STATUS OF THESIS

Title of thesis

Ι

A Novel Study of Hydrogen Storage in (Ni-)Mg-Al **Hydrotalcite-derived Mixed Oxides**

RUZANNA BINTI IBRAHIM

hereby allow my thesis to be placed at the Information Resource Center (IRC) of Universiti Teknologi PETRONAS (UTP) with the following conditions:

1. The thesis becomes the property of UTP

- 2. The IRC of UTP may make copies of the thesis for academic purposes only
- 3. This thesis is classified as

Confidential

Non-confidential

If this thesis is confidential, please state the reason:

The content of the thesis will remain confidential for _____ years.

Remarks on disclosure:

Endorsed by

Signature of Author

Permanent Address: No.15, Lrg. 1, Jalan Perak 3, Taman Sri Skudai, 81300 Skudai, Johor Bahru, Johor.

Date: ____09.09.2011_____

Signature of Supervisor

Name of Supervisor Assoc. Prof. Dr. Ye Lwin

Date: ____09.09.2011 ____

UNIVERSITI TEKNOLOGI PETRONAS

A NOVEL STUDY OF HYDROGEN STORAGE IN (Ni-)Mg-Al HYDROTALCITE-DERIVED MIXED OXIDES

by

RUZANNA BINTI IBRAHIM

The undersigned certify that they have read, and recommend to the Postgraduate Studies Programme for acceptance this thesis for the fulfillment of the requirements for the degree of Master of Science in Chemical Engineering.

Signature:	
Main Supervisor:	Assoc. Prof. Dr. Ye Lwin
Signature:	
Co-Supervisor:	Dr. Lukman Ismail
Signature:	
Head of Department:	Assoc. Prof. Dr. Shuhaimi Mahadzir
Date:	

A NOVEL STUDY OF HYDROGEN STORAGE IN (Ni-)Mg-Al HYDROTALCITE-

DERIVED MIXED OXIDES

by

RUZANNA BINTI IBRAHIM

A Thesis Submitted to the Postgraduate Studies Programme as a Requirement for the Degree of

MASTER OF SCIENCE CHEMICAL ENGINEERING UNIVERSITI TEKNOLOGI PETRONAS BANDAR SRI ISKANDAR PERAK

SEPTEMBER, 2011

DECLARATION OF THESIS

Title of thesis

Ι

A Novel Study of Hydrogen Storage in (Ni-)Mg-Al Hydrotalcite-derived Mixed Oxides

RUZANNA BINTI IBRAHIM

hereby declare at the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UTP or other institutions.

Witnessed by

Signature of Author

Permanent Address: <u>No.15, Lrg. 1,</u> Jalan Perak 3, Taman Sri Skudai, 81300 Skudai, Johor Bahru, Johor .

Date: 09.09.2011

Signature of Supervisor

Name of Supervisor Assoc. Prof. Dr. Ye Lwin

Date:_____ 09.09.2011

Dedicated to my beloved Family

ACKNOWLEDGEMENT

First and foremost, Alhamdulillah, all praise to Allah for it is only with His will that this research project is able to be completed and I am also grateful for the countless blessings that He has bestowed upon me. I would also like to thank my supervisor Associate Professor Dr. Ye Lwin for all the knowledge and guidance that he has given me throughout the duration of the research. I also appreciate the assistance from my cosupervisor Dr. Lukman Ismail and also the help of all the staff at Universiti Teknologi PETRONAS who has directly or indirectly helped me in completing my research work especially Dr. Suriati Sufian, Mr. Asnizam, Mr. Fazli, Mr. Jailani, Mr. Fauzi, Madam Hasneyza, Mr. Faisal, Mr. Mahfuz, Mr. Anwar and Mr. Omar. My gratitude also goes out to my family especially my parents Rakiah binti Mamat and Ibrahim bin Busu for the love and support that they have given me. Last but not least, thank you to all my friends who have made this quest for knowledge a memorable and enjoyable one.

