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ABSTRACT 

The occurrence of dolomite has been reported in several Miocene carbonate 

platforms of the Central Luconia Province, Sarawak. However their character, origin, 

and impact on reservoirs properties have received little attention. This study aims at 

conducting a thorough and comprehensive investigation of the dolomite texture(s) 

present in two Miocene carbonate platforms of Central Luconia, their most probable 

origin, impact on reservoir properties, and an assessment of how the lateral 

distribution will likely be.  

 A total of sixty five (65) core plugs, thirty (30) from the North Platform and 

thirty five (35) from the South Platform, were obtained and analyzed with 

microscopic and geochemical techniques. 

Results of the analyses show that the dolomites of the two carbonate platforms 

have distinctly different textures and considerably different diagenetic features and 

history. A mimetic replacement dolomitization is predominantly observed in the 

North Platform succession, where the dolomite retains the original precursor 

limestone texture. In the South Platform, dolomite is present in mostly non-mimetic 

replacement style, obliterating the original texture of precursor limestones. Dolomite 

crystals in both platforms are commonly planar euhedral, with a minor proportion of 

planar subhedral developed only in the deeper section of the South Platform. The size 

of the crystals ranges from < 10 µm to 180 µm.   

Stable isotope values and trace elements content show that pervasive 

dolomitization was most likely caused by diluted seawater that circulated on, or near 

the mixing zone area. Pore-filling and pore-lining dolomite cement may have 

precipitated from mixed-water in the mixing zone.  

An assessment of the geometry of the dolomite bodies, based on the proposed 

dolomitization model suggests that dolomites could have formed elongated dolomite 

bodies throughout the platforms, forming massive bodies that mimic the lens shape of 

a mixing zone. However, their thickness and the depth at which they will be 

encountered will most likely vary. 
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ABSTRAK 

Kewujudan dolomit adalah sangat diketahui di sebahagian platform di Daerah 

Tengah Luconia, Sarawak.  Namun begitu, sifat, asal dan bagaimana dolomit 

memberi kesan kepada sifat batuan takungan kurang dikaji, menyebabkan hanya 

sedikit pengetahuan diketahui tentang dolomit di kawasan ini. Kajian ini bertujuan 

untuk menjalankan kajian menyeluruh dan komprehensif ke atas tekstur dolomit yang 

terdapat di Luconia Tengah, kemungkinan terdekat asal dolomit tersebut, kesan ke 

atas sifat batuan takungan dan penilaian ke atas bagaimana corak sebaran mendatar 

dolomit di  kawasan tersebut.  

65 sampel keratan batuan dianalisis dengan menggunakan mikroskop dan teknik 

geokimia. 30 sampel adalah daripada platform utara, dan selebihnya adalah daripada 

platform selatan.  

Hasil daripada analisis membuktikan bahawa kedua-dua platform karbonat ini 

menunjukkan tekstur dolomit dan fitur diagenesis serta sejarah yang berbeza. Proses 

pendolomitan dengan penukaran secara mimetic wujud secara dominan di jujukan 

platform utara mengekalkan ciri-ciri asal tekstur batu kapur. Pada platform selatan, 

dolomit hadir biasanya secara penukaran tidak mimetic menyebabkan tekstur asal batu 

kapur kini musnah. Kristal dolomit yang terdapat di kedua-dua platform biasanya 

adlah planar euhedral, dengan hanya sedikie bahagian yang mengandungi kristal 

subhedral yang terbentuk pada bahagian yang dalam di platform selatan. Saiz kristal 

berjulat daripada < 10 µm sehingga 180 µm.   

Nilai isotop stabil dan kandungan unsur surih menunjukkan bahawa proses 

pendolomitan yang merebak adalah disebabkan oleh air laut cair yang mengelilingi di 

atas, atau berhampiran dengan zon percampuran. Simen dolomit yang mengelilingi 

pori atau memenuhi pori mungkin berpunca hasil daripada percampuran jenis air di 

zon percampuran. 

