii) statistical 

regression from previous data if a large amount of data is available; or (iii) creation 

through interpolation or extrapolation if few data are available. Usually, the normal 

distribution is used since it comprises the basic properties of the uncertain variables 

[150]. 

In many instances the uncertain variables are independent of each other as shown 

in equation (3-61) to (3-64). However, if the uncertain variables have correlations, a 

unified density function has to be formulated [24]. For example, considering the 

uncertain variable , there are times in which the demand of propane product is low 

in the market; and due to the low demand of propane in the market, the demand for 

butane product may be high. In such cases, the uncertain variables are considered to 

be correlated to each other since the market of one of the product influences the other. 

For such cases, the probability computation becomes:  
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Thus, based on equations (3-61) to (3-68), the probabilistic single chance 

constraints in equations (3-53) to (3-56) are converted in to the corresponding 

equivalent deterministic form as follows: 
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where 1  is a parameter for the inverse value of the probability distribution 

function. The inverse value 1  is a known value at the specified confidence 

levels . The relaxations of the single chance constraints result to a convex solution 

[52, 151]. This is due to the fact that for linear chance constrained problems, the input 

uncertain variable will have the same distribution with the output variable. Hence, the 

resulting problem gives a global solution. Thus, such models can be solved with the 

available commercial LP solvers. Similarly, using equations (3-61) to (3-68), the 

probabilistic joint chance constraints in equations (3-57) to (3-60) are converted into 

the corresponding equivalent form as follows: 
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The relaxation of the joint chance constrained described in equation (3-73) to (3-

76) results the model to an NLP problem. This is due to the presence of the non-linear 

term  . Thus, such kinds of models can be solved with available commercial NLP 

solvers. The relaxation for correlated uncertain variables defined in equations (3-65) 

to (3-68) becomes: 
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In equation (3-77) to (3-80), it is difficult to find an explicit solution since it 

involves multivariate integral. An integration method was presented by Li et al. [56]. 

This was initially developed by Szántai [152] based on simulation scheme for 

correlated variables with normal distribution. In order to prevent the multivariate 

integration, marginal distribution can be used in equations (3-69) to (3-76).  However, 

such kind of formulation may not reflect the real-world problem due to the 

complexity associated with the uncertain correlated variables and may lead to wrong 

solution [24]. On the other hand, the unintegrable term  . in equations (3-73) to (3-

76) needs to be evaluated carefully for the model to be solved. In the following 

sections, evaluations techniques for cumulative distribution function (cdf) based on 

computer program and numerical approximation are presented.  
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3.8 Evaluation of probability distribution function 

The probability distribution  .  is also referred as cumulative distribution function 

(cdf).  The probability computation for  kr ,  
kp ,  eu  and  eq  defined in 

equation (3-73) to (3-76) can  be alternatively expressed using a standard form.  This 

is done by converting the uncertain flows 
kr , 

kp , 
eu  and 

eq  to their corresponding 

standardized form. Accordingly, for normal distribution, the standardized form 

for 
kr , 

kp , 
eu  and 

eq  becomes: 
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where Z represent the standardized parameter. The symbols   and  represent 

mean and standard deviation, respectively. Thus, the standard normal cumulative 

distribution functions are now represented as  kZ ,  
kZ ,  eZ  and  eZ . The 

standard normal cumulative distribution function  Z  is shown in Fig. 3.6.  The 

values of  Z  is also usually available in most standard tables for some range of Z  

as shown in Appendix B. The formula used to evaluate  Z  is given as: 
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In order to evaluate   Z  using the above expression, it requires a computer 

program to be developed. For example, in GAMS programming language, there is an 

available function called errorf for evaluating the standard normal cumulative 
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distribution function [153]. However, this may not be supplied in other optimization 

routines softwares and hence the numerical representation of the function is essential 

to evaluate  Z . Moreover, developing a one-term-to-calculate  Z significantly 

helps to avoid computer programming [154]. 

 

Fig 3.6: The standard normal cumulative distribution function 

A number of mathematicians have tried to approximate the standard normal 

cumulative distribution function such as Bailey [155], Johnson [156], Chokri [157] 

and Aludatt & Alodat [154]. These approximations are described below: 
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where the coefficients in equation (3-86) are: 0a ,0.9999998582; 1a ,0.487385796; 

2a ,0.02109811045; 3a ,0.003372948927; 4a ,0.00005172897742; 5a ,0.0000856957942

.The approximations shown in equation (3-86), (3-87) and (3-88) give a high 

accuracy. However, computer program are needed to obtain their values. In addition, 

their inverse function can not be easily obtained.  Only the approximation proposed 

by Aludatt & Alodat [154] can represent  Z using a one term to calculate both the 

standard normal cumulative distribution  function and its inverse. The calculation 

involves algebraic equation followed by finding the roots of the first derivatives of 

 Z  using mathematical software to avoid a computer program code.   

3.9 Feasibility analysis  

For an efficient treatment of probabilistic constraints, it is important to study the 

property of the feasible set in which the solution lies.  Increasing the confidence level 

( ) in the probabilistic constraints shrinks the feasible set. Accordingly, the feasible 

set becomes empty starting from a critical value ( c ) which may be less than one. 

Some implemented solution techniques dealing with probabilistic constraints might 

unintentionally choose a value of  above the critical value. As a result, convergence 

may be possible by enforcing feasibility with a number of iteration. However, this 

will consume a lot of computing time due to operating on an empty constraint set 

[12]. 

On the other hand, a maximization step can be used to find the reachable 

maximum value of the confidence level. This can be done by defining the confidence 

levels as variables after relaxation and replace the objective function with summation 

of them. However, this may have sometimes a convergence problem and it may not 

give optimal solution. The simple way to find the reachable maximum value of 

confidence level is to increase it by stepwise. This can clearly help to see the 

performance both the objective function and the constraint for each stepwise 

increment. 
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The feasible region of single chance constrained is formed by half-spaces, while   

joint chance constraint is built by curvature due to the nonlinearity of the problem 

associated with this formulation. Thus, for both cases, their frame is determined by 

the value of the specified confidence level. Based on this, the whole probable 

operating region is outstretched between 0  and 1  as shown in Fig. 3.7[24]. 

1x and 2x are the decision variables. As it can be observed from the Fig. 3.7, the 50% 

solution space (s1, s2, s4, and s3) for single chance constrained problems is much wider 

than that of the 50% joint chance constrained solution space (s3, s4 and s5). Moreover, 

the joint chance constrained solution space is part of the solution space of single 

chance constrained. In other word, the joint chance constrained solution space is a 

subset of the single chance constrained solution space. 

 

 

 

 

 

 

 

 

Fig. 3.7: Probable and feasible operating region with specified confidence level 

3.10 Reliability vs profitability analysis 

The reliability of the process is defined as to how much extent that a process can be 

held so that violation of constraint is reduced by a certain level. The profitability of 

the plant is the corresponding economic performance of the plant at the specified 

reliability of the process. Thus, the relation between reliability of the process and 
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profitability of the plant can be gained by solving the optimization problem at 

different confidence level.   

The possible expected profit profiles with respect to confidence level are well 

discussed in the works of Li et al. [27] as well as Li et al. [24]. Accordingly, there are 

three types of profit profiles that were encountered when analyzing the reliability of 

the process and profitability of the plant as shown in Fig 3.8. For a slow decreasing 

profit profile (PR), such as profile PR1, point a should be chosen as the decision for 

the operating point. This is because increasing the confidence level from this point 

will lead to a considerable reduction in profit. For profit profile like PR2, it is difficult 

to determine the solution point. Thus, the decision is based on the specific 

requirement or priority between the profit and reliability of the problem. For profile 

like PR3, the optimal value is determined in the higher confidence region at point b 

since profit is not much sensitive.  

 

 

 

 

 

 

Fig 3.8: Possible profit profiles with respect to confidence level 

Thus, in such a way, the relation between reliability of the process and 

profitability of the plant are described. The following two sections give a short 

briefing about the basic principles of HYSYS and GAMS softwares which are used in 

this thesis. 

 

 

E
xp

ec
te

d 
P

ro
fi

t 

b 

a

x 

PR1 

PR2 

PR3 

Confidence level 



 

76 

 

3.11 ASPEN HYSYS process simulator 

HYSYS is a powerful engineering process simulator that has been uniquely built with 

respect to program architecture, interface design, engineering capabilities, and 

interactive operations [62]. The different components that exist in HYSYS provide an 

extremely powerful approach for steady state modeling. The comprehensive selection 

of operations and property methods significantly helps to model a wide range of 

process. In addition, the built-in property packages in HYSYS provide accurate 

thermodynamic, physical and transport property predictions for hydrocarbon, non-

hydrocarbon, petrochemical and chemical fluids. Furthermore, the inherent flexibility 

contributed through its design as well as its robustness leads to a more realistic model. 

MAIN 

FLOWSHEET

SUBFLOWSHEET

SF3

COLUMN

SUBFLOWSHEET

SF6

COLUMN

SUBFLOWSHEET

SF2

SUBFLOWSHEET

SF4

SUBFLOWSHEET

SF5

SUBFLOWSHEET

SF1

 

Fig 3.9: Hierarchical tree for simulation environment in HYSYS 

The majority of the work in HYSYS is performed at the main flowsheet 

environment. However, it is also possible to create a sub-flowsheets under the main 

environment. Fig. 3.9 shows the hierarchical tree for the main flowsheet environment 

and sub-flowsheets. In the main flowsheet, the basic tasks include installing and 

defining streams, unit operations and columns. Thus, the main flowsheet is considered 
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as a base level for the whole simulation case. One can generate any number of sub-

flowsheets in the main flowsheet. In addition, each sub-flowsheets may have also its 

own corresponding sub-flowsheets. However, there is only one main flowsheet 

environment for all the sub-flowsheet.  

If one wants to change the number of trays for a column in sub-flowsheet SF6 

shown in Fig. 3.9, it needs to enter the environment for this sub-flowsheet and make 

the changes. HYSYS then re-calculate the column. Here, it should be noted that there 

are no other sub-flowsheets below SF6. Hence, all other flowsheets remain on hold 

status when modifying this column. The changes continue until a satisfactory solution 

is obtained for SF6. After that, it needs to be returned to the main flowsheet to 

automatically calculate all the flowsheet based on the new sub-flowsheet solution. 

In order to modify the sub-flowsheet SF4, all the flowsheets remain on hold status 

except SF4 and SF5, which will be solved based on the modifications. Once, a new 

solution has been reached for SF4, the sub-flowsheet SF3 is entered which then 

resumes the calculations. When returning to the main flowsheet, all the other 

flowsheets (MAIN, SF1, SF2 and SF6) will resume calculations. If someone wants to 

move from sub-flowsheet SF4 to sub-flowsheet SF1, HYSYS automatically check the 

main flowsheet and updates all the calculations. Hence, the sub-flowsheet A will have 

the most up-to-date information. Thus, any movement to a sub-flowsheet other than 

the one shown not on the “branch” of the tree results a full recalculation by HYSYS. 

3.12 General algebraic modeling system (GAMS) 

General algebraic modeling system or GAMS is a high-level modeling system for 

mathematical programming, particularly for optimization models. It comprises of a 

language compiler called IDE (integrated development environment) and a stable of 

high-performance solvers. The IDE facilitates the selection of default solvers and also 

manages GAMS parameters on a file by file basis. GAMS can be tailored for 

complex, large scale modeling applications. It also allows building large models 

which can be adapted quickly to new situations.  The general structure of GAMS 
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which describes the basic level steps towards optimization problem formulation is 

shown in Fig. 3.10.  

Stage 1: DATA

SETS declaration & definition

PARAMETERS declaration & definition

TABLE assignment
SCALAR assignment 

Stage 2: MODEL DEVELOPMENT

VARIABLES definition  

EQUATIONS definition  

VARIABLES declaration 
EQUATIONS declaration 

Stage 3: SOLVER

SOLVE statement 

RESULTS display 

OUTPUT results

 

Fig 3.10: General structure of GAMS representation 

One of the main features of GAMS is that the optimization problem can be expressed 

independently of the data it uses. The data can be represented in the form of Sets, 

Parameters, Table and Scalar. Such separation of data from logic statement 

significantly helps for a problem to be increased in size without causing any 

complexity. All the data in GAMS can be entered in their most elemental form. As a 

result, all the transformations made in constructing the model and reporting are 

available for inspection.  

The model representation is concise and makes a full use of elegance of the 

mathematical expressions that are found in GAMS.  The model developed should be 

more accessible, understandable, verifiable and also credible. After all the information 

has been entered and the model developed, the last step is to solve the model by 

choosing the appropriate solver. The GAMS statement contains all the data and 
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logical specifications needed to solve the model. It is also possible to alternatively 

shift the sequence for DATA and MODEL, while the SOLVER remains at the end in 

both cases [63]. GAMS contain different types of solvers based on the problem 

formulation whether is a linear or nonlinear problem. The main solvers used for LP 

and NLP problems are discussed in the following sections. 

3.12.1 GAMS LP solvers 

The majority of LP problems solve best using CPLEX‟s algorithm. GAMS/CPLEX 

solver allows users to combine the high level modeling capabilities of GAMS with the 

power of CPLEX optimizers [63]. Basically, the CPLEX optimizers are designed to 

quickly solve large and difficult problems with minimal user intervention. In addition, 

compared to other solvers, GAMS/CPLEX can automatically calculate and set options 

at the best values for specific problems. 

Solving LP problems is a memory intensive by itself. Even though CPLEX can 

manage memory very efficiently; however, insufficient physical memory is one of the 

most common problems when running large LPs. If the memory is limited, CPLEX 

will automatically make algorithmic adjustments to compensate. In GAMS, the 

default setting option is usually used to solve the majority of LP problems. However, 

there are option settings to improve performance, avoid numerical difficulties and 

control output options. The GAMS/CPLEX solver can also provide access to the 

infeasibility finder. Based on this, the infeasibility finder takes an infeasible linear 

program and produces an irreducibly inconsistent set of constraints (ISS). 

GAMS/CPLEX reports the IIS in terms of GAMS equation and variable names. It 

also includes the IIS report as part of the normal solution listing. 

3.12.2 GAMS NLP solvers 

NLP problems in GAMS must be solved with a nonlinear programming algorithm. 

There are three standard NLP algorithms available in GAMS: CONOPT, MINOS and 

SNOPT. CONOPT solver is available in three versions namely, the old CONOPT, 

CONOPT2 and CONOPT3. The similarity among all the NLP solvers is that their 
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developed algorithm attempts to find a local optimum. However, the algorithms in 

CONOPT, MINOS and SNOPT are based on fairly different mathematical algorithms 

and behave differently on most models. This means that CONOPT may perform much 

better for some models, while MINOS or SNOPT may also superior for some other 

models. As a result, it is almost difficult to choose which solver is best for a particular  

model especially for NLP problems [63]. However, there are some few rules of thumb 

used to choose the appropriate solvers. For example, GAMS/ CONOPT2 is well 

preferred for models with very nonlinear constraints. Beside, CONOPT2 solver can 

quickly find a first solution that is particularly with few degrees of freedom. On the 

other hand, if the model contains little nonlinearity outside the objective function, 

then either MINOS or SNOPT are probably the best solver. 

The new version of CONOPT2 is known as CONOPT3. This solver has many 

new features and possibilities compared to the old versions. One of the most 

important new features of CONOPT3 is that it can use exact second derivatives to 

compute better search directions using sequential quadratic programming (SQP). 

There are two main consequences of the new SQP components developed in 

CONOPT3. The first one is that models that take much iteration can now be solved 

more quickly. In addition, many models with a large number of superbasic variables, 

which could be solved slowly, can now be solved faster and more reliably. The 

second important feature is in CONOPT3 is a new scaling algorithm which can work 

better than the algorithm in CONOPT2. Furthermore, the new version CONOPT3 can 

solve large models than any of the old CONOPT and CONOPT2. 

Thus, the overall solution strategy developed by linking HYSYS and GAMS 

softwares is shown in Fig. 3.11. The HYSYS model ensures the performance of the 

existing plant including the material and energy balance and other operating 

parameters too. Later, the main data are transferred from HYSYS to GAMS. The 

GAMS model performs the optimization task based on the information obtained from 

HYSYS and historical plant data. It is also possible to update the historical plant data 

from time to time and GAMS will solve as per the given data provided. 
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Fig. 3.11: The overall methodology developed 

3.13 Summary  

Determining the internal mass and energy flows is an important step for problem 

formulation during optimization. Formulating a deterministic problem formulation 

initially significantly helps to convert it to the corresponding probabilistic model. The 

objective function and constraints, which are the main body of the optimization 

problem, should be defined clearly to solve the whole optimization problem.  
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The relaxation of a probabilistic model mainly concentrates on evaluating the 

chance constraints. The evaluation technique consists of studying the property of the 

function that appears in the constraints.  Alternative approximation methods can be 

used for evaluating the probability distribution to avoid computer programming. For 

example, there are optimization softwares which may not a built-in function to 

evaluate the probability distribution function. In such cases, approximation techniques 

with high accuracy can be used for the calculating the probability distributions 

function. 

   Once the relaxation has been made, feasibility study is performed to find the 

feasible set where the optimal solution lies. The feasibility study requires a step-by-

step evaluation for the inverse probability distribution function. The value for inverse 

probability distribution function is evaluated by defining a user confidence or 

probability level. Based on this, the reliability of the process and the profitability can 

simultaneously be checked until an optimal solution for the optimization problem is 

found. 

 

 



  

CHAPTER 4 

RESULTS AND DISCUSSIONS 

This chapter presents the main features and performance of the proposed approach 

which is developed in this thesis. The first case study focuses on uncertainty of feed 

flows from the plant inlet. The second case study considers the uncertainty of 

products from the plant outlet. The third case study deals with uncertain utilities, 

energy products flow. Based on this, a rigorous ASPEN HYSYS process model for 

the whole plant operation has initially been built as shown in Appendix C. The 

optimization models are formulated using GAMS IDE (Integrated Development 

Environment) version 2.0.20.0 (Module GAMS Rev 133). The solvers CPLEX 7.5 

and CONOPT 3 are used for single chance constrained (LP) and joint chance 

constrained optimizations (NLP), respectively. The solvers are selected based on their 

efficient performance for the type of the LP and NLP problems as discussed in the 

previous chapter. For the three case studies, a historical plant data from a real plant 

operation is taken based on an hourly basis for a period of one year. The target in all 

optimization problems is to maximize the overall plant profit by taking into account 

the reliability of holding the process constraints. 

4.1 Case study 1: Optimal operation of gas processing plant with uncertain    

         feed flows 

The simplified plant configuration involving the main processes (PTU, AGRU, LTSU 

and PRU) is shown in Fig. 4.1. The flows of the two feeds 1R̂  and 2R̂  which supplied 

from the upstream plant are highly uncertain. The flows of the remaining two feed 

3R and 4R  are usually known and hence can be decided. The products from the plant 

include sales gas ( 1P ), ethane ( 2P ), Propane product ( 3P  ), butane ( 4P ), condensate 

( 5P ) and carbon dioxide ( 6P ). In this case study, all the products from the plant outlet 



 

84 

 

are considered to be decided. The product recovery unit (PRU) consists of three 

conventional distillation columns as shown in Fig. 4.2. The arrangement of the 

columns follows with deethanizer as first, depropanizer second and finally 

debutanizer. 
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Fig 4.1: Simplified block diagram of GPP with uncertain feed flow 
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Condensate
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Fig 4.2:  The three column arrangements in the PRU section 
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4.1.1 Data analysis 

A large set of data for the uncertain feed flows 1R̂  and 2R̂  with each of around 8,785 

data points on hourly basis is taken. The seven feed components ( 7,...,1k ) involved 

in the total uncertain feed flows R̂  include C1, C2, C3, C4sC5+, N2 and CO2, 

respectively. The normal distribution for these seven uncertain feed component 

inflows ( 721 ,...,,  ) is shown in Appendix D (Fig. D1 to Fig. D7). Table 4.1 shows 

the mean and standard deviations of the uncertain feed component inflows 

( 721 ,...,,  ).  

              Table 4.1: Mean and standard deviations of the uncertain feed                

component inflows 

Components

Uncertain 

feed component 

inflows

Mean 

(ton/h)

Standard 

deviation 

(ton/h)

C1 190.0522 31.360

C2 32.2608 5.788

C3 20.782 4.289

C4s 13.082 3.173

C5+ 9.060 3.348

N2 2.439 0.656

CO2 47.224 9.742

)(k )( k

1

2

3

4

5

6

7

 

Table 4.2 shows the maximum values for the raw material and products flows 

which are considered as decision variables. The minimum values are set zero for all 

the decision variables. The expected price factor for each raw material and products is 

given in Table 4.3. The expected price factor for the condensate product is assumed to 

be nil since the plant currently does not generate revenue from this product. The price 

values for all the products and raw materials have been modified to keep 

confidentiality. The evaluation for the utilities, capital cost as well as other costs is not 

considered for this case study. 
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Table 4.2: Maximum and minimum values of decision variables for  

uncertain feed flow case 

Raw material and products Maximum value (ton/h)

10.706

35.586

298.518

37.311

47.706

29.586

43.111

57.659

3R

4R

1P

2P

3P

4P

5P

6P

 
 

Table 4.3: Expected price value for products and raw material 

Raw material and product Expected value ($/ton)

35.631

28.871

15.132

21.441

101.941

61.031

166.712

212.013

-

-

1R̂

2R̂

3R

4R

1P

2P

3P

4P

5P

6P
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4.1.2 Optimization 

The formulations of the optimization problems follows  degree of freedom analysis in 

which the number of variables should be greater than or equal to the number of 

equations and inequalities by one. The problem formulation for this case study starts 

by looking to the equation (3-10) to (3-16). Accordingly, for single chance 

constrained optimization, the total uncertain feed component flows which are held 

probabilistically based on equation (3-53): 

For  1k  ;  C1 component: 

  1143,133,166,155,144,133,122,111,111Pr αξRbRbPaPaPaPaPaPar ξ   (4-1)  

For  2k  ;  C2 component: 

  2243,233,266,255,244,233,222,211,222Pr αξRbRbPaPaPaPaPaPar ξ    

                                                                                                                                  (4-2)     

For  3k  ;  C3 component: 

  3343,333,366,355,344,333,322,311,333Pr αξRbRbPaPaPaPaPaPar ξ       

                                                                                                                                  (4-3)                         

For  4k  ;  C4s component: 

  4443,433,466,455,444,433,422,411,444Pr αξRbRbPaPaPaPaPaPar ξ        

                                                                                                                                  (4-4) 

For  5k  ;  C5+ component: 

  5543,533,566,555,544,533,522,511,555Pr αξRbRbPaPaPaPaPaPar ξ    

                                                                                                                                  (4-5)        

For 6k  ;  N2 component: 

  6643,633,666,655,644,633,622,611,666Pr αξRbRbPaPaPaPaPaPar ξ        

(4-6)  
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For 7k  ;  CO2 component: 

  7743,733,766,755,744,733,722,711,777Pr αξRbRbPaPaPaPaPaPar ξ        

                                                                                                                                  (4-7)    

 

Similarly, for joint chance constrained optimization, the probabilistic constraints 

in the above are held based on equation (3-57):  
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(4-8) 

 

The objective functions in equation (3-28) and other constraints for single and 

joint chance constrained remains the same as discussed in section 3.6.1 and 3.6.2. The 

corresponding relaxation, equivalent deterministic formulation, for the single chance 

constrained optimization based on equation (3-69) becomes: 

 1
1

43,133,166,155,144,133,122,111,1 1Φ αRbRbPaPaPaPaPaPa             (4-9) 

 2
1

43,233,266,255,244,233,222,211,2 1Φ αRbRbPaPaPaPaPaPa  
     (4-10) 

 3
1

43,333,366,355,344,333,322,311,3 1Φ αRbRbPaPaPaPaPaPa  
      (4-11) 
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 4
1

43,433,466,455,444,433,422,411,4 1Φ αRbRbPaPaPaPaPaPa        (4-12) 

 5
1

43,533,566,555,544,533,522,511,5 1Φ αRbRbPaPaPaPaPaPa         (4-13) 

 6
1

43,633,666,655,644,633,622,611,6 1Φ αRbRbPaPaPaPaPaPa         (4-14) 

 7
1

43,733,766,755,744,733,722,711,7 1Φ αRbRbPaPaPaPaPaPa         (4-15) 

The relaxation from the joint chance constrained optimization is given below 

based on equation (3-73): 
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43,433,466,455,444,433,422,411,4
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Φ1

Φ1

Φ1
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                                                                                                                                (4-16)      

The GAMS models developed for both single and joint chance constrained 

optimizations is shown in Appendix E. The model consists of sets of the raw material 

and products flows. In addition, parameters for the composition each raw materials 

and products are given at the normal plant operating conditions. The values for the 

total uncertain feed component flow starting from 50% to 100% confidence level is 

given in the developed GAMS model (case study 1). The evaluation at 100% 

confidence level is approximated to 0.999999, which is almost close to the value of 1.  

The relation between the achievable profit and reliability to hold the constraints 

has been quantified for decision making purpose. The optimal profit profile under 
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seven single and joint chance constraints with confidence level starting from 50% to 

100% is shown in Fig. 4.3. The profit profiles in Fig. 4.3 resembles to profit profile 

„PR1‟  shown in Fig. 3.8 and decreases rapidly after  reaching  to a critical confidence 

level c  = 0.95. Accordingly, moving further from this point c  to the right direction 

guarantees the reliability of the process; however, the profit decreases dramatically. 

On the other hand, moving from c to the left direction improves the profitability, but 

at the expense of losing the reliability of the process. This also supports the concept of 

Pareto optimality in which the actual choice of the optimal value depends on the 

relative values of reliability and expected profit. Hence, according to Pareto principle, 

the reliability of holding the process constraints is better only by reducing the 

expected profit to a certain level. 
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Fig 4.3: Optimal profit profiles for uncertain feed flows case 

Consider an example; if someone wants to decide at 50% confidence level using 

single chance constrained optimization, the corresponding profit at this point is high 

as shown in Fig. 4.3. However, there is also a 50% probability for the violation 

constraints to occur. Similarly, if someone wants to decide at 75% confidence level, 

there is still exist 25% probability for possible violation of constraint to occur. 

Accordingly, there should be a trade-off for the reliability of the process and 
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profitability of the plant. Hence, the 95% confidence level will be a suitable choice 

that can compromise both reliability of the process and profitability of the plant. Thus, 

with this decision, there is only a 5% risk of violation of constraint. Here, it should be 

noted that all the seven single and joint chance constraints are measured at same the 

confidence level. However, it is also possible to hold each single chance constraints at 

different confidence level so that the optimal solution and risk of violation of 

constraints may also differ. 
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Fig 4.4: Optimal sales gas product profiles for uncertain feed flow case 

The corresponding product profiles for main products: sales gas, ethane, propane 

and butane are shown in Fig. 4.4, 4.5, 4.6 and 4.7, respectively. The product profile 

for sales gas shows that the optimal decision under single and joint chance 

constrained optimization is not much sensitive compared to the other product profiles.  