ABSTRACT

Hydrogen was adsorbed using mixed oxides adsorbents derived from (Ni) Mg-Al hydrotalcite-like compounds (HTlcs). This is a novel study on the use of these mixed oxides to adsorb hydrogen as these materials have never been investigated for use as hydrogen storage media. A previous study has only used the as-synthesized HTlcs to adsorb hydrogen and no hydrogen adsorption was observed in the study. In this study the HTlcs were synthesized via the coprecipitation method and were calcined at various temperatures to obtain the corresponding mixed oxides. Characterizations of the assynthesized and calcined samples were also conducted. XRD characterizations of the assynthesized samples showed that the hydrotalcite-like phase was obtained and MgO and NiO (only for Ni-Mg-Al HTlcs) were formed after the calcination step. Furthermore, the FTIR showed that the HTlcs contained water and carbonate ions before and after calcination. However, calcination at high temperatures (750°C and 900°C) caused destruction of the hydrotalcite structure which cannot be reconstructed via rehydration. Meanwhile, it was found that the BET specific surface area generally increases after calcinations at moderate temperatures but decreases at higher calcination temperature. Additionally, TPR showed that only a small amount of hydrogen uptake (1.4mmol/g) occurred when the Mg-Al HTlcs were used which may be due to the low reducibility of the material while addition of Ni showed increase in H₂ uptake of Ni-Mg-Al HTlcs (3.3mmol/g) with the same Mg/Al molar ratio. The adsorption of hydrogen following the material reduction in the TPR experiments is indicated by tailings in the reduction profile. Meanwhile, the hydrogen adsorption capacity determined by thermogravimetric analysis conducted at temperatures of 400°C, 200°C and 100°C indicated that Ni-Mg-Al HTlcs with Ni/Mg/Al molar ratio of 1:2:1 adsorbed the highest amount of hydrogen (3 wt% at 100°C). In conclusion, the high reducibility and the hydrotalcite-like structure of the Ni-Mg-Al HTlc make it the most favourable material for hydrogen storage in this study.

ABSTRAK

Hidrogen telah diserap menggunakan oksida campuran yang diterbitkan dari (Ni)Mg-Al hidrotalsit (HTlcs). Kajian ini adalah pertama kali dijalankan kerana sebelum ini didapati tiada kajian mengenai penggunaan oksida campuran terbitan HTlcs sebagai media penyerapan hydrogen. Penyiasatan sebelum ini hanya menggunakan hidrotalsit yang disintesis untuk menyerap hydrogen tetapi tiada penyerapan hidrogen dilaporkan. Dalam kajian ini, HTlcs telah disintesis menggunakan kaedah pemendakan bersama dan dikalsinasi untuk mendapatkan oksida campuran. Pencirian bahan juga turut dilakukan ke atas sampel sebelum dan selepas kalsinasi. Hasil analisis belauan sinar-X, XRD menunjukkkan fasa hidrotalsit telah diperoleh sebelum kalsinasi dan oksida campuran MgO dan NiO (bagi Ni-Mg-Al HTlcs) dihasilkan selepas kalsinasi. Spektroskopi jelmaan Fourier inframerah, FTIR menunjukkan semua HTlcs sebelum dan selepas kalsinasi mengandungi air dan ion karbonat (CO_3^{2-}). Namun, suhu kalsinasi yang tinggi (750°C dan 900°C) telah memusnahkan struktur hidrotalsit dan tidak dapat dipulihkan melalui rehidrasi. Luas permukaan spesifik BET didapati meningkat setelah sampel melalui proses kalsinasi pada suhu sederhana namun nilai ini berkurang apabila suhu kalsinasi lebih tinggi digunakan. Penurunan berprogram suhu, TPR menunjukkan bahawa hanya sejumlah kecil hidrogen digunakan oleh Mg-Al HTlcs (1.4mmol/g) kemungkinan disebabkan oleh kadar penurunan bahan yang rendah tetapi nilai penggunaan hidrogen ini meningkat dengan penambahan logam nikel (3.3mmol/g). Penyerapan hidrogen dalam kaedah TPR dapat dikesan dari bentuk profil penurunan. Penyerapan menggunakan analisis gravimetri terma, TGA yang telah dilakukan pada suhu 400°C, 200°C dan 100°C menunjukkan Ni-Mg-Al HTlcs dengan nisbah molar Ni/Mg/Al sebanyak 1:2:1 telah menyerap jumlah hidrogen yang paling banyak (3wt% pada 100°C). Kesimpulannya, kadar penurunan yang tinggi dan struktur hidrotalsit yang dimiliki oleh Ni-Mg-Al HTlcs menjadikannya lebih sesuai untuk menyerap hidrogen dalam kajian ini.

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the university, the copyright of this thesis has been reassigned by the author to the legal entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained in, or derived from, this thesis.

© Ruzanna Binti Ibrahim, 2011 Institute of Technology PETRONAS Sdn Bhd All right reserved.

