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ABSTRACT 

This dissertation introduces an optimized processor architecture for Sobel edge 

detection operator on field programmable gate arrays (FPGAs). The processor is 

optimized by the use of several optimization techniques that aim to increase the 

processor throughput and reduce the processor logic utilization and memory usage. 

FPGAs offer high levels of parallelism which is exploited by the processor to 

implement the parallel process of edge detection in order to increase the processor 

throughput and reduce the logic utilization. To achieve this, the proposed processor 

consists of several Sobel instances that are able to produce multiple output pixels in 

parallel. This parallelism enables data reuse within the processor block. Moreover, the 

processor gains performance with a factor equal to the number of instances contained 

in the processor block. The processor that consists of one row of Sobel instances 

exploits data reuse within one image line in the calculations of the horizontal gradient. 

Data reuse within one and multiple image lines is enabled by using a processor with 

multiple rows of Sobel instances which allow the reuse of both the horizontal and 

vertical gradients. By the application of the optimization techniques, the proposed 

Sobel processor is able to meet real-time performance constraints due to its high 

throughput even with a considerably low clock frequency. In addition, logic 

utilization of the processor is low compared to other Sobel processors when 

implemented on ALTERA Cyclone II DE2-70. 



 

vi 

 

ABSTRAK 

Tesis ini memperkenalkan senibina pemproses yang optimal untuk alat pengesan 

sisi Sobel pada Field Programmable Gate Array (FPGA). Prosesor ini dioptimumkan 

dengan menggunakan beberapa teknik optimasi yang bertujuan untuk meningkatkan 

proses pengeluaran dan mengurangkan penggunaan logik pemproses  serta 

penggunaan memori. Di samping itu, FPGA menawarkan keselarian peringkat tinggi 

yang dapat dimanfaatkan oleh pemproses  untuk melaksanakan proses pengesanan sisi 

selari dengan meningkatkan pengeluaran prosesor dan mengurangkan penggunaan 

logik. Dengan itu, pemproses  yang dicadangkan ini haruslah terdiri daripada 

beberapa blok. Sobel yang mampu menghasilkan piksel hasil pengeluaran secara 

selari. Penyelarian ini membolehkan data untuk digunakan semula di dalam blok 

pemproses . Selain daripada itu, prestasi pemproses  ini berganda dengan faktor yang 

sama dengan bilangan blok Sobel yang terdapat di dalam blok pemproses  itu.  

Pemproses yang terdiri dari satu baris blokSobel mengeksploitasi penggunaan 

semula data di dalam satu baris piksel imej dalam pengiraan kecerunan mendatar. 

Penggunaan semula data di dalam satu dan beberapa garis imej dibolehkan dengan 

penggunaan pemproses  yang dilengkapi dengan barisan berganda blok Sobel yang 

membolehkan hasil pengiraan kecerunan mendatar dan menegak diguna semula. 

Dengan pelaksanaan teknik optimasi ini, pemproses Sobel yang dicadangkan mampu 

memenuhi kehendak permintaan prestasi semasa/terkini . Hal ini adalah kerana kadar 

pengeluaran yang tinggi dengan frekuensi clock yang rendah. Akhir sekali, prosesor 

ini  memerlukan  pengunaan logik yang rendah berbanding dengan prosesor Sobel 

yang lain apabila ia diterapkan pada Altera Cyclone II DE2-70. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

Image processing systems are computational and data intensive. Such systems require 

high computing capabilities to meet real-time applications requirements. A typical 

digital video camera capturing high definition (HD) images with frame size of 

640x480 pixels at 30 frames per second (fps) requires multiple processing stages at 

the rate of 27 million pixels per second (pps). This rate increases with the use of high 

definition television (HDTV) technology with a 1280x720 frame size and 30 fps rate 

and data rate that reaches 83 million pps. The computational burden increases with the 

frame size being increased. Although the processing power of general purpose 

processors is increasing rapidly, there is always a need for more processing power to 

match new image processing applications. Real-time video surveillance, real-time 

biometric (face and finger print) recognition and satellite surveillance applications are 

examples of such systems [1-2].  

The use of parallel processing provides a solution for the problem of calculating 

the extremely large amount of data in image processing applications. Image and video 

processing systems are then implemented by taking advantage of the high level of 

parallelism within their operations.  

The computational operations in a complete image/video processing system may 

be divided into two levels of processing operations, low level operations and high 

level operations.  The operations in the lower level are more data intensive while the 

operations in the higher levels of processing are more control intensive. The low level 
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operations include image capture, noise reduction, image segmentation (e.g. edge 

detection) and followed by image analysis (e.g. feature extraction). The large amount 

of data encourages the use of parallel architectures to implement low level operations, 

(e.g. the use of dedicated hardware rather than using general purpose processors). The 

system back-end carries out high-level operations like image interpretation and image 

recognition to recognize image contents. The high-level operations require less data 

bandwidth and are characterized as control-intensive operations which promote the 

utilization of instruction-level of parallelism (e.g. the use of general purpose 

processors). 

From the above, one can conclude that only one general purpose processor is not 

adequate to perform this variety of operations on such large amount of data in real-

time. A more feasible system should contain a dedicated parallel processor at the 

front-end for the low-level processing of data, attached with a fast general purpose 

processor at its back-end to perform high level processing operations [3]. 

1.2 Real-Time Image/Video Processing 

Real time image processing is defined as the digital processing of an image which 

occurs seemingly immediately, without a user-perceivable calculations delay [4]. A 

real-time system is one whose logical correctness is based both on the correctness of 

the outputs and their timeliness [5].  A common misconception about real-time 

systems is that their time constrains can be met by the use of the fastest and most 

powerful hardware. That is because these hardware solutions are not always feasible 

to implement the real-time systems, especially for embedded systems that have cost 

and power constrains to their applications such as camcorders and digital cameras. 

1.3 Challenges In Real-Time Image And Video Processing Systems 

Since a fast and powerful hardware alone does not have sufficient computation power 

to meet the time requirements of a real-time system, building a feasible design 

necessitates merging hardware and software design approaches. The hardware 

approach implies selecting the best hardware platform for the system. The software 
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approach entails meeting time constraints of the system by choosing between 

algorithms depending on the mathematical complexity, or tuning the algorithm to 

meet the system deadlines [2]. 

For a low level operation such as edge detection, the calculation of edges within 

the image pixels depending on the operator used (Robets, Prewitt, or Sobel) implies 

multiple levels of calculations to be applied on each pixel in the input image (refer to 

chapter 2 ). In images with large frame size, the ability of the system to deliver the 

output images in real-time (more than 30 frames per second) is a challenging process 

that can be achieved by merging the hardware and the software approaches mentioned 

above.         

1.4 Hardware Platforms of Image and Video Processing Systems 

Image processing operations are well known for their large amount of data and 

calculations; they require high computational capabilities, memory space, and 

processing time. Although today's general purpose processors are powerful, real-time 

image and video processing applications still need more computational power than 

what a general purpose processor can deliver. Such applications include real-time 

face/fingerprint recognition, real-time video surveillance, intelligent systems, military 

aerial and satellite surveillance systems. The architectures of the image processing 

systems should grant massive parallelism to keep pace with large amounts of data that 

are required to be processed in a certain time frame. Earlier real-time image/video 

processing systems were built using several parallel mainframes; which limited the 

use of these systems for portable applications [2]. A faster and more efficient 

alternative to general purpose processors is to implement image processing systems 

on dedicated hardware.  

Image processing systems can be implemented using different commercial 

hardware platforms; such as digital signal processors (DSPs), the very expensive 

application–specific integrated circuits (ASICs), field programmable gate arrays 

(FPGAs), and recently graphic processing units (GPUs) [1-2]. Each of which has its 

advantages and disadvantages which makes the choice of the optimum platform 
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depend on the application requirements, solution availability, and cost.  