This indicates that the optimal range of flow rate for sales gas under single and joint 

chance constrained optimization is close to each other. However, the product profile 

for ethane, propane and butane show that the optimal decision has relatively a 

significant difference under single and joint chance constrained optimization. 

Similarly, the product profile for condensate 5P and carbon dioxide 6P  as well as raw 

material 3R  and 4R  can be plotted in same way for decision making purpose. 



 

92 

 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
8

10

12

14

16

18

20

22

24

Confidence level

E
th

a
n

e 
p

ro
d

u
ct

io
n

 (
to

n
/h

) P2 single

P2 joint

 

Fig 4.5: Optimal ethane product profiles for uncertain feed flow case 
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Fig 4.6: Optimal propane product profiles for uncertain feed flow case 

Using the product profiles shown in Fig.4.4 to 4.7 for single chance constrained 

optimization, if the plant had decided to produce 1P  (sales gas) = 154 ton/h, 

2P (ethane) = 16 ton/h, 3P  (Propane) = 17 ton/h and 4P  (butane) = 10 ton/h, then with 

this decision, the production is satisfied with a probability of 95%. Accordingly, there 
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is a 5% risk that the amount of the uncertain feed component flows may not be 

enough to produce the desired amount of products. The corresponding profit value in 

Fig. 4.3 using the above decision gives $15,095 per hour. Again using the same 

product profiles for joint chance constrained optimization, if the plant had decided to 

produce 1P  (sales gas) = 140 ton/h, 2P (ethane) = 10 ton/h, 3P  (Propane) = 12 ton/h 

and 4P  (butane) = 7 ton/h, then with this decision, the production is achieved with a 

probability of 95%. The optimal profit value from Fig. 4.3 gives $12,840 per hour. 
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Fig 4.7: Optimal butane product profiles for uncertain feed flow case 

Consider again the profit profile for single chance constrained optimization in Fig. 

4. 3, if the optimal decision is to be made at 50% and 100% confidence level, the 

corresponding profit values result to $21,138 per hour and $2,088 per hour, 

respectively. However joint chance constrained optimization, the corresponding profit 

values becomes $18,203 per hour and $2,088 per hour, respectively. The difference in 

profit at 50% and 100% confidence level for single and joint chance constrained 

optimization give 19,050 and 16,115, respectively. The difference in profit at 50% 

confidence level for single and joint chance constrained optimization gives $2,935 per 

hour. Such profit differences results because the single chance constrained 
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optimization has a more solution space than the joint chance constrained optimization 

as discussed in section 3.8 (Fig. 3.7). 

4.1.3 Sensitivity analysis 

Sensitivity analysis is performed on the profit for each uncertain feed component 

flows ( 7,..,21,  ). Fig. 4.8 shows the single confidence level values assigned by the 

optimizer for the specified joint confidence level. From the optimization result, the 

optimal decision will lead to almost a 100% confidence level for 2  (C2 inflow), 3  

(C3 inflow), 4  (C4s inflow), 5  (C5+ inflow), 6 (N2 inflow), and 7 (CO2 inflow). 

However, for 1 (C1 inflow) indicates that there is a possibility for the violation of 

constraints to occur. Hence, there will be 11.6 % risk of violation constraint for 1 . 
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Fig 4.8: Joint vs single confidence level for uncertain feed flow case 

The sensitivity analysis on profit profile for each uncertain feed component flows 

with respect to the specified single confidence level is shown in Fig. 4.9. The optimal 

result shows that the profit will not be affected if the optimal decision has to be made 

at 95% confidence level for 1 , 2 , 3 and 4 cases. However, the optimal profit 
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decision for 5 , 6  and 7 show that it is not affected at different single confidence 

level. Such sensitivity analysis helps to identify the most critical feed with uncertainty 

inflow which have significant impact on the performance of the plant during the plant 

operation. For example, the N2 content in the feed affects the production of sales gas 

by reducing its BTU value. This is because the N2 rich gases cannot be burned due to 

the environmental constraint [158]. Hence, it is important to determine the optimal 

value of N2 in the feed so that its effect can be minimized from environmental 

perspective. In addition, the optimal N2 value also indicates the possible revenue that 

the plant can generate based on this decision. 
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Fig 4.9: Single confidence level vs profit for uncertain feed flow case 

The amount of C5+ in the feed also affects the performance of the plant. As the C5+ 

content in the feed increases, the LTSU section will require more compression energy. 

This means, the feed gas must expand to lower pressures to meet higher compressor 

requirements [11]. In addition, when the feed gas is rich in C5+ content, ethane 

recovery may also be halted. In such cases, the feed gas cannot produce the sufficient 

low temperatures required for the process and hence mechanical refrigeration is 

needed to maintain acceptable levels for ethane recovery [9]. 
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The CO2 content in the feed gas is another factor which significantly affects the 

plant performance by increasing the risk of plugging in the demethanizer column and 

reducing the BTU value of sales gas [11]. In addition, it influences ethane recovery 

since higher pressures are required to process more acidic gas mixtures [9]. Propane 

recovery has also an upper limit, which depends mainly upon the CO2 content in the 

feed gas. The reason is that high CO2 content will lower the CO2 freeze-out 

temperature in the expanded vapor and continually cause plugging. The effects of this 

all feed component inflows have been discussed in the literature review section 2.2.1. 

Accordingly, different process scheme was used as an option to overcome the 

variation that results from feed composition.  

4.1.4 Computational results 

The final optimization results from deterministic, “worst case”, Two-stage 

programming, LSTS and LSTJ are shown in Table 4.4. The abbreviation DT 

represents for deterministic approach, WC is for Worst case approach and TS for two-

stage programming approach. LSTS is for linear steady state with time-dependent 

uncertainty under single chance constraint and LSTJ is for linear steady state with 

time-dependent uncertainty under joint chance constraint. The superscript 1 and 2 

refer to the corresponding LSTS and LSTJ cases, respectively. For example, the DT
1
 

represent when the deterministic optimization is compared to LSTS, while DT
2
 

represent when it is compared with LSTJ. 

The optimal result for single and joint chance constrained optimization were 

evaluated at 98% confidence level. The corresponding optimal profit value from 

LSTS and LSTJ give $15,095 per hour and $12,840 per hour. For the deterministic 

case, the expected value of the uncertain feed component flow is employed. The two 

deterministic optimizations DT
1
 and DT

2
 show that the profit value results to $ 

$21,138 per hour and $18,203 per hour, respectively. However, the solution from the 

deterministic optimization indicates that there is a 50% probability that violation of 

constraints may occur.  
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Table 4.4: Final computational result for uncertain feed flow case 

DT1 DT2 WC1 WC2 TS1 TS2 LSTS LSTJ

0.5 0.5 0.995 0.995 0.95 0.95 0.95 0.95

Profit 21137.577 18202.923 7361.750 6318.140 15127.672 12899.138 15095.009 12840.102

190.055 177.763 57.620 57.184 138.472 125.154 138.472 125.181

32.265 20.041 14.897 8.977 22.740 14.847 138.472 22.740

20.782 14.631 7.915 4.921 13.727 9.861 13.727 9.853

13.082 8.960 3.562 1.491 7.862 5.258 7.862 5.249

- - - - - - - -

1.533 1.432 0.472 0.476 1.119 1.011 1.119 1.011

- - - - - - - -

10.706 10.706 10.706 10.706 10.706 10.706 10.706 10.706

14.059 9.957 3.847 1.785 8.509 5.909 8.509 5.897

210.291 196.626 66.480 65.800 154.114 139.495 154.114 139.523

22.771 11.123 13.889 7.847 16.487 9.326 16.487 9.369

23.939 17.140 10.497 7.295 16.504 12.417 16.504 12.408

15.727 11.068 4.879 2.537 9.782 6.839 9.782 6.827

9.203 6.548 2.591 1.225 5.609 3.926 5.609 3.918

0.547 0.716 0.684 0.770 0.639 0.744 0.639 0.743




1r

2r


3r

4r


5r


6r

7r

3R

4R

1P

2P

3P

4P

5P

6P

 
 

The “worst case” strategy was evaluated by taking the nominal or expected value 

to be displaced by -3σ (statistical data analysis). As can be seen from Table 4.4, the 

„‟worst case‟‟ strategy has resulted the optimal profit to drop drastically from $15,095 

per hour to $ 7,362 per hour (compared with single chance constrained case) and from 

$12,840 to $ 6,318 per hour (compared with joint chance constrained case). However, 

the reliability of the process has reached to 99.5 % as compared to 95% single chance 

and joint chance constrained case. Thus, the optimization result of WC
1 

and WC
2 

prove the argument made by Li et al. [27] that the worst case strategy may seem good 

in holding the constraint, but the achievable profit will drop drastically. 

For two-stage programming approach, the evaluation has been made based on the 

corresponding data from the probabilistic approach at 95% confidence level. It has 

been assumed that the penalty term is $1 per ton for both TS
1
 and TS

2
 cases. The 

corresponding optimal profit from this decision has resulted $15,128 per hour 

(compared to single chance constrained case) and $12,899 per hour (compared to joint 
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chance constrained case). As discussed earlier, the solution from the two-stage 

programming approach does not quantify the relation between reliability and 

profitability. In addition, the exact values of the penalty terms are difficult to 

determine since they may include also some intangible components. Furthermore, it 

may not give a uniform measurement for the probability occurrence of the uncertain 

variables. This means that probability value may differ for each uncertain variable. As 

a result, sometimes it will be difficult to hold the constraint at a certain probability 

decision.  

4.2 Case study 2:  Optimal operation of gas processing plant with uncertain    

           product flows 

The previous case study discussed about the uncertainty of the feed supply from the 

plant inlet. However, on the plant outlet, there are some products such as propane and 

butane in which their product requirement or specifications may vary as per the 

demand of the customers. These two products are mostly used as feed stock for 

petrochemical plants. Due to seasonal variation of the products demand or for some 

special order which they obtain from their customers, the petrochemical plants may 

change the specification of their feed stock. As a result, the composition of C2, C3, 

C4s, and C5+ in the products should meet the requirement in order to satisfy the 

customer demand.  

On the other hand, during conditions such as the demand for propane is high and 

butane is depressed, the plant may need to shift its production mode and produce 

more amount of propane. This ensures the plant to continue generating high revenue 

under the particular demand conditions. Similarly, if the demand for LPG is high, 

both propane and butane will be highly required to take advantage in favor of the 

market condition. Moreover, it is also advantageous to use the depropanizer column 

as LPG column and so that the debutanizer column can be shut down for energy 

saving purpose. The plant configuration for this case study is shown in Fig. 4.10. The 

four feeds which enter the plant are represented as: 1R , 2R , 3R and 4R . The products 

from the plant outlet are: 1P  (sales gas), 2P (ethane), 4,3P̂ (uncertain LPG product), 
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5P (condensate) and 6P  (carbon dioxide). The product recovery unit (PRU) consists of 

only two conventional distillation columns as shown in Fig. 4.11. The arrangement of 

the columns follows with deethanizer as a first and LPG column. 
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Fig 4.10: Simplified block diagram of GPP with uncertain product flow 
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Fig 4.11:  The two column arrangements in the PRU section 
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4.2.1 Data analysis 

Similar to the previous case study, a large set of data with 8,785 data points on hourly 

basis for the uncertain LPG product 4,3P̂  has been taken. The seven feed components 

( 7,..,1k ) in the LPG product 4,3P̂  include C1, C2, C3, C4s, C5+, N2 and CO2, 

respectively. Here, it should be noted that the composition of C1, N2 and CO2 are all 

zero in the LPG product 4,3P̂ . Based on this, the normal distribution for the remaining 

uncertain product component outflows ( 5432 ,,,  ) is shown in Appendix D (Fig. 

D8 to Fig. D11). Moreover, the values of 2  and 5  in the LPG product 4,3P̂  are 

usually known and sometimes can be considered as deterministic parameter. The 

mean and standard deviations of all the product component outflows is given in Table 

4.5. The maximum values for the raw material and products flows which are taken as 

decision variables is given in Table 4.6, while their minimum value is set zero. The 

expected price factor shown in Table 4.3 remains the same except for LPG product 

4,3P̂  which is $ 189.362 per ton. The cost evaluations for utilities, capital as well as 

others are not considered for this case study. 

Table 4.5: Mean and standard deviations of the uncertain product               

component outflow 

Components Uncertain 

product component 

outflows

Mean 

(ton/h)

Standard 

deviation 

(ton/h)

C1 - -

C2 0.291 0.153

C3 24.486 5.027

C4s 15.66 2.780

C5+ 0.156 0.136

N2 - -

CO2 - -

)( k

)(k

1

2

3

4

5

6

7
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Table 4.6: Maximum and minimum values of decision variables  

for uncertain product flow case 

Raw material and products Maximum value (ton/h)

334.582

220.314

10.706

35.586

298.518

37.311

43.111

57.659

1R

2R

3R

4R

1P

2P

5P

6P

 

4.2.2 Optimization 

The problem formulation for this case study starts from the basic equations (3-10) to 

(3-16). For the single chance constrained optimization, the probabilistic constraints 

can be described based on equation (3-54): 

For  1k  ;  C1 component: 

  1166,155,122,111,144,133,122,111,111Pr αζPaPaPaPaRbRbRbRbp ζ 
 

(4-17)  

For  2k  ;  C2 component: 

  2266,255,222,211,244,233,222,211,222Pr αζPaPaPaPaRbRbRbRbp ζ    

                                                                                                                                (4-18)     

For  3k  ;  C3 component: 

  3366,355,322,311,344,333,322,311,333Pr αζPaPaPaPaRbRbRbRbp ζ       

                                                                                                                                (4-19)                         
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For  4k  ;  C4s component: 

  4466,455,422,411,444,433,422,411,444Pr αζPaPaPaPaRbRbRbRbp ζ        

                                                                                                                                (4-20) 

For  5k  ;  C5+ component: 

  5566,555,522,511,543,533,522,511,555Pr αζPaPaPaPaRbRbRbRbp ζ    

                                                                                                                                (4-21)        

For 6k  ;  N2 component: 

  6666,655,622,611,643,633,622,611,666Pr αζPaPaPaPaRbRbRbRbp ζ        

(4-22)  

For 7k  ;  CO2 component: 

  7766,755,722,711,743,733,722,711,777Pr αζPaPaPaPaRbRbRbRbp ξ        

                                                                                                                                (4-23)    

  

The joint chance constrained formulation based on equation (3-58) becomes:  
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(4-24) 
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The objective function follows the one described in equation (3-35). The 

corresponding relaxation for the single chance constrained case based on equation (3-

70) becomes: 

 1
1

66,155,122,111,144,133,122,111,1 Φ αPaPaPaPaRbRbRbRb         (4-25) 

 2
1

66,255,222,211,244,233,222,211,2 Φ αPaPaPaPaRbRbRbRb      (4-26) 

 3
1

66,355,322,311,344,333,322,311,3 Φ αPaPaPaPaRbRbRbRb       (4-27) 

 4
1

66,455,422,411,444,433,422,411,4 Φ αPaPaPaPaRbRbRbRb     (4-28) 

 5
1

66,555,522,511,543,533,522,511,5 Φ αPaPaPaPaRbRbRbRb       (4-29) 

 6
1

66,655,622,611,643,633,622,611,6 Φ αPaPaPaPaRbRbRbRb       (4-30) 

 7
1

66,755,722,711,743,733,722,711,7 Φ αPaPaPaPaRbRbRbRb       (4-31) 

The relaxation for the joint chance constrained optimization based on equation (3-

74) is given as: 
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                (4-32) 
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The GAMS optimization model developed for both single and joint chance 

constrained optimization is shown in Appendix E. The model consists of the set of 

raw materials flows and products. The values for the uncertain LPG product 

component outflows starting from 50% to 100 % confidence level (0.999999) is also 

given for evaluation purpose.  The optimal profit profiles starting from 96% to 100% 

confidence level for the single and joint chance constrained optimization cases are 

shown in Fig. 4.12. The profit is taken at 96% confidence level because it starts to 

show a significant change within this range. Comparing this profit profile with the one 

shown in Fig. 4.3, the change in profit for uncertainty from the plant inlet is much 

more significant than that of the plant outlet.   
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 Fig 4.12: Optimal profit profiles for uncertain product flows case 

For further explanation, consider the single chance constrained profile shown in 

Fig. 4.3, the profit values at 96% and 100% confidence level are $14,706 per hour and 

$2,088 per hour, respectively. Accordingly, the profit has been changed by 85.8% as 

moving from 96% to 100% confidence level. However, if we take the same data at 

96% and 100% confidence level for single chance constrained optimization case from 

Fig. 4.12; the corresponding profit values become $28,758 per hour and $ 28,201 per 
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hour, respectively. The profit has been changed this time only by 1.93% as moving 

from 96% to 100% confidence level.  

The corresponding product profiles for sales gas, ethane and LPG product are 

shown in Fig. 4.13, 4.14 and 4.15, respectively. The sales gas product profile shows 

that the production decision remains the same for both single and joint chance 

constrained optimizations. Moreover, the decision can be made at any of the 

confidence level in between 96% to 100%. The product profile for ethane production 

shows that the production is increasing, for both single and joint chance constrained 

optimization, as the confidence level reaches to 100%. Thus, the decision can be made 

in the higher confidence region around 99.75% with 0.25% risk. 
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Fig 4.13: Optimal sales gas product profiles for uncertain product flows case 

The resulting optimal product profile for LPG product from both single and joint 

optimization is shown in Fig. 4.14. The optimal LPG product produced from this case 

study has been compared with that of propane and butane products produced in case 

study one. Consider Table 4.4 again, the optimal decision from LSTS for propane and 

butane products evaluated at 95% confidence level give 16 ton per hour and 10 ton 

per hour, respectively. Based on this, the total propane and butane product produced 

at the specified confidence level becomes 26 ton per hour. However, the optimal 
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decision for LPG product from single chance constrained optimization gives 136 ton 

per hour. Accordingly, the LPG production has increased by 81% increment 

compared with the combined production of propane and butane in case study one.  
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Fig 4.14: Optimal ethane product profiles for uncertain product flows case 
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Fig 4.15: Optimal LPG product profile for uncertain product flow case 
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This is due to the fact that in the previous case study, the propane and butane products 

were considered as decision variable in which their upper and lower limit are known. 

However, the LPG product in this case study is taken as uncertain variable where 

there is no upper and lower limit specified. Hence, the optimizer gives the maximum 

possible production of LPG by considering all the other constraints. 

4.2.3 Sensitivity analysis 

The sensitivity analysis has been made for the uncertain product components 1 and 

7  as shown in Fig. 4.16. Such sensitivity analysis is made by varying the joint 

chance confidence level starting form 96% to 100%. The corresponding single 

confidence level is obtained based on the specified joint confidence level.  For 

example, at 96% confidence level, the profit value from the joint chance constrained 

optimization is $28,743 per hour. This profit value is depicted in the single chance 

constrained optimization and the corresponding single confidence level is then taken.  
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Fig 4.16: Joint vs single confidence level for uncertain product flow case 

 Based on this, the sensitivity analysis result from 3  and 4  
show that the 

corresponding single confidence level increases linearly as the joint chance 
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constrained varies. As a result, the decision from 3  and 4  may violate the 

constraint by 0.035% and 0.0069%, respectively. The sensitivity analysis result for 

the remaining product components ( 1 , 2 , 5 , 6  and 7 ) are constant since their 

values are very small and usually known.  
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Fig 4.17: Single confidence level vs profit for uncertain product flow case 

The sensitivity analysis for profit by varying the single confidence level is shown 

in Fig. 4.17. Such sensitivity analysis is made by varying each individual constraint 

separately starting from 96% to 10% confidence level. The profit profile for 3 and 

4  show that how these two uncertain variables can affect the profit value. Sensitivity 

result from the remaining product components ( 1 , 2 , 5 , 6  and 7 ) show that the 

profit value remains constant since the value of these components are usually small 

and their content in LPG product is almost negligible.  

4.2.4 Computational results 

The final computational results for the uncertain product flows case are shown in 

Table 4.7. The optimization is performed for deterministic, “worst case”, two-stage 
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programming, single and joint chance constrained cases. The optimal decision from 

the deterministic (DT
1
 and DT

2
), “worst case” (WC

1
 and WC

2
), two stage 

programming (TW
1
 and TW

2
) are all compared with LSTS and LSTJ. The indices 1 

and 2 represent when each of the optimization compared to the single and joint chance 

constrained optimization cases, respectively. The decision for deterministic 

optimization is based on considering the expected or nominal values of the uncertain 

variables, while for the “worst case” approach, the nominal values are taken to be 

displaced by +3 (statistical data analysis). The two-stage optimization is evaluated 

by assuming 1$/ton penalty term and taking the same data at the specified confidence 

level from the corresponding LSTS and LSTJ. It should be noted that the profit value 

in Table 4.7 is given in $ per hour and all the flow rates are in ton per hour. 

Table 4-7: Final optimization result for uncertain product flow case 

DT1 DT2 WC1 WC2 TS1 TS2 LSTS LSTJ

0.5 0.5 0.9978 0.9978 0.9975 0.9975 0.9975 0.9975

Profit 28758.780 28742.954 28208.061 28203.131 28263.226 28258.320 28265.908 28261.088

- - - - - - - -

0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291

33.485 33.650 39.198 39.249 38.598 38.648 38.598 38.648

22.528 22.645 26.586 26.622 26.160 26.195 26.160 26.195

0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156

- - - - - - - -

- - - - - - - -

298.518 298.518 298.518 298.518 298.518 298.518 298.518 298.518

28.488 28.739 37.202 37.280 36.287 36.363 36.287 36.363

31.571 31.625 33.468 33.485 33.268 33.285 33.268 33.285

- 2.287 79.580 80.293 71.221 71.918 71.221 71.918

334.582 334.582 334.582 334.582 334.582 334.582 334.582 334.582

34.163 37.036 134.124 135.019 123.624 124.499 123.624 124.499

10.706 10.706 10.706 10.706 10.706 10.706 10.706 10.706

35.586 35.586 35.586 35.586 35.586 35.586 35.586 35.586




1p


2p


4p


5p


6p


7p

1P

2P

5P

6P

1R

2R

3R

4R


3p
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The optimal LPG product component flow rates ( 
1p to 

2p ) have been shown also 

in Table 4.7 together with the remaining product and raw material flow rates. The 

flow rate of 
1p (C1 flow in LPG), 

6p (N2 flow in LPG), 
7p

 
(CO2  flow in LPG) are 

all zero. It can be seen from Table 4.7 that the component flow rates 
3p (C3 flow in 

LPG) and 
4p (C4s flow in LPG) vary for each of the cases. Thus, the optimal profit 

values at 99.75 % confidence level from LSTS and LSTJ optimization gives $28,266 

per hour and $ 28,261 per hour, respectively. The optimal decision ensures the 

reliability of holding all the constraints by 99.75% with only having a 0.25% risk of 

violation of constraints. 

4.3 Case study 3:  Optimal operation of gas processing plant with uncertain    

           utility and energy product flows 

The utility and energy product flows are other factors that are uncertain in the future 

time period. The utility flow which is supplied from the nearby cogeneration plant 

varies from time to time. As a result, the energy product produced from the plant will 

also vary. In addition, problem may result also during the plant operation due to the 

continuous variation of the operating points [12, 13]. Sometimes, the planned 

operating point has to be changed; hence an adjustment of the planned operating point 

has to be made. This time, a conservative decision by specifying a higher confidence 

level has the advantage of keeping a more stable operation [24]. Hence, it is important 

to make a decision in such situations so that the optimal decision will be implemented 

in the future time period. 

In this case study, a large scale optimization model has been developed using 

GAMS. The developed model consists of a number of operating parameters, utility 

and energy product flows. The inflow and outflow variables are related using equation 

obtained from rigorous HYSYS simulation as shown in Appendix C. The costs for 

utilities such as steam, cooling water, compression, refrigeration, electricity and fuel 

have been incorporated in the model.  A short cut design approach for the distillation 

columns, in the product recovery unit, has also been included to calculate the energy 
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requirement. The model developed using GAMS consists of 175 equations and 170 

variables. The GAMS code is shown in Appendix E.  

4.3.1 Optimization 

The optimization in this case study is performed by taking both the uncertain utility 

and energy product flows simultaneously. Accordingly, the heat inflows resulted from 

the uncertain utility are represented as 1 , 2 , 3 , 4 , 5 and 6 . These uncertain heat 

inflows are from raw material, steam, refrigerant, compression, electricity and fuel, 

respectively. Similarly, the heat outflows from the energy product 

include 1 , 2 , 3 and 4 . These uncertain heat outflows are due to using cooling 

water, refrigeration process, using sales gas as a cooler and heat resulted from 

material product produced, respectively.  
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Fig 4.18: Optimal Profit profile with specified confidence level 

The optimal profit profile for both single and joint chance constrained 

optimization is shown in Fig. 4.18. The profit profile for both cases is constant until it 

reaches to a certain confidence level. The decision maker may have the option to 

decide starting from 50% confidence level until to 90% confidence level. All the 
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decision made in this range is constant and does not affect the profit. Here, it should 

be noted that the decision for both the single and joint chance constrained 

optimization remains the same until 90% confidence level. However, the profit starts 

to decrease slightly after 90% confidence level until it reaches to 95% confidence 

level for both cases. After 95% confidence level, the profit drastically drops and this 

point is considered as an optimal value.  Thus, comparing this profit profile to those 

obtained in case study one and two, the profit change in this case study appears to be 

less sensitive. This shows that the material flows have a more significant effect on the 

performance measured against the objective function.   
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Fig 4.19: Optimal steam flow rate with specified confidence level 

The optimal steam flow rate for the deethanizer and depropanizer columns under 

single and joint chance constrained optimization is shown in Fig. 4.19. The 

deethanizer first process the NGL liquid product that comes from the demethanizer 

column as shown in Appendix C (product recovery unit). As a result, the steam 

consumption rate for deethanizer column is usually high compared to the other 

columns. The bottom feed from the deethanizer column is combined with another 

feed coming from the condensate treatment unit to be processed in the depropanizer 

column. It can be seen from Fig. 4.19 that the steam requirement for both deethanizer 

and depropanizer column is same up to 90% confidence level. The steam flow rate 
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starts to slightly decrease from 90% to 95% confidence level. From 95% to 100% 

confidence level, the steam flow rate drops significantly and the optimal decision is 

made at 95% confidence level. Furthermore, the temperature required for the steam 

supply should also be considered carefully. This is because the thermal stability of the 

components in the mixtures to be separated. Some components are not stable at their 

normal boiling point. Hence, a maximum allowable temperature should be specified 

to make the separation ease.  
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Fig 4.20: Optimal C3-refigerant flow rate with specified confidence level 

The corresponding C3-refigerant and cooling water consumption rate for 

deethanizer and depropanizer condensers are shown in Fig. 4.20 and 4.21, 

respectively. The C3-rfigerant is used for deethanizer column to cool the ethane 

product. Such refrigerant is used because cooling water could not sufficiently 

condense the ethane product. However, for the depropanizer column, the propane 

product produced can be condensed with the supplied cooling water. Sometimes, the 

depropanizer condenser duty becomes high and as a result it requires more cooling 

water. This is due to the additional feed coming from the condensate treatment unit. 