TABLE OF CONTENTS

STA	TUS OF THESIS	PAGE i
APPI	ROVAL PAGE	ii
TITL	E PAGE	iii
DEC	LARATION	iv
DED	ICATION	V
ACK	NOWLEDGEMENT	vi
ABS	TRACT	vii
COP	YRIGHT PAGE	ix
LIST	OF TABLES	xiii
LIST	OF FIGURES	xiv
LIST	OF EQUATIONS	xvii
PREI	FACE	xviii
Chap	ter	
1.	INTRODUCTION1.1Background of Study1.2Problem Statement1.3Objectives of Study1.4Scopes of Study1.5Significance of Study1.6Thesis Outline	1 1 4 5 5 6 6
2.	 LITERATURE REVIEW 2.1 Introduction 2.2 Adsorption 2.2.1 Physisorption and Chemisorption 2.2.2 Adsorption Forces and Energies 2.2.3 Rate of Adsorption and Adsorption Equilibrium 2.2.4 Adsorption Isotherms 2.2.4.1 IUPAC Classification of Adsorption Isotherms 2.2.4.2 Langmuir Adsorption Isotherm 	7 7 8 10 11 12 13 15

2.3	Hydro	gen Storage Technologies	15
	2.3.1	Physically Bound Hydrogen	16
	2.3.2	Chemically Bound Hydrogen	17
	2.3.3	Hydrolytic Evolution of Hydrogen	18
2.4	Invest	igations on Solid Hydrogen Storage	19
	2.4.1	Hydrogen Adsorption on Metal Hydrides	19
	2.4.2	Hydrogen Adsorption on Activated Carbon	20
	2.4.3	Hydrogen Adsorption on Other Carbon Materials	21
	2.4.4	Hydrogen Adsorption by Metal Oxides	22
	2.4.5	Hydrogen Adsorption by Metal Organic Frameworks	23
	2 4 4	(MOFs)	24
25	2.4.4	Hydrogen Adsorption by Zeolites	24
2.5	Hydro	taicite-like compounds	24
	2.5.1	H I ICS Preparation Methods	20
		2.5.1.1 Coprecipitation Method	20
		2.5.1.2 Hydrothermal Method	27
		2.5.1.3 Urea Hydrolysis Method	28
	0.5.0	2.5.1.4 Sol-Gel Method	29
	2.5.2	Applications of Hydrotalcite-like Compounds	30
		2.5.2.1 Applications in Gas Adsorption	30
		2.5.2.2 Other Applications of HTIcs	30
	2.5.3	Thermal Decomposition of Hydrotalcite-like Compounds	31
	2.5.5	Calcination Effects on HTIcs	33
2.6	Proper	ties of Hydrotalcite-like Compounds	33
	2.6.1	Phase Determination using X-ray Powder Diffraction	34
	2.6.2	Characterization by Fourier Transform Infrared Spectroscopy	35
	2.6.3	Morphology Determination by Field Emission Scanning	35
	2.0.5	Electron Microscope	55
	2.6.4	Elemental Analysis via Energy Dispersive X-Ray	36
	2.6.5	Textural Properties Determination by Nitrogen Adsorption	36
	2.6.6	Material Reducibility Determination by Temperature Programmed Reduction	37
27	Hydro	agen Adsorption using Thermogravimetric Analysis	37
2.8	Summ	ary	38
мети		OCY	20
3 1	Introdu	uction	30
2.1		UCION 1 HTIgs Synthesis by Conrecipitation	39
5.2 2.2	Ni Ma	A 1 HTles Synthesis by Coprecipitation	39 40
3.5	Matar	ial Characterization	40 /11
5.4		Dowder Y ray Diffraction (YPD)	+1 ∕1
	3.4.1 3 1 7	Fourier Transform Infrared Spectroscopy (ETID)	41 //
	5.4.2 2.4.2	Fourier Transform Infrared Spectroscopy (FTIK)	44 17
	5.4.5	Field Emission Scanning Electron Microscopy with Energy Dispersive Y ray (FESEM EDV)	4/
	311	Surface Area and Dorosity Determination by N. Advantian	19
	J.4.4	Surface Area and Forosity Determination by N_2 Ausorption	140

3.