Geometri  bentuk jasad dolomit adalah ditafsirkan berbentuk memanjang 

sepanjang  platform, dengan kemungkinan berlainan kedalaman dan ketebalan  di 

mana ianya bertembung sepanjang platform.  
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lithology with isolated pore space (as in A). Dissolution may 

happen prior, during, or after dolomitization.  (A): Sample 18, 

depth: 1759.2 m. (B): Sample 32, depth: 1653.75 m. 
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Figure 3.24 Dog tooth cement (arrows) in a selectively dolomitized 

limestone (Sample 34, depth: 1618.67 m). Dog tooth cement 

appears to be a precipitation phase after meteoric dissolution. 

Dog tooth calcite lining the mold shape (A) and start to be 

replaced by microdolomite rhombs (B).  
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Figure 3.25 Syntaxial overgrowth cement in Sample 31 (depth: 1655.67 

m). (A) Syntaxial overgrowth on a piece of echinoderm 

(arrows). (B) Closer look (circled area) on the overgrowth 

cement, note the „dirty‟ appearance (arrows) indicating 

abundant inclusions inside the cement. 
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Figure 3.26 Type A dolomite in Sample 13 (depth: 1781.76 m). This type 

is composed by micritic matrix (dark color) and planar 

euhedral dolomite crystals of various size (red arrows). 

Larger dolomite rhombs usually occur as a pore-filling phase.   
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Figure 3.27 Calcitic components (white arrows) in the Type A dolomite, 

interpreted to be product of an incipient replacement by 

dolomite. Dolomite rhombs (blue arrows), ~ 50 µm in size, 

precipitated as pore-filling crystals (Sample 29, depth: 

1686.61 m).  
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Figure 3.28 SEM photomicrograph that shows micrite/microspar grains 

slightly coating dolomite rhombs (Sample 12, depth: 1785.42 

m). 
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Figure 3.29 Type B dolomite. (A) Predominant planar euhedral texture 

with intercrystalline porosity in porous dolomite (Sample 32, 

depth: 1653.75 m). (B) Tight interlocking „cloudy‟ dolomite 

crystals. Planar subhedral is the dominant crystal habit in this 

particular type; a clear boundary between individual dolomite 

rhombs is hardly seen. (Sample 20, depth: 1744.5 m). 
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Figure 3.30 Pore-filling dolomite cement (arrows) in Sample 20 (depth: 

1744.5 m). Individual dolomite crystals are usually limpid 

and larger than the matrix dolomite. 
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Figure 3.31 Poikilotopic cement (Poi) in Sample 18 (depth: 1759.24 m). 

Poikilotopic calcite crystal precipitated within pore after 

dissolution and pore-filling microcrystalline dolomite 
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(arrows). 

Figure 3.32 Drusy calcite spar in Sample 35 (depth: 1548.84 m) . Drusy 

calcite spar increases in size toward the cavity center.  
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Figure 3.33 Dissolution seams (A, arrows) and Stylolite (B, white arrows) 

in Sample 3 (depth: 1822 m). Red-circled area in (B) is a relic 

of skeletal component. Blue arrows are limpid dolomite 

cement precipitated in mold or in association with stylolites 

(blue arrow in the left side of the stylolite). 

62 

Figure 3.34 Features related to pressure dissolution in Sample 3. (A) large 

sized dolomite cement filling the pore, (B) ghost of skeletal 

fragment indicating enhanced obliteration, (C) slightly 

warped/curvy boundary on large dolomite cement (arrow), 

and (D) planar subhedral dolomite spars, showing tight and 

interlocking texture, note the planar-S crystal boundary. 
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Figure 3.35 Tight intercrystalline dolomite matrix associated with 

pressure dissolution. Molds are not significantly affected by 

dolomite cementation, but they become more isolated.   
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Figure 3.36 Cathodoluminescence character in South Platform limestones 

(A) and dolomites (B). (A), shows a yellow to dark orange 

luminescence character. (B), shows the non luminescent 

character in dolomite. Arrows in (B) indicate bright speckles, 

interpreted as product of subtle recrystallization. A: Sample 

35, depth: 1548.8 m. B: Sample 5, depth: 1655.7 m. 
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Figure 3.37 Paragenetic sequences in the South Platform succession. 66 

Figure 3.38 Lithologic columns showing the variation of dolomites found 

in both platforms. It is apparent that dolomites that exist in 

the South Platform are more various than that in the North 

Platform (modified after Clews, 2001). Depth is provided in 

feet as it was originally reported in the report by Clews 

(2001). To have depth value in meter, multiply the value in 

feet with: 0.3048.   