This feed normally contains C3+ and usually affects the operation of the depropanizer 

column. In industrial practice, it is common to estimate and adjust the reflux ratio in 

order to keep the stable operation of the column. However, the reflux ratio should be 
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estimated based on certain knowledge than a common practice which involves trial 

approach. For example, the reflux ratio sometimes goes higher and as a result the 

reflux rate increases. This in turn may halt the amount of propane product produced. 

Hence, it is important to estimate the minimum reflux ratio based on CMO 

approximation and obtain the possible optimal reflux ratio to overcome such 

problems. 
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Fig 4.21: Optimal cooling water flow rate with specified confidence level 

Beside this, the idea of introducing a new flash drum before the depropanizer 

column may also help to maintain the stable of operation of the depropanizer column. 

In this case, the C3+ feed which is coming from the condensate treatment unit may be 

separately flashed before it combines with the deethanizer bottom feed. The top feed 

from the flash drum which mainly contains C3 is introduced to the depropanizer 

column, while the bottom feed (mainly C5+) is directly sent to the debutanizer column. 

However, this also should be considered together with the capital cost of the plant for 

introducing additional equipment. Thus, the optimal decision from the single and joint 

chance constrained optimization can be made at 95% confidence level for both C3-

refigerant and cooling water consumption rate. 
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Fig 4.22: Optimal reboiler duty with specified confidence level 
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Fig 4.23: Optimal condenser duty with specified confidence level 

The reboiler and condenser duties for debutanizer column are shown in Fig. 4.22 

and 23, respectively. The debutanizer column processes heavier hydrocarbons (C4+) as 

a feed which is coming from depropanizer bottom to separate into butane (C4s) and 

condensates (C5+). The condenser and reboiler duties for debutanizer column are 
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usually less than that of the deethanizer and depropanizer columns. The close range of 

the relative volatility of C4s and C5+ gives more advantages to facilitate the separation 

in debutanizer column. The optimal decision from single chance constrained 

optimization for the debutanizer reboiler and condenser duties is made at 95% 

confidence level. However, for the joint chance constrained optimization the optimal 

decision is made at 90% confidence level for both duties. 

4.3.2 Computational results 

The final computational result for deterministic (DT
1
 and DT

2
), “worst case”( WC

1
 

and WC
2
), two-stage programming (TW

1
 and TW

2
) are all compared with the LSTS 

and LSTJ as shown in Table 4.8.  The total heat inflow entering to the plant are 



1u (raw material), 

2u (steam), 
3u (refrigerant), 

4u (compression), 
5u (electricity) and 


6u (fuel). The total heat outflows from the plant are 

1q (cooling water), 



2q (refrigeration process), 
3q (sales gas as cooling agent) and 

4q (material product). 

The optimal steam flow rate in deethanizer, depropanizer and debutanizer are 

represented as De

stmF , Dp

stmF and Db

stmF , respectively. The corresponding optimal refrigerant 

for the deethanizer column and cooling water for the depropanizer and debutanizer 

column are shown as
De

refF , Dp

coolF and Db

coolF , respectively.  It should be noted that the unit 

for the total heat inflows ( 

1u to 
6u ) and total heat outflows ( 

1q to 

4q ) are all given in 

kW. The units for the steam flows, refrigerant and cooling water are given in ton per 

hour. The unit for the profit is given in $ per hour. 

The deterministic optimization for all cases is performed at 50% confidence level. 

The “worst case” are evaluated by displacing the mean value of each uncertain heat 

inflows ( 61,..., ) by -3 and the uncertain heat outflows ( 41,..., ) by +3 . For 

two-stage programming, similar to the other previous case study, a penalty term 1$ 

per unit has been assumed. The reliability of the process for deterministic, “worst 

case” and two-stage programming have been included for comparison purpose. Thus, 

unlike the deterministic, “worst case” and two-stage programming, the LSTS and 

LSTJ give optimal solutions by taking into consideration of the reliability and 



 

117 

 

profitability of the plant. Accordingly, the optimal profit value at 95% confidence 

level from the LSTS and LSTJ gives $ 27,273 per hour and 27,162 per hour, 

respectively.  

Table 4-8: Final optimization result for uncertain utility and  

energy product flows 

DT1 DT2 WC1 WC2 TS1 TS2 LSTS LSTJ

0.5 0.5 0.9987 0.99787 0.95 0.95 0.95 0.95

Profit 27313.909 27313.909 26786.605 26754.856 27308.074 27195.925 27273.968 27161.820

-512087.1 -512087.1 -499971.9 -499988.1 -510928.8 -507676.1 -510928.8 -507676.1

35992.138 35992.138 34451.110 34657.579 35778.790 35179.728 35778.790 35179.728

4502.288 4502.288 4423.377 4432.504 4491.829 4462.464 4491.829 4462.464

4455.741 4455.741 4290.190 4309.339 4433.801 4372.193 4433.801 4372.193

72.988 72.988 69.434 69.845 72.517  71.195 72.517 71.195

3698.253 3698.253 3554.532 3571.155 3679.205 3625.722 3679.205 3625.722

19342.340 19342.340 18287.970 18479.941 19179.996 18724.148 19179.996 18724.148

14522.135 14522.135 14323.053 14346.080 14495.750 14421.665 14495.750 14421.665

4634.916 4634.916 4459.737 4479.999 4611.699 4546.509 4611.699 4546.509

-501865.1 -501865.1 -490254.0 -490253.6 -500760.1 -497657.2 -500760.1 -497657.2

18.360 18.360 18.045 18.033 18.334 18.261 18.334 18.261

18.362 18.362 17.529 17.650 18.243 17.911 18.243 17.911

5.527 5.527 4.830 4.982 5.411 5.087 5.411 5.087

266.233 266.233 261.094 260.889 265.810 264.623 265.810 264.623

501.664 501.664 479.220 482.484 498.473 489.515 498.473 489.515

249.054 249.054 226.159 231.149 245.263 234.620 245.263 234.620
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4.4 Summary 

The results from the three case studies show that the decisions using LSTS and LSTJ 

give a reliable solution which can guarantee profitability with respect to the reliability 

of the process. It should be noted that any of the other approaches such as 

deterministic, “worst case” and two-stage programming lack systematic analysis both 

the profitability and reliability of the process at the same time. Those approaches are 

mainly focus on the profitability of the plant. Sometimes, compensation is applied to 

the objective function like the case of two-stage programming to eliminate the 

constraint violation. However, the LSTS and LSTJ methods significantly help to 

closely analyze and adjust both the profitability and reliability of the process. Thus, 

the solution approach using LSTS and LSTJ can clearly shows for the decision maker 

to how much percent that the risk to be taken if the decision has to be implemented. 

Moreover, the solution from LSTS and LSTJ also helps as a guideline for the decision 

maker to make a flexible decision based on the market conditions.  

 

 



  

CHAPTER 5 

CONCLUSIONS AND FUTURE WORKS 

This chapter presents the conclusion and future works based on the results obtained 

from this thesis. The chapter initially discusses the conclusion section by first 

addressing the main issues about the research and interpreting the results to reach at 

some basic conclusions. The next section addresses about the future works which 

helps for other interested researchers to give a direction by discussing about the 

central idea so as to expand the research work. 

5.1 Conclusions 

Uncertainty is an inherent characteristic of any chemical process plant and the 

operation of the plant is usually subject to uncertain conditions from both internal and 

external factors. In order to handle such uncertainties, it requires a good 

understanding about the sources of the uncertainty, quantification and characterization 

as well as analysis. From industrial aspect, these uncertainties have been usually 

overestimated due to lack of systematic analysis of the objective function and 

constraints. Sometimes, aggressive decision may be preferred by expecting a higher 

profit. This however significantly affects the economic performance of the plant. In 

order to reduce such effects, a systematic solution approach has been introduced in 

this work. The overall conclusions made from this work are discussed below. 

 In this work, a first effort has been made to apply chance constrained 

programming for gas processing plant. The main challenge was developing a 

solution strategy that can incorporate for any variation of the feed conditions 

that resulted from the upstream plant before it propagates and affects the 

overall plant‟s performance. In addition, the solution approach developed in 

this thesis also deals with conditions where there is uncertain product 



  

requirement, operating parameters and utility and energy product flows. Based 

on this, a single and joint chance constrained optimization models have been 

developed. In order to handle the uncertainty effect, all the uncertain variables 

have been explicitly incorporated in the formulation of both single and joint 

chance constrained models so that their impact can be taken into account in 

the solution. Based on the stochastic distribution of the uncertain variables, the 

single and joint chance constrained probabilistic problems are converted to 

their corresponding equivalent deterministic form so that it can be solved 

using the available commercial optimization software routines.  

 The performance of the solution approach developed in this thesis has been 

implemented by taking three case studies for an existing gas processing plant. 

Based on the results obtained from case studies, the uncertainty from the plant 

inlet has a significant impact in the overall plant performance. This is due to 

the continuous variation of the feed conditions from the upstream plants. As a 

result, such variation propagates throughout the plant and results the plant 

operation to be unstable. The uncertainty from the plant outlet can also affect 

the economic performance of the plant. However, the profit change is far less 

compared to the uncertainty from the plant inlet. This has been supported from 

results in the two case studies. Accordingly, the profit has been changed by 

85.8% for inlet uncertainty case and 1.93% for outlet uncertainty case. For 

each of the cases, the profit has been measured starting from 50% confidence 

level to 100% confidence level.  

 On the other hand, for uncertain utility and energy product flows, the profit 

change is less than from any of the results obtained in case study one and two. 

There may be two reasons for this. First, the unit price factor for each utility 

and energy products flows are quite small compared to the price value of the 

raw material purchased and products sold. Second, the variations from the 

supply of some of the utilities which enter to the plant are different from one 

another. For example, the electricity supply is usually does not significantly 

vary compared to the supply of steam to the plant. This is due to the majority 

of the steam consumption is applied on the distillation columns. Hence, the 

steam consumption rate relies on mainly on the performance of the distillation 
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columns. Furthermore, the energy products produced from the plant can 

generate income or used to the plant itself as a potential energy source. Hence, 

this may have also a significant contribution to the economic performance of 

the plant.  

 Using the solution strategy developed in this thesis, the optimum trade-off has 

been found for the reliability of the process and profitability of the plant. The 

reliability of the process can now be measured just like other measurements 

with the “unit” known as confidence level. However, such kind of analysis has 

not been used in deterministic, “worst case” and two-stage programming 

approaches. The solution from this approaches mainly focus on the 

performance of the objective function than handling the constraints. An 

equivalent confidence level has been assigned based on the basic definition of 

these approaches to compare their solution performance with LSTS and LSTJ. 

Based on this, decisions from deterministic optimizations are usually 

aggressive. This is due to the optimal solution from the deterministic may 

deviate with a probability of 50%.   

 The decision from the “worst case” approach is considered as conservative. 

The solution from the “worst case” approach has shown how it can 

significantly handle the constraints. However, the profit value also 

significantly drops. The solution performances from the two-stage 

programming approaches give a closer solution to LSTS and LSTJ. The two-

stage programming approach is better than deterministic and worst case 

approach since it can at least make a compensation in the objective function 

by expecting for any violation of constraint that may occur. However, the 

compensation is based on a scenario measurement for the uncertain variables 

and hence it may not be effective for a continuous case. In addition, it still 

lacks in holding the constraint in a reliable way since the focus is given more 

to the objective function. Furthermore, there are still terms which are not 

tangible to represent as a compensation measurement. 

 Flexible decision can be made also using the solution method developed in 

this work. This is based on the market condition by shifting the production line 
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as discussed in the case studies. Based on this, the decision maker can make a 

prior-decision for the in-operating plant to produce the desired products by 

satisfying all the process constraints at certain confidence level. The decision 

maker also has the option to update the data and make a robust decision. 

Generally, using the systematic approach developed in this thesis, process 

engineer will have significantly reduces the burden to operate the plant as 

compared to the common practice of using trial and error approaches. The 

method can also be applied to other chemical process plant for decision 

making purpose 

5.2 Future works 

This work mainly addresses on introducing a new solution strategy for a real gas plant 

by taking into consideration the relation between profitability and reliability of 

holding the process constraints. However, the work can fully extended and more 

inputs can also be put on top of the existing method by other researchers. Some of the 

future directions from this work are discussed below.  

 The method introduced in this thesis is based on linear chance constrained 

optimization. During linear chance constrained optimization, the inlet 

uncertain variable propagates linearly and the distribution of the resulting 

output variables are usually known. Based on this, the whole material balance 

equation was reduced into a linear form using volatility of components and 

product specifications. However, if the concepts of rigorous equilibrium 

method for the distillation columns have used, then the inlet uncertain 

variables are correlated to the output uncertain variables nonlinearly. These 

uncertainties can arise from tray efficiency, tray column temperature, pressure 

and flows. Hence, linear chance constrained optimization may not be efficient 

as an option to solve such problems unless they are approximated to a linear 

form. Thus, such problems are solved using nonlinear chance constrained 

optimizations which are usually known with the presence of multivariate 

numerical integration. The nonlinear chance constrained optimization uses 

collocation method based on finite element for evaluating the multivariate 
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numerical integration [59]. However, nonlinear chance constrained 

optimization is more efficient to optimize the performance of a single 

equipment (such as the distillation columns) than the whole plant optimization 

[57].  

 On the other hand, the solution developed in this work is based on a single 

objective function from the operational aspect. However, the decision 

maker may need to coordinate decisions from the design as well as 

operational aspect due to the interconnection between them [159].  In such 

cases, a multi–objective function is required to obtain the optimal decision 

from both. Multi-objective optimization is defined as a process of 

simultaneously optimizing two or more conflicting objectives subject to 

certain constraints. The multi-objective function can be formulated in such 

a way that it can maximize the profit and at the same time minimizes the 

energy consumption. If a multi-objective problem is well formed, there 

should not be a single solution that simultaneously maximizes or 

minimizes each objective function to its fullest. Thus, the optimal 

solutions obtained from the multi-objective optimization represent 

ultimately for the condition that was set as objectives during the 

optimization.  

 In addition, the correlation for the prices factors with supply of raw 

material or utility as well as demand of material or energy products are all 

considered to be independent. However, recent works show that there 

exists a possible correlation of these price factors with supply or demand 

the aforementioned flows [160]. The authors argue that such correlation to 

be incorporated in the objective function to avoid any sub-optimal 

solution. Such approach should be investigated carefully by studying the 

historical trend of the prices factors as well as supply and demand. This 

also may need to closely see the correlation coefficient among those 

parameters. This correlation coefficient may also vary from time to time. 

Hence, it is also important to update the data at certain time interval. 



 

124 

 

 Finally, the distillation columns in this thesis are all regarded to be 

conventional. Process integration has proven to be very successful in 

reducing the energy costs of conventional distillation columns. However, 

the scope of integrating a conventional distillation column into an overall 

process is limited for energy saving purpose. Due to this, more attention 

has been turned to heat integrated distillation columns or non-conventional 

distillation column. Even though such kind of applications have not been 

yet implemented in real plant operation due to the complexity of the 

models as well as high investment; however,  there are still a research 

going on to improve those models. Interested researchers can refer to the 

works by Halvorsen and Skogestad [161-163]. 
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APPENDIX A 

SHORTCUT DISTILLATION CORRELATIONS 

 

A.1 Fenske method  

Fenske equation used to estimate the minimum number of stages, minN .  For total reflux, the flows of 

component  k  and a reference component rk are related by: 
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where the symbols td and tb are column distillate and bottom flow rates, respectively. dtx and 

btx are compositions for the distillate and bottom flows, respectively. Given the light key component 

Lk and heavy key components Hk , then the minimum number of theoretical stage becomes: 
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A.2 Hengstebeck-Geddes method  

This method is used to estimate the composition of the products. It is based on total reflux conditions. 

The basic assumption here is that component distributions do not depend on reflux ratio.  Based on this, 

the Fenske equation can also be written in the following form: 
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where  parameter A and C are obtained by applying the relation to the light and heavy key 

components. The composition of non-key components can be estimated 
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                                    Fig A.1:    A  logarithmic plot for component distribution  

 

A.3 Gilliland method  

The Gilliland correlation used to calculate the number of stages, given reflux ratio flxR  and minimum 

number of stages minN . The correlation can be evaluated using graphical method or equation based 

approach: 
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Based on this, several equations have been developed to relate eX  and eY : 

Liddle (1940):                  
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Molokonov (1972):    
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A.4 Kirkbride method  

The Kirkbride equation is used to estimate the most appropriate feed point location: 
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where rN  and sN are number of rectification and stripping stages above and below the feed 

location, respectively. 
HkZ and 

LkZ are composition for heavy and light key. sD  and tB are distillate 

and bottom flow rates, respectively. 

 

A.5 Edmister Method 

This method is used to find the product distribution ratio 
kt

kt

b
d

,

,  for each component in a column with 

a known number of trays above and below the feed and also with know reflux ratio. An absorption 

factor for each component k
 
on each tray Nn ,..,1  is defined as: 
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Usually it is understood to apply to a specific component so the subscript k is dropped and the 

absorption factors on tray N  becomes: 
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Similarly a stripping factor for each component is defined as: 
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The ratio of bottom and overhead flow rates for each component is : 
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The individual flow rates of each component are found: 
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      The functions are defined as: 
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The approximate effective absorption and stripping factors in each zone are: 
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Initial estimate is required when applying Edmister‟s methods which are improved by iteration. 

The initial estimates at the top and bottom temperatures so that 1A and 1S  can be estimated. These 

estimates are then later adjusted using a bubble point calculations after kb and kd are found by first 

iteration. The temperature at the feed zone can be found by taking a linear temperature gradient.



 

147 

 

APPENDIX B 

STANDARD NORMAL DISTRIBUTION FUNCTION 

Table B1 Standard loss function and standard normal cumulative distribution function 

Z  (-3, 3) 

Z   Z  Z   Z  

-3.00 1.349898E-03 0.00 5.000000E-01 

-2.96 1.538195E-03 0.04 5.159534E-01 

-2.92 1.750157E-03 0.08 5.318814E-01 

-2.88 1.988376E-03 0.12 5.477584E-01 

-2.84 2.255677E-03 0.16 5.635595E-01 

-2.80 2.555130E-03 0.20 5.792597E-01 

-2.76 2.890068E-03 0.24 5.948349E-01 

-2.72 3.264096E-03 0.28 6.102612E-01 

-2.68 3.681108E-03 0.32 6.255158E-01 

-2.64 4.145301E-03 0.36 6.405764E-01 

-2.60 4.661188E-03 0.40 6.554217E-01 

-2.56 5.233608E-03 0.44 6.700314E-01 

-2.52 5.867742E-03 0.48 6.843863E-01 

-2.48 6.569119E-03 0.52 6.984682E-01 

-2.44 7.343631E-03 0.56 7.122603E-01 

-2.40 8.197536E-03 0.60 7.257469E-01 

-2.36 9.137468E-03 0.64 7.389137E-01 

-2.32 1.017044E-02 0.68 7.517478E-01 

-2.28 1.130384E-02 0.72 7.642375E-01 

-2.24 1.254546E-02 0.76 7.763727E-01 

-2.20 1.390345E-02 0.80 7.881446E-01 

-2.16 1.538633E-02 0.84 7.995458E-01 

-2.12 1.700302E-02 0.88 8.105703E-01 

-2.08 1.876277E-02 0.92 8.212136E-01 

-2.04 2.067516E-02 0.96 8.314724E-01 

-2.00 2.275013E-02 1.00 8.413447E-01 

-1.96 2.499790E-02 1.04 8.508300E-01 

-1.92 2.742895E-02 1.08 8.599289E-01 

-1.88 3.005404E-02 1.12 8.686431E-01 

-1.84 3.288412E-02 1.16 8.769756E-01 

-1.80 3.593032E-02 1.20 8.849303E-01 

-1.76 3.920390E-02 1.24 8.925123E-01 

-1.72 4.271622E-02 1.28 8.997274E-01 

-1.68 4.647866E-02 1.32 9.065825E-01 
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Z   Z  Z   Z  

-1.64 5.050258E-02 1.36 9.130850E-01 

-1.60 5.479929E-02 1.40 9.192433E-01 

-1.56 5.937994E-02 1.44 9.250663E-01 

-1.52 6.425549E-02 1.48 9.305634E-01 

-1.48 6.943662E-02 1.52 9.357445E-01 

-1.44 7.493370E-02 1.56 9.406201E-01 

-1.40 8.075666E-02 1.60 9.452007E-01 

-1.36 8.691496E-02 1.64 9.494974E-01 

-1.32 9.341751E-02 1.68 9.535213E-01 

-1.28 1.002726E-01 1.72 9.572838E-01 

-1.24 1.074877E-01 1.76 9.607961E-01 

-1.20 1.150697E-01 1.80 9.640697E-01 

-1.16 1.230244E-01 1.84 9.671159E-01 

-1.12 1.313569E-01 1.88 9.699460E-01 

-1.08 1.400711E-01 1.92 9.725711E-01 

-1.04 1.491700E-01 1.96 9.750021E-01 

-1.00 1.586553E-01 2.00 9.772499E-01 

-0.96 1.685276E-01 2.04 9.793248E-01 

-0.92 1.787864E-01 2.08 9.812372E-01 

-0.88 1.894297E-01 2.12 9.829970E-01 

-0.84 2.004542E-01 2.16 9.846137E-01 

-0.80 2.118554E-01 2.20 9.860966E-01 

-0.76 2.236273E-01 2.24 9.874545E-01 

-0.72 2.357625E-01 2.28 9.886962E-01 

-0.68 2.482522E-01 2.32 9.898296E-01 

-0.64 2.610863E-01 2.36 9.908625E-01 

-0.60 2.742531E-01 2.40 9.918025E-01 

-0.56 2.877397E-01 2.44 9.926564E-01 

-0.52 3.015318E-01 2.48 9.934309E-01 

-0.48 3.156137E-01 2.52 9.941323E-01 

-0.44 3.299686E-01 2.56 9.947664E-01 

-0.40 3.445783E-01 2.60 9.953388E-01 

-0.36 3.594236E-01 2.64 9.958547E-01 

-0.32 3.744842E-01 2.68 9.963189E-01 

-0.28 3.897388E-01 2.72 9.967359E-01 

-0.24 4.051651E-01 2.76 9.971099E-01 

-0.20 4.207403E-01 2.80 9.974449E-01 

-0.16 4.364405E-01 2.84 9.977443E-01 

-0.12 4.522416E-01 2.88 9.980116E-01 

-0.08 4.681186E-01 2.92 9.982498E-01 

-0.04 4.840466E-01 2.96 9.984618E-01 

0.00 5.000000E-01 3.00 9.986501E-01 
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APPENDIX C 

HYSYS PROCESS MODEL AND STREAMS DATA TABLES 

 

Fig. C.1.  HYSYS  process model for pretreatment unit (PTU), acid gas removal unit (AGRU) and Dehydration unit (DHU) 
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Fig. C.2. HYSYS process model for condensate treatment unit (CTU) 
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Fig. C.3. HYSYS process model for low temperature separation unit (LTSU)
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 Fig. C.4. HYSYS process model for sales gas compression unit (SGCU) 
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Fig. C.5. HYSYS process model for product recovery unit (PRU)
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Fig. C.6. HYSYS process model for C3 refigeration unit (C3RU)
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Pretreatment unit (PTU) process stream data tables 

Table C1: PTU  process stream data table 1 
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Table C2: PTU  process stream data table 2 
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Table C3: PTU  process stream data table 3 
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Table C4: PTU  process stream data table 4 
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Table C5: PTU  process stream data table 5 
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Condensate treatment unit (CTU) process stream data tables 

Table C6: CTU process stream data table 1 
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Table C7: CTU process stream data table 2 
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Table C8: CTU process stream data table 3 
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Low temperature separation unit (LTSU) process stream data tables 

Table C9: LTSU process stream data table 1 
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Table C10: LTSU process stream data table 2 
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Table C11: LTSU process stream data table 3 
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Table C12: LTSU process stream data table 4 
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Sales gas compression unit (SGCU) process stream data tables 

Table C13: SGCU process stream data table 1 
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Table C14: SGCU process stream data table 2 
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Product recovery unit (PRU) process stream data tables 

Table C15: PRU  process stream data table 1 
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Table C16: PRU  process stream data table 2 
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Table C17: PRU  process stream data table 2 
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Table C18: PRU  process stream data table 3 
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C3-refigeration unit (C3RU) process stream data tables 

Table C19: C3RU process stream data table 1 
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Table C20: C3RU process stream data table 2 
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Table C21: C3RU process stream data table 3 
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Table C22: C3RU process stream data table 4 
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Table C23: C3RU process stearm data table 5 
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APPENDIX D 

NORMAL DISTRIBUTION FOR UNCERTAIN MATERIAL FLOWS 

 

 

 

Fig. D.1 Total C1 or methane inflow from the plant inlet 
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Fig.  D.2 Total C2 or ethane inflow from the plant inlet 

 

 

Fig.  D.3 Total C3 or propane inflow from the plant inlet 
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Fig. D. 4 Total C4s or butanes inflow from the plant inlet 

 

 

Fig. D. 5 Total C5+ or condensates inflow from the plant inlet 
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 Fig. D.6 Total N2 or Nitrogen inflow from the plant inlet 
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Fig. D.7 Total CO2 or Carbon dioxide inflow from the plant inlet 

 

 

 Fig. D. 8   C2 outflow for propane product from the plant outlet 

Fig. D.9 C3 outflow for propane product from the plant outlet 
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 Fig. D.10 C4s outflow for propane product from the plant outlet 
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APPENDIX E 

 GAMS OPTIMIZATION CODE 

NB: All the GAMS optimization code used for the three case studies 

(case study 1, 2 and 3) are represented below. ‘Notes’ written in 

asterisk (*) are only used for explanation purpose and are not part 

of the program. 

$Title Gas plant optimization 

*Notes 

* The following sets, tables and scalars defined are common in all      

*the three case studies. 

