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Analytical Method for Free and Forced Vibration of Simply Supported Beam 

under Moving Load 

 
 
A slender beam, made from a uniform homogeneous and isotropic material with 

length  , flexural rigidity EI , and having a prismatic cross-section with constant mass 

per unit length m  acted upon by a concentrated force P moving at a constant speed 

V is shown in Figure C.1. It is assumed that initially, at time 0t , the force is 

situated at the left-end support.   

The behavior of the beam is assumed to be governed by the Euler-Bernoulli beam 

theory, then the the governing differential equation describing the lateral vibration of 

a beam carrying the moving concentrated force P is [90] 
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where y is the deflection of the beam measured upwards from its equilibrium position 

when unloaded, and    the Dirac delta function. 
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Figure C.1 Simply supported beam induced by a moving force 

Before analyzing the response of the simply supported beam to moving load, it is 

important to study the free vibration of the beam. The free vibration analysis is here 

an essential first step in obtaining the forced vibration response of the beam as 

presented in the following subsection. 
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C.1 Free Vibration 

The differential equation governing the free vibration of the simply supported beam is 

obtained by setting the right-hand side in Equation C.1 equal to zero, giving 

homogen differential equation:  
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Solution for this type of equation is the separation of the variables which assumes that 

the solution is the product of two functions, one defines the deflection shape and the 

other defines the amplitude of vibration with time: 

      tfxt,xy                                                                                          (C.3) 

By substituting Equation (C3) into Equation (C2) yields: 
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Rearranging Equation (C.4) yields: 
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where roman index indicates derivative to x , while dot index is derivative to t . Since 

each of the variables x and t  are independent variables, then each side of the 

Equation (C.5) is equal to a constant, say 2 , it may be rewritten down to two 

ordinary differential equations that have to be satisfied: 
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The value of 2  is as follows: 

  44 aLC,
Lm

EIC                                                                              (C.9) 

Equation (C.7) is free vibration equation for undamped single degree of freedom 

with the general solution is given by: 

   tsinBtcosAtf                                                                            (C.10) 

where A and B are integration constants. The general solution of Equation (C.6) is 

given by: 

   sxCex                                                                                                 (C.11) 

Substituting Equation (C.11) into Equation (C.6) yields:  

   044  sxCeas                                                                                       (C.12) 

The auxiliary equation is:  

 044  as                                                                                                 (C.13) 

Analysing Equation (C.13) yields: 

ias,ias,as,as  4321                                                          (C.14) 

Substituting Equation (C.14) into Equation (C.11) yields the general solution: 

  iaxiaxaxax eCeCeCeCx   4321                                                     (C.15) 

where 4321 C,C,C,C are integration constants. Exponential functions in Equation 

(C.15) can be defined in trigonometric and hyperbolic function as follows: 
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Substituting Equation (C.16) into Equation (C.15) yields: 

  axcoshDaxsinhCaxcosBaxsinAx                                        (C.17) 
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where A, B, C and D are new integration constants. The four integration constants 

determine the magnitude of vibration that would require acknowledging of the initial 

conditions of motions. The first four and mode shape of simply supported beam are 

shown in Figure C.2 and Table C.1. 
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(a) Mode 1, 34.821 Hz 
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(b) Mode 2, 139.283 Hz 
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(c) Mode 3, 313.388 Hz 

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

 

 

(d) Mode 4, 557.135Hz 

Figure C.2 The first four mode shapes of simply supported beam (—) 
analytical; (***) present code using FEM 

 
Table C.1 Natural frequency comparison 

Mode 
shape 

Theoritical 
frequency (Hz) 

Present code 
frequency (Hz) 

ANSYS 
frequency (Hz) 

1 34.821 34.821 34.818 
2 139.283 139.284 139.234 
3 313.388 313.398 313.140 
4 557.135 557.194 556.374 

 

It can be seen from Table C.1 that the natural frequencies of simply supported 

beam obtained from present code under Matlab® are closer to the frequencies obtained 
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from the theoretical analysis. The results are also verified with ANSYS to the mesh 

size 20 elements.   

C.2 Forced Vibration under Moving Load  

Derivation of the equation for m otion for any point and moment in time can be 

shown to be, with the assumption of only light damping, 10.  which is practical in 

most situations [90]. 
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where  , 321 ,, and 0y  is the deflection of the beam at the center point, 
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The simply supported beam is solved by using the exact analytical model, Equation 

(C.18), the present code under Matlab, and the ANSYS softwares.  From Figure C.3, 

it can be concluded that the result from the present code is in very good agreement 

with those obtained using the exact analytical model and the ANSYS.  
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Figure C.3 Dynamic response of a simply supported beam induced by a moving 
force 

 