		3.4.5 Temperature-Programmed Reduction (TPR)	49
3.5	Thern	nogravimetric Analysis (TGA)	51
4	RESULTS AND DISCUSSION		
	4.1	Introduction	55
	4.2	X-Ray Diffraction (XRD) Results	55
	1.2	4.2.1 XRD of As-synthesized Mg-Al HTlcs	55
		4.2.2 XRD of Calcined Mg-Al HTIcs	57
		4.2.3 XRD of As-synthesized Ni-Mg-Al HTlcs	62
		4.2.4 XRD of Calcined Ni-Mg-Al HTlcs	63
	4.3	Fourier Transform Infrared Spectroscopy (FTIR) Results	65
		4.3.1 FTIR of As-synthesized Mg-Al HTlcs	65
		4.3.2 FTIR of Calcined Mg-Al HTIcs	66
		4.3.3 FTIR of As-synthesized Ni-Mg-Al HTlcs	70
		4.3.4 FTIR of Calcined Ni-Mg-Al HTlcs	72
	4.4	BET Surface Area and Porosity Results	74
	4.5	Field Emission Scanning Electron Microscope (FESEM)	76
	4.6	Energy Dispersive X-ray (EDX) Results	81
	4.7	Temperature Programmed Reduction (TPR) Results	82
		4.7.1 TPR of Mg-Al HTlcs	83
		4.7.2 TPR of Ni-Mg-Al HTlcs	87
		4.7.3 Hydrogen Consumption by the Materials during TPR	90
	4.8	Thermogravimetric Analysis Results	92
5	CONCLUSION		
	5.1	Introduction	101
	5.2	Conclusions of the Study	101
	5.3	Recommendations	102
REFE	RENCI	ES	103
APPE	NDICE	S	119
Apper	ndix 1	Experimental Calculations	119
r ipper	1.1	Calculations for amount of materials required to synthesis	119
	1.1	Mg-Al HTlcs	117
	1.2	Calculations for amount of materials required to synthesis	122
		Ni-Mg-Al HTlcs	
Apper	ndix 2	BET Isotherms	125
Apper	ndix 3	List of Publications and Presentations	127
	3.1	Journal Paper	127
	3.2	Conference Papers	127
	3.3	Symposium Papers	128

LIST OF TABLES

Table		Page
2.1	Features of Physisorption and Chemisorption	9
4.1	Textural Properties of the Synthesized Hydrotalcites	75
4.2	Chemical Composition from EDX Analysis of Hydrotalcite-like Compounds	81
4.3	The weight decrease of HTlcs samples after the pretreatment sta	age 94
4.4	Initial Rates of Adsorption at 400°C for Mg-Al HTlcs	99

LIST OF FIGURES

Fi	gure

2.1	Gas physisorption isotherms according to IUPAC classification	13
2.2	The structure of hydrotalcite-like compounds	25
3.1	Paths of X-ray beams for Bragg's Law	42
3.2	Diagram of Michelson Interferometer	46
3.3	Reduction Profile	49
3.4	The temperature profile for Temperature-Programmed Reduction experiments	51
3.5	Temperature Profile for Thermogravimetric Analysis of HTlcs	52
4.1	The XRD patterns of Mg-Al HTlcs, Mg/Al molar ratio 2, 3 and 4	56
4.2	The XRD patterns of Mg-Al HTlcs calcined at 450°C, Mg/Al molar ratio 2, 3 and 4	58
4.3	The XRD patterns of Mg-Al HTlcs calcined at 600°C, Mg/Al molar ratio 2, 3 and 4	59
4.4	The XRD patterns of Mg-Al HTlcs calcined at 750°C, Mg/Al molar ratio 2, 3 and 4	60
4.5	The XRD patterns of Mg-Al HTlcs calcined at 900°C, Mg/Al molar ratio 2, 3 and 4	61
4.6	The XRD patterns for the Ni-Mg-Al HTlcs	62
4.7	XRD pattern for Ni-Mg-Al HTlcs calcined at 600°C (top) and 450°C (bottom) with Ni/Mg/Al molar ratio of 1:2:1	64
4.8	The IR spectra of as-synthesized Mg-Al HTlcs with Mg/Al molar ratio of 2 (bottom), 3 (middle) and 4 (top)	65