Sets 

  a Index for feed component flows /ru1*ru7/ 

 b Index for product component flows /pu1*pu7/ 

 c Index for utility flows /u1*u6/ 

 d Index for energy product flows /q1*q4/ 

 e Index for set of confidence level in percentage /50*100/ 

 f Index for inlet energy flow  

 /QA2101,QT2151,QAGRU,QL2301,QL2302,QT2101,QL2104,QT2451,QL2451,

 QL2452,QT2404,WP2404,WP2403,WP2402,WP2401,WR2401,WR2151,WR2501,

 QT2604SalesGas,QL2501,QT2603,QT2604PRU,QT2601,QT2621,QT2641,QL2

 661,QL2662,WP2621,WP2641,QT2645,QT2623,QT2354,QT2352,QT2301,QT2

 602,QT2402,WR27011,WR27012,WR27013,QR1,QR2,QR3,QR4/ 

 g Index for Outlet energy flow   

 /QT2301,QT2402,WRT2401,QT2501,WRT2151,QT2602,QT2622,QT2642,QT26

 23,QT2645,QT2643,QT2644,QT2701,QT2603,QP1,QP2,QP3,QP4,QP5,Q
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    i Index for raw material flow  /R1*R4/ 

 j Index for product flow /P1*P6/ 

 k Index for raw material and product components  

   /C1,C2,C3,iC4,C4,iC5,C5,C6,C7,C8,C9,C10,C6+,N2,CO2/  

 l Index for Deethanizer Depropanizer & Debutanizer columns feed 

 and bottoms/Ds-Feed,De-Feed,Dp-Feed,Db-Feed,De- 

 Bottom,DpBottom,Db-Bottom/; 

 

Table x(k,i)  mass fraction in the raw material streams 

 

*         Phase1gas     Phase2gas   Phase3gas    Phase2liquid 

             R1            R2           R3            R4 

   C1  0.6706315661  0.7115876835  0.3462174656  0.0995669976 

   C2  0.1186013726  0.0856698874  0.2634824801  0.0333836461 

   C3  0.0806649561  0.0571473408  0.2167484976  0.0875645643 

  iC4  0.0256342823  0.0280976366  0.0458911557  0.0734480379 

   C4  0.0218473996  0.0125542632  0.0323937569  0.0545613996 

  iC5  0.0104863259  0.0085340786  0.0058641488  0.0651236937 

   C5  0.0057855591  0.0040815158  0.0027924518  0.0390742162 

   C6  0.0037143033  0.0032795487  0.0003668867  0.0855628551 

   C7  0.0021594385  0.0019066789  0.0002326934  0.1266234378 

   C8  0.0012022370  0.0011161635  0.0001326332  0.1959016323 

   C9  0.0000000000  0.0000000000  0.0000000000  0.1349842425 

   C10 0.0000000000  0.0000000000  0.0000000000  0.0010274147 

   N2  0.0058964675  0.0027371568  0.0017346943  0.0000000000 

  CO2  0.0533760920  0.0832880462  0.0841431359  0.0031778622 

  C6+  0.0070759788  0.0063023911  0.0007322133  0.5440995824  ; 

 

 



 

186 

 

Table y(k,j)  mass fraction in the product streams 

*     Salesgas      Ethane      Propane      Butane   Condensate  CO2 

     P1           P2           P3           P4         P5       P6 

C1 0.9278570484 1.838005E-03 1.117286E-13 2.41179E-31 1.57575E-31 0 

C2 0.0613998937 9.827804E-01 1.088324E-02 3.38162E-12 1.23998E-31 0 

C3 0.0029865137 3.443157E-05 9.836914E-01 9.91422E-03 5.11162E-15 0 

iC4 0.0001119604 4.515036E-09 5.329154E-03 5.53721E-01 1.19789E-05 0 

C4 0.0000302948 3.250589E-10 9.622190E-05 4.33798E-01 3.10034E-03 0 

iC5 0.0000012549 1.299845E-12 6.380700E-09 2.55221E-03 1.84500E-01 0 

C5 0.0000002353 2.137020E-13 4.342608E-10 1.41547E-05 1.05403E-01 0 

C6 0.0000000055 1.411487E-14 8.451347E-13 3.40890E-14 1.38607E-01 0 

C7 0.0000000001 1.001356E-15 1.440899E-14 3.12771E-20 1.69835E-01 0 

C8 0.0000000000 1.629144E-16 1.595709E-15 4.33937E-24 2.40233E-01 0 

C9 0.0000000000 1.827375E-17 2.166259E-16 1.51697E-26 1.56713E-01 0 

C10 0.0000000000 2.931575E-20 5.526174E-19 6.18688E-30 1.19290E-03 0 

N2 0.0073789116 4.111901E-10 1.490759E-24 4.12215E-48 2.69323E-48 0 

CO2 0.0002338818 1.534717E-02 5.247252E-09 7.44194E-25 2.98168E-32 1 

C6+ 5.435342E-09 6.525873E-15 5.019555E-13 9.52754E-14 7.06985E-01 0 

; 

 

*The temperature (Degree C), pressure (KPa) and flow rates *(ton/h) 

of R1, R2, R3, R4 at the existing condition is given below 

*                R1          R2         R3         R4 

*Temperature     24.54        17        28.64      27.44 

*Pressure      7261.325    7261.325   6511.325   6661.325 

*Flow rates     254.34       40         1.25        31.7 

 

* The composition of each feed is shown in the above table 1, where 

* C1 = methane, C2 = Ethane, C3 = Propane, iC4 = iso-butane, C4 = n-

*butane, iC5 = iso-pentane, C5 = n-pentane, C6+= n-hexane (C6) + n-

*heptane (C7) + n-octane (C8) + n-nonane (C9) + n-decane (C10), N2 = 
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*Nitrogen, CO2 = Carbon dioxide. The main products from the plant are 

*SalesGas, Ethane, Propane and Butane. While, Carbon dioxide and 

*Condensate are the byproducts from the plant. The product flow rates 

*are represented as: P1=Salesgas product, P2 =Ethane, Product, P3 

*=Propane product, P4=Butane product, P5=Condensate product and 

*P6=Carbon dioxide product. 

*The composition of each product are obtained from rigorous HYSYS 

*simulation and are given in the above table2 The total product flow 

*rate is represented as P. And P = P1 + P2 + P3 + P4 + P5 + P6 

* All the temperature is degree C, Pressure in KPa and the flow rates 

*in ton/h. The composition of each and products are in mass fraction. 

Scalars 

      CR1 cost of raw material R1 / 35.63 / 

   CR2 cost of raw material R2 / 28.87 / 

   CR3 cost of raw material R3 / 15.13 / 

   CR4 cost of raw material R4 / 21.44  / 

   CR12 average cost of raw material R1 and R2 / 33.179 / 

   CP1 cost of sales gas in dollar per ton /101.94/ 

   CP2 cost of Ethane in dollar per ton/61.03/ 

   CP3 cost of propane in dollar per ton /166.7/ 

   CP4 cost of butane in dollar per ton /212.0/ 

   CP5 cost of condensate in dollar per ton /0.0/ 

   CP6 cost of carbon dioxide in dollar per ton/0.0 / 

   Cstm steam cost in dollar per Kw-h  /0.008352072/ 

   Crefg Refrigeration cost in dollar per kw-h  /0.015740443/ 

   Ccompress compression cost in dollar per Kw-h /0.007870222/ 

   Celetric Electricity cost in dollar per Kw-h / 0.057822037/ 

   Cfuel Heater fuel cost in dollar per Kw-h  / 0.001393724/ 

   Ccooling cooling cost for raw material in dollar per Kw-h 

 /0.000154057/; 
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*NOTES 

* unit conversion : 1MMSCFD = 1062.8 MMBTU/day = 44.3 MMBTU/h. 

* specific heat capacity of water at 4 degree C in Kwh per ton.K 

*/1.16278/ 

* specific heat capacity of C3 refrigerant in Kwh per ton.K 

*/0.720087695/ 

* All the costs for the utility consumption are in $/kWhr. 

* CASE STUDY 1 

* (I)Single chance constrained optimization  

Table m1(e,a) values for total feed component inflows (ru1-ru4) 

*           C1 inflow     C2 inflow      C3 inflow   C4s inflow 

    ru1            ru2           ru3          ru4 

50   190.05523730   32.26080945   20.78197572  13.08167633 

51   189.26906564   32.11571083   20.67445828  13.00212372 

52   188.48239952   31.97052096   20.56687322  12.92252107 

53   187.69474231   31.82514816   20.45915262  12.84281813 

54   186.90559297   31.67949997   20.35122795  12.76296421 

55   186.11444385   31.53348270   20.24302979  12.68290793 

56   185.32077829   31.38700098   20.13448749  12.60259701 

57   184.52406824   31.23995736   20.02552881  12.52197802 

58   183.72377165   31.09225179   19.91607964  12.44099611 

59   182.91932974   30.94378116   19.80606355  12.35959473 

60   182.11016405   30.79443868   19.69540143  12.27771535 

61   181.29567320   30.64411337   19.58401104  12.19529713 

62   180.47522944   30.49268937   19.47180652  12.11227652 

63   179.64817476   30.34004524   19.35869789  12.02858696 

64   178.81381660   30.18605315   19.24459043  11.94415836 

65   177.97142306   30.03057803   19.12938405  11.85891667 

66   177.12021757   29.87347654   19.01297253  11.77278329 

67   176.25937272   29.71459597   18.89524273  11.68567451 

   68    175.38800340   29.55377297   18.77607360  11.59750020 
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     ru1            ru2           ru3          ru4 

69   174.50515884   29.39083206   18.65533510  11.50816582 

70   173.60981347   29.22558396   18.53288698  11.41756593 

71   172.70085638   29.05782363   18.40857732  11.32558868 

72   171.77707895   28.88732801   18.28224081  11.23211175 

73   170.83716043   28.71385333   18.15369683  11.13700152 

74   169.87965088   28.53713198   18.02274710  11.04011124 

75   168.90295094   28.35686880   17.88917287  10.94127910 

76   167.90528756   28.17273652   17.75273166  10.84032567 

77   166.88468486   27.98437048   17.61315325  10.73705100 

78   165.83892862   27.79136202   17.47013483  10.63123106 

79   164.76552291   27.59325047   17.32333504  10.52261327 

80   163.66163631   27.38951326   17.17236667  10.41091112 

81   162.52403491   27.17955353   17.01678743  10.29579738 

82   161.34899758   26.96268449   16.85608843  10.17689550 

83   160.13220784   26.73810948   16.68967933  10.05376869 

84   158.86861377   26.50489610   16.51686924   9.92590577 

85   157.55224398   26.26194224   16.33684150   9.79270247 

86   156.17596182   26.00793075   16.14862010   9.65343665 

87   154.73113088   25.74126765   15.95102392   9.50723439 

88   153.20715016   25.45999638   15.74260315   9.35302297 

89   151.59079212   25.16167564   15.52154879   9.18946390 

90   149.86523339   24.84320043   15.28556006   9.01485482 

91   148.00858737   24.50053128   15.03164373   8.82698104 

92   145.99159365   24.12826780   14.75579813   8.62288170 

93   143.77380097   23.71894415   14.45249110   8.39846353 

94   141.29687398   23.26179376   14.11374467   8.14782360 

95   138.47192573   22.74041134   13.72740259   7.86196744 

96   135.15297512   22.12785409   13.27350037   7.52612324
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      ru1            ru2           ru3          ru4 

97   131.07274725   21.37479283   12.71548528   7.11324548 

98   125.64879517   20.37372908   11.97370145   6.56439645 

99   117.09997536   18.79592872   10.80455832   5.69934243 

100   1.96145017     0.45444403     0.94187442   0.95151064; 

 

Table m2(e,a) values for total feed component inflows (ru5-ru7)  

*                 C5+ inflow        N2 inflow          CO2 inflow 

           ru5               ru6                ru7 

50        9.06038102        2.43898383        47.22380042 

51        8.97642799        2.42254694        46.97958470 

52        8.89242215        2.40609971        46.73521539 

53        8.80831047        2.38963176        46.49053820 

54        8.72403946        2.37313261        46.24539750 

55        8.63955489        2.35659166        45.99963559 

56        8.55480160        2.33999809        45.75309197 

57        8.46972320        2.32334087        45.50560262 

58        8.38426181        2.30660866        45.25699914 

59        8.29835774        2.28978978        45.00710797 

60        8.21194924        2.27287215        44.75574940 

61        8.12497207        2.25584317        44.50273664 

62        8.03735922        2.23868974        44.24787466 

63        7.94904040        2.22139808        43.99095908 

64        7.85994166        2.20395373        43.73177475 

65        7.76998485        2.18634138        43.47009431 

66        7.67908704        2.16854480        43.20567654 

67        7.58715986        2.15054668        42.93826440 

68        7.49410881        2.13232852        42.66758296 

69        7.39983235        2.11387044        42.39333685 
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         ru5               ru6                ru7 

70        7.30422096        2.09515100        42.11520750 

71        7.20715602        2.07614697        41.83284981 

72        7.10850845        2.05683309        41.54588835 

73        7.00813723        2.03718173        41.25391284 

74        6.90588750        2.01716259        40.95647286 

75        6.80158849        1.99674223        40.65307160 

76        6.69505086        1.97588358        40.34315827 

77        6.58606360        1.95454532        40.02611908 

78        6.47439026        1.93268116        39.70126623 

79        6.35976432        1.91023892        39.36782436 

80        6.24188340        1.88715940        39.02491393 

81        6.12040218        1.86337499        38.67153037 

82        5.99492329        1.83880789        38.30651774 

83        5.86498577        1.81336785        37.92853518 

84        5.73005015        1.78694924        37.53601336 

85        5.58947876        1.75942723        37.12709733 

86        5.44250951        1.73065260        36.69957017 

87        5.28822012        1.70044479        36.25074908 

88        5.12547855        1.66858215        35.77734096 

89        4.95287227        1.63478813        35.27523683 

90        4.76860476        1.59871100        34.73921069 

91        4.57033881        1.55989315        34.16246370 

92        4.35494978        1.51772284        33.53590643 

93        4.11811800        1.47135432        32.84697313 

94        3.85361401        1.41956795        32.07754257 

95        3.55194582        1.36050532        31.20000297 

96        3.19752452        1.29111434        30.16900689 

97        2.76180858        1.20580694        28.90152826 
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         ru5               ru6                ru7 

98        2.18260016        1.09240562        27.21663625 

99        1.26969599        0.91367110        24.56103790 

100        0.02561980        0.49358855         0.20549879; 

 

Variables Z; 

Positive Variables 

ru1,ru2,ru3,ru4,ru5,ru6,ru7,ru,R1,R2,R3,R4,R,P1,P2,P3,P4,P5,P6, P; 

Equations 

OBJ,EQN1,EQN2,EQN3,EQN4,EQN5,EQN6,EQN7,EQN8,EQN9,EQN10,EQN11,CON1, 

 CON2,CON3,CON4,CON5,CON6,CON7; 

OBJ.. Z =E= CP1*P1 + CP2*P2 + CP3*P3 + CP4*P4 + CP5*P5 + CP6*P6 -

 (CR12)*(ru1+ ru2 + ru3 + ru4 + ru5 + ru6 + ru7)- CR3*R3 - 

 CR4*R4; 

EQN1..y('C1','P1')*P1 + y('C1','P2')*P2 + y('C1','P3')*P3 + 

 y('C1','P4')*P4 + y('C1','P5')*P5 + y('C1','P6')*P6 - 

 x('C1','R3')*R3 - x('C1','R4')*R4 =E= ru1; 

EQN2..  y('C2','P1')*P1 + y('C2','P2')*P2 + y('C2','P3')*P3 + 

 y('C2','P4')*P4 + y('C2','P5')*P5 + y('C2','P6')*P6 - 

 x('C2','R3')*R3 - x('C2','R4')*R4 =E= ru2; 

EQN3..y('C3','P1')*P1 + y('C3','P2')*P2 + y('C3','P3')*P3 + 

 y('C3','P4')*P4 + y('C3','P5')*P5 + y('C3','P6')*P6 - 

 x('C3','R3')*R3 - x('C3','R4')*R4 =E= ru3; 

EQN4..(y('iC4','P1') + y('C4','P1'))*P1 + (y('iC4','P2')+ 

 y('C4','P2'))*P2 +(y('iC4','P3')+ y('C4','P3'))*P3 + 

 (y('iC4','P4')+ y('C4','P4'))*P4 +(y('iC4','P5')+ 

 y('C4','P5'))*P5 + (y('iC4','P6')+ y('C4','P6'))*P6 -

 (x('iC4','R3')+ x('C4','R3'))*R3 - (x('iC4','R4')+ 

 x('C4','R4'))*R4 =E= ru4; 

EQN5..(y('iC5','P1') + y('C5','P1')+ y('C6+','P1'))*P1 + 

 (y('iC5','P2')+ y('C5','P2')+ y('C6+','P2'))*P2 

 +(y('iC5','P3')+ y('C5','P3')+ y('C6+','P3'))*P3 + 

 (y('iC5','P4')+ y('C5','P4')+ y('C6+','P4'))*P4 

 +(y('iC5','P5')+ y('C5','P5')+ y('C6+','P5'))*P5 + 

 (y('iC5','P6')+y('C5','P6')+ y('C6+','P6'))*P6 -(x('iC5','R3')+ 

 x('C5','R3')+ x('C6+','R3'))*R3 - (x('iC5','R4')+ x('C5','R4')+ 

 x('C6+','R4'))*R4 =E= ru5; 

EQN6..y('N2','P1')*P1 + y('N2','P2')*P2 + y('N2','P3')*P3 + 

 y('N2','P4')*P4 + y('N2','P5')*P5 + y('N2','P6')*P6 - 

 x('N2','R3')*R3 - x('N2','R4')*R4 =E= ru6; 
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EQN7..y('CO2','P1')*P1 + y('CO2','P2')*P2 + y('CO2','P3')*P3 + 

 y('CO2','P4')*P4 + y('CO2','P5')*P5 + y('CO2','P6')*P6 - 

 x('CO2','R3')*R3 - x('CO2','R4')*R4 =E= ru7; 

CON1..y('C1','P1')*P1 + y('C1','P2')*P2 + y('C1','P3')*P3 + 

 y('C1','P4')*P4 + y('C1','P5')*P5 + y('C1','P6')*P6 - 

 x('C1','R3')*R3 - x('C1','R4')*R4 =L= m1('50','ru1'); 

CON2..y('C2','P1')*P1 + y('C2','P2')*P2 + y('C2','P3')*P3 + 

 y('C2','P4')*P4 +y('C2','P5')*P5 + y('C2','P6')*P6  - 

 x('C2','R3')*R3 - x('C2','R4')*R4 =L= m1('50','ru2'); 

CON3..y('C3','P1')*P1 + y('C3','P2')*P2 + y('C3','P3')*P3 + 

 y('C3','P4')*P4 +y('C3','P5')*P5 + y('C3','P6')*P6  - 

 x('C3','R3')*R3 - x('C3','R4')*R4 =L= m1('50','ru3'); 

CON4..(y('iC4','P1') + y('C4','P1'))*P1 + (y('iC4','P2')+ 

 y('C4','P2'))*P2 +(y('iC4','P3')+ y('C4','P3'))*P3 + 

 (y('iC4','P4')+ y('C4','P4'))*P4  +(y('iC4','P5')+ 

 y('C4','P5'))*P5 + (y('iC4','P6')+ y('C4','P6'))*P6  -

 (x('iC4','R3')+ x('C4','R3'))*R3 - (x('iC4','R4')+ 

 x('C4','R4'))*R4 =L= m1('50','ru4'); 

CON5.. (y('iC5','P1') + y('C5','P1')+ y('C6+','P1'))*P1 + 

 (y('iC5','P2')+y('C5','P2')+ y('C6+','P2'))*P2 +(y('iC5','P3')+ 

 y('C5','P3')+y('C6+','P3'))*P3 + (y('iC5','P4')+ y('C5','P4')+ 

 y('C6+','P4'))*P4 +(y('iC5','P5')+ y('C5','P5')+ 

 y('C6+','P5'))*P5 + (y('iC5','P6')+y('C5','P6')+ 

 y('C6+','P6'))*P6  - (x('iC5','R3')+ x('C5','R3')+ 

 x('C6+','R3'))*R3 - (x('iC5','R4')+ x('C5','R4')+ 

 x('C6+','R4'))*R4 =L= m2('50','ru5'); 

CON6..y('N2','P1')*P1 + y('N2','P2')*P2 + y('N2','P3')*P3 + 

 y('N2','P4')*P4 +y('N2','P5')*P5 + y('N2','P6')*P6  - 

 x('N2','R3')*R3 - x('N2','R4')*R4 =L= m2('50','ru6'); 

CON7..y('CO2','P1')*P1 + y('CO2','P2')*P2 + y('CO2','P3')*P3 + 

 y('CO2','P4')*P4 + y('CO2','P5')*P5 + y('CO2','P6')*P6 - 

 x('CO2','R3')*R3 - x('CO2','R4')*R =L= m2('50','ru7'); 

EQN8.. ru =E= ru1 + ru2 + ru3 + ru4 + ru5 + ru6 + ru7; 

EQN9..  R =E= R3 + R4; 

EQN10.. P =E= P1 + P2 + P3 + P4 + P5 + P6; 

EQN11.. P - R - ru =E= 0; 

   R3.up = 10.706112016; 

   R3.lo = 0; 

   R4.up = 35.5858020881; 

   R4.lo = 0; 

   P1.up = 298.518112183; 

   P1.lo = 0; 
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   P2.up = 37.310810089; 

   P2.lo = 0; 

   P3.up = 47.706112016; 

   P3.lo = 0; 

   P4.up = 29.585802088; 

   P4.lo = 0; 

   P5.up = 43.111991264; 

   P5.lo = 0; 

   P6.up = 57.659376734; 

   P6.lo = 0; 

Model Gas / all /; 

Option LP = CPLEX; 

Solve Gas using LP maximizing Z; 

Display 

 ru1.l,ru2.l,ru3.l,ru4.l,ru5.l,ru6.l,ru7.l,R3.l,R4.l,P1.l,P2.l,P

 3.l,P4.l,P5.l,P6.l,ru.l,R.l,P.l; 

* (II)Joint chance constrained optimization  

Scalars 

   SM1 supply mean value for ru1 /190.0552373/ 

   SV1 supply STDEV for ru1 /31.36042668/ 

   SM2 supply mean value for ru2 /32.26080945/ 

   SV2 supply STDEV for ru2 /5.787991076/ 

   SM3 supply mean value for ru3 /20.78197572/ 

   SV3 supply STDEV for ru3 /4.28887593/ 

   SM4 supply mean value for ru4 /13.08167633/ 

   SV4 supply STDEV for ru4 /3.173357683/ 

   SM5 supply mean value for ru5 /9.060381024/ 

   SV5 supply STDEV for ru5 /3.348890816/ 

   SM6 supply mean value for ru6 /2.438983829/ 

   SV6 supply STDEV for ru6 /0.655668375/ 
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   SM7 supply mean value for ru7 /47.22380042/ 

   SV7 supply STDEV for ru7 /9.74177713/; 

Variables  

Z, zu1,zu2,zu3,zu4,zu5,zu6,zu7; 

Positive Variables 

ru1,ru2,ru3,ru4,ru5,ru6,ru7,ru,R1,R2,R3,R4,R,P1,P2,P3,P4,P5,P6,P; 

Equations 

OBJ,EQN1,EQN2,EQN3,EQN4,EQN5,EQN6,EQN7,EQN8,EQN9,EQN10,EQN11,EQN12, 

 EQN13,EQN14,EQN15,EQN16,EQN17,EQN18,CON1; 

OBJ..Z =E= CP1*P1 + CP2*P2 + CP3*P3 + CP4*P4 + CP5*P5 + CP6*P6 -

 (CR12)*(ru1+ ru2 + ru3 + ru4 + ru5 + ru6 + ru7)- CR3*R3 - 

 CR4*R4; 

EQN1..y('C1','P1')*P1 + y('C1','P2')*P2 + y('C1','P3')*P3 + 

 y('C1','P4')*P4 + y('C1','P5')*P5 + y('C1','P6')*P6 - 

 x('C1','R3')*R3 - x('C1','R4')*R4 =E= ru1; 

EQN2..y('C2','P1')*P1 + y('C2','P2')*P2 + y('C2','P3')*P3 + 

 y('C2','P4')*P4 + y('C2','P5')*P5 + y('C2','P6')*P6 - 

 x('C2','R3')*R3 - x('C2','R4')*R4 =E= ru2; 

EQN3..y('C3','P1')*P1 + y('C3','P2')*P2 + y('C3','P3')*P3 + 

 y('C3','P4')*P4 + y('C3','P5')*P5 + y('C3','P6')*P6 - 

 x('C3','R3')*R3 - x('C3','R4')*R4 =E= ru3; 

EQN4..(y('iC4','P1') + y('C4','P1'))*P1 + (y('iC4','P2')+ 

 y('C4','P2'))*P2 +(y('iC4','P3')+ y('C4','P3'))*P3 + 

 (y('iC4','P4')+ y('C4','P4'))*P4 +(y('iC4','P5')+ 

 y('C4','P5'))*P5 + (y('iC4','P6')+ y('C4','P6'))*P6 -

 (x('iC4','R3')+ x('C4','R3'))*R3 - (x('iC4','R4')+ 

 x('C4','R4'))*R4 =E= ru4; 

EQN5..(y('iC5','P1') + y('C5','P1')+ y('C6+','P1'))*P1 + 

 (y('iC5','P2')+ y('C5','P2')+ y('C6+','P2'))*P2 

 +(y('iC5','P3')+ y('C5','P3')+ y('C6+','P3'))*P3 + 

 (y('iC5','P4')+ y('C5','P4')+ y('C6+','P4'))*P4 

 +(y('iC5','P5')+ y('C5','P5')+ y('C6+','P5'))*P5 + 

 (y('iC5','P6')+y('C5','P6')+ y('C6+','P6'))*P6 -(x('iC5','R3')+ 

 x('C5','R3')+ x('C6+','R3'))*R3 - (x('iC5','R4')+ x('C5','R4')+ 

 x('C6+','R4'))*R4 =E= ru5; 

EQN6..y('N2','P1')*P1 + y('N2','P2')*P2 + y('N2','P3')*P3 + 

 y('N2','P4')*P4 + y('N2','P5')*P5 + y('N2','P6')*P6 - 

 x('N2','R3')*R3 - x('N2','R4')*R4 =E= ru6; 

EQN7..y('CO2','P1')*P1 + y('CO2','P2')*P2 + y('CO2','P3')*P3 + 

 y('CO2','P4')*P4 + y('CO2','P5')*P5 + y('CO2','P6')*P6 - 

 x('CO2','R3')*R3 - x('CO2','R4')*R4 =E= ru7; 