An optimum choice of a hardware platform should produce a design with the 

following characteristics: high computational performance, flexible, easy to upgrade, 

low in development cost, and migration paths to lower costs as the application 

matures and volume ramps [6]. These characteristics are discussed here: 

i. High performance: Low level operations such as color space conversion, 

filtering and edge detection demands higher performance than higher 

level operations do. Most of the platforms mentioned earlier in this 

section cannot keep pace with such performance with a single device. A 

single DSP processor running at 1 GHz cannot perform H.264 HD 

decoding or H.264 HD encoding, which is ten times more complex than 

decoding [6]. FPGAs are the only hardware solution that can satisfy these 

requirements with a single FPGA [6].  

ii. Flexibility: Flexibility enables easy upgrading and decreases the time to 

market for the design. Using ASICs to implement designs with high 

volume consumer market will be very risky. The re-programmability of 

the FPGAs and their scalability make them a good solution for this kind 

of designs. 

iii. Low development cost: the development of a 90-nm standard-cell ASICs 

costs around US$30 million. While a complete FPGA development kit 

could cost as low as US$1,095 [6]. 

iv.  Migration path to lower unit costs: It is always important to have a design 

with low cost migration path. ASICs - due to their high cost -are feasible 

only for the highest volume consumer applications such as video and 

imaging applications, e.g., camcorders, monitors and LCDs, digital 

cameras, and cell phones. For applications with lower volume designs, 

FPGA is a better choice that eases the development of low cost designs 

with no risk of obsolescence[6].   
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Overall, FPGAs are probably the best candidates for image and video processing 

applications such as medical imaging, video surveillance and video conferencing [6].  

Moreover, FPGA provides a high level of parallelism and greater I/O bandwidth to its 

embedded memory. This makes most of the image processing applications run faster 

on FPGA than on general purpose processors [1]. Since image edge detection is the 

basic operation for most of the applications mentioned above, this project focuses on 

designing an edge detection processor using FPGAs. 

1.5 Design Trade-Offs 

Designing an image processing system, particularly the one specialized for a low-

level operation on a dedicated hardware with limited resources is not an easy 

procedure. It requires sacrificing some advantages for others, for instance memory 

space for processing speed and logic utilization for performance. A designer should 

keep in mind the necessary characteristics (mentioned in section 1.4) to achieve a 

feasible design and at the same time perform trade-offs between those characteristics 

to deal with the hardware limitations. This requires optimization of the image 

processing algorithm during the process of transforming the algorithm from a research 

development phase to a hardware working system [2]. 

1.6 Problem Statement  

Edge detection is a low-level operation that requires large amount of computations 

and data which necessitate an architecture with high-level of parallelism to be able to 

satisfy the system's time constraints. Although FPGAs provide high parallelism and 

re-programmability, their logical and memory resources are limited. Since design 

parameters such as throughput, power and area are dependent on each other, several 

trade-off decisions should be made to the edge detection algorithm in order to find the 

optimum performance/area trade-off of the hardware design. An optimized system 

should be able to deliver a high throughput (parallelism) with the minimum amount of 

logic (area) and consumes less power (low frequency).  
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1.7 Research Objectives 

This research aims to present an optimization of an edge detection processor based on 

Sobel edge detection operator (refer to Chapter 2) to be implemented on FPGAs. The 

research objectives of this project can be summarized as follows:   

1. Design a dedicated edge detection processor based on Sobel operator. 

2. Optimize the processor to increase the throughput and reduce the logic 

utilization. 

3. Implement the processor design on FPGA. 

4. Evaluate the processor performance for real-time system constrains and for 

logic utilization. 

1.8 Scope of Research 

The research focuses on optimizing the design by the simplification of the Sobel edge 

detection algorithm and the utilization of several optimization techniques. The 

optimization aims to minimize the logic and memory resources usage and hence the 

power consumption. The optimization intends to maximize the processor throughput 

and frame rate while using a considerably low frequency by increasing the processor 

parallelism.  

1.9 Research Methodology 

This research has evolved through three different phases. The work flow description 

of each phase is stated as follows: 

First Phase: 

 Literature review on image edge detection operation and the operator used 

to detect edges in digital images.  

 Review on how edge detection systems based on Sobel operator are 

designed to be implemented on FPGAs and the pros and cons of each 

design technique.  
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 Review of general optimization techniques used to optimize digital systems 

architectures for speed and area. 

Second Phase: 

 Implementation of a basic Sobel edge detection processor on FPGA. 

 Analysis of the design in order to highlight how the design is to be 

optimized.  

 

Third Phase: 

 Implementation of the optimization techniques to optimize the basic 

Sobel edge detection processor architecture. 

 Implementation of the optimized Sobel edge detection processor on 

FPGA. 

 Evaluate the processor logic utilization 

 Evaluate the optimized Sobel processor performance. 

 Compare with other Sobel processors mentioned in the research 

literature. 

1.10 Research Contributions 

This research proposes an optimized Sobel edge detection processor to be used in 

real-time edge detection application. The expected contributions of the thesis can be 

summarized as follows: 

i. The Sobel algorithm is simplified to reduce the number of operations 

performed by the processor block which reduces the logic utilization caused 

by the loop unrolling and reduces the processor size and execution time.  

ii. The processor employs a specially designed line buffer that delivers the input 

data in a way that matches the optimized Sobel processor. 

iii. The optimization reduces the processor size significantly compared to other 

Sobel processor architectures. 
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1.11 Thesis Organization 

This thesis is divided into five chapters where chapter 1 highlights the general 

characteristics of image processing systems operations. This is followed by a brief 

introduction on why these systems have better performance on dedicated hardware 

platforms than general purpose processors. The need for design trade-offs and 

optimization to deal with resources limitation when using FPGA as a hardware 

platform for image processing systems is also spotted. The chapter summarizes the 

thesis contents and underlines the objectives of the research, the methodology used to 

achieve these objectives and the research contributions. 

Chapter 2 reviews image edge detection as an important image segmentation 

technique followed by some of the most famous edge detection operators. This 

chapter shows how these image processing algorithms can be simplified and 

optimized using different optimization techniques to implement real-time systems. 

The chapter also reviews several examples of edge detection systems implemented on 

FPGA as part of this research literature.  

Chapter 3 introduces the implementation of a basic Sobel processor architecture 

on FPGA board followed by analysis of the basic processor performance. The basic 

optimization techniques are then used to optimize the basic processor design and 

develop the proposed architecture. The processor is integrated in a complete FPGA 

based edge detection system to be tested for real-time performance. 

In chapter 4, the Optimized Sobel processor is implemented on FPGA. The logic 

utilization and the performance of the processor are evaluated. A comparative analysis 

is performed between the optimized Sobel processor and other FPGA based Sobel 

processors to show the effect of the optimization applied on the processor. 

Chapter 5 summarizes the contribution of the previous chapters. Possible future 

extensions of the research area are discussed.  

 

 



 

 

 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In digital image processing, the image undergoes different processing levels with 

different kinds of operations in each level. Some of these operations aim to produce a 

more descriptive version of the original image, so called image analysis operations. 

Other operations highlight some features in the image or improve the image in a 

certain way, and those are called image enhancement operations. Image enhancement 

and image analysis are classified under low-level processing and named as pre-

processing operations. The pre-processed image contents can be interpreted using 

image recognition which is classified as the high-level processing operations. Image 

recognition is also called image understanding or computer vision and it belongs to 

the area of Artificial Intelligence (AI).         

This chapter discusses edge detection as a low-level image processing operation 

that may be used to analyze or enhance digital images and how edge detection 

algorithms can be optimized using several optimization techniques. The chapter also 

discusses how Sobel edge detection operator is implemented on FPGA using several 

design methodologies. 

2.2 Pre-Processing of Digital Images 

2.2.1 Grayscale Transformation 

It is one of the most common and simple preprocessing operations performed on 

images to transform a colored image to a grayscale representation as shown in Fig 2.1 

[7].   
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a) RGB image 

 

b) Grayscale image 

Figure 2.1The effect of grayscalling on RGB colored images 

Figure 2.1 a) represents a colored image which consists of three layers or 

channels; Red, Green and Blue (RGB). The sensitivity of the human visual system 

(HVS) to each layer varies significantly. The human eye is most sensitive to green 

light and least sensitive to blue light. The sensitivity level can be weighted by the 

vector  114.0578.0299.0  for the red, green and blue channels, respectively. In 

digital images, a pixel in a colored image has three values, one for each of the layers. 

While in grayscale image as in the Fig 2.1 b), the pixel has only one value that 

represents the gray shade or the image luminance at that pixel position. Processing 

colored images requires the processing of each layer separately. This can take three 

times of the memory-space and the processing time to process and store a grayscale 

image which has only one layer. Grayscaling reduces memory utilization, 

computations and speedup processing time. It linearly transforms 24-bit colored 

image (8-bits per channels) to an 8-bit gray-level image.  