4.9	The IR spectra of Calcined Mg-Al HTlcs with Mg/Al molar ratio of 2 (bottom), 3 (middle) and 4 (top) calcined at 450°C	67
4.10	The IR spectra of as-synthesized (top) and calcined (bottom) Mg-Al HTlc with Mg/Al ratio of 2	68
4.11	The IR spectra of Calcined Mg-Al HTlcs with Mg/Al molar ratio of 2 (bottom), 3 (middle) and 4 (top) calcined at 750°C	69
4.12	The IR spectra of Calcined Mg-Al HTlcs with Mg/Al molar ratio of 2 (bottom), 3 (middle) and 4 (top) calcined at 750°C	70
4.13	The IR spectra of as-synthesized Ni-Mg-Al HTlcs with Ni/Mg/Al molar ratio of 1:2:1 (bottom) and 2:1:1 (top)	71
4.14	IR spectra of Ni-Mg-Al HTlc (1:2:1) calcined at 450°C and	73
4.15	IR spectra of as-synthesized (bottom) and 450°C -calcined (top) Ni-Mg-Al HTlc (1:2:1)	73
4.16	FESEM image for Mg-Al HTlc with Mg/Al molar ratio of 2	77
4.17	FESEM image for Mg-Al HTlc with Mg/Al molar ratio of 3	77
4.18	FESEM image for Mg-Al HTlc with Mg/Al molar ratio of 3 calcined at 450° C	78
4.19	FESEM image of Ni-Mg-Al HTlcs with Ni/Mg/Al molar ratio of (1:2:1)	79
4.20	FESEM image of Ni-Mg-Al HTlcs with Ni/Mg/Al molar ratio (2:1:1)	79
4.21	FESEM image of Ni-Mg-Al HTlcs with Ni/Mg/Al molar ratio (2:1:1) calcined at 450°C	80
4.22	The FESEM image of Ni-Mg-Al HTlcs with Ni/Mg/Al molar ratio (2:1:1) calcined at 600°C	80
4.23	Reduction profile for Mg-Al HTlcs calcined at 450°C (the molar ratio of samples are indicated in the bottom legend)	83
4.24	Reduction profile for Mg-Al HTlcs calcined at 600°C	84
4.25	Reduction profile for Mg-Al HTlcs calcined at 750°C	84

4.26	Reduction profile for Mg-Al HTlcs calcined at 900°C	85
4.27	XRD pattern for Mg-Al HTlcs calcined at 600°C (a) before reduction and (b) after reduction	86
4.28	Reduction profile of Ni-Mg-Al HTlcs with Ni/Mg/Al ratio of 1:2:1	87
4.29	Reduction profile of Ni-Mg-Al HTlcs with Ni/Mg/Al ratio of 2:1:1	87
4.30	Reduction profile of Ni-Mg-Al HTlcs with Ni/Mg/Al ratio 1:2:1 calcined at 450°C	89
4.31	Reduction profile of Ni-Mg-Al HTlcs with Ni/Mg/Al ratio 1:2:1 calcined at 600°C	90
4.32	Hydrogen consumption of calcined Mg-Al HTlcs during TPR	91
4.33	Hydrogen consumption of Ni-Mg-Al HTlcs during TPR	92
4.34	TG Curve of as-synthesized Mg-Al HTlc with Mg/Al molar ratio of 2	93
4.35	The adsorption branch of the TG Curve of as-synthesized Mg-Al HTlc with Mg/Al molar ratio of 2	95
4.36	Hydrogen adsorption capacity of the HTlcs samples at various temperatures	97
4.37	Plot of adsorption amount versus time for Mg-Al HTlc with	98
	Mg/Al molar ratio of 2	

LIST OF EQUATIONS

Equation Page 2.1 Equation for Adsorption Energy 10 2.2 Equation for Adsorption Energy 11 2.3 Equation for Adsorption Isotherm 12 2.4 15 Langmuir adsorption isotherm 2.5 Reaction of metal hydride formation 17 2.6 Reaction for Hydrolytic Evolution of Hydrogen 19 2.7 19 Reaction for Hydrolytic Evolution of Hydrogen 2.8 28 Urea Hydrolysis Reaction (Step 1) 2.9 28 Urea Hydrolysis Reaction (Step 2) 3.1 Bragg's Law 42 3.2 **BET** Equation 48 3.3 48 BET Surface Area for monolayer 4.1 First weight loss due to elimination of water 93 4.2 93 Second weight loss and formation of mixed oxide 4.3 97 Linear Driving force model 4.4 Degree of Adsorption 98 4.5 Logarithmic version of Linear Driving force model 98

PREFACE

In recent years, there has been extensive research on the potential of using hydrogen as an alternative to fossil fuels. However, a major barrier that has to be overcome in order to make hydrogen economy a reality is the lack of efficient hydrogen storage technology. Conventional storage methods such as compressed hydrogen and liquefied hydrogen have limitations in terms of space and safety and high energy consumption. Another potential approach of storing hydrogen is by adsorption in solid adsorbents such as metal hydrides, carbon materials, metal organic frameworks, zeolites and metal oxides but each material has their own limitations for hydrogen storage applications. Hydrotalcite-derived mixed oxides is a new material worth investigating for hydrogen storage potential as these materials have adsorbent characteristics such as high specific surface area and thermal stability. This study involves the synthesis of (Ni-)Mg-Al Hydrotalcite-like compounds and the respective mixed oxides, and characterization and testing for their hydrogen adsorption capability.