EQN8.. zu1 =E= (ru1 - SM1)/SV1; 
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EQN9.. zu2 =E= (ru2 - SM2)/SV2; 

EQN10.. zu3 =E= (ru3 - SM3)/SV3; 

EQN11.. zu4 =E= (ru4 - SM4)/SV4; 

EQN12.. zu5 =E= (ru5 - SM5)/SV5; 

EQN13.. zu6 =E= (ru6 - SM6)/SV6; 

EQN14.. zu7 =E= (ru7 - SM7)/SV7; 

CON1..  (1 - errorf(zu1))*(1 - errorf(zu2))*(1 - errorf(zu3))* 

        (1 - errorf(zu4))*(1 - errorf(zu5))*(1 - errorf(zu6))* 

        (1 - errorf(zu7)) =G= 0.50; 

EQN15.. ru =E= ru1 + ru2 + ru3 + ru4 + ru5 + ru6 + ru7; 

EQN16..  R =E= R3 + R4; 

EQN17.. P =E= P1 + P2 + P3 + P4 + P5 + P6; 

EQN18.. P - R - ru =E= 0; 

   R3.up = 10.706112016; 

   R3.lo = 0; 

   R4.up = 35.5858020881; 

   R4.lo = 0; 

   P1.up = 298.518112183; 

   P1.lo = 0; 

   P2.up = 37.310810089; 

   P2.lo = 0; 

   P3.up = 47.706112016; 

   P3.lo = 0; 

   P4.up = 29.585802088; 

   P4.lo = 0; 

   P5.up = 43.111991264; 

   P5.lo = 0; 

   P6.up = 57.659376734; 

   P6.lo = 0;
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Model Gas / all /; 

Option NLP = CONOPT3; 

Solve Gas using NLP maximizing Z; 

Display 

 zu1.l,zu2.l,zu3.l,zu4.l,zu5.l,zu6.l,zu7.l,ru1.l,ru2.l,ru3.l,ru4

 .l,ru5.l,ru6.l,ru7.l,R3.l,R4.l,P1.l,P2.l,P3.l,P4.l,P5.l,P6.l,ru

 .l,R.l,P.l; 

 

* CASE STUDY 2 

*(I)Single chance constrained optimization  

Table m1(e,b) values for total feed component outflows (pu1-pu4) 

*            C1 outflow   C2 outflow   C3 outflow    C4s outflow 

      pu1        pu2          pu3           pu4 

50  0.00000000  0.29099634  24.48603967  15.66600984 

51  0.00000125  0.29484201  24.61206710  15.73571295 

52  0.00000249  0.29869011  24.73817379  15.80545989 

53  0.00000374  0.30254305  24.86443936  15.87529471 

54  0.00000499  0.30640329  24.99094413  15.94526182 

55  0.00000624  0.31027332  25.11776947  16.01540623 

56  0.00000750  0.31415565  25.24499821  16.08577376 

57  0.00000876  0.31805287  25.37271500  16.15641121 

58  0.00001003  0.32196764  25.50100673  16.22736665 

59  0.00001130  0.32590269  25.62996298  16.29868963 

60  0.00001258  0.32986085  25.75967647  16.37043142 

61  0.00001387  0.33384505  25.89024361  16.44264534 

62  0.00001517  0.33785837  26.02176504  16.51538706 

63  0.00001648  0.34190403  26.15434623  16.58871491 

64  0.00001780  0.34598542  26.28809821  16.66269030 

65  0.00001914  0.35010611  26.42313830  16.73737812 

66  0.00002049  0.35426991  26.55959099  16.8128472
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   pu1         pu2          pu3           pu4 

67  0.00002185  0.35848086  26.69758892  16.88917096 

68  0.00002323  0.36274330  26.83727398  16.96642781 

69  0.00002463  0.36706186  26.97879858  17.04470207 

70  0.00002605  0.37144158  27.12232713  17.12408467 

71  0.00002749  0.37588787  27.26803770  17.20467411 

72  0.00002895  0.38040667  27.41612406  17.28657754 

73  0.00003044  0.38500442  27.56679791  17.36991206 

74  0.00003195  0.38968822  27.72029170  17.45480623 

75  0.00003350  0.39446589  27.87686181  17.54140185 

76  0.00003508  0.39934611  28.03679247  17.62985611 

77  0.00003670  0.40433854  28.20040042  17.72034421 

78  0.00003835  0.40945402  28.36804062  17.81306246 

79  0.00004005  0.41470474  28.54011317  17.90823214 

 

Table m1(e,b) values for total feed component outflows (pu1-pu4) 

*            C1 outflow   C2 outflow   C3 outflow   C4s outflow 

                 pu1         pu2         pu3          pu4 

80  0.00004180  0.42010456  28.71707196  18.00610431 

81  0.00004360  0.42566931  28.89943542  18.10696568 

82  0.00004547  0.43141718  29.08780005  18.21114617 

83  0.00004739  0.43736929  29.28285781  18.31902849 

84  0.00004939  0.44355035  29.48541855  18.43106056 

85  0.00005148  0.44998957  29.69643951  18.54777179 

86  0.00005366  0.45672186  29.91706474  18.66979493 

87  0.00005595  0.46378946  30.14867869  18.79789571 

88  0.00005836  0.47124424  30.39298077  18.93301403 

89  0.00006092  0.47915090  30.65209142  19.07632265 

90  0.00006365  0.48759172  30.92870751  19.22931316
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pu1         pu2         pu3          pu4 

91  0.00006659  0.49667378  31.22633758  19.39392605 

92  0.00006979  0.50654021  31.54967222  19.57275560 

93  0.00007330  0.51738887  31.90519599  19.76938828 

94  0.00007722  0.52950513  32.30226034  19.98899617 

95  0.00008170  0.54332378  32.75511432  20.23946013 

96  0.00008696  0.55955892  33.28715947  20.53372305 

97  0.00009342  0.57951797  33.94124134  20.89548190 

98  0.00010201  0.60605003  34.81072922  21.37637726 

99  0.00011555  0.64786786  36.18114975  22.13432787 

100  0.00029791  1.21108509  54.63845756  32.34267443; 

 

Table m2(e,b) values for total feed component outflows (pu5-pu7) 

*                C5+ outflow       N2 outflow        CO2 outflow 

            pu5               pu6                pu7 

50        0.15582874        0.00000000        0.70140516 

51        0.15924002        0.00000000        0.70787117 

52        0.16265345        0.00000000        0.71434125 

53        0.16607118        0.00000000        0.72081947 

54        0.16949538        0.00000000        0.72730997 

55        0.17292826        0.00000000        0.73381692 

56        0.17637206        0.00000000        0.74034456 

57        0.17982907        0.00000000        0.74689725 

58        0.18330165        0.00000000        0.75347943 

59        0.18679221        0.00000000        0.76009571 

60        0.19030326        0.00000000        0.76675083 

61        0.19383743        0.00000000        0.77344976 

62        0.19739742        0.00000000        0.78019765 

63        0.20098610        0.00000000        0.78699990
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           pu5               pu6                pu7 

64        0.20460647        0.00000000        0.79386223 

65        0.20826170        0.00000000        0.80079065 

66        0.21195518        0.00000000        0.80779154 

67        0.21569048        0.00000000        0.81487171 

68        0.21947144        0.00000000        0.82203844 

69        0.22330220        0.00000000        0.82929956 

70        0.22718720        0.00000000        0.83666348 

71        0.23113126        0.00000000        0.84413936 

72        0.23513963        0.00000000        0.85173714 

73        0.23921804        0.00000000        0.85946766 

74        0.24337277        0.00000000        0.86734287 

75        0.24761078        0.00000000        0.87537592 

76        0.25193975        0.00000000        0.88358138 

77        0.25636825        0.00000000        0.89197551 

78        0.26090590        0.00000000        0.90057651 

79        0.26556352        0.00000000        0.90940493 

 

Table m2(e,b) values for total feed component outflows (pu5-pu7) 

*                C5+ outflow       N2 outflow        CO2 outflow 

            pu5               pu6                pu7 

80        0.27035341        0.00000000        0.91848404 

81        0.27528958        0.00000000        0.92784045 

82        0.28038819        0.00000000        0.93750475 

83        0.28566798        0.00000000        0.94751246 

84        0.29115085        0.00000000        0.95790511 

85        0.29686272        0.00000000        0.96873183 

86        0.30283455        0.00000000        0.98005131 

87        0.30910383        0.00000000        0.99193458
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           pu5               pu6                pu7 

88        0.31571655        0.00000000        1.00446883 

89        0.32273010        0.00000000        1.01776286 

90        0.33021748        0.00000000        1.03195502 

91        0.33827367        0.00000000        1.04722534 

92        0.34702562        0.00000000        1.06381447 

93        0.35664886        0.00000000        1.08205510 

94        0.36739651        0.00000000        1.10242703 

95        0.37965427        0.00000000        1.12566132 

96        0.39405555        0.00000000        1.15295862 

97        0.41176010        0.00000000        1.18651718 

98        0.43529521        0.00000000        1.23112744 

99        0.47238946        0.00000000        1.30143874 

  100       0.97198788        0.00000000        2.24841610 ; 

Variables Z; 

Positive Variables 

pu1,pu2,pu3,pu4,pu5,pu6,pu7,pu,R1,R2,R3,R4,R,P1,P2,P3,P4,P5,P6,P; 

Equations 

OBJ,EQN1,EQN2,EQN3,EQN4,EQN5,EQN6,EQN7,EQN8,CON1,CON2,CON3,CON4; 

OBJ.. Z =E= CP1*P1 + CP2*P2  + (CP34)*(pu2 + pu3 + pu4 + pu5) + 

 CP5*P5 + CP6*P6 - CR1*R1 - CR2*R2 - CR3*R3 - CR4*R4 ; 

EQN1..x('C2','R1')*R1 + x('C2','R2')*R2 + x('C2','R3')*R3 + 

 x('C2','R4')*R4 - y('C2','P1')*P1 - y('C2','P2')*P2 - 

 y('C2','P5')*P5 - y('C2','P6')*P6 =E= pu2; 

EQN2.. x('C3','R1')*R1 + x('C3','R2')*R2 + x('C3','R3')*R3 + 

 x('C3','R4')*R4 -y('C3','P1')*P1 - y('C3','P2')*P2 - 

 y('C3','P5')*P5 - y('C3','P6')*P6 =E= pu3; 

EQN3..(x('iC4','R1') + x('C4','R1'))*R1 + (x('iC4','R2')+ 

 x('C4','R2'))*R2 +(x('iC4','R3')+ x('C4','R3'))*R3 + 

 (x('iC4','R4')+ x('C4','R4'))*R4 -(y('iC4','P1') + 

 y('C4','P1'))*P1 - (y('iC4','P2')+ y('C4','P2'))*P2  -

 (y('iC4','P5')+ y('C4','P5'))*P5 - (y('iC4','P6')+ 

 y('C4','P6'))*P6 =E= pu4; 
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EQN4..(x('iC5','R1') + x('C5','R1')+ x('C6+','R1'))*R1 + 

 (x('iC5','R2') +x('C5','R2')+ x('C6+','R2'))*R2 + 

 (x('iC5','R3')+ x('C5','R3') +x('C6+','R3'))*R3 

 +(x('iC5','R4')+ x('C5','R4')+ x('C6+','R4'))*R4 -

 (y('iC5','P1') + y('C5','P1')+ y('C6+','P1'))*P1 - 

 (y('iC5','P2') +y('C5','P2') + y('C6+','P2'))*P2  - 

 (y('iC5','P5')+ y('C5','P5')+y('C6+','P5'))*P5 - (y('iC5','P6') 

 + y('C5','P6')+ y('C6+','P6'))*P6 =E= pu5; 

CON1.. x('C2','R1')*R1 + x('C2','R2')*R2 + x('C2','R3')*R3 + 

 x('C2','R4')*R4 -y('C2','P1')*P1 - y('C2','P2')*P2 - 

 y('C2','P5')*P5 - y('C2','P6')*P6 =E= m1('50','pu2'); 

CON2.. x('C3','R1')*R1 + x('C3','R2')*R2 + x('C3','R3')*R3 + 

 x('C3','R4')*R4 -y('C3','P1')*P1 - y('C3','P2')*P2 - 

 y('C3','P5')*P5 - y('C3','P6')*P6 =G= m1('50','pu3'); 

CON3..(x('iC4','R1') + x('C4','R1'))*R1 + (x('iC4','R2')+ 

 x('C4','R2'))*R2 + (x('iC4','R3')+ x('C4','R3'))*R3 + 

 (x('iC4','R4')+ x('C4','R4'))*R4 -(y('iC4','P1') + 

 y('C4','P1'))*P1 - (y('iC4','P2')+ y('C4','P2'))*P2  -

 (y('iC4','P5')+ y('C4','P5'))*P5 - (y('iC4','P6')+ 

 y('C4','P6'))*P6 =G= m1('50','pu4'); 

CON4..(x('iC5','R1') + x('C5','R1')+ x('C6+','R1'))*R1 + 

 (x('iC5','R2') +x('C5','R2')+ x('C6+','R2'))*R2 + 

 (x('iC5','R3')+ x('C5','R3') +x('C6+','R3'))*R3 

 +(x('iC5','R4')+ x('C5','R4')+ x('C6+','R4'))*R4 -

 (y('iC5','P1') + y('C5','P1')+ y('C6+','P1'))*P1 - 

 (y('iC5','P2') +y('C5','P2') + y('C6+','P2'))*P2  - 

 (y('iC5','P5')+ y('C5','P5')+y('C6+','P5'))*P5 - (y('iC5','P6') 

 + y('C5','P6')+ y('C6+','P6'))*P6 =E=  m2('50','pu5'); 

EQN5.. pu =E=  pu1 + pu2 + pu3 + pu4 + pu5 + pu6 + pu7 ; 

EQN6..  R =E= R1 + R2 + R3 + R4; 

EQN7.. P =E= P1 + P2 + P5 + P6; 

EQN8..  R - P - pu =E= 0; 

   R1.up = 334.582214355; 

   R1.lo = 0; 

   R2.up = 220.314773560; 

   R2.lo = 0; 

   R3.up = 10.706112016; 

   R3.lo = 0; 

   R4.up = 35.5858020881; 

   R4.lo = 0;
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   P1.up = 298.518112183; 

   P1.lo = 0; 

   P2.up = 37.310810089; 

   P2.lo = 0; 

   P5.up = 43.111991264; 

   P5.lo = 0; 

   P6.up = 57.659376734; 

   P6.lo = 0; 

Model Gas / all /; 

Option LP = CPLEX; 

Solve Gas using LP maximizing Z; 

Display 

 pu1.l,pu2.l,pu3.l,pu4.l,pu5.l,pu6.l,pu7.l,R1.l,R2.l,R3.l,R4.l,P

 1.l,P2.l,P5.l,P6.l,pu.l,P.l,R.l; 

* (II)Joint chance constrained optimization  

Scalars 

   SM1 supply mean value for ru1 /4.90851E-10/ 

   SV1 supply STDEV for ru1 /4.9669E-05/ 

   SM2 supply mean value for ru2 /0.290996338/ 

   SV2 supply STDEV for ru2 /0.153404194/ 

   SM3 supply mean value for ru3 /24.48603967/ 

   SV3 supply STDEV for ru3 /5.027240429/ 

   SM4 supply mean value for ru4 /15.66600984/ 

   SV4 supply STDEV for ru4 /2.780460351/ 

   SM5 supply mean value for ru5 /0.155828737/ 

   SV5 supply STDEV for ru5 /0.13607626/ 

   SM6 supply mean value for ru6 /8.78535E-16/ 

   SV6 supply STDEV for ru6 /7.92836E-15/ 

   SM7 supply mean value for ru7 /0.70140516/ 

   SV7 supply STDEV for ru7 /0.257929429/;
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Variables 

Z,zu1,zu2,zu3,zu4,zu5,zu6,zu7; 

Positive Variables 

pu1,pu2,pu3,pu4,pu5,pu6,pu7,pu,R1,R2,R3,R4,R,P1,P2,P3,P4,P5,P6,P; 

Equations 

OBJ,EQN1,EQN2,EQN3,EQN4,EQN5,EQN6,EQN7,EQN8,EQN9,EQN10,EQN11,EQN12,EQ

N13,EQN14,CON1; 

OBJ.. Z =E= CP1*P1 + CP2*P2  + (CP34)*( pu2 + pu3 + pu4 + pu5 ) + 

 CP5*P5 + CP6*P6 - CR1*R1 - CR2*R2 - CR3*R3 - CR4*R4 ; 

EQN1..x('C2','R1')*R1 + x('C2','R2')*R2 + x('C2','R3')*R3 + 

 x('C2','R4')*R4 - y('C2','P1')*P1 - y('C2','P2')*P2 - 

 y('C2','P5')*P5 - y('C2','P6')*P6 =E= pu2; 

EQN2.. x('C3','R1')*R1 + x('C3','R2')*R2 + x('C3','R3')*R3 + 

 x('C3','R4')*R4 -y('C3','P1')*P1 - y('C3','P2')*P2 - 

 y('C3','P5')*P5 - y('C3','P6')*P6 =E= pu3; 

EQN3..(x('iC4','R1') + x('C4','R1'))*R1 + (x('iC4','R2')+ 

 x('C4','R2'))*R2 +(x('iC4','R3')+ x('C4','R3'))*R3 + 

 (x('iC4','R4')+ x('C4','R4'))*R4 -(y('iC4','P1') + 

 y('C4','P1'))*P1 - (y('iC4','P2')+ y('C4','P2'))*P2  -

 (y('iC4','P5')+ y('C4','P5'))*P5 - (y('iC4','P6')+ 

 y('C4','P6'))*P6 =E= pu4; 

EQN4.(x('iC5','R1') + x('C5','R1')+ x('C6+','R1'))*R1 + 

 (x('iC5','R2') +x('C5','R2')+ x('C6+','R2'))*R2 + 

 (x('iC5','R3')+ x('C5','R3') +x('C6+','R3'))*R3 

 +(x('iC5','R4')+ x('C5','R4')+ x('C6+','R4'))*R4 -

 (y('iC5','P1') + y('C5','P1')+ y('C6+','P1'))*P1 - 

 (y('iC5','P2') +y('C5','P2') + y('C6+','P2'))*P2  - 

 (y('iC5','P5')+ y('C5','P5')+y('C6+','P5'))*P5 - (y('iC5','P6') 

 + y('C5','P6')+ y('C6+','P6'))*P6 =E= pu5; 

EQN5..x('C2','R1')*R1 + x('C2','R2')*R2 + x('C2','R3')*R3 + 

 x('C2','R4')*R4 - y('C2','P1')*P1 - y('C2','P2')*P2 - 

 y('C2','P5')*P5 - y('C2','P6')*P6 =E= m1('50','pu2'); 

EQN6..(x('iC5','R1') + x('C5','R1')+ x('C6+','R1'))*R1 + 

 (x('iC5','R2') +x('C5','R2')+ x('C6+','R2'))*R2 + 

 (x('iC5','R3')+ x('C5','R3') +x('C6+','R3'))*R3 

 +(x('iC5','R4')+ x('C5','R4')+ x('C6+','R4'))*R4 -

 (y('iC5','P1') + y('C5','P1')+ y('C6+','P1'))*P1 - 

 (y('iC5','P2') +y('C5','P2') + y('C6+','P2'))*P2  - 

 (y('iC5','P5')+ y('C5','P5')+y('C6+','P5'))*P5 - (y('iC5','P6') 

 + y('C5','P6')+ y('C6+','P6'))*P6 =E= m2('50','pu5'); 

EQN7.. zu2 =E= (pu2 - SM2)/SV2; 

EQN8.. zu3 =E= (pu3 - SM3)/SV3;
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EQN9.. zu4 =E= (pu4 - SM4)/SV4; 

EQN10..zu5 =E= (pu5 - SM5)/SV5; 

CON1.. (errorf(zu3))*(errorf(zu4))=G= 0.5; 

EQN11.. pu =E=  pu1 + pu2 + pu3 + pu4 + pu5 + pu6 + pu7 ; 

EQN12..  R =E= R1 + R2 + R3 + R4; 

EQN13.. P =E= P1 + P2 + P5 + P6; 

EQN14..  R - P - pu =E= 0; 

   R1.up = 334.582214355; 

   R1.lo = 0; 

   R2.up = 220.314773560; 

   R2.lo = 0; 

   R3.up = 10.706112016; 

   R3.lo = 0; 

   R4.up = 35.5858020881; 

   R4.lo = 0; 

   P1.up = 298.518112183; 

   P1.lo = 0; 

   P2.up = 37.310810089; 

   P2.lo = 0; 

   P5.up = 43.111991264; 

   P5.lo = 0; 

   P6.up = 57.659376734; 

   P6.lo = 0; 

 

Model Gas / all /; 

Option NLP = CONOPT3; 

Solve Gas using NLP maximizing Z; 

Display 

 pu1.l,pu2.l,pu3.l,pu4.l,pu5.l,pu6.l,pu7.l,R1.l,R2.l,R3.l,R4.l,P

 1.l,P2.l,P5.l,P6.l,pu.l,P.l,R.l; 
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* CASE STUDY 3 

*(I)Single chance constrained optimization  

Table s1(k,l) values for column feed composition 

          De-Feed              Dp-Feed               Db-Feed 

  C1       0.0006249083         4.03248E-14           1.90633E-31 

  C2       0.3445260150         0.003927954           1.33712E-12 

  C3       0.3259828270         0.357536934           0.003920158 

  iC4      0.1180269411         0.141852222           0.218952764 

 C4       0.0873733029         0.110852646           0.17340164 

  iC5      0.0467667449         0.071932743           0.112556303 

  C5       0.0242576152         0.040729516           0.063731254 

  C6       0.0204153112         0.053623676           0.083907309 

  C7       0.0138600701         0.065666637           0.102751456 

  C8       0.0097597637         0.092854413           0.145293358 

  C9       0.0030868275         0.060562293           0.094764466 

  C10      0.0000114333         0.000460966           0.000721293 

  N2       0.0000000001         5.38041E-25           3.25824E-48 

 CO2      0.0053082396         1.89383E-09            2.9426E-25;                

 

Table s2(k,l) values for column bottom composition 

             De-Bottom           Dp-Bottom              Db-Bottom 

  C1       1.8592737E-15        1.906329E-31          9.169089E-31 

  C2       5.0145683E-03        1.337117E-12          3.849503E-31 

  C3       4.9929712E-01        3.920158E-03          1.082107E-14 

  iC4      1.8081634E-01        2.189528E-01          1.923905E-05 

  C4       1.3385521E-01        1.734016E-01          4.979377E-03 

  iC5      7.1646285E-02        1.125563E-01          2.387119E-01 

  C5       3.7162476E-02        6.373125E-02          1.363735E-01 

  C6       3.1276096E-02        8.390731E-02          1.503356E-01



 

207 

 

          De-Bottom           Dp-Bottom            Db-Bottom  

  C7       2.1233518E-02       1.027515E-01          1.583276E-01 

  C8       1.4951881E-02       1.452934E-01          1.963885E-01 

  C9       4.7289954E-03       9.476447E-02          1.140816E-01 

  C10      1.7515754E-05       7.212931E-04          7.827276E-04 

  N2       2.5169264E-29       3.258237E-48          8.974995E-48 

  CO2      3.3440230E-10       2.942601E-25          6.324608E-32 

; 

Table m1(e,c) values for total utility inflows (u1-u4) 

*         u1 inflow       u2 inflow     u3 inflow    u4 inflow 

     u1               u2            u3            u4 

50  -339463.115547   50123.236514  5365.947000   5116.235781 

51  -340030.073240   50053.381371  5361.744874   5112.241698 

52  -340597.387518   49983.482293  5357.540106   5108.245103 

53  -341165.416538   49913.495152  5353.330040   5104.243473 

54  -341734.521621   49843.375428  5349.111998   5100.234263 

55  -342305.068878   49773.078013  5344.883268   5096.214892 

56  -342877.430892   49702.557001  5340.641087   5092.182738 

57  -343451.988479   49631.765472  5336.382633   5088.135115 

58  -344029.132543   49560.655261  5332.105009   5084.069272 

59  -344609.266058   49489.176718  5327.805228   5079.982369 

60  -345192.806193   49417.278444  5323.480199   5075.871467 

61  -345780.186629   49344.907005  5319.126705   5071.733510 

62  -346371.860082   49272.006621  5314.741394   5067.565311 

63  -346968.301087   49198.518825  5310.320747   5063.363525 

64  -347570.009091   49124.382079  5305.861062   5059.124635 

65  -348177.511902   49049.531351  5301.358427   5054.844921 

66  -348791.369572   48973.897639  5296.808693   5050.520439 

67  -349412.178786   48897.407423  5292.207435   5046.146985
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     u1               u2            u3            u4 

68  -350040.577856   48819.982057  5287.549924   5041.720063 

69  -350677.252444   48741.537060  5282.831077   5037.234841 

70  -351322.942146   48661.981307  5278.045413   5032.686110 

71  -351978.448117   48581.216086  5273.186993   5028.068225 

72  -352644.641963   48499.134007  5268.249358   5023.375047 

73  -353322.476159   48415.617715  5263.225448   5018.599866 

74  -354012.996347   48330.538375  5258.107513   5013.735315 

75  -354717.355934   48243.753875  5252.887005   5008.773268 

76  -355436.833571   48155.106673  5247.554446   5003.704718 

77  -356172.854195   48064.421202  5242.099275   4998.519627 

78  -356927.014607   47971.500717  5236.509657   4993.206746 

79  -357701.114793   47876.123444  5230.772251   4987.753393 

80  -358497.196655   47778.037797  5224.871924   4982.145185 

81  -359317.592381   47676.956426  5218.791389   4976.365691 

82  -360164.985498   47572.548694  5212.510758   4970.396007 

83  -361042.488898   47464.431058  5206.006958   4964.214204 

84  -361953.745836   47352.154632  5199.252986   4957.794614 

85  -362903.062654   47235.188829  5192.216926   4951.106902 

86  -363895.586040   47112.899522  5184.860631   4944.114809 

87  -364937.544250   46984.519327  5177.137940   4936.774461 

88  -366036.582339   46849.106290  5168.992189   4929.031997 

89  -367202.239499   46705.485085  5160.352677   4920.820219 

90  -368446.648127   46552.160871  5151.129482   4912.053654 

91  -369785.592024   46387.188919  5141.205619   4902.621111 

92  -371240.172702   46207.969302  5130.424690   4892.373935 

93  -372839.562111   46010.907727  5118.570480   4881.106615 

94  -374625.829514   45790.820821  5105.331186   4868.522784 

95  -376663.076881   45539.810547  5090.231700   4854.170859 
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96  -379056.580334   45244.905782  5072.491749   4837.309193 