Grayscalling may be achieved in many ways. By using the equation (2.1), a 

colored image can be transformed into a grayscale one by taking the average of the 

three channels (RBG). All grayscaled channels (R', G', and B') will have the value of 

the gray level Y [8]: 

Y= 0.333*R+ 0.333*G+ 0.333*B  (2.1) 

Y=R' = G'= B'   
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Another way is to take the green channel as the gray level, because the human eye 

is most sensitive to the green color. A more accurate transformation can be achieved 

by using the luminance model shown by the equation (2.2), also referred to as the 

international telecommunication unit (ITU) standard [9]: 

Y= 0.299*R+0.587*G+0.114*B    (2.2) 

Y= R' = G'= B'  

The equation results in better accuracy and is used by the National Television 

System Committee (NTSC) and Joint Photographic Experts Group (JPEG). The 

floating point calculations can be avoided by multiplying the equation (2.2) by 32,768 

(or 2
15

) without losing the accuracy. The produced grayscale Y is divided by the same 

scale factor 32,768 (or 2
15

) to maintain the same dynamic range. The division may be 

replaced by shifting the result 15 times, since shifting is faster and more efficient as in 

equation (2.3) [9]. 

Y= (9798*R + 19,235*G +3736*B)>>15  (2.3) 

Y= R' = G'= B'  

After the image is pre-processed by grayscalling, it is ready for analysis. The next 

section discusses image segmentation approaches that are used to analyze digital 

images.  

2.3 Image Segmentation 

Analyzing a digital image requires performing operations that result in another image 

which is a detailed description of the scene contents of the input image. Image 

analysis operations involve dividing image spatial domain into meaningful parts or 

regions [10]. This way of dividing images is referred to as image segmentation.  The 

segmentation algorithms use image physical features to extract the meaningful 

regions. The performance of the algorithm is then measured by how meaningful the 

results are. The algorithms are based on one of the following approaches [10]: 
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a. Find areas with homogeneous feature(s) over a large region in the image. 

b. Detect abrupt changes in the image feature(s) within a small neighborhood. 

In the first approach, the result image contains regions with homogeneous 

common features. The second approach results in borders between two regions with 

different features in the image, e.g., the borders between an object and its background. 

The second approach is referred to as edge detection, which is explained in section 

2.3.2. 

The next section introduces one of the most important segmentation algorithms, 

which employs the image segmentation approach (a), i.e., Thresholding. 

2.3.1 Thresholding 

Thresholding or binarization is the simplest way of image segmentation which 

involves the operation of dividing the image into several segments. Segmentation 

implies reduction of image data to simplify further processing operations. 

Binarization transforms an image from 8/16/32 bit image to 1-bit image (0 or black, 1 

or white). A good segmentation can give a good idea about the shape of the object(s) 

in an image and makes future processing much easier [7, 9]. 

Thresholding indicates the comparison between the image pixels and the threshold 

value T=t. The pixel value is set to 0 (black) if it happens to be less than the threshold 

value, otherwise it set to 1 (white). The thresholding result is a binary image with 

white and black pixels. The effect of thresholding on the cheetah's image in Fig 2.1 a) 

is shown in Fig. 2.2.  
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Figure 2.2 The effect of thresholding 

Pixels in dark areas in the cheetah picture, i.e., the picture background, cheetah's 

spots, eyes and nose have values less than the value of the threshold, so they turn into 

black in the output image. The brighter areas in the image will all be white as their 

pixel values are larger than the threshold value.  

A proper threshold value determines how good the segmentation result is. The 

value differs from image to image depending on many parameters, e.g. image 

brightness. A value of 128 is adequate when the image has two clearly different 

objects that are dark and bright, respectively. Otherwise, it will not give an ideal 

segmentation. Setting a fixed value for all images is not an efficient way for 

thresholding because it has no consideration for images frequencies [9]. 

An image histogram (graphical representation of the luminal distribution in a 

digital image that plots the number of pixels in each tone) can be used to manually 

choose a threshold value according to the image requirements. The threshold value 

will be defined as the lowest peak in the histogram. Unfortunately, the user has to 

define the threshold manually for each image and it is not easy to determine the exact 

threshold value from a plotted histogram.  

A better way is to use the Basic Global Threshold (BGT) method. The method is 

able to calculate the threshold value automatically within the algorithm [7] and make 

it easier to use thresholding in image processing modules [9]. The BGT method 

performs a series of iterations in order to calculate the threshold value. The iterations 
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consist of the following steps: 

i. Pick an initial thresholding value t (e.g. 128), or use the mean value of the 

image pixels. 

ii. Calculate mean values of the pixels (m1) below and (m2) above the 

threshold t. 

iii. Calculate new threshold value tnew= (m1+m2)/2. 

iv. If the threshold has stabilized (t=tnew) then this is the new threshold value, 

T. Otherwise T becomes tnew and reiterate from step 2. 

2.3.2  Image Edge Detection 

Image edge detection is one of the most important basic operations in image 

processing. It is considered as a type of image segmentation techniques that 

determines the presence of edges in an image and outlines them in an appropriate way 

[11]. An edge can also be defined as an abrupt change in the image intensity [7]. Edge 

detection algorithm produces an image with only the edges contained in the original 

image. Edge detection is important for most of subsequent higher-level vision tasks 

such as boundary detection, motion detection/estimation, texture analysis, 

segmentation, and object identification [7].  

In digital image processing, images are quantized into pixels. In grayscale images, 

the values of the pixels indicate the brightness of the picture at each pixel position. 

Since edges are areas within the image with high contrast, the existence of an edge in 

a pixel may be obtained by examining abrupt changes in the brightness of 

neighborhood pixels. If the neighborhood pixels have almost the same brightness, 

probably there is no edge in that pixel. Otherwise, the pixel may contain an edge.  

Edge detection can be accomplished in a wide range of methods. All edge 

detection methods can be categorized into two categories: gradient and Laplacian. The 

gradient method uses the maximum and minimum of the first derivative of the image. 

The Laplacian detects edges by looking for zero crossing in the second derivative of 

the image. 

The simplest way to obtain image gradient is to find the differences in pixel values 

in the horizontal and vertical directions as follows: 
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X difference is calculated as                   

Y difference is calculated as                   

where: f(x,y)indicates the intensity values of the pixels [0-255] at (x,y) position [10]. 

A digital image may contain variety of contents, e.g., solid objects, lines and 

single points (noise). Each of which represents a different form of edges. Edges in 

digital images may have three different forms, Step, ramp, and roof edges. Roof edges 

occur in digital images that contain thin objects (e.g., lines) that have different 

intensity than their background. Roads in satellite images can be a good example of 

roof edges modeling. A step edge is modeled by an ideal transition of image intensity 

occurring by a distance of one pixel [7]. That implies only in computer generated 

digital images that are free of noise. In real life, digital images are noisy and blurred 

which makes the transition between a solid object and its background a bit blunt. This 

smooth transition is modeled by a ramp shape edge. As illustrated in Fig. 2.3 (a), an 

edge with one dimensional shape of ramp function is demonstrated. Calculating the 

derivative of the image can highlight edges locations in the image [7]. The gradient of 

the ramp function shown in Fig. 2.3 a) is the first derivative with respect to t (in one-

dimension). This results in the maximum value of the edge signal as shown in Fig. 2.3 

b). The first derivative is positive at the start of the ramp and on the ramp curve and 

zero otherwise. The derivative shows a maximum value located at the center of the 

edge original signal. The second derivative of a gray-level profile is positive at the 

leading edge of the transition, negative at the trailing part of the edge, and zero 

otherwise. From the above, the following facts may be concluded. First, the 

magnitude of the first derivative can be used to localize edges in digital images. 

Second, the second derivative produces two different values for each edge and the 

sign of the edge determines the edge pixel location (on the dark side or the bright side 

of the edge). This characteristic of the second derivative can be utilized to locate the 

centers of thick edges. 

 First derivative is a characteristic of the "gradient family" of the edge detection 

filters. The pixel is considered as an edge if its gradient value exceeds some threshold 

value. On the other hand, the second derivative of a maximum first derivative will 
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result in zero which enables detecting edges by finding the zero of the second 

derivative. This method is called Laplacian and the result graph is shown in Fig.2.3 

(c). Laplacian is infrequently used for edge detection directly because it is too 

sensitive to noise and it results in doubled edges and it has no consideration for the 

edge direction. Laplacian is usually combined with other edge detection methods to 

create extra powerful edge detection effect. For example, the double edges produced 

by Laplacian can be used to locate the edge between double edges.   