70 

Figure 4.1 Crossplot of δ
18

O vs. δ
13

C of dolomite and late calcite spar in 

the North Platform.  

77 

Figure 4.2 δ
18

O and δ
13

C (PDB) composition of dolomite, and other 

diagenetic components in the South Platform. There is an 

overlap for range of δ
18

O values in Type A dolomite with 

δ
18

O values of calcite cement and selectively dolomitized 

limestones. 
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Figure 4.3 Cross plots of trace elements composition of bulk dolomite 

samples from the North Platform. 

84 

Figure 4.4 Cross plots of trace elements content in Type A dolomite. 86 

Figure 4.5 Cross plots of trace elements content in Type B dolomite. 87 

Figure 4.6 Vertical variation of the MgCO3 content with depth in the 

North Platform. 

89 

Figure 4.7 Vertical variation of δ
18

O (PDB) with depth, in North 

Platform. 

90 

Figure 4.8 Vertical variation of MgCO3 content with depth, in the South 

Platform. 
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Figure 4.9 Dolomite and calcite cements δ
18

O variation in the South 

Platform. 

92 

Figure 4.10 Diagram showing a dolomite lattice. (A) An ideal structure of 

stoichiometric dolomite (after Land, 1985; Warren, 1989). 

(B) Schematic representation of a non-ideal lattice structure 

(after Lippman, 1973). 
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Figure 4.11 Graph showing isotopic composition from both platforms. 96 

Figure 4.12 δ
18

O values versus depth of dolomite and calcite cements in 

the North Platform. 
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Figure 4.13 δ
18

O values versus depth of dolomite and calcite cements in 

the South Platform. 
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Figure 4.14 Isotopic composition of dolomites from Central (pink box) 

Luconia compared to the compilation made by Allan & 

Wiggins (1993). 
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Figure 4.15 Paleotemperature calculation for all dolomites using methods 

mentioned in Table 4.6. 
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Figure 4.16 Diagenetic settings in the subsurface based on mineralogy, 

petroleum, hydro-geochemistry, and hydrogeology (Machel, 

1999). 

102 

Figure 4.18 Schematic diagram showing various seawater dolomitization 

models that may occur in an isolated platform (Warren, 

2000). 

111 

Figure 4.19 Photomicrograph that shows replacive dolomite (white 112 



xxiv 
 

arrows) postdating dissolution and syntaxial overgrowth 

cements in the South Platform. The sample is partially 

dolomitized (Sample no. 22; depth: 1727.27 m). 

Figure 4.20 Schematic diagram showing possible dolomitization 

mechanism during transgressive stage (Purser et al., 1994). 

115 

Figure 4.21 Conceptual model of seawater circulation in an exposed 

carbonate platform which is capable of driving dolomitization 

(Vahrenkamp & Swart, 1994). 

115 

Figure 5.1 A particular suite of porosity types in North Platform (sample 

12). This sample has moldic and intraparticle porosity, 

distinctly different with other samples. 

122 

Figure 5.2 Dolomitization models and their relation to 

hydrological/groundwater flow systems and predicted 

dolomitization patterns (Machel, 2004; modified from 

Amthor et al., 1993). 

127 

Figure 5.4 Dolomite body in an exposed carbonate platform (light gray) 

following the lens shape of a mixing zone (modified after 

Whitaker et al., 1994). 
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Figure 5.5 Schematic diagram of a Miocene dolomite body in Little 

Bahama Bank (Vahrenkamp & Swart, 1994). WC= Walkers 

Cay; SC= Sales Cay; GB 1 & GB 2= Grand Bahama Island 1 

& 2. 

128 

Figure 5.5 Predicted geometry of a dolomite body and fluid flow during 

dolomitization on an exposed platform (Vahrenkamp & 

Swart, 1994). 
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