97  -381999.088569   44882.357861  5050.682733   4816.579919 

98  -385910.640612   44400.413564  5021.691446   4789.023961 

99  -392075.730765   43640.809702  4975.997590   4745.592360 

 100  -475109.342903   33410.196542  4360.576595   4160.640216 ; 

    

Table m2(e,c) values for total utility inflows (u5-u6) 

*                       u5 inflow         u6 inflow 

                          u5                 u6 

50        112.801265        4950.238150 

51        112.608446        4943.927975 

52        112.415506        4937.613831 

53        112.222322        4931.291732 

54        112.028773        4924.957657 

55        111.834733        4918.607530 

56        111.640076        4912.237206 

57        111.444673        4905.842445 

58        111.248389        4899.418896 

59        111.051089        4892.962076 

60        110.852631        4886.467340 

61        110.652866        4879.929862 

62        110.451641        4873.344603 

 

Table m2(e,c) values for total utility inflows (u5-u6) 

*                        u5 inflow         u6 inflow 

                          u5                 u6 

63        110.248795        4866.706282 

64        110.044158        4860.009340 

65        109.837550        4853.247902
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         u5                 u6 

66        109.628780        4846.415736 

67        109.417646        4839.506199 

68        109.203932        4832.512189 

69        108.987402        4825.426072 

70        108.767807        4818.239619 

71        108.544873        4810.943911 

72        108.318305        4803.529249 

73        108.087777        4795.985031 

74        107.852935        4788.299619 

75        107.613387        4780.460177 

76        107.368696        4772.452472 

77        107.118380        4764.260645 

78        106.861895        4755.866925 

79        106.598628        4747.251277 

80        106.327885        4738.390976 

81        106.048873        4729.260064 

82        105.760680        4719.828675 

83        105.462246        4710.062161 

84        105.152333        4699.919974 

85        104.829475        4689.354185 

86        104.491924        4678.307512 

87        104.137560        4666.710634 

88        103.763784        4654.478465 

89        103.367350        4641.504832 

90        102.944134        4627.654704 

91        102.488767        4612.752410 

92        101.994073        4596.563091 

93        101.450130        4578.762068
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        u5                 u6 

94        100.842631        4558.881113 

95        100.149775        4536.206780 

96        99.335758         4509.567357 

97        98.335028         4476.817572 

98        97.004732         4433.282440 

99        94.908021         4364.665682 

100        66.668772         3440.510953; 

 

Table m3(e,d) values for total energy product outflows (q1 to q4)   

*        q1 outflow    q2 outflow   q3 outflow     q4 outflow              

            q1            q2            q3             q4 

50  15513.612430  13176.853210  3542.491844  -513512.061375 

51  15524.692918  13180.981686  3545.742115  -513317.710512 

52  15535.780376  13185.112759  3548.994429  -513123.237413 

53  15546.881802  13189.249036  3552.250841  -512928.519304 

54  15558.004258  13193.393150  3555.513423  -512733.432324 

55  15569.154900  13197.547764  3558.784271  -512537.850973 

56  15580.341010  13201.715594  3562.065524  -512341.647530 

57  15591.570028  13205.899411  3565.359363  -512144.691453 

58  15602.849597  13210.102062  3568.668031  -511946.848742 

59  15614.187590  13214.326482  3571.993836  -511747.981260 

60  15625.592162  13218.575709  3575.339171  -511547.946001 

61  15637.071788  13222.852900  3578.706521  -511346.594303 

62  15648.635315  13227.161351  3582.098483  -511143.770975 
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Table m3(e,d) values for total energy product outflows (q1 to q4) 

*          q1 outflow    q2 outflow   q3 outflow     q4 outflow              

              q1            q2            q3             q4 

63  15660.292019  13231.504519  3585.517776  -510939.313349 

64  15672.051659  13235.886040  3588.967264  -510733.050216 

65  15683.924552  13240.309758  3592.449973  -510524.800646 

66  15695.921642  13244.779751  3595.969113  -510314.372656 

67  15708.054592  13249.300364  3599.528105  -510101.561704 

68  15720.335876  13253.876244  3603.130608  -509886.148979 

69  15732.778895  13258.512385  3606.780553  -509667.899439 

70  15745.398104  13263.214173  3610.482181  -509446.559554 

71  15758.209159  13267.987441  3614.240083  -509221.854691 

72  15771.229095  13272.838535  3618.059258  -508993.486066 

73  15784.476528  13277.774393  3621.945164  -508761.127174 

74  15797.971893  13282.802627  3625.903797  -508524.419575 

75  15811.737732  13287.931637  3629.941769  -508282.967884 

76  15825.799034  13293.170734  3634.066410  -508036.333786 

77  15840.183649  13298.530294  3638.285889  -507784.028816 

78  15854.922784  13304.021944  3642.609360  -507525.505599 

79  15870.051616  13309.658792  3647.047143  -507260.147106 

80  15885.610054  13315.455706  3651.610942  -506987.253381 

81  15901.643676  13321.429669  3656.314129  -506706.024959 

82  15918.204928  13327.600222  3661.172088  -506415.541938 

83  15935.354649  13333.990032  3666.202663  -506114.737231 

84  15953.164042  13340.625629  3671.426742  -505802.361943 

85  15971.717267  13347.538370  3676.869011  -505476.939879 

86  15991.114912  13354.765734  3682.558976  -505136.706774 

87  16011.478699  13362.353072  3688.532343  -504779.527606 

88  16032.958042  13370.356054  3694.832938  -504402.781680
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              q1            q2            q3             q4 

89  16055.739373  13378.844144  3701.515449  -504003.198999 

90  16080.059803  13387.905687  3708.649429  -503576.620625 

91  16106.227809  13397.655618  3716.325363  -503117.635934 

92  16134.655794  13408.247593  3724.664223  -502619.011410 

93  16165.913886  13419.894037  3733.833246  -502070.747023 

94  16200.824277  13432.901291  3744.073608  -501458.421597 

95  16240.639763  13447.736132  3755.752795  -500760.061228 

96  16287.417834  13465.165161  3769.474337  -499939.577677 

97  16344.925526  13486.591937  3786.343228  -498930.897450 

98  16421.371983  13515.075102  3808.767480  -497590.032824 

99  16541.861061  13559.968096  3844.110877  -495476.664215 

   100 18164.650530  14164.602795  4320.128229  -467013.069229    

                                                           ; 

   SM1 Mean  for steam flow in deethanizer reboiler QT2601  

 /190.0552373/ 

   SV1 STDEV for steam flow in deethanizer reboiler QT2601 

 /31.36042668/ 

   SM2 Mean  for steam flow in depropanizer reboiler QT2621 

 /32.26080945/ 

   SV2 STDEV for steam flow in depropanizer reboiler QT2621 

 /5.787991076/ 

   SM3 Mean  for steam flow in debutanizer reboiler QT2641 

 /20.78197572/ 

   SV3 STDEV for steam flow in debutanizer reboiler QT2641 

 /4.28887593/ 

   HR1 mass enthalpy of R1 in Kwh per ton  /-1218.251/ 

   HR2 mass enthalpy of R2 in Kwh per ton /-1302.131/ 

   HR3 mass enthalpy of R3 in Kwh per ton /-1092.53/ 

   HR4 mass enthalpy of  R4 in Kwh per ton /-731.475/ 

   HR  mass enthalpy of  R  in Kwh per ton /-1181.336/ 

   HP1 mass enthalpy of SalesGas in Kwh per ton /-1344.775/
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   HP2 mass enthalpy of Ethane in Kwh per ton /-827.0496/ 

   HP3 mass enthalpy of Propane in Kwh per ton /-761.2430/ 

   HP4 mass enthalpy of Butane in Kwh per ton /-727.3788/ 

   HP5 mass enthalpy of Condensate in Kwh per ton /-630.7075/ 

   HP6 mass enthalpy of Carbon dioxide in Kwh per ton /-2499.214/ 

   HFA2601  mass enthalpy for A2601 feed flow rate/-784.9980396/ 

   HDA2601  mass enthalpy for A2601 distillate product flow rate 

 /-918.395239/ 

   HBA2601  mass enthalpy for A2601 bottom rate  /-670.80931994/ 

   HFA2621  mass enthalpy for A2621 feed flow rate/-544.2826258/ 

   HDA2621  mass enthalpy for A2621 distillate product flow rate 

 /-743.863449/ 

   HBA2621  mass enthalpy for A2621 bottom rate  /-594.3653994/ 

   HFA2641  mass enthalpy for A2641 feed flow rate/-594.7222222/ 

   HDA2641  mass enthalpy for A2641 distillate product flow rate 

 /-711.4224147/ 

   HBA2641  mass enthalpy for A2641 bottom rate  /-561.6348855/ 

   LamdaDe  Mass heat of vaporization Demethanizer column 

 distillate  /76.3056/ 

   LamdaDp  Mass heat of vaporization Depropanizer column 

 distillate  /84.3333/ 

   LamdaDb  Mass heat of vaporization Debutanizer column 

 distillate  /91.2222/ 

   RVDeC1  Relative volatility of C1  for deethanizer column  

 / 5.518842089 / 

   RVDeC2  Relative volatility of C2  for deethanizer column 

 /2.074708064 / 

   RVDeC3  Relative volatility of C3  for deethanizer column  

 /    1      / 

   RVDeiC4 Relative volatility of iC4 for deethanizer column 

 /0.816807757/
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   RVDeC4  Relative volatility of C4  for deethanizer column 

 /0.727794167 / 

   RVDeiC5 Relative volatility of iC5 for deethanizer column  

 /0.287007335 / 

   RVDeC5  Relative volatility of C5  for deethanizer column 

 /0.246130849 / 

   RVDeC6  Relative volatility of C6  for deethanizer column 

 /0.127520172 / 

   RVDeC7  Relative volatility of C7  for deethanizer column 

 /0.06774568  / 

   RVDeC8  Relative volatility of C8  for deethanizer column 

 /0.036294169 / 

   RVDeC9  Relative volatility of C9  for deethanizer column 

 /0.019947132 / 

   RVDeC10 Relative volatility of C10 for deethanizer column 

 /0.011131624/ 

   RVDeN2  Relative volatility of N2  for deethanizer column 

 /10.40828629/ 

   RVDeCO2 Relative volatility of CO2 for deethanizer column 

 /3.602957374/ 

   RVDpC1  Relative volatility of C1  for depropanizer column 

 /4.222088549/ 

   RVDpC2  Relative volatility of C2  for depropanizer column 

 /3.864191194 / 

   RVDpC3  Relative volatility of C3  for depropanizer column 

 /1.767247051/ 

   RVDpiC4 Relative volatility of iC4 for depropanizer column  

 /1            / 

   RVDpC4  Relative volatility of C4  for depropanizer column 

 /0.817925107 / 

   RVDpiC5 Relative volatility of iC5 for depropanizer column 

 /0.460269772 / 

   RVDpC5  Relative volatility of C5  for depropanizer column 

 /0.394012044 / 

   RVDpC6  Relative volatility of C6  for depropanizer column 

 /0.194536244 / 

   RVDpC7  Relative volatility of C7  for depropanizer column 

 /0.098842222 /
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   RVDpC8  Relative volatility of C8  for depropanizer column 

 /0.050736664 / 

   RVDpC9  Relative volatility of C9  for depropanizer column 

 /0.026701511 / 

   RVDpC10 Relative volatility of C10 for depropanizer column 

 /0.014262384 / 

   RVDpN2  Relative volatility of N2  for depropanizer column 

 /16.62917462/ 

   RVDpCO2 Relative volatility of CO2 for depropanizer column 

 /7.053240171/ 

   RVDbC1  Relative volatility of C1  for debutanizer column 

 /1.159844002 / 

   RVDbC2  Relative volatility of C2  for debutanizer column 

 /4.077211184 / 

   RVDbC3  Relative volatility of C3  for debutanizer column 

 /4.803255103 / 

   RVDbiC4 Relative volatility of iC4 for debutanizer column 

 /2.465992330 / 

   RVDbC4  Relative volatility of C4  for debutanizer column 

 /1.954124933 / 

   RVDbiC5 Relative volatility of iC5 for debutanizer column  

 /  1         / 

   RVDbC5  Relative volatility of C5  for debutanizer column  

 / 0.834436165 / 

   RVDbC6  Relative volatility of C6  for debutanizer column 

 /0.365948855  / 

   RVDbC7  Relative volatility of C7  for debutanizer column 

 /0.165792493  / 

   RVDbC8  Relative volatility of C8  for debutanizer column 

 /0.07591983  / 

   RVDbC9  Relative volatility of C9  for debutanizer column 

 /0.035778296 / 

   RVDbC10 Relative volatility of C10 for debutanizer column 

 /0.027712408 / 

   RVDbN2  Relative volatility of N2  for debutanizer column 

 /1.159844002 /
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   RVDbCO2 Relative volatility of CO2 for debutanizer column 

 /6.414496783 / 

 

   Theta1 Parameter to be adjusted using trial and error    

 /   1.4067   / 

   Theta2 Parameter to be adjusted using trial and error   

 /  1.1867/ 

   Theta3 Parameter to be adjusted using trial and error  

 /  1.17677/ 

   FBtDe Deethanizer  column bottom flow in ton per hour  

 /46.80516005/ 

   FBtDp Depropanizer column bottom flow in ton per hour 

 /45.153268631/ 

   FBtDb Debutanizer  column bottom flow in ton per hour 

 /27.299321513/ 

   BDe  Deethanizer column bottom flow in ton per hour /46.8052  / 

   BDp  Depropanizer column bottom flow in ton per hour /45.1533/   

   BDb  Debutanizer column bottom flow in ton per hour /27.29932 / 

   qDe  Feed quality for demethanizer column / 1 / 

   qDp  Feed quality for demethanizer column / 1 / 

   qDb  Feed quality for demethanizer column / 1 / 

   T2451 Steam temperature for condensate stabilizer column 

 /168.000601927959/ 

   T2404 Steam temperature for Demethanizer column   

 /29.9999917296047/ 

   T2601 Steam temperature for Deethanizer column   

 /96.3821373746501/ 

   T2621 Steam temperature for Depropanizer column 

 /129.366255222833/ 

   T2641 Steam temperature for Debutanizer column 

 /130.957037396502/ 

   T2622in  Cooling water temperature in for depropanizer 

 column/30/
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   T2622out Cooling water temperature out for depropanizer 

 column/50/ 

   T2642in  Cooling water temperature in for debutanizer 

 column/30/ 

   T2642out Cooling water temperature out for debutanizer 

 column/50/ 

   SM11   mean for u1 /-339463.115546777 / 

   SV11   stdv for u1 /22615.97064 / 

   SM22   mean for u2 /50123.236514 / 

   SV22   stdv for u2 /2786.52513 / 

   SM33   mean for u3 /5365.947 / 

   SV33   stdv for u3 /167.623 / 

   SM44   mean for u4 /5116.235781 / 

   SV44   stdv for u4 /159.32416 / 

   SM55   mean for u5 /112.801265 / 

   SV55   stdv for u5 /7.69156 / 

   SM66   mean for u6 /4950.23815 / 

   SV66   stdv for u6 /251.7132 / 

   SM111  mean for q1 /15513.61243 / 

   SV111  stdv for q1 /442.001234 / 

   SM222  mean for q2 /13176.85321 / 

   SV222  stdv for q2 /164.685123 / 

   SM333  mean for q3 /3542.491844 / 

   SV333  stdv for q3 /129.6534523 / 

   SM444  mean for q4 /-513512.061375084 / 

   SV444  stdv for q4 /7752.66561 /; 

*UNIT CONVERSION AND NOTES 

*Mass of heat of vaporization for each column is calculated as 

*follows: Mass heat of vaporization of demethanizer column distillate 

*(ethane product)is 274.7 kJ/kg. After converting using 1Kwh = 

*3600KJ, the value becomes 274.7 kJ/kg 1000kg/1ton 1kWh/3600kJ = 
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*76.3056 kWh/ton. Similarly approach is adapted for salesgas, 

*propane, butane, condensate *and CO2 For saturated feed the feed 

*quality is one. All the inlet and outlet energy flows are in KW. 

*The utilities (energy sources) used in the plant includes LLP steam, 

*LP steam,HP steam,C3-refigerant, cooling-water and electricity. 

*P & ID representation for each energy inflow and outflow have been 

*adopted such as Q:T2-401 (from P&ID) = QT2401 (GAMS), W:P2-401 

*(P&ID) = WP2401 (GAMS),W:R2-151 (P&ID) = WR2151 (GAMS), W:RT2-151 

*(P&ID) = WRT2151, W:R2-*701(1)(P&ID) = WR27011 etc.. 

*The compression energy (W:R2-151) for R2-151 is obtained from 

*expander RT2-151(W:RT2-151), While the compression energy (W:R2-401 

*is obtained from expander RT2-401 i.e. W:RT2-151. 

*All the mass enthalpy values are in kWh/ton ton/h =kW. 

*The energy flow for the raw material is a product of the 

*corresponding mass 

*enthalpy value and its flow rate. Example for Phase1Gas: QR1= 

*HR1*R1,for salesgas, QP1 = HP1*P1 and so on... 

Variables 

maxf,TR1,TR2,TR3,TR4,TCl,T121,T152,TCO2,T301,T302,TH2O2,T310A,THg,T30

61,T161,T108,TH2O1,T441B,T452,T453,T454,T311,TpA2,TpA41,TpA4,TpA6,TpA

61,T6011,T603,T503,T504,TS,T505,T764,T765,T4411,T442,T622,T623,TH2O11

,T642,TH2O22,T643,T651,T652,QA2101,QT2151,WRT2151,QAGRU,QT2301,QL2301

,QL2302,QT2101,QL2104,QT2451,QL2451,QL2452,QT2402,QT2404,WR2401,WRT24

01,WP2401,WP2402,WP2403,WP2404,WR2151,WR2501,QT2501,QL2501,QT2604SGas

,WR27011,WR27012,WR27013,QT2701,QT2603,QT2645,QT2623,QT2354,QT2352,QT

2602,QT2604PRU,QT2601,QT2621,QT2622,QT2641,QT2642,QT2623,QT2643,QT264

4,QL2661,QL2662,WP2621,WP2641,QR1,QR2,QR3,QR4,QP1,QP2,QP3,QP4,QP5,QP6

,RVDesum,RVDpsum,RVDbsum,u1,u2,u3,u4,u5,u6,q1,q2,q3,q4,Zu1,Zu2,Zu3,Zu

4,Zu5,Zu6,Zq1,Zq2,Zq3,Zq4,Qin,Qout; 

Positive Variables 

PR1,PR2,PR3,PR4,PCl,P121,P152,PCO2,P301,P302,PH2O2,P310A,PHg,P156,P10

4,P306,P3061,P161,P108,PH2O1,P109,P441B,M441B,P452,P453,P454,P311,P40

1,P411,P421,P403,P413,P427,PpA2,MpA2,PpA4,MpA4,PpA6,MpA6,P6011,M6011,

M6012,P428,P430,P430C,P432,P501,P504,PS,Psalesgas,P732,P734,P735,P736

,P743,P7451,P750,P760,P762,P763,P764,P765,P71X,P71S,P71N,P71I,P71D,P7

1B,P71Y,P71T,P71O,P71J,P71E,P441,P6101,P461C,P6211,P622,P623,PH2O11,P

6301,P6411,P642,PH2O22,P643,P651,P652,DeRmin,DpRmin,DbRmin,NDemin,NDp

min,NDbmin,NDestage,NDer,NDes,NDpstage,NDpr,NDps,NDbstage,NDbr,NDbs,Y

De,XDe,YDp,XDp,YDb,XDb,DeRflxratio,DpRflxratio,DbRflxratio,FsteamA245

1,FsteamA2404,FsteamA2601,FsteamA2621,FsteamA2641,FrefigerantA2601,Fc

oolingA2622,FcoolingA2642,R1,R2,R3,R4,R,P1,P2,P3,P4,P5,P6,P;
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Negative variables 

T312,T401,T411,T602,T431; 

 

Equations 

OBJ,EQN1,EQN2,EQN3,EQN4,EQN5,EQN6,EQN7,EQN8,EQN9,EQN10,EQN11,EQN12,EN

13,EQN14,EQN15,EQN16,EQN17,EQN18,EQN19,EQN20,EQN21,EQN22,EQN23,EQN24,

EQN25,EQN26,EQN27,EQN28,EQN29,EQN30,EQN31,EQN32,EQN33,EQN34,EQN35,EQN

36,EQN37,EQN38,EQN39,EQN40,EQN41,EQN42,EQN43,EQN44,EQN45,EQN46,EQN47,

EQN48,EQN49,EQN50,EQN51,EQN52,EQN53,EQN54,EQN55,EQN56,EQN57,EQN58,EQN

59,EQN60,EQN61,EQN62,EQN63,EQN64,EQN65,EQN66,EQN67,EQN68,EQN69,EQN70,

EQN71,EQN72,EQN73,EQN74,EQN75,EQN76,EQN77,EQN78,EQN79,EQN80,EQN81,EQN

82,EQN83,EQN84,EQN85,EQN86,EQN87,EQN88,EQN89,EQN90,EQN91,EQN92,EQN93,

EQN94,EQN95,EQN96,EQN97,EQN98,EQN99,EQN100,EQN101,EQN102,EQN103,EQN10

4,EQN105,EQN106,EQN107,EQN108,EQN109,EQN110,EQN111,EQN112,EQN113,EQN1

14,EQN115,EQN116,EQN117,EQN118,EQN119,EQN120,EQN121,EQN122,EQN123,EQN

124,EQN125,EQN126,EQN127,EQN128,EQN129,EQN130,EQN131,EQN132,EQN133,EQ

N134,EQN135,EQN136,EQN137,EQN138,EQN13,EQN140,EQN141,EQN142,EQN143,EQ

N144,EQN145, EQN146,EQN147,EQN148,EQN149,EQN150,EQN151,EQN152,EQN153, 

EQN154,EQN155,EQN156,EQN157,EQN158,EQN159,EQN160,EQN161,EQN162,EQN163

,EQN164,EQN165,EQN166,EQN167,EQN168,EQN169,EQN170,EQN171,EQN172,EQN13

,EQN174,EQN175,CON1,CON2,CON3,CON4,CON5,CON6,CON7,CON8,CON9,CON10,CON

11; 

OBJ.. maxf =E= CP1*P1 + CP2*P2 + CP3*P3 + CP4*P4 + CP5*P5 + CP6*P6 - 

 CR1*R1 - CR2*R2 - CR3*R3 - CR4*R4 - Cstm*u2 - Crefg*u3 - 

 Ccompress*u4 - Celetric*u5 - Cfuel*u6 - Ccooling*(q1 + q2 + 

 q3); 

*@PLANT INLET 

EQN1..   QR1 =E= HR1*R1; 

EQN2..   QR2 =E= HR2*R2; 

EQN3..   QR3 =E= HR3*R3; 

EQN4..   QR4 =E= HR4*R4; 

*INTIAL VALUES @PLANT INLET 

   R1.l   = 254.34; 

  TR1.fx  = 24.54; 

  PR1.fx  = 7261.325; 

   R2.l   = 40.00; 

  TR2.fx  = 17.00; 

  PR2.fx  = 7261.325; 

   R3.l   = 1.25;
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  TR3.fx  = 28.64; 

  PR3.fx  = 6511.325; 

   R4.l   = 31.7; 

  TR4.fx  = 27.44; 

  PR4.fx  = 6661.325; 

 

* PRE-TREATEMENT UNIT(PTU) 

EQN5..   QA2101  =E=  3.665870*R + 1.846793E-06 ; 

EQN6..   QT2151  =E=  1.11674*R - 9.23396E-07; 

EQN7..   QT2151  =E= -224.018062*T121 + 6365.456304; 

EQN8..   QT2151  =E=  1.1203339*P121 - 7364.5645971; 

EQN9..   WRT2151 =E=  WR2151; 

EQN10..  QAGRU   =E=  4.12105*R - 1.84679E-06; 

EQN11..  QAGRU   =E= -221.615082*T152 + 7448.893563; 

EQN12..  QAGRU   =E=  1.113799*P152 - 6130.764800; 

EQN13..  QT2301  =E= -1.057621*R + 7467.708257; 

EQN14..  QT2301  =E= 205.372037*T301 - 4605.747313; 

EQN15..  QT2301  =E= -1.052*P301 + 7364; 

EQN16..  QL2301  =E=  12.742000*R - 7.39E-06; 

EQN17..  QL2301  =E= -205.874867*T302 + 8968.159282; 

EQN18..  QL2301  =E=  1.113451*P302 - 2151.723048; 

EQN19..  QL2302  =E= -1.3577E+01*R + 1.4774E-05; 

EQN20..  QL2302  =E= -175.715119*T310A - 53.525078; 

EQN21..  QL2302  =E=  1.044458*P310A - 6664.211133 ; 

EQN22..  QT2101  =E=  0.015329577*R ; 

*INITIAL VALUES@PTU 

   TCl.fx = 26.82 ; 

   PCl.fx = 69.00; 

   T121.l = 27.82;
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   P121.l = 6901.00; 

   T152.l = 28.54; 

   P152.l = 6721.00; 

   TCO2.fx = 43.00; 

   PCO2.fx = 5781.00; 

   T301.l = 30.04; 

   P301.l = 5781.00; 

   T302.l = 23.31; 

   P302.l = 5681.00; 

   TH2O2.fx = 25.00 ; 

   PH2O2.fx = 2126.00 ; 

   T310A.l = 26.00; 

   P310A.l = 2127.00; 

   THg.fx = 25.00 ; 

   PHg.fx = 5630.00; 

   WRT2151.fx = 0; 

*NOTES 

*H2O-2 temperature and pressure do not affect QL2301. 

*TCl (Chlorine removed temperature does not affect QA2101). 

*Hg Temperature and pressure do not affect QL2302. 

*PCl (Chlorine removed temperature does not affect QA2101). 

*H2O-1 temperature and pressure do not affect QL2104. 