This thesis concentrates on the edge detection operators that use the first 

derivative gradient to locate the edges. Therefore, no further explanation of edge 

detection by Laplacian is included.  

 

a) Original edge signal (ramp) 

     

b) First derivative (Maximum value) 

 

c) Second derivative (zero crossing) 

Figure 2.3 The first and Second derivatives of a ramp function 
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The next section describes the mathematical procedure of calculating the gradient 

of an image and the commonly used gradient edge detection operators. 

2.3.2.1 Gradient Operators 

The gradient of an image f(x,y) at a location (x,y) is the vector G that its components 

are the partial derivatives of f along x and y axes as in equation (2.4):  

G=     
  
  

   

  

  
  

  

  

 (2.4) 

 

The gradient vector points to the max rate of change of the image f at the location 

(x,y). The magnitude of the vector is given by the equation (2.5) and its direction is 

given by equation (2.6). 

G=                  (2.5) 

  =      
  

  
  

   (2.6) 

The magnitude equals to the maximum rate of increase f(x,y) per unit distance in 

the direction of   . The gradient can also be described by the sum of absolute 

magnitudes of Gx and Gy as shown in equation (2.7), which makes it easier to be 

implemented on hardware. 

G=                   (2.7) 

The gradient of an image is computed by obtaining the partial derivative of x and 

y as  
  

  
  and  

  

  
 , respectively, at each pixel location. Since derivatives are linear and 

shift-invariant, gradient calculation is usually achieved by convolution. That is 

realized using an edge detection filter (operator). The operator consists of a small 

matrix whose elements are the filtering coefficients. This matrix is called the filter 

mask. The filter mask will be convolved over the image pixels to calculate the 

gradient for each pixel. The result is a gradient image as the same size as the original 

image as shown in Fig 2.4. Thresholding is then implemented on the gradient image 
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to produce the final edge detection result.  

  

Figure 2.4 Obtaining image gradient [12] 

It is important to mention that obtaining image derivative enhances noise. 

Therefore, it is important to take into account that noise suppression is to be 

introduced before applying the edge detection operation [7, 10]. Some of the widely 

used gradient operators are introduced in the following subsections. 

 

a. Roberts Operator 

Since the image edges can be obtained by the partial derivatives of the discrete values 

of the image pixels, the partial derivative of a certain pixel may be approximated over 

its neighborhood [7]. Previously, it has been shown in section 2.3.2 that the first 

derivative of the brightness can be substituted by the first difference in the horizontal 

and vertical directions [10]. The two gradients are defined using equations (2.8) and 

(2.9), respectively:   

   
       

  
                 

(2.8) 

   
       

  
                 

(2.9) 
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The equations can be applied over all x and y of the image f by filtering the image 

f(x,y) with a 2-D Roberts mask. Roberts's cross-gradient operator was invented to find 

edges across diagonal axes by [13]. The operators consist of two masks to be rolled 

over the image pixels in order to find the differences between each two diagonal ones. 

Consider the 3x3 sub-image shown in Fig 2.5 a). The two Roberts masks in Fig. 2.5 b) 

attempt to compute the diagonal differences as shown in equations (2.10) and (2.11):   

 

Z1 Z2 Z3 

Z4 Z5 Z6 

Z7 Z8 Z9 
 

 

0 -1 

1 0 
 

-1 0 

0 1 

      

a) 3x3 sub-image b) Roberts gradient masks 

Figure 2.5 Robert operator 

   
       

  
              (2.10) 

   
       

  
         

(2.11) 

The edge value after the convolution operation is computed as (x-1/2 and y-1/2) 

because the edge corresponds to the central point. The 2x2 masks are simple but they 

are not efficient as they do not examine the nature of data on the opposite sides of a 

central point which increases the masks sensitivity to noise.  

 

b. Prewitt Operator 

Unlike Roberts operator, Prewitt operator [14-15] tests the edge strength at the central 

point of a 3x3 neighborhood, i.e., Z5 in Fig.2.5 a). The test of the edge at a central 

point carries more information regarding the edge direction [7]. The Prewitt masks are 

shown in Fig. 2.6 
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     The two masks are slid over the image pixels row by row to compute the 

horizontal and the vertical gradients for the central pixel in the neighborhood Z5 as in 

equations (2.12) and (2.13), respectively. The masks give equivalent weights to all the 

pixels around the candidate pixel Z5. Edges produced by Prewitt operators are 

expected to be more accurate than those produced by Roberts [7]. 

   
       

  
                       

(2.12) 

   
       

  
                       

(2.13) 

The total gradient is calculated by equation (2.5) or (2.7) for all the image pixels 

to result in the gradient image. The gradient pixels are compared with the threshold 

value for binarization. 

 

c. Sobel Operator 

The Sobel operator is a widely used operator for image edge detection [16-17]. It 

improves the edge detection response of Prewitt by assigning higher weights to the 

pixels close to the candidate pixel. Utilizing double weights will smooth the image 

noise [10]. The Sobel gradients equations are shown in equation (2.14) and (2.15). 

   
       

  
                         

(2.14) 

   
       

  
                         

(2.15) 

Sobel operator is based on the differencing operations [1   0  -1]  and averaging 

operation [1    2    1] in order to smooth the noise developed by the derivatives. By 

convolving these two operations together, the two 3x3 Sobel masks can be obtained. 

-1 -1 -1 

0 0 0 

1 1 1 

 

-1 0 1 

-1 0 1 

-1 0 1 

 

Figure 2.6 Prewitt vertical and horizontal masks 
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Like all gradient operators, Sobel computes the first derivative of a grayscale input 

image by convolving the 3x3 masks on the image (Fig. 2.7). Since the borders cannot 

be calculated with the 3x3 mask, they have to be blacked out, partially calculated or 

calculated with zero extensions as partial neighborhoods. Although Sobel operator has 

a smoothing effect, it is still considered sensitive to noise; it brings noise in the 

images as edges. Another disadvantage of the operator is that, edges found by Sobel 

operators are wider than usual due to the two consecutive intensity changes within 

three pixels [7]. The gradient image obtained using the Sobel masks is shown in Fig. 

2.8.  Fig. 2.9 illustrates the edge detected image after thresholding.  

 

 

 

 

In this thesis, Sobel operator has been selected to implement a dedicated edge 

detection processor. Further information on this will be discussed in chapter 3 and 4. 

 

Figure 2.8 Sobel Gradient image   

-1 -2 -1 

0 0 0 

1 2 1 

 

-1 0 1 

-2 0 2 

-1 0 1 

 

Figure 2.7 Vertical and Horizontal masks of Sobel 
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Figure 2.9 Sobel edge detection after thresholding 

 

d. Canny Operator: 

Canny operator  [18] combines the edge detection with noise reduction. Canny aims 

to achieve a superior edge detection results by decreasing the error rate, best 

localization of edges and minimizing the response to single edge points [7, 10]. 

Unfortunately, the operator requires complex calculations, so it is not suitable for 

dedicated hardware.   

2.4 Parallelism in Image/Video Processing Operations 

It has been mentioned in section 2.1 that image processing can be classified into two 

levels: low-level and high-level processing. The former includes the operations that 

convert one form of image data into another form of image data. Whereas, high–level 

processing interprets the pre-processed image contents to perform object recognition. 

Applications at both levels are computational and data intensive. The amount of 

computations for each pixel is determined by the depth of the image processing 

algorithm used. Since most of the algorithms are iterative in nature, meaning the exact 

computations are to be repeated for each pixel in the image frame, increasing the 

image frame size will increase the computational burden significantly. For example, 

the NTSC video standard requires 30 frames per second, with approximately 0.25 
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mega pixels per frame, resulting in total of 7.5 mega pixels per second [19]. PAL 

video standard requires 25 frames per second with a larger frame size. For algorithms 

like image edge detection using Canny operator, the algorithms requires 

approximately 130 operations per pixel. High resolution image and video standard 

have 4 times more pixels per frame which will increase the computational load even 

further [19]. 

An efficient way to deal with enormous amount of data is by the use of parallel 

processing. The key to efficient implementations of image and video processing 

systems are always achieved by exploiting data or instruction parallelism within the 

image processing algorithms. The data level parallelism (DLP) is exploited by 

applying the same operation to multiple sets of data while the instruction level of 

parallelism (ILP) is accomplished by scheduling the execution of multiple 

independent operations in a pipeline manner.  

Low-level processing operations entail nested looping with the innermost loop 

applying an operator (neighborhood, point and global operators) to obtain the output 

pixels forming the output image. Mixed with the large amount of data that requires 

high memory bandwidth, the nature of the low-level operations increases the 

possibility of utilizing data level parallelism when implementing their application. 