*TCO2 and PCO2 have no effect on QAGRU 

*The heat flows are related using linear equation from HYSYS 

*simulation with their respective operating parameters(T,P,F), Re^2 

*(R-square obtained from regression for each equation is shown below 

*(in EQN9 WRT2151 is set to zero) 

*EQUATION 5  6  7  8  9  10 11 12 13 14  15  16  17  18  19  20 21 22  

*Re^2    1  1  1  1  -  1  1  1  1   1   1   1   1   1   1   1  1   1
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* CONDENSATE TREATMENT UNIT (CTU) 

EQN23..  QT2101  =E=  0.015329577*R ; 

EQN24..  QT2101  =E= -0.00165*P156 + 13.59192; 

EQN25..  QT2101  =E= -0.00165*P104 + 13.59192; 

EQN26..  QT2101  =E= -0.00164*P306 + 13.54701; 

EQN27..  QT2101  =E= -0.0016*P3061 + 13.603; 

EQN28..  QT2101  =E=  0.529*T161 - 10.22; 

EQN29..  QT2101  =E= -0.00298*P161 + 21.08051; 

EQN30..  QL2104  =E=  5.70323E-01*R - 2.30849E-07; 

EQN31..  QL2104  =E= 19.68*T108 - 371.4; 

EQN32..  QL2104  =E= -0.028*P108 + 317.3; 

EQN33..  QT2451  =E=  8.44861772719*R; 

EQN34..  QL2451  =E= -0.1276403130*R + 7.187905; 

EQN35..  QL2451  =E= -3.08834*T452 + 101.26369; 

EQN36..  QL2451  =E=  0.019830*P452 - 90.379799; 

EQN37..  QL2452  =E=  1.03551E-02*R - 3.60702E-09; 

EQN38..  QL2452  =E= -3.056977*T453 + 102.441931; 

EQN39..  QL2452  =E=  0.021789*P453 - 48.783314; 

EQN40..  QL2452  =E= 2.910*T454 - 91.04; 

EQN41..  QL2452  =E= -0.021604*P454 + 51.807468; 

* INTIAL VALUES @CTU 

   P156.l = 5322.00; 

   P104.l = 5322.00; 

   P306.l = 5322.00; 

   T3061.l = 22.85; 

   P3061.l = 5322.00; 

   T161.l = 27.37; 

   P161.l = 5450.0; 

   T108.l = 27.1;
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   P108.l = 5451.0; 

   TH2O1.fx = 27.10 ; 

   PH2O1.fx = 5450.00 ; 

   P109.fx = 2501.00; 

   T441B.fx = 30.96 ; 

   P441B.fx = 3009.00 ; 

   M441B.fx = 0.00 ; 

   T452.l = 46.36; 

   P452.l = 2450.00; 

   T453.l = 32.400; 

   P453.l = 2400.00; 

   T454.l  = 32.40; 

   P454.l = 2243.56; 

 

*NOTES 

*The condensate stripper section. The heat flows are related 

 linearly. 

*H2O temperature and pressure do not affect QL2451. 

*P109 does not affect QL2104 and QT2451 

*Regression result for each equations given below 

*EQUATION 23 24 25 26 27 28 29 30 31 32  33  34  35  36  37  38  39   

*Re^2     1  1  1  1  1  1  1  1  1   1   1   1   1   1   1   1   1    

*Equation 40 and 41 Re^2 is 1. 

 

*LOW TEMPERATURE SEPARATION UNIT (LTSU) 

EQN42..  QT2402  =E=  6.595168*R + 3.693585E-06; 

EQN43..  QT2402  =E=  -1.853*P311 + 12694; 

EQN44..  QT2402  =E=  338.998100*T312 + 12330.011411; 

EQN45..  QT2402  =E= -358.70109*T401 - 11078.61000;
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EQN46..  QT2402  =E= 2.026609*P401 - 9571.946035; 

EQN47..  QT2404  =E= 14.759517*R - 623.223252; 

EQN48..  QT2404  =E=  -99.59*T411 - 1370; 

EQN49..  QT2404  =E=  0.811*P411 - 288.7; 

EQN50..  QT2404  =E=  48.54*MpA2 - 3236; 

EQN51..  QT2404  =E=  47.20*MpA4 + 1293; 

EQN52..  QT2404  =E=  33.64*MpA6 + 1723; 

EQN53..  WRT2401 =E= 6.363551*R + 0.196292; 

EQN54..  WP2404  =E= 0; 

EQN55..  WP2403  =E= 0; 

EQN56..  WP2402  =E= 0; 

EQN57..  WP2401  =E= 0.127383*R - 2.661610; 

EQN58..  WR2401  =E= 6.363551*R + 0.196292; 

* INITIAL VALUES @LTSU 

  T311.fx  = 22.00; 

  P311.l   = 5682.00; 

  T312.l   = -30.00; 

  T401.l   = -36.00; 

  P401.l   = 5621.00; 

  T411.l   = -56.00; 

  P411.l   = 5541.00; 

  P421.fx  = 2331.00; 

  P403.fx  = 2313.00; 

  P413.fx  = 2305.00; 

  TpA2.fx   = -17.69; 

  PpA2.fx  = 2321.00; 

  MpA2.l   = 153.30; 

  TpA41.fx = -36.17; 

  TpA4.fx   = -36.17;
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  PpA4.fx  = 2314.00; 

  MpA4.l   = 61.69; 

  TpA61.fx = -41.13; 

  TpA6.fx   = -41.13; 

  PpA6.fx  = 2310.00; 

  MpA6.l   = 73.78; 

  P427.fx = 2150.00; 

  T6011.fx = 4.61; 

  P6011.fx = 2771.00; 

  M6011.fx = 825.30; 

  M6012.fx = 21.59; 

  T602.fx  = -3.00; 

  T603.fx  = 20.00; 

  WP2404.fx  = 0; 

  WP2403.fx  = 0; 

  WP2402.fx  = 0; 

*NOTES 

*T311 does not affect both QT2402 and QT2404 

*P421,P403, p413, PpA2, PpA4 do not affect QT2404 

*P427 does not affect WR2401 

*Stream 603 is C2product (ethane) and its temperature T603 is fixed 

*at 20C Regression result for each equations given below 

*EQUATION  42   43  44   45   46  47  48   49   50   51  52  53 54 55  

*Re^2      1 0.99 0.97 0.98 0.98  1 0.98 0.94 0.99 0.92 0.94 -  -  - 

* EQN 56, 57 and 58 – 1 1, respectively.   

 

*@ SALES GAS COMPRESSION UNIT (SGCU) 

EQN59..   WR2501 =E= 11.726989*R + 120.185384; 

EQN60..   WR2501 =E= -5.839*P432 + 18149;
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EQN61..   QT2604SGas =E= -2.228165*R + 78.587516; 

EQN62..   QT2604SGas =E= -4.3702425*P501 + 14045.9674751; 

EQN63..   QL2501 =E=   0.339515*R + 5.426681; 

EQN64..   QL2501 =E= -149.75228*T503 + 9384.82757; 

EQN65..   QT2501 =E=  10.410506*R + 136.117541; 

EQN66..   QT2501 =E= 149.075710*T504 - 5704.669091; 

EQN67..   QT2501 =E=   0.086879*P504 + 3262.531728; 

EQN68..   QT2501 =E= -147.34462*T505 + 9156.71594; 

* INTIAL VALUES @SGCU 

  P428.fx  = 2578.00; 

  P430.fx  = 2440.00; 

  P430C.fx = 2440.00; 

  T431.fx = -85.00; 

  P432.l = 2240.00; 

  P501.l = 3363.00; 

  T503.l = 61.89; 

  T504.l = 62.03; 

  P504.l = 3193.00; 

  TS.fx = 62.03 ; 

  PS.fx = 3193.00; 

  T505.l = 38.12; 

  Psalesgas.fx = 3600.00; 

  WR2151.l = 0; 

* NOTES 

*P428, P430, P430C, P431 do not affect WR2501 

*Salesgas product pressure Psalesgas is fixed at 3600 KPa 

*Regression result for each equations given below 

*EQUATION  59 60 61 62 63 64 65 66 67 67  68 

*Re^2      1  1  1  1  1  1  1  1  1   1   1
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*C3-REFIGERATION UNIT (CRU) 

EQN69..   WR27011 =E=  1.190127*R - 4.616981E-07; 

EQN70..   WR27011 =E= 0.248*P732 + 321.7; 

EQN71..   WR27011 =E= 0.017*P743 + 385.9; 

EQN72..   WR27011 =E= -3.678*P7451 + 772.3; 

EQN73..   WR27012 =E= 1.926007*R + 667.207929; 

EQN74..   WR27012 =E= 0.197*P750 + 1372; 

EQN75..   WR27013 =E=  1.573372*R + 1277.555526; 

EQN76..   WR27013 =E= 0.327*P760 + 1760; 

EQN77..   QT2701  =E= 11.830983*R + 9409.491316; 

EQN78..   QT2701  =E= 2.241*P762 + 12028; 

EQN79..   QT2603  =E= 0.248854*R - 1.186106; 

EQN80..   QT2603  =E= -0.035839*P764 + 122.030292; 

 

*INITIAL VALUES 

  P732.l  = 272.50; 

  P734.fx = 408.00; 

  P735.fx  = 398.00; 

  P736.fx  = 368.00; 

  P743.l  = 216.40; 

  P7451.l = 104.00; 

  P750.l  = 313.00; 

  P760.l  = 675.00; 

  P762.l  = 1184.00; 

  P763.fx = 1174.00; 

  T764.fx = 32.45; 

  P764.l  = 1174.00; 

  T765.fx = 31.76; 

  P765.fx = 1174.00;
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  P71X.fx = 750.00; 

  P71S.fx = 750.00; 

  P71N.fx = 750.00; 

  P71I.fx = 750.00; 

  P71D.fx = 750.00; 

  P71B.fx = 559.50; 

  P71Y.fx = 740.00; 

  P71T.fx = 740.00; 

  P71O.fx = 740.00; 

  P71J.fx = 740.00; 

  P71E.fx = 740.00; 

  QT2352.fx = 194.00; 

  QT2354.fx = 337.00; 

*NOTES 

*The relation between P732 and QT2402 is constant 

*The relation between P734 and QT2602, WR27011 is constant 

*The relation between P735 and QT602,WR27011,QT2402 is constant 

*The relation between P736 and QT2402,WR27011 is constant 

*The relation between P763 and QT2701 is constant 

*The relation between T764 and QT2603 is constant 

*The relation between T765 and QT2645,QT623,QT2354,QT2352,QT2301 is 

*constant 

*The relation between P765 and QT2645,QT623,QT2354,QT2352,QT2301 is 

*constant 

*The pressures P71X,P71S,P71N,P71I,P71D,P71B,P71Y,P71T,P71O,P71J,P71E 

*have all a constant relationship with their respective heat flows 

*(QT2645,QT623,QT2354,QT2352,QT2301)QT2352 and QT2354 are adjustable 

*heat flows Regression result for each equations given below 

*EQUATION  69 70 71 72 73 74 75 76 77 78  79  80 

*Re^2      1  1  1  1  1  1  1  1  1   1   1   1
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*PRODUCT RECOVERY UNIT (PRU) 

EQN81..   QT2603  =E= -0.087*P441 + 342.5; 

EQN82..   QT2604PRU  =E=  0.00491618*R - 0.10583307; 

EQN83..   QT2604PRU  =E= -61.89*T4411 + 1998; 

EQN84..   QT2604PRU  =E= 61.98*T442 - 2060; 

EQN85..   QT2622 =E= 0.141*P6101 + 10848; 

EQN86..   QT2622 =E= 1.047*P461C + 8418; 

EQN87..   QT2623 =E= 0.020*P6211 + 419.9; 

EQN88..   QL2661 =E= -5.781861E-04*R + 1.877433E-01; 

EQN89..   QL2661 =E= -19.385704*T622 + 390.862903; 

EQN90..   QL2661 =E=  0.002010*P622 - 3.537493; 

EQN91..   QT2641 =E=  0.060*P6301 + 2995; 

EQN92..   QT2645 =E= 4.945232*R - 1338.357190; 

EQN93..   QT2645 =E= 0.012314*P6411 + 268.952399; 

EQN94..   QL2662 =E=  -0.000324*R + 0.055658; 

EQN95..   QL2662 =E= -11.773439*T642 + 242.603991; 

EQN96..   QL2662 =E= -0.0025030*P642 + 2.0825160; 

EQN97..   QT2643 =E= -16.72*T651 + 2386; 

EQN98..   QT2644 =E= -0.006841*R + 84.398923; 

EQN99..   QT2644 =E= 16.680985*T651 - 500.679426; 

EQN100..  QT2644 =E= -0.007448*P651 + 86.250342; 

EQN101..  WP2621 =E=  0.013153*R + 3.229547; 

EQN102..  WP2641 =E=  0.070646*R - 18.840286; 

*Regression result for each equations given below 

*EQUATION  81 82 83 84 85 86 87 88 89 90  91  92  93  94  95  96  97  

*Re^2      1  1  1  1  1  1  1  1  1   1   1   1   1   1   1   1   1   

*EQUATION  98 99 100  101  102 

*Re^2       1  1  1    1    1
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*The column duties in PRU are calculated using Underwood equation, 

*other equations such as Fenske, Gilliand and kirkibde have also been 

*evaluated. 

* DEETHANIZER COLUMN 

EQN103.. RVDesum =E= 

             RVDeC1*s1(  'C1', 'De-Feed')  /  (RVDeC1  - Theta1) + 

             RVDeC2*s1(  'C2', 'De-Feed')  /  (RVDeC2  - Theta1) + 

             RVDeC3*s1(  'C3', 'De-Feed')  /  (RVDeC3  - Theta1) + 

             RVDeiC4*s1('iC4', 'De-Feed')  /  (RVDeiC4 - Theta1) + 

             RVDeC4*s1(  'C4', 'De-Feed')  /  (RVDeC4  - Theta1) + 

             RVDeiC5*s1('iC5', 'De-Feed')  /  (RVDeiC5 - Theta1) + 

             RVDeC5*s1(  'C5', 'De-Feed')  /  (RVDeC5  - Theta1) + 

             RVDeC6*s1(  'C6', 'De-Feed')  /  (RVDeC6  - Theta1) + 

             RVDeC7*s1(  'C7', 'De-Feed')  /  (RVDeC7  - Theta1) + 

             RVDeC8*s1(  'C8', 'De-Feed')  /  (RVDeC8  - Theta1) + 

             RVDeC9*s1(  'C9', 'De-Feed')  /  (RVDeC9  - Theta1) + 

             RVDeC10*s1('C10', 'De-Feed')  /  (RVDeC10 - Theta1) + 

             RVDeN2*s1(  'N2', 'De-Feed')  /  (RVDeN2  - Theta1) + 

             RVDeCO2*s1('CO2', 'De-Feed')  /  (RVDeCO2 - Theta1); 

EQN104..    DeRmin + 1 =E= 

                RVDeC1*y(  'C1', 'P2')   /  (RVDeC1  - Theta1) + 

                RVDeC2*y(  'C2', 'P2')   /  (RVDeC2  - Theta1) + 

                RVDeC3*y(  'C3', 'P2')   /  (RVDeC3  - Theta1) + 

                RVDeiC4*y('iC4', 'P2')   /  (RVDeiC4 - Theta1) + 

                RVDeC4*y(  'C4', 'P2')   /  (RVDeC4  - Theta1) + 

                RVDeiC5*y('iC5', 'P2')   /  (RVDeiC5 - Theta1) + 

                RVDeC5*y(  'C5', 'P2')   /  (RVDeC5  - Theta1) + 

                RVDeC6*y(  'C6', 'P2')   /  (RVDeC6  - Theta1) + 

                RVDeC7*y(  'C7', 'P2')   /  (RVDeC7  - Theta1) +
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                RVDeC8*y(  'C8', 'P2')   /  (RVDeC8  - Theta1) + 

                RVDeC9*y(  'C9', 'P2')   /  (RVDeC9  - Theta1) + 

                RVDeC10*y('C10', 'P2')   /  (RVDeC10 - Theta1) + 

                RVDeN2*y(  'N2', 'P2')   /  (RVDeN2  - Theta1) + 

                RVDeCO2*y('CO2', 'P2')   /  (RVDeCO2 - Theta1); 

EQN105.. DeRflxratio =E= 1.5*DeRmin; 

EQN106.. QT2602  =E= LamdaDe*(3.120 + 1)*P2; 

EQN107.. QT2601  =E= QT2602 + 

 

      (((s1('C1', 'De-Feed') -  s2('C1', 'De-Bottom'))*(HDA2601 - 

      HFA2601) + 

       (s1('C2', 'De-Feed') -  s2('C2', 'De-Bottom'))*(HDA2601 - 

      HFA2601) + 

       (s1('C3', 'De-Feed') -  s2('C3', 'De-Bottom'))*(HDA2601 - 

      HFA2601) + 

       (s1('iC4','De-Feed') -  s2('iC4','De-Bottom'))*(HDA2601 - 

      HFA2601) + 

       (s1('C4', 'De-Feed') -  s2('C4', 'De-Bottom'))*(HDA2601 - 

      HFA2601) + 

        (s1('iC5','De-Feed') -  s2('iC5','De-Bottom'))*(HDA2601 - 

      HFA2601) + 

       (s1('C6', 'De-Feed') -  s2('C6', 'De-Bottom'))*(HDA2601 - 

      HFA2601) + 

       (s1('C7', 'De-Feed') -  s2('C7', 'De-Bottom'))*(HDA2601 - 

      HFA2601) + 

       (s1('C8', 'De-Feed') -  s2('C8', 'De-Bottom'))*(HDA2601 - 

      HFA2601) + 

       (s1('C9', 'De-Feed') -  s2('C9', 'De-Bottom'))*(HDA2601 - 

      HFA2601) + 

       (s1('C10','De-Feed') -  s2('C10','De-Bottom'))*(HDA2601 - 

      HFA2601) + 

       (s1('N2', 'De-Feed') -  s2('N2', 'De-Bottom'))*(HDA2601 - 

      HFA2601) + 

       (s1('CO2','De-Feed') -  s2('CO2','De-Bottom'))*(HDA2601 - 

      HFA2601) +



 

233 

 

   (y('C1', 'P2') - s1('C1', 'De-Feed'))*(HBA2601 - HFA2601)  + 

   (y('C2', 'P2') - s1('C2', 'De-Feed'))*(HBA2601 - HFA2601)  + 

   (y('C3', 'P2') - s1('C3', 'De-Feed'))*(HBA2601 - HFA2601)  + 

   (y('iC4','P2') - s1('iC4','De-Feed'))*(HBA2601 - HFA2601)  + 

   (y('C4', 'P2') - s1('C4', 'De-Feed'))*(HBA2601 - HFA2601)  + 

   (y('iC5','P2') - s1('iC5','De-Feed'))*(HBA2601 - HFA2601)  + 

   (y('C6', 'P2') - s1('C6', 'De-Feed'))*(HBA2601 - HFA2601)  + 

   (y('C7', 'P2') - s1('C7', 'De-Feed'))*(HBA2601 - HFA2601)  + 

   (y('C8', 'P2') - s1('C8', 'De-Feed'))*(HBA2601 - HFA2601)  + 

(y('C9', 'P2') - s1('C9', 'De-Feed'))*(HBA2601 - HFA2601)  + 

(y('C10','P2') - s1('C10','De-Feed'))*(HBA2601 - HFA2601)  + 

(y('N2', 'P2') - s1('N2', 'De-Feed'))*(HBA2601 - HFA2601)  + 

(y('CO2','P2') - s1('CO2','De-Feed'))*(HBA2601 - HFA2601))*(P2 + 

FBtDe)/( 

   y('C1', 'P2') - s2('C1', 'De-Bottom')  + 

   y('C2', 'P2') - s2('C2', 'De-Bottom')  + 

   y('C3', 'P2') - s2('C3', 'De-Bottom')  + 

   y('iC4','P2') - s2('iC4','De-Bottom')  + 

   y('C4', 'P2') - s2('C4', 'De-Bottom')  + 

   y('iC5','P2') - s2('iC5','De-Bottom')  + 

   y('C6', 'P2') - s2('C6', 'De-Bottom')  + 

   y('C7', 'P2') - s2('C7', 'De-Bottom')  + 

   y('C8', 'P2') - s2('C8', 'De-Bottom')  + 

   y('C9', 'P2') - s2('C9', 'De-Bottom')  + 

   y('C10','P2') - s2('C10','De-Bottom')  + 

   y('N2', 'P2') - s2('N2', 'De-Bottom')  + 

   y('CO2','P2')- s2('CO2', 'De-Bottom'))); 

EQN108.. NDemin =E= 20.361; 

EQN109.. XDe =E= (3.120 - DeRmin)/(3.120 + 1);
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EQN110.. NDer + NDes =E= 33.564; 

EQN111.. NDer =E= 8.765644*NDes; 

 

*DEPROPANIZER COLUMN 

EQN112.. RVDpsum =E= 

         RVDpC1*s1(  'C1', 'Dp-Feed')  /  (RVDpC1  - Theta2) + 

         RVDpC2*s1(  'C2', 'Dp-Feed')  /  (RVDpC2  - Theta2) + 

         RVDpC3*s1(  'C3', 'Dp-Feed')  /  (RVDpC3  - Theta2) + 

         RVDpiC4*s1('iC4', 'Dp-Feed')  /  (RVDpiC4 - Theta2) + 

         RVDpC4*s1(  'C4', 'Dp-Feed')  /  (RVDpC4  - Theta2) + 

         RVDpiC5*s1('iC5', 'Dp-Feed')  /  (RVDpiC5 - Theta2) + 

         RVDpC5*s1(  'C5', 'Dp-Feed')  /  (RVDpC5  - Theta2) + 

         RVDpC6*s1(  'C6', 'Dp-Feed')  /  (RVDpC6  - Theta2) + 

         RVDpC7*s1(  'C7', 'Dp-Feed')  /  (RVDpC7  - Theta2) + 

         RVDpC8*s1(  'C8', 'Dp-Feed')  /  (RVDpC8  - Theta2) + 

         RVDpC9*s1(  'C9', 'Dp-Feed')  /  (RVDpC9  - Theta2) + 

         RVDpC10*s1('C10', 'Dp-Feed')  /  (RVDpC10 - Theta2) + 

         RVDpN2*s1(  'N2', 'Dp-Feed')  /  (RVDpN2  - Theta2) + 

         RVDpCO2*s1('CO2', 'Dp-Feed')  /  (RVDpCO2 - Theta2); 

EQN113.. DpRmin + 1 =E= 

         RVDpC1*y(  'C1', 'P3')  /  (RVDpC1  - Theta2) + 

         RVDpC2*y(  'C2', 'P3')  /  (RVDpC2  - Theta2) + 

         RVDpC3*y(  'C3', 'P3')  /  (RVDpC3  - Theta2) + 

         RVDpiC4*y('iC4', 'P3')  /  (RVDpiC4 - Theta2) + 

         RVDpC4*y(  'C4', 'P3')  /  (RVDpC4  - Theta2) + 

         RVDpiC5*y('iC5', 'P3')  /  (RVDpiC5 - Theta2) + 

         RVDpC5*y(  'C5', 'P3')  /  (RVDpC5  - Theta2) + 

         RVDpC6*y(  'C6', 'P3')  /  (RVDpC6  - Theta2) + 

         RVDpC7*y(  'C7', 'P3')  /  (RVDpC7  - Theta2) +
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         RVDpC8*y(  'C8', 'P3')  /  (RVDpC8  - Theta2) + 

         RVDpC9*y(  'C9', 'P3')  /  (RVDpC9  - Theta2) + 

         RVDpC10*y('C10', 'P3')  /  (RVDpC10 - Theta2) + 

         RVDpN2*y(  'N2', 'P3')  /  (RVDpN2  - Theta2) + 

         RVDpCO2*y('CO2', 'P3')  /  (RVDpCO2 - Theta2); 

EQN114..  DpRflxratio =E= 1.5*DpRmin; 

EQN115..  QT2622  =E= LamdaDp*(2.972 + 1)*P3; 

EQN116..  QT2621  =E= QT2622 + 

  (((s1('C1', 'Dp-Feed') -  s2('C1', 'Dp-Bottom'))*(HDA2621 -   

   HFA2621) + 

    (s1('C2', 'Dp-Feed') -  s2('C2', 'Dp-Bottom'))*(HDA2621 -   

   HFA2621) + 

    (s1('C3', 'Dp-Feed') -  s2('C3', 'Dp-Bottom'))*(HDA2621 -   

   HFA2621) + 

    (s1('iC4','Dp-Feed') -  s2('iC4','Dp-Bottom'))*(HDA2621 -   

   HFA2621) + 

     (s1('C4', 'Dp-Feed') -  s2('C4', 'Dp-Bottom'))*(HDA2621 - 

    HFA2621) + 

     (s1('iC5','Dp-Feed') -  s2('iC5','Dp-Bottom'))*(HDA2621 - 

    HFA2621) + 

      (s1('C6', 'Dp-Feed') -  s2('C6', 'Dp-Bottom'))*(HDA2621 - 

     HFA2621) + 

      (s1('C7', 'Dp-Feed') -  s2('C7', 'Dp-Bottom'))*(HDA2621 - 

     HFA2621) + 

       (s1('C8', 'Dp-Feed') -  s2('C8', 'Dp-Bottom'))*(HDA2621 - 

      HFA2621) + 

       (s1('C9', 'Dp-Feed') -  s2('C9', 'Dp-Bottom'))*(HDA2621 - 

      HFA2621) + 

       (s1('C10','Dp-Feed') -  s2('C10','Dp-Bottom'))*(HDA2621 - 

      HFA2621) + 

       (s1('N2', 'Dp-Feed') -  s2('N2', 'Dp-Bottom'))*(HDA2621 - 

      HFA2621) + 

       (s1('CO2','Dp-Feed') -  s2('CO2','Dp-Bottom'))*(HDA2621 - 

      HFA2621) + 

      (y('C1', 'P3') - s1('C1', 'Dp-Feed'))*(HBA2621 - HFA2621)  +
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      (y('C2', 'P3') - s1('C2', 'Dp-Feed'))*(HBA2621 - HFA2621)  + 

      (y('C3', 'P3') - s1('C3', 'Dp-Feed'))*(HBA2621 - HFA2621)  + 

      (y('iC4','P3') - s1('iC4','Dp-Feed'))*(HBA2621 - HFA2621)  + 

      (y('C4', 'P3') - s1('C4', 'Dp-Feed'))*(HBA2621 - HFA2621)  + 

      (y('iC5','P3') - s1('iC5','Dp-Feed'))*(HBA2621 - HFA2621)  + 

      (y('C6', 'P3') - s1('C6', 'Dp-Feed'))*(HBA2621 - HFA2621)  + 

      (y('C7', 'P3') - s1('C7', 'Dp-Feed'))*(HBA2621 - HFA2621)  + 

      (y('C8', 'P3') - s1('C8', 'Dp-Feed'))*(HBA2621 - HFA2621)  + 

      (y('C9', 'P3') - s1('C9', 'Dp-Feed'))*(HBA2621 - HFA2621)  + 

      (y('C10','P3') - s1('C10','Dp-Feed'))*(HBA2621 - HFA2621)  + 

 (y('N2', 'P3') - s1('N2', 'Dp-Feed'))*(HBA2621 - HFA2621)  + 

(y('CO2','P3') - s1('CO2','Dp-Feed'))*(HBA2621 -HFA2621))*(P3 + 

FBtDp )/( 

      y('C1', 'P3') + s2('C1', 'Dp-Bottom')  + 

      y('C2', 'P3') + s2('C2', 'Dp-Bottom')  + 

      y('C3', 'P3') + s2('C3', 'Dp-Bottom')  + 

      y('iC4','P3') + s2('iC4','Dp-Bottom')  + 

      y('C4', 'P3') + s2('C4', 'Dp-Bottom')  + 

      y('iC5','P3') + s2('iC5','Dp-Bottom')  + 

      y('C6', 'P3') + s2('C6', 'Dp-Bottom')  + 

      y('C7', 'P3') + s2('C7', 'Dp-Bottom')  + 

      y('C8', 'P3') + s2('C8', 'Dp-Bottom')  + 

      y('C9', 'P3') + s2('C9', 'Dp-Bottom')  + 

      y('C10','P3') + s2('C10','Dp-Bottom')  + 

      y('N2', 'P3') + s2('N2', 'Dp-Bottom')  + 

      y('CO2','P3') + s2('CO2','Dp-Bottom'))); 