High-level operations are control-intensive and are more sequential in nature than 

parallel. With irregular instructions structure and low data and bandwidth 

requirements, high-level operations are meant for instruction level parallelism [2]. 

When implementing real-time image/video processing systems on resource 

constrained platform, the massive amount of input data makes developing an 

algorithm that is computational, memory, power efficient a very difficult task. Since 

the algorithms are usually developed under "no resource limitations" environment, 

they have to be optimized in order to meet real-time performance. 

2.5 Optimization of Image Processing Systems 

While variety of hardware and software optimization techniques are used to realize 

real-time versions of image / video processing algorithms, simplifying the algorithm 
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can result in high performance gain. The simplification rationalizes the algorithm 

back to the core functionality, which reduces the computational complexity, the 

memory usage and power consumption [2]. By applying simplification strategies to 

the algorithm in the research development environment, the optimized algorithm is 

able to meet real-time constraints when it is implemented on limited resource platform 

such as FPGAs. Simplifying the algorithms of image /video processing reveals three 

basic schemes:    

 Reducing the number of operations. 

 Reducing the amount of processed data. 

 Using alternative simpler algorithm. 

2.5.1 Reduction of Computation 

Since the low-level image and video processing operations are able to perform large 

amount of computations on a massive data amount, every operation counts. The 

reduction of the amount of operation to perform in the algorithm implies reducing the 

number of calculations to be performed on each pixel. This will increase the 

performance of the system to match the real-time constrains. 

The reduction of operations can be classified into two categories; pure reduction 

and reduction via approximation. The pure operation reduction entails actions that 

reduce the number of operations without changing the final numerical results. If the 

final result is changed, the method then is categorized under the approximation or 

suboptimal solution category. Low-level operations that involve symmetrical 

computations or successive computational redundancies are perfect candidates for this 

reduction strategy. This strategy is usually implemented by revealing the 

mathematical identities and properties using manual expansion of the calculation 

steps. 

Edge detection is a perfect example of low-level window operations with high 

computational redundancy and symmetry. The sliding window operations entailed in 

the gradient edge detection operations involve symmetrical coefficients which can be 

employed to reduce the computations by rearranging and regrouping operations in 

order to reduce the occurrence of time-consuming calculations. Chapter 3 shows how 
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the proposed Sobel architecture employs the symmetries within the operator masks to 

reduce the number of calculations and hence computation time.  

2.5.2 Reduction of Data 

Reduction of the amount of data to be processed is a major source of performance 

gain. Since the computations are performed on each pixel in the image frame, 

reducing the number of pixels is essential for achieving real-time performance and 

reducing the memory usage. Reduction in processed data can be applied in many 

ways; all aim to process a certain subset of the image pixels at each time. These 

include spatial-temporal down sampling which involves processing of certain pixel 

subsets and skipping the others or skipping certain frames in the video processing 

systems. It can also be achieved by tiling and partitioning of the image frame into 

nonoverlapping or overlapping blocks and applying the expensive operations to the 

interested blocks. This method is not applied in this thesis since edge detection is a 

very low-level operation that requires processing all the pixels in the image frame. 

2.5.3 Alternative Simple Algorithm  

The key in designing real-time resource-friendly systems is to base those systems on 

computationally simple algorithms. The simple algorithms may not be the perfect 

computational solution if they are considered from a mathematical point of view. 

However, they are convenient for embedded real-time systems. In the embedded 

world, a system's storage requirements are very important for the choice of a feasible 

solution which can indirectly affect the power consumption of the system. Therefore, 

an optimum real-time embedded solution should be computationally simple and 

memory and power efficient.   

In general, to achieve optimal performance in image processing algorithms, 

designers attempt to match the hardware to the problem [5]. Various techniques are 

used to squeeze more performance from the machine. These techniques involve 

manual tuning of the compiler output in order to find the best time/space trade-off. 

Time-space techniques are directly applied to the imaging algorithm because imaging 

applications tend to be memory intensive [5]. These techniques comprise the 

following:  
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2.5.4 Basic Optimization Techniques 

 Most of the optimizations techniques used to optimize image processing systems for 

real-time attempt to find time-wasting computations and try to avoid them in order to 

reduce the overall execution time [5]. These techniques are utilized to optimize the 

designs of modern compilers to achieve the best time-space trade-off. This implies if 

the optimization attempts to minimize the execution time, the memory usage will 

increase accordingly and vice versa. That is due to the increment of the architecture 

parallelism which will accordingly increase the logic and memory consumption. In 

order to apply this concept on image processing applications, the optimization 

techniques need to be applied on the image processing algorithm to reduce the overall 

execution time [5]. Here are some of those techniques that are used to attain real-time 

performance in image processing systems. 

2.5.4.1 Arithmetic Identities 

Significant execution-time reduction can be achieved by common sense application of 

arithmetic identities, for example, the avoidance of multiplication by 1 and addition 

by 0 [5]. Moreover, a division operation executes slower than a multiplication 

operation in some computers. So it will be more efficient to replace it by 

multiplication with a negative exponent. This will save a considerable number of 

cycles. Chapter 3 will demonstrate how this technique is used to optimize the Sobel 

algorithm which involves a lot of multiplications by 1 and 0.   

2.5.4.2 Reduction in Strength 

Replacing arithmetic operations with equivalent but faster operations is referred to as 

reduction in strength [5]. Replacing a multiplication and division by the power of 2 

with shifting operations is generally faster [2, 5]. Substituting multiplication and 

division operations with shifting will save not only several clock cycles but also 

considerable amount of logic resources required to implement a parallel multiplier or 

a divider by using a simple shift register. In this thesis, the proposed architecture is 

optimized to replace all multiplications by 2 with shift operations. 
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2.5.4.3 Common Subexpression Elimination 

It is an optimization technique that searches for instances of identical expressions and 

replaces them with a single variable that carries the computed value. This necessitates 

examining whether or not the replacement is worthy, i.e. by examining whether 

saving the value of the variable is more expensive than recalculating it in terms of 

memory, logical resources and performance. Common subexpression elimination can 

be divided into two kinds: 

 Local Subexpression elimination: A simple optimization that works within 

a simple basic block. 

 Global Subexpression elimination: Implies analyzing the entire procedure 

by the use of the data flow analysis. For example, the following Verilog® 

code is considered: 

assign Z= pi * x + omega * y 

assign Q= omega * (pi + y) 

The value (y*omega) represent a common subexpression and it might be 

assigned to an intermediate variable T. the code may be rewritten as follows: 

assign T= y * omega 

assign Z = pi * x + T 

assign Q = pi + T  

The value T will be saved in a register for further loop calculations. The effect of 

the common sub expression elimination is good enough to be used as a common 

compiler optimization.  

2.5.4.4 Loop Invariant Removal 

A common loop optimization technique is performed by the exclusion of code that 

does not change inside an iterative loop. The removal of the loop invariants can save 

the time required to recalculate the invariants inside the loop. The following Verilog® 
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code is an example of removal of a loop invariant: 

for ( i= 1; i < 100; i = i+1) begin 

 X[i]= X[i] +2 *omega *t; 

end 

 By eliminating the invariant (2 * omega * t), the code can be rewritten as: 

Z = 2 * omega * t 

for ( i= 1; i < 100; i +1) begin 

X [i] = X [i] + Z 

end 

2.5.4.5 Loop Transformations 

Loop transformations attempt to improve performance by rewriting loops to make 

better use of memory system [20-23]. Optimization of memory usage relies on the 

fact that the same data will be used repeatedly. The reused data are kept in a local or 

embedded memory which has low access latency. The reuse of the data in the 

embedded memory improves the performance by reducing accesses to main memory 

and hence reduces the memory access latency. Two types of data reuse are explained 

here [24]: 

 Spatial reused: When several data items within the same embedded 

memory line are reused in the loop, the loop exhibits spatial reuse.    

 Temporal reuse: If the same data is used in more than one loop iteration 

then the loop demonstrates temporal reuse.    