EQN117.. NDpmin =E= 16.228; 

EQN118.. XDp =E= (2.972 - DpRmin)/(2.972 + 1); 

EQN119.. NDpr + NDps =E= 26.94;



 

237 

 

EQN120.. NDpr =E= 0.819352*NDps; 

 

*DEBUTANIZER COLUMN   

EQN121..  RVDbsum =E= 

          RVDbC1*s1(  'C1', 'Db-Feed')  /  (RVDbC1  - Theta3) + 

          RVDbC2*s1(  'C2', 'Db-Feed')  /  (RVDbC2  - Theta3) + 

          RVDbC3*s1(  'C3', 'Db-Feed')  /  (RVDbC3  - Theta3) + 

          RVDbiC4*s1('iC4', 'Db-Feed')  /  (RVDbiC4 - Theta3) + 

          RVDbC4*s1(  'C4', 'Db-Feed')  /  (RVDbC4  - Theta3) + 

          RVDbiC5*s1('iC5', 'Db-Feed')  /  (RVDbiC5 - Theta3) + 

          RVDbC5*s1(  'C5', 'Db-Feed')  /  (RVDbC5  - Theta3) + 

          RVDbC6*s1(  'C6', 'Db-Feed')  /  (RVDbC6  - Theta3) + 

          RVDbC7*s1(  'C7', 'Db-Feed')  /  (RVDbC7  - Theta3) + 

          RVDbC8*s1(  'C8', 'Db-Feed')  /  (RVDbC8  - Theta3) + 

          RVDbC9*s1(  'C9', 'Db-Feed')  /  (RVDbC9  - Theta3) + 

          RVDbC10*s1('C10', 'Db-Feed')  /  (RVDbC10 - Theta3) + 

          RVDbN2*s1(  'N2', 'Db-Feed')  /  (RVDbN2  - Theta3) + 

          RVDbCO2*s1('CO2', 'Db-Feed')  /  (RVDbCO2 - Theta3); 

EQN122.. DbRmin + 1 =E= 

         RVDbC1*y(  'C1', 'P4')   /  (RVDbC1  - Theta3) + 

         RVDbC2*y(  'C2', 'P4')   /  (RVDbC2  - Theta3) + 

         RVDbC3*y(  'C3', 'P4')   /  (RVDbC3  - Theta3) + 

         RVDbiC4*y('iC4', 'P4')   /  (RVDbiC4 - Theta3) + 

         RVDbC4*y(  'C4', 'P4')   /  (RVDbC4  - Theta3) + 

         RVDbiC5*y('iC5', 'P4')   /  (RVDbiC5 - Theta3) + 

         RVDbC5*y(  'C5', 'P4')   /  (RVDbC5  - Theta3) + 

         RVDbC6*y(  'C6', 'P4')   /  (RVDbC6  - Theta3) + 

         RVDbC7*y(  'C7', 'P4')   /  (RVDbC7  - Theta3) + 

         RVDbC8*y(  'C8', 'P4')   /  (RVDbC8  - Theta3) +
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         RVDbC9*y(  'C9', 'P4')   /  (RVDbC9  - Theta3) + 

         RVDbC10*y('C10', 'P4')   /  (RVDbC10 - Theta3) + 

         RVDbN2*y(  'N2', 'P4')   /  (RVDbN2  - Theta3) + 

         RVDbCO2*y('CO2', 'P4')   /  (RVDbCO2 - Theta3); 

EQN123..   DbRflxratio =E= 1.5*DbRmin; 

EQN124..   QT2642  =E= LamdaDb*(1.722 + 1)*P4; 

EQN125..   QT2641 =E= QT2642 + 

     (((s1('C1', 'Db-Feed') -  s2('C1', 'Db-Bottom'))*(HDA2641 - 

      HFA2641) + 

       (s1('C2', 'Db-Feed') -  s2('C2', 'Db-Bottom'))*(HDA2641 - 

         HFA2641) + 

       (s1('C3', 'Db-Feed') -  s2('C3', 'Db-Bottom'))*(HDA2641 - 

      HFA2641) + 

       (s1('iC4','Db-Feed') -  s2('iC4','Db-Bottom'))*(HDA2641 - 

       HFA2641) + 

       (s1('C4', 'Db-Feed') -  s2('C4', 'Db-Bottom'))*(HDA2641 - 

       HFA2641) + 

       (s1('iC5','Db-Feed') -  s2('iC5','Db-Bottom'))*(HDA2641 - 

      HFA2641) + 

       (s1('C6', 'Db-Feed') -  s2('C6', 'Db-Bottom'))*(HDA2641 - 

     HFA2641) + 

       (s1('C7', 'Db-Feed') -  s2('C7', 'Db-Bottom'))*(HDA2641 - 

      HFA2641) + 

       (s1('C8', 'Db-Feed') -  s2('C8', 'Db-Bottom'))*(HDA2641 - 

      HFA2641) + 

       (s1('C9', 'Db-Feed') -  s2('C9', 'Db-Bottom'))*(HDA2641 - 

      HFA2641) + 

       (s1('C10','Db-Feed') -  s2('C10','Db-Bottom'))*(HDA2641 - 

     HFA2641) + 

       (s1('N2', 'Db-Feed') -  s2('N2', 'Db-Bottom'))*(HDA2641 - 

      HFA2641) + 

       (s1('CO2','Db-Feed') -  s2('CO2','Db-Bottom'))*(HDA2641 - 

     HFA2641) + 

      (y('C1', 'P4') - s1('C1', 'Db-Feed'))*(HBA2641 - HFA2641)  + 

      (y('C2', 'P4') - s1('C2', 'Db-Feed'))*(HBA2641 - HFA2641)  +



 

239 

 

       y('C3', 'P4') - s1('C3', 'Db-Feed'))*(HBA2641 - HFA2641)  + 

      (y('iC4','P4') - s1('iC4','Db-Feed'))*(HBA2641 - HFA2641)  + 

      (y('C4', 'P4') - s1('C4', 'Db-Feed'))*(HBA2641 - HFA2641)  + 

      (y('iC5','P4') - s1('iC5','Db-Feed'))*(HBA2641 - HFA2641)  + 

      (y('C6', 'P4') - s1('C6', 'Db-Feed'))*(HBA2641 - HFA2641)  + 

      (y('C7', 'P4') - s1('C7', 'Db-Feed'))*(HBA2641 - HFA2641)  + 

      (y('C8', 'P4') - s1('C8', 'Db-Feed'))*(HBA2641 - HFA2641)  + 

      (y('C9', 'P4') - s1('C9', 'Db-Feed'))*(HBA2641 - HFA2641)  + 

      (y('C10','P4') - s1('C10','Db-Feed'))*(HBA2641 - HFA2641)  + 

      (y('N2', 'P4') - s1('N2', 'Db-Feed'))*(HBA2641 - HFA2641)  + 

   (y('CO2','P4') - s1('CO2','Db-Feed'))*(HBA2641 - HFA2641))*(P4 

+ FBtDb)/( 

 

       y('C1', 'P4') - s2('C1', 'Db-Bottom')  + 

       y('C2', 'P4') - s2('C2', 'Db-Bottom')  + 

       y('C3', 'P4') - s2('C3', 'Db-Bottom')  + 

       y('iC4','P4') - s2('iC4','Db-Bottom')  + 

       y('C4', 'P4') - s2('C4', 'Db-Bottom')  + 

       y('iC5','P4') - s2('iC5','Db-Bottom')  + 

       y('C6', 'P4') - s2('C6', 'Db-Bottom')  + 

       y('C7', 'P4') - s2('C7', 'Db-Bottom')  + 

       y('C8', 'P4') - s2('C8', 'Db-Bottom')  + 

       y('C9', 'P4') - s2('C9', 'Db-Bottom')  + 

       y('C10','P4') - s2('C10','Db-Bottom')  + 

       y('N2', 'P4') - s2('N2', 'Db-Bottom')  + 

       y('CO2','P4') - s2('CO2', 'Db-Bottom'))); 

EQN126.. NDbmin =E= 16.228; 

EQN127.. XDb =E= (1.722 - DbRmin)/(1.722 + 1); 

EQN128.. NDbr + NDbs =E= 10.601;
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EQN129.. NDbr =E= 1.314964*NDbs; 

 

*@PLANT OUTLET 

EQN130..   QP1   =E= HP1*P1; 

EQN131..   QP2   =E= HP2*P2; 

EQN132..   QP3   =E= HP3*P3; 

EQN133..   QP4   =E= HP4*P4; 

EQN134..   QP5   =E= HP5*P5; 

 

*INITIAL VALUES @PRU 

  P441.l    = 3009.00; 

  T4411.l   = 32.27; 

  T442.l    = 32.27; 

  P6101.l   = 1600.00; 

  P461C.l   = 2471.00; 

  P6211.l   = 1860.00; 

  T622.l    =  20.16; 

  P622.l    = 1780.00; 

  T623.fx    = 20.16; 

  P623.fx    = 1760.00; 

  TH2O11.fx = 20.16; 

  PH2O11.fx = 1760.00; 

  P6301.l   = 561.3; 

  P6411.l   = 860.00; 

  T642.l    = 20.16; 

  P642.l    = 770.00; 

  TH2O22.fx = 20.61; 

  PH2O22.fx = 750.00; 

  T643.l    = 20.16;
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  P643.l    = 750.00; 

  T651.l    = 34.94; 

  P651.l    = 570.00; 

  T652.l    = 30.00; 

  P652.l    = 550.00; 

*NOTES 

*P6101 does not affect QT2621, Stream 623 is C3product (propane) and 

*its temperature is fixed at T623 =20.16 C and pressure P623=1760 kpa 

*H2O11 and H2O22 are influents and their temp and pressure kept 

*constant.P6301 does not affect QT2642. Stream 643 is C4product 

*(butane) and its temperature is fixed at T643 =20.16 C and pressure 

*P643=750 kpa P651 and R have constant relationship with QT2643 

*Stream 652 is C5+product (condensate) and its temperature is fixed 

*at T652 =30.16 C and pressure P652 =500 kpa 

*P652 is called Ried pressure for the condensate normally this 

*pressure has also a significant effect on the quality of the 

*condensate produced. The feed FDe,FDp,FDb can be represented from 

*material balance around the column,i.e.,FD = Distillate + bottom ( 

*flow rate,hence FDe can be manipulated by either Distillate or 

*bottom flow rates,these have been left as a spec in HYSYS. 

*The above equation is based on energy balance around a column for 

*multi-component separation. The minimum number of theoretical stage 

*for deethanizer is equal to 

*NDemin =E= log10(2842007.179)/log10(RVDeC2) 

*XDe =E= (DeRflxratio - DeRmin)/(DeRflxratio + 1); 

*Actual number of stage for deethanizer column is evaluated using: 

*(NDestage - NDemin)/(NDestage + 1) =E=  0.381973109; 

*NDestage =E= NDer + NDes 

*NDer = number of stage for the rectification section for deethanizer
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*NDes = number of stage for the stripping section for deethanizer 

*column. The same correlation goes for depropanizer and debutanizer 

*QP6 for carbon dioxide is obtained from the overall energy balance 

*equation    

* KEY PROCESS VARIABLES 

*@PLANT INLET 

*TR1,PR1,TR2,PR2,TR3,PR3,TR4,PR4 

*@Pre-treatment unit (PTU) 

*T121,P121,T152,P152,T301,P301,T302,P302, 

*@Condensate treatment unit (CTU) 

*P104,T161,P161,T108,P108,T454,P454 

*@Low temperature separation unit (LTSU) 

*T311,P311,T312,T401,P401,T411,P411 

*@Sales gas compression unit (SGCU) 

*P432,P501,T503,T504,T505 

*C3-refigeration unit (CRU) 

*P732,P743,P7541,P750,P760,P762,T764 

*@Product recovery unit (PRU) 

*P441,T4411,T442,P6101,T623,P623,T651,P651 

*@PLANT OUTLET 

*Psalesgas(C1product),T603(C2product),T623(C3product),P623(C3product, 

*T643(C4product),P643(C4 product),T652(C5+product),P652(C5+product), 

*TCO2(CO2 product),PCO2(CO2 product) 

 

*MATERIAL BALANCE EQUATION 

*component material balance for: C1, C2,C3,C4s,C5+,N2 and CO2 

EQN135..y('C1','P1')*P1 + y('C1','P2')*P2 + y('C1','P3')*P3 + 

 y('C1','P4')*P4 + y('C1','P5')*P5 + y('C1','P6')*P6 =E= 

 x('C1','R1')*R1 + x('C1','R2')*R2 + 

 x('C1','R3')*R3+x('C1','R4')*R4;
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EQN136..y('C2','P1')*P1 + y('C2','P2')*P2 + y('C2','P3')*P3 + 

 y('C2','P4')*P4 +y('C2','P5')*P5 + 

 y('C2','P6')*P6=E=x('C2','R1')*R1 + x('C2','R2')*R2 + 

 x('C2','R3')*R3 + x('C2','R4')*R4; 

EQN137..y('C3','P1')*P1 + y('C3','P2')*P2 + y('C3','P3')*P3 + 

 y('C3','P4')*P4+y('C3','P5')*P5 + y('C3','P6')*P6 

 =E=x('C3','R1')*R1 + x('C3','R2')*R2 + x('C3','R3')*R3 + 

 x('C3','R4')*R4; 

EQN138..(y('iC4','P1') + y('C4','P1'))*P1 + (y('iC4','P2')+ 

 y('C4','P2'))*P2+(y('iC4','P3')+ y('C4','P3'))*P3 + 

 (y('iC4','P4')+ y('C4','P4'))*P4 +(y('iC4','P5')+ 

 y('C4','P5'))*P5 + (y('iC4','P6')+ 

 y('C4','P6'))*P6=E=(x('iC4','R1')+ x('C4','R1'))*R1 

 +(x('iC4','R2')+ x('C4','R2'))*R2 + (x('iC4','R3')+ 

 x('C4','R3'))*R3 + (x('iC4','R4')+ x('C4','R4'))*R4; 

EQN139..(y('iC5','P1') + y('C5','P1')+ y('C6+','P1'))*P1 + 

 (y('iC5','P2')+y('C5','P2')+ y('C6+','P2'))*P2 +(y('iC5','P3')+ 

 y('C5','P3')+y('C6+','P3'))*P3 + (y('iC5','P4')+ y('C5','P4')+ 

 y('C6+','P4'))*P4+(y('iC5','P5')+ y('C5','P5')+ 

 y('C6+','P5'))*P5 + (y('iC5','P6')+y('C5','P6')+ 

 y('C6+','P6'))*P6=E=(x('iC5','R1')+ x('C5','R1') + 

 x('C6+','R1'))*R1 + (x('iC5','R2')+x('C5','R2') + 

 x('C6+','R2'))*R2 + (x('iC5','R3')+ x('C5','R3') 

 +x('C6+','R3'))*R3 + (x('iC5','R4')+ x('C5','R4')+ 

 x('C6+','R4'))*R4; 

 

EQN140..y('N2','P1')*P1 + y('N2','P2')*P2 + y('N2','P3')*P3 + 

 y('N2','P4')*P4+y('N2','P5')*P5 + y('N2','P6')*P6 

 =E=x('N2','R1')*R1 +x('N2','R2')*R2 + x('N2','R3')*R3 + 

 x('N2','R4')*R4; 

EQN141.. y('CO2','P1')*P1 + y('CO2','P2')*P2 + y('CO2','P3')*P3 + 

 y('CO2','P4')*P4 + y('CO2','P5')*P5 + y('CO2','P6')*P6  =E= 

 x('CO2','R1')*R1 + x('CO2','R2')*R2 + x('CO2','R3')*R3 + 

 x('CO2','R4')*R4; 

*Total material balance 

EQN142..   R  =E= R1 + R2 + R3 + R4; 

EQN143..   P  =E= P1 + P2 + P3 + P4 + P5 + P6; 

EQN144..   P - R  =E= 0; 

*Upper and lower bound for decision variables 

   R1.up = 334.582214355; 

   R1.lo = 0; 

   R2.up = 220.314773560; 

   R2.lo = 0;
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   R3.up = 10.706112016; 

   R3.lo = 0; 

   R4.up = 35.5858020881; 

   R4.lo = 0; 

   P1.up = 298.518112183; 

   P1.lo = 0; 

   P2.up = 37.310810089; 

   P2.lo = 0; 

   P3.up = 47.706112016; 

   P3.lo = 0; 

   P4.up = 29.585802088; 

   P4.lo = 0; 

   P5.up = 43.111991264; 

   P5.lo = 0; 

   P6.up = 57.659376734; 

   P6.lo = 0; 

* Steam and cooling water usage by the absorbers and distillation 

*columns 

EQN145.. FsteamA2451 =E= (QT2451)*(3.6)/2177.565671 ; 

EQN146.. FsteamA2404 =E= (QT2404)*(3.6)/2496.919669 ; 

EQN147.. FsteamA2601 =E= (QT2601)*(3.6)/2307.147807 ; 

EQN148.. FsteamA2621 =E= (QT2621)*(3.6)/2233.649564 ; 

EQN149.. FsteamA2641 =E= (QT2641)*(3.6)/2232.423954 ; 

EQN150.. FrefigerantA2601 =E= QT2602/36.00438475; 

EQN151.. FcoolingA2622 =E= QT2622/23.2556; 

EQN152.. FcoolingA2642 =E= QT2642 /23.2556; 

 

*ENERGY BALANCE 

*Energy inflow using raw material
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EQN153..  QR1 + QR2 + QR3 + QR4 =E= u1 ; 

*Energy inflow using steam 

EQN154..  QT2451 + QT2404 + QT2601 + QT2621 + QT2641 =E= u2 ; 

*Energy inflow using refrigerant 

EQN155..  QT2354 + QT2352 + WR27011 + WR27012 + WR27013  =E= u3 ; 

*Energy inflow using compression 

EQN156..  WR2501 + QT2604SGas +  QL2501 =E= u4 ; 

*Energy inflow using electricity 

EQN157..  WP2401 + WP2402 + WP2403 + WP2404 + WP2621 + WP2641 =E= u5 

; 

*Energy inflow using fuel 

EQN158..  QA2101 + QT2151 + QAGRU + QL2301 + QL2302 + QT2101 + QL2104 

+ QL2451+ QL2452 + QL2661 + QL2662 + QT2604PRU  =E= u6; 

*Energy out flow due to cooling water 

EQN159.. QT2622 + QT2642 + QT2643 + QT2644 =E= q1; 

*Energy out flow due to sales gas for cooling 

EQN160.. QT2701 =E= q2; 

*Energy out flow due to refrigeration for cooling 

EQN161.. QT2501 =E= q3; 

*Energy out flow due to products 

EQN162.. QP1 + QP2 + QP3 + QP4 + QP5 + QP6 =E= q4; 

CON1..  QR1 + QR2 + QR3 + QR4 =L= m1('50','u1'); 

CON2..  QT2451 + QT2404 + QT2601 + QT2621 + QT2641 =L= m1('50','u2'); 

CON3..  QT2352 + QT2354 + WR27011 + WR27012 + WR27013 =L= 

 m1('50','u3') ; 

CON4..  WR2501 + QT2604SGas +  QL2501 =L= m1('50','u4') ; 

CON5..  WP2401 + WP2402 + WP2403 + WP2404 + WP2621 + WP2641 =L= 

 m2('50','u5') ; 

CON6..  QA2101 + QT2151 + QAGRU + QL2301 + QL2302 + QT2101 + QL2104 + 

 QL2451+QL2452 + QL2661 + QL2662 + QT2604PRU  =L= m2('50','u6'); 

CON7.. QT2622 + QT2642 + QT2643 + QT2644 =G= m3('50','q1');
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CON8.. QT2701 =G= m3('50','q2'); 

CON9.. QT2501 =G= m3('50','q3'); 

CON10.. QP1 + QP2 + QP3 + QP4 + QP5 + QP6  =G= m3('50','q4'); 

*TOTAL Energy balance 

EQN163.. Qin =E= u1 + u2 + u3 + u4 + u5 + u6; 

EQN164.. Qout =E= q1 + q2 + q3 + q4; 

EQN165.. Qout - Qin =E= 0 

 

Model Gas / all /; 

Option LP = CPLEX; 

Solve Gas using LP maximizing Z; 

 

* (II) JOINT CHANCE CONSTRAINED OPTIMIZATION 

* All the formulation in the single chance constrained optimization 

*up to equation 162 remains the same. The only changes in the joint 

*chance constrained formulation is shown below. 

 

   EQN163..  Zu1  =E= (u1 -SM11)/SV11; 

EQN164..  Zu2  =E= (u2 -SM22)/SV22; 

EQN165..  Zu3  =E= (u3 -SM33)/SV33; 

EQN166..  Zu4  =E= (u4 -SM44)/SV44; 

EQN167..  Zu5  =E= (u5 -SM55)/SV55; 

EQN168..  Zu6  =E= (u6 -SM66)/SV66; 

EQN169..  Zq1  =E= (q1 -SM111)/SV111; 

EQN170..  Zq2  =E= (q2 -SM222)/SV222; 

EQN171..  Zq3  =E= (q3 -SM333)/SV333; 

EQN172..  Zq4  =E= (q4 -SM444)/SV444; 

CON11..(1 - errorf(Lossu1))*(1 - errorf(Lossu2))*(1 - 

 errorf(Lossu3))*(1 - errorf(Lossu4))*(1 - errorf(Lossu5))*(1 - 

 errorf(Lossu6))*(errorf(Lossq1))*(errorf(Lossq2))*(errorf(Lossq

 3))*(errorf(Lossq4)) =G= 0.5 ;
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*TOTAL Energy balance 

EQN173.. Qin =E= u1 + u2 + u3 + u4 + u5 + u6; 

EQN174.. Qout =E= q1 + q2 + q3 + q4; 

EQN175.. Qout - Qin =E= 0; 

 

Model Gas / all /; 

Option NLP = CONOPT3; 

Solve Gas using NLP maximizing Z; 

Display 

TR1.l,PR1.l,TR2.l,PR2.l,TR3.l,PR3.l,TR4.l,PR4.l,QR1.l,QR2.l,QR3.l,QR4

.l,TCl.l,PCl.l,T121.l,P121.l,T152.l,P152.l,TCO2.l,PCO2.l,T301.l,P301.

l,T302.l,P302.l,TH2O2.l,PH2O2.l,T310A.l,P310A.l,THg.l,PHg.l,QA2101.l,

QT2151.l,WRT2151.l,QAGRU.l,QT2301.l,QL2301.l,QL2302.l,P156.l,P104.l,P

306.l,T3061.l,P3061.l,T161.l,P161.l,T108.l,P108.l,P109.l,T441B.l,P441

B.l,M441B.l,T452.l,P452.l,T453.l,P453.l,QT2101.l,QL2104.l,QT2451.l,QL

2451.l,QL2452.l,T311.l,P311.l,T312.l,T401.l,P401.l,T411.l,P411.l,P421

.l,P403.l,P413.l,P427.l,T454.l,P454.l,TpA2.l,PpA2.l,MpA2.l,TpA41.l,Tp

A4.l,PpA4.l,MpA4.l,TpA61.l,TpA6.l,PpA6.l,MpA6.l,T6011.l,P6011.l,M6011

.l,M6012.l,T602.l,T603.l,QT2402.l,QT2404.l,WR2401.l,WRT2401.l,WP2401.

l,WP2402.l,WP2403.l,WP2404.l,P428.l,P430.l,P430C.l,P432.l,P501.l,T503

.l,T504.l,P504.l,TS.l,PS.l,T505.l,Psalesgas.l,WR2151.l,WR2501.l,QT260

4SGas.l,QL2501.l,QT2501.l,P732.l,P734.l,P735.l,P736.l,P743.l,P7451.l,

P750.l,P760.l,P762.l,P763.l,T764.l,P764.l,T765.l,P765.l,P71X.l,P71S.l

,P71N.l,P71I.l,P71D.l,P71B.l,P71Y.l,P71T.l,P71O.l,P71J.l,P71E.l,WR270

11.l,WR27012.l,WR27013.l,QT2701.l,QT2603.l,QT2354.l,QT2352.l,P441.l,T

4411.l,T442.l,P6101.l,P461C.l,P6211.l,T622.l,P622.l,T623.l,P623.l,TH2

O11.l,PH2O11.l,P6301.l,P6411.l,T642.l,P642.l,TH2O22.l,PH2O22.l,T643.l

,P643.l,T651.l,P651.l,T652.l,P652.l,QT2604PRU.l,QT2623.l,QL2661.l,QT2

645.l,QL2662.l,QT2643.l,QT2644.l,WP2621.l,WP2641.l,RVDesum.l,DeRmin.l

,DeRflxratio.l,NDemin.l,XDe.l,NDer.l,NDes.l,RVDpsum.l,DpRmin.l,DpRflx

ratio.l,NDpmin.l,XDp.l,NDpr.l,NDps.l,RVDbsum.l,DbRmin.l,DbRflxratio.l

,NDbmin.l,XDb.l,NDbr.l,NDbs.l,QP1.l,QP2.l,QP3.l,QP4.l,QP5.l,QP6.l,Fst

eamA2451.l,FsteamA2404.l,R1.l,R2.l,R3.l,R4.l,P1.l,P2.l,P3.l,P4.l,P5.l

,P6.l,R.l,P.l,u1.l,u2.l,u3.l,u4.l,u5.l,u6.l,q1.l,q2.l,q3.l,q4.l,QT260

1.l,QT2602.l,QT2621.l,QT2622.l,QT2641.l,QT2642.l,FsteamA2601.l,Fsteam

A2621.l,FsteamA2641.l,FrefigerantA2601.l,FcoolingA2622.l,FcoolingA264

2.l,Qin.l,Qout.l 
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