The loop transformations are usually applied by changing the order of the 

execution of those nested loops. They aim to uncover the massive amount of fine-

grain parallelism and to endorse the data reuse by the improvement of both the spatial 

and temporal data reuse. The interaction between loop transformation methods 
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enables a wide variety of designs with different area and time trade-offs [22]. The 

loop transformations include the following types: 

i. Loop Unrolling 

The process of expanding the loop to remove the loop overhead is called loop 

unrolling and it can save considerable execution time [5, 25-28]. Loop unrolling is 

often used to change a linear algorithm (e.g., edge detection) into a parallel 

architecture supporting format in order to achieve a higher throughput. Unrolling the 

loop implies the replication of its body corresponding to consecutive iterations which 

enables high-level of parallelism and reduces the number of memory accesses by 

reusing data of the unrolled loop (if kept in registers) [21]. Generally speaking, if an 

algorithm consisting of n nested loops is "unrolled", the parallel implementation of the 

system will inherit a performance gain – system throughput - by a factor of n [29]. As 

an example for loop unrolling, consider the next iterative Verilog® code: 

for (i=0; i<3; i++) begin 

   for (j=0; j<3; j++) 

   begin 

  X[i]= X[i]+ Y[i][j] *Z[i]   

    end 

 end   

The unrolled version of the code is shown as follows: 

for (i=0; i<3; i++) begin 

 X[i] = X[i] + Y[i][j]   *Z[i]  

 X[i] = X[i] + Y[i][j+1] *Z[i]  

 X[i] = X[i] + Y[i][j+2] *Z[i]   

end 
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Using loop unrolling, the high throughput is accompanied by an increment of the 

area and power; due to high memory and logic utilization [30]. Partial loop unrolling 

is considered in case of large loops to reduce the logic utilization and power 

consumption [30]. 

  

ii. Loop Blocking (Tiling) 

Loop blocking (also called strip mining or loop tiling) which replaces a single loop 

with two loops [20, 22, 31]. The inner loop works on a portion of the original loop 

iteration space with the same increment as the original loop. The outer loop navigates 

across the original iteration space with an increment equal to the block size. The inner 

loop will be fed by an outer loop with blocks of the original iteration space to execute 

the original loop block by block. When applying loop blocking on a nested loop with 

a depth n, the new nested loop depth will be anything between n+1 and 2n. Loop 

blocking divides the large loop iteration space into smaller blocks which allows the 

accessed data to fit in the size-limited embedded or local memory. Moreover, loop 

blocking is used to minimize the external memory accesses by enhancing the reuse of 

the data in the embedded memory. It permits the processor to perform as many 

operations as possible on the array elements in the embedded memory and reduces the 

references to external memory [24, 32]. For instance, consider the following VHDL® 

code: 

 

//loop before Blocking 

for (i=0; i< max; i++) { 

       for (j=0; j< max; j++){ 

     a[i ] [ j] += a [i , j]+ b[j , i]; 

       }      

} 
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The code consists of two nested loop i and j. To apply loop blocking, the each of 

the two loops is replaced with two loops, an outer loop and an inner loop. The outer 

loops i and j have the same size of the original i and j loops (before tiling), 

respectively. Although, both the new loops i and j have a step size equal to the 

required block size. The inner loops ii and jj have sizes equal to the block size and 

a step size equal to the original i and j loops before the loop blocking, respectively. 

// the loop after loop blocking 

for (i=0; i< max; i+= block_size)  { 

   for (j=0; j< max; j+= block_size){ 

      for (ii= i; ii<i+block_size; ii++){ 

  for (jj=j; jj<j+block_size; jj++){ 

  a[ii][jj] += a [ii][jj]+ b[jj][ii]; 

        }      

      } 

   } 

} 

 

iii. Loop Fusion: 

Loop fusion combines instructions from several adjacent loops that use the same 

memory locations into a single loop [32]. This enhances the data reuse by 

preventing the data from being reloaded and hence reduces total processing 

time. The next Verilog® codes show the effect of loop fusion on two loops: 
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// the original code 

for (i=1; i< n; i++)  

  begin 

    b[i] = a[i]+2*c; 

   end 

 for (i=1; i< n; i++) 

   begin 

     d[i]= b[i]+2*c; 

   end 

//after loop fusion 

for (i=1; i< n; i++)  

  begin 

    b[i] = a[i]+2*c; 

    d[i] = b[i]+2*c; 

   end 

 

2.5.4.6 Scalar replacement  

Scalar replacement or register promotion is an optimization technique that aims to 

reduce accesses to external memory by replacing repeated array references with scalar 

temporaries [20]. The replacement is achieved by storing the repeatedly referred array 

data in registers. In FPGAs, scalar replacement can be implemented using internal 

registers or embedded RAM blocks. In nested loop computations (e.g., the image 

processing operations) multiple references are made to the same data in the same or 

consecutive loop iterations.  

Scalar replacement for reconfigurable architectures differs from cache based 

architectures in the data replacement and localization strategies. The data replacement 

and localization are made explicitly, i.e., every datum has to be stored in a specific 

location in order to be reused by the designer, or discarded when it is no longer in use 

[22, 33]. 

Chapter 4 discusses the application if these optimization techniques on Sobel edge 

detection algorithm to create an optimized Sobel processor. 

2.6 Sobel Processors on FPGA 

General purpose processors (GPP) do not take advantage of the parallelism within the 

computations in image processing algorithm, neither can handle the I/O requirements 
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for these systems which make them inefficient for implementing real-time image 

processing systems [34]. It was shown in section 1.3 how FPGAs satisfy the 

performance requirements and real-time constrains for image processor architectures 

design. In this section, several parallel architectures for Sobel edge detection 

processor are reviewed.   

Generally, implementing a Sobel edge detection system on FPGA is the same as a 

2-Dimentional (2-D) image filter where line buffers are usually utilized as a delay line 

to feed the input pixels to the filter. Each line buffer is as wide as a whole frame line 

and feeds the input pixels simultaneously with the other line buffers to the filter nodes 

as shown in Fig. 2.10. The line buffers allow each input pixel to be loaded once to the 

FPGA from the external memory. This reduces the memory read latency and enables 

the filter to achieve real-time performance constraints [35]. Each pixel is multiplied 

by the filter coefficient (the Sobel masks in our case) and the multiplication results are 

added together in an adder tree. The output of the adder tree is the output pixel of the 

filter [19, 35]. Since this design depends mainly on multiplications, the number of 

multipliers determines design complexity. For filters with non-symmetric coefficients, 

the size of the mask m*m generates a design with m
2
 complexity. For 2-D filters with 

symmetric masks, the complexity can be significantly optimized to [(m+1) + (m+3)]/8 

and the reduction can be increased up to (m+1) for separable filters, i.e., 1-D filter in 

the horizontal direction  and another 1-D filter in the vertical direction (such as Sobel 

filter). Separable designs enable parallel processing for the horizontal and vertical 

oriented gradients on FPGA [19]. Figure 2.10 and 2.11 demonstrate the non-

symmetric and symmetric implementation of the 2-D filters, respectively. Since Sobel 

masks are symmetric to each other, the next chapter shows how the proposed 

architecture is optimized to take advantage of the symmetries within the masks.   
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The following subsections describe several parallel architectures for implementing 

Sobel edge detection system on FPGAs. 

 

 

Figure 2.10 Hardware Implementation of non-symmetric 2-D filter [19] 

Figure 2.11 Hardware implementation of symmetric separable 2-D filter [19] 
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2.6.1 Sobel Edge Detection on FPGA Using Pipelined and Parallel Architectures 

Vinu Thomas and his students designed a SOBEL edge detection processor and 

implemented it on Xilinx Spartan 3 XC3S400 FPGA [36]. The row image data are 

converted into grayscale and sent to the FPGA board via bidirectional parallel port. 

The pixel information extracted is then processed with the Sobel processor and 

calculation results are sent back to the host computer. After that the data are 

manipulated to reconstruct the edge detected image. The processor is designed using 

Verilog® HDL. Open source electronic design automation tools, GPLCver and 

GTKWave are employed for compilation and post processing of the simulation results 

consecutively.  

The edge detection system in [36] is shown in Fig. 2.14. The system has 8-bit 

bidirectional bus to transfer and receive image data. The bus_rw signal is used to 

choose either read or write processes. To control the data transfer operations, 

data_strobe and mode_strobe signals are used. The clk signal is connected to the 

FPGA internal clock. 

 

 

Figure 2.12 The edge detection system implemented on Xilinx Spartan [36] 
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0 0 0 0 ........... 0 0 0 

0 0 0 0 ........... 0 0 0 

A0 A1 A2 A3 ........... A32 A33 A34 

 

0 0 0 0 ........... 0 0 0 

A0 A1 A2 A3 ........... A32 A33 A34 

B0 B1 B2 B3 ........... B32 B33 B34 

 

A0 A1 A2 A3 ........... A32 A33 A34 

B0 B1 B2 B3 ........... B32 B33 B34 

C0 C1 C2 C3 ........... C32 C33 C34 

Figure 2.13 RAM modules [36] 

The system consists of 32 Sobel instances connected to 3 sets of RAM array, each 

of which is 34 byte. The RAM arrays can be loaded serially and shifted in parallel; 

they are used to store the image data transferred from the host computer. 

As illustrated in the Fig 2.13, the third RAM module is serially loaded first. Its 

contents are then shifted in parallel to the second RAM module and so on. When all 

three modules are fully loaded, the contents of the RAM modules are the inputs of the 

32 Sobel instances.  

It is mentioned before that the 32 Sobel instances are connected to the three RAM 

modules. Each of the instances consists of six signed subtractors, two shift registers, 

two modulus operators, three adders and a magnitude comparator. Fig. 2.16 

demonstrates the block diagram of the Sobel instance. Eight image pixels are read 

from the RAM modules as an input for the Sobel instance. The instance calculates the 

horizontal and the vertical gradients according to the equations (2.16) and (2.17). 

Finally the total gradient G is compared with a predefined threshold value. The final 

answer is either 0 if the gradient is less than the threshold or 1 otherwise. 
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(2.16) 

                            (2.17) 

The design utilizes 80% of the total number of slices in the Xilinx Spartan 3 

FPGA, 11% of slice flip flops, 69% of the 4 input Look-Up Tables (LUTs) and 22% 

of the bonded input/output blocks (IOBs). The disadvantage of this design is that the 

total logic utilization of the design is very high due to the large amount of registers 

used for storing the 34 bytes of pixels to produce 32 output pixels. Notice that the data 

in the later two RAM modules(B1- B34 and C1- C34) are loaded again for the 

calculation of the next image line which increases the memory read redundancy, 

increase the overhead of reloading the data in the RAM modules before stating the 

next calculation and hence skew the design speed. Moreover, the partial results of the 

gradient are computed again for each pixel instead of being reused. The system 

produces 32 output pixels at the same time and those pixels are multiplexed to be 

written back to the external memory which prevents the processor from achieving 

real-time performance constrains.  Our project uses this design as a reference and 

optimizes the architecture for less logic utilization and more performance gain. More 

information on this will be discussed in the next chapters. 
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Figure 2.14 The Sobel instance 
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A Sobel processor architecture was designed by T. A. Abbasi and M. U.Abbasi in 

[37] and implemented on Xilinx Spartan3 FPGA. Their processor architecture is 

shown in Fig. 2.15. The inputs of the system are 8 pixels, each of which is 8-bit wide 

fed by an 8 bytes bus and 8-bit threshold value to be compared with the total output 

gradient. The output is an 8-bit pixel. The value of the output pixel depends on the 

value of the input threshold (either 0 or 255) which determines the accuracy of the 

edge detection output image. 

 

 

Figure 2.15 The Sobel architecture proposed by [37] 

As shown in Fig.2.15, the processor consists of different blocks. The blocks 

functions are explained here: 

1. Decoder block: to decode the eight input pixels into twelve pixels to be fed 

to four processing blocks, three pixels to each processing block. 

2. First processing block: applies the weight [-1 -2 -1] on its three input pixels, 

add weighted pixel values and down scale the resultant by a factor of four. 

Performing these operations will take three CLK cycles. 

3. Second processing block: applies the same function of the first block but 

with the weight of [1  2  1]. 

4. Third processing block: functions similarly as the first block. 

5. Fourth processing block: is similar to the second block. 
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6. Adder divider blocks: add the two output pixels of the processing blocks and 

divide the result by a value of two. These blocks require three clock cycles 

to produce their output. 

7. Final adder divider block: adds the two 8-bit output pixels of the two 

adder/divider blocks and divide the resultant by a factor of two. That takes 

two clock signals latency. 

 

8. Comparator block: compares the resultant gradient value with the input 

threshold value. This results in the edge detected binary image having only 

two pixel values 0 and 225. 

The architecture is synthesized for Xilinx Spartan 3 using Verilog® HDL. The 

processor works on 134.756 MHz and produces the edge detected binary image of a 

512x512 8-bit grayscale image in 1.95ms. The architecture uses 26% of the total 

number of slices in Xilinx Spartan 3 XC3S50 -5PQ208, 18% slice flip flops, 13% of 

four input LUTs and 65% of the bonded IOBs.  The design utilizes a lot of logic 

resources for only one Sobel instance, because it uses several dividers and multipliers 

which will limit the possibility of increasing design parallelism and hence limit design 

speed. It is noticed that the design does not employ any sort of buffer or embedded 

RAM blocks to reuse the input fetched data which increases the external memory 

redundancy and slow the design performance. 

Another pipelined implementation of Sobel operator on FPGA is introduced by 

[38] as a part of template matching system using distance transforms. The Sobel 

processor is included in the preprocessing (pp) part of the system that consists of edge 

detection, noise removal, and distance transform computation. The Sobel processor 

uses Block RAM of the FPGA to store two lines of the input image. The 3x3 window 

of the processed data are accessed in parallel through 3x3 shift register arrays (SRA). 

The data is shifted to the left (SL) to replace the multiplication by 2 in the Sobel 

confidents. The horizontal and vertical gradients are calculated by pipelined 

horizontal and vertical arithmetic units (AU), respectively. The sum of both gradients 

SY and SX is compared with the threshold to obtain image edges. The architecture is 

shown in Fig.2.16. 
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Figure 2.16 Hardware implementation of Sobel operator by [38] 

The architecture is implemented on Xilinx XC2V3000 and requires 165 Slices and 

1 Block RAM while the whole pp system consumes 1712 slices and 4 block RAMs.  

The pp system is able to process 512x512 image in 5.5ms using a 96MHz clock 

frequency.  

Park and Diniz in [22] implemented an optimized Sobel processor that utilizes 

scalar replacement of the input pixels. Virtex4 of Xilinx FPGA is utilized to 

implement the processor design which is shown in Fig. 2.17. The design consists of 

data path and a memory interface. The data path contains the combinational logic of 

Sobel algorithm and a finite state machine (FSM) that handle the data accesses control 

signals. The memory interface handles the data transfers protocols and address 

generation. The design is pipelined in both the data interface and data path 

components. In [22], five architectures are discussed. In this thesis, two of those 

architectures are compared with the optimized Sobel processor. The first Sobel 

processor utilizes data reuse within the horizontal gradient loop only with the use of 

scalar replacement. The second processor utilizes data reuse within vertical and 

horizontal gradients using the scalar replacement. It is shown in section 4.3.2 how the 

optimized Sobel processor exceeds the performance of both processors proposed by 

[22] with the use of partial loop unrolling and scalar replacement in only the 

horizontal gradient calculation.   
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Figure 2.17 Sobel Architecture by [22] 

2.6.2 Sobel Edge Detection System on FPGA Using Distributed Arithmetic 

Distributed arithmetic (DA) is a computational algorithm used to implement weighted 

sum of products operation performed by digital filters [20]. Since Sobel operator is a 

basic two dimensional Finite Impulse Response (FIR) digital filter, DA represents a 

feasible way of implementing Sobel on FPGA.  

Fig. 2.18 shows how Sobel edge detection filter is implemented using the DA 

algorithm. The architecture consists of a set of parallel to serial registers (PSR) and 

shift registers (SR), a pair of look up tables (LUT) addressed by the serial output of 

the shift registers, and an adder /subtractor accumulator register. The main idea is that, 

multiplying the pixel value (signal) with a coefficient (constant) produces the 

products that have to be accumulated to get the pixel gradient. In DA algorithm, 

instead of calculating each product separately, all possible cumulative partial products 

of all terms are saved in the LUT and addressed by the multiplier bits. When the most 

significant sign bits address the LUT, this causes the outcome to be subtracted from 

the accumulated partial products. 

The design works at 14.36 Mega pixels per second for 800x600 images. Thirty 

seven configurable logic blocks (CLBs) are utilized to implement the design on Xilinx 

XC3042 FPGA using VHDL. Equations (2.14) and (2.15) of Sobel can be rewritten to 

benefit from the coefficient symmetries which reduces the sum of product terms. The 

pixel variables with the same coefficient values are grouped as sum of difference 
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terms. This reduces the number of calculations required for calculating the gradient 

and save silicon area.  The new form is shown in equations (2.16) and (2.17). The 

processor is unable to satisfy the real-time performance constraints with its current 

configuration. To meet real-time constraints, the design has to be duplicated five 

times to compute five pixels simultaneously. Moreover the clock frequency must be 

increased to 60MHz.   

 

Figure 2.18 Edge detection filter is implemented using the distributed arithmetic 

algorithm 

 

Another FPGA based implementation of Sobel processor using DA is presented 

by Chivapresscha and Dejhan in [39]. The processor was implemented using VHDL 

and synthesized on Altera FLEX10K FPGA. The design uses a frame management 

system which works as a delay line to shift the pixels that are buffered to the 

processor module. The design utilizes the two LPM-ROM (library of parameterized 

modules- read only memory) in the FLEX10K to store the horizontal and vertical 

masks coefficients. Each ROM module has 9 inputs. The processor has 8-bit input 

pixel produces the vertical and the horizontal gradients as two 8-bit outputs data. The 

design requires 280 logic cells and 12288 memory bits to be implemented on the 

FLEX10K FPGA. The processor can operates by a 37MHz clock and can meet real-

time image processing applications requirements.  
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2.6.3 Sobel Edge Detection System on FPGA Using Systolic Arrays  

Systolic arrays (systolic algorithm) is one of the widely used algorithm for 

implementing convolution and digital filters [40-41]. FPGA based systolic array 

systems are well-matched for real-time window based operations, e.g. edge detection 

[12]. The systolic array consists of an array or processing elements (PEs). The PEs 

array is fed by a memory that contains the image data. The system is implemented on 

Splash 2 which is the processor attached to SPARCstation. The Splash-2 board 

consists of 17 PEs based on Xilinx 4010 FPGA named X0 - X16. The processing 

element X0 is used to control the data flow in the processor and the cross bar 

connections between the PEs. Each PE is connected to a 512KB memory that is 

utilized to store the intermediate results and lookup tables. To implement Sobel on the 

Splash 2 board, the two-dimensional (2-D) convolution of the 3x3 mask of Sobel is 

converted to linear or 1-D convolution. The 1-D convolution implies that a mask of k 

coefficients is represented by k PEs. Each PE multiplies the pixel that is transferred 

from the memory or from an adjacent PE with the coefficient, adds the partial sum to 

it, and passes it to the next PE.  The 2-D implies that the k x k mask is represented by 

k x N assigning 0's to the coefficients of the extra (N - k) PEs. To feed the data to the 

processor (N - k) stages of shift registers are used. Fig 2.19 shows a 2-D convolution 

with shift registers and memory lookup tables and the Sobel processor on Splash 2 is 

shown in Fig. 2.20.  

 

Figure 2.19 Systolic array for 2-D convolution with shift registers and memory 

lookup tables [12] 
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Figure 2.20 Sobel filter on Splash 2 using Systolic array 

 

The processor is 32 pixels in width to reduce the logic utilization when calculating 

larger images. Any disarrangement of the k x N mask elements produces results that 

are not parts of the desired output. Moreover, the processor size increases 

unnecessarily for larger image widths. Therefore, the image has to be divided into 

smaller images of a size equals to the appropriate processor width. Although the 

processor elements are multiplier less and the multiplication values are stored in the 

lookup tables, accessing lookup tables takes skews the execution time for one clock 

cycle to get the multiplication result. The design has a frame rate up to 100fps which 

is 11 times less than that of the processor proposed in this thesis. 

2.7 Chapter Summary 

This chapter represents image edge detection as an important image segmentation 

technique. Some of the most famous edge detection operators have been discussed. 

Furthermore, several optimization techniques used to optimize the image processing 

system are reviewed in order to achieve embedded real-time systems requirements. 

Several architectures for Sobel edge detection processor are also discussed.  

 

 



 

 

 

CHAPTER 3 

THE PROPOSED ARCHITECTURE 

3.1 Introduction 

In the previous chapter, several FPGA-based Sobel edge detection systems are 

reviewed. It is also mentioned that FPGAs are a better platform for this kind of 

applications due to their high computational power, flexibility, parallelism and 

input/output capability. However, the logic and memory resources of the FPGAs are 

limited which make the implementation of image processing systems on FPGAs more 

challenging [2, 5]. Since the image processing systems are well known for their large 

amount of computations and data, designers should be aware of limitations while 

meeting the system requirements. This can be achieved by matching the hardware to 

the algorithms. This requires optimization of the algorithms to minimize the logic and 

memory space utilization required to perform the calculations and store the data, 

respectively. At the same time, designers should maintain a performance level that 

meets the time requirements for real-time system. 

In this chapter, a processor architecture for edge detection based on Sobel operator 

is presented. The processor is optimized to solve the previously mentioned problems 

and attain a real-time performance on FPGA platform. The processor combines the 

optimization techniques mentioned in chapter 2 to minimize the logic and memory 

utilization, reduce the external memory read redundancy, avoid the recalculation of 

the same data and hence minimize the overall execution time. 

 The chapter starts by implementing a basic Sobel processor design on FPGA, 

analyzing the system to find the factors that degrade the performance of the design.
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The design is then optimized by eliminating these performance degradation factors 

using several optimization techniques discussed in section 2.4. This results in an 

optimized Sobel edge detection processor. After that, the optimized processor is 

integrated in a complete edge detection system and implemented on FPGA to be tested 

for real-time performance. The implementation of the processor as a complete edge 

detection system on FPGA is detailed later in this chapter. The flowchart in Fig. 3.1 

details the steps of this research methodology. The flowchart in Fig. 3.2 explicates the 

optimization process based on the data reuse enhancement. The exploit of data reuse in 

the optimization process is divided into two parts; the data reuse within one image line 

and the data reuse within multiple image lines.  

The data reuse within the same image line is achieved by using the optimized Sobel 

processor that consists of a single row of Sobel instances. Each Sobel instance 

calculates one output pixel. Therefore, the number of Sobel instances determines the 

number of pixels the processor can achieve in a certain amount of time, i.e., the 

processor throughput. The single row processor avoids unnecessary recalculations by 

reusing the calculation within the processor block. 

Since the optimization of the processor depends mostly on increasing the processor 

parallelism, the processor needs to read several input pixels in parallel in order to 

produce multiple pixels in on clock cycle. The use of the optimized Sobel processor 

calls for the design of a line buffer specially suited for the optimized Sobel processor. 

The processor line buffer is designed and integrated with the processor to handle the 

data coming from the external memory (SRAM) in a way that matches the execution 

requirements of a single-row-optimized Sobel processor.  

The optimized edge detection system is implemented on the Altera Cyclone DE2-70 

board and is able to achieve real-time system performance by processing a video stream 

from a D5M camera and the edge detected output stream is then displayed on a 

computer monitor. The optimized Sobel processor architecture performance is 

examined and compared with other designs [22, 37, 42]. 
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The second part of the processor optimization flowchart shows the implementation 

of the data reuse within multiple image lines. It results in an optimized Sobel processor 

with multiple rows of Sobel instances and is able to calculate output data from different 

image lines at the same time. The processor is synthesized on Altera Cyclone II DE2-70 

FPGA in order to see the effect of the optimization on the logic utilization percentage of 

the processor. The logic utilization of the processor is compared with the basic Sobel 

design. The design of the processor line buffer and the implementation of the full 

system on FPGA are not included in this thesis as highlighted in Fig. 3.2 and are left for 

future completion of this research work. 
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Figure 3.1 Research Methodology 
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Figure 3.2 Flowchart of the Optimization Process 

3.2 Basic Sobel Edge Detection Processor architecture 

The basic Sobel architecture is inspired by the architecture mentioned in [36] which is 

explained in section 2.6.1. It has been discussed that the architecture attempts to 

increase the system performance by utilizing the FPGA parallelism and using the 

embedded memory to store the input data. The processor consists of 32 Sobel modules 

that are able to calculate the 32 output pixels in parallel wired to 3x34 bytes of FPGA 

embedded RAM that stores the input data. In section 3.3, an analysis of the system 

functionality is clarified to show the degrading factors of the system. Based on those 

factors, the optimization of the system will aim to reduce the effect of these factors and 

improve the system performance. 
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3.3 Basic Sobel Edge Detection Processor Analysis   

In this section, an analysis of the basic Sobel processor design is performed. The 

analysis shows high redundancy in the calculations. The architecture calculates the 

same data repeatedly due to the high data dependency of the iterative process of the 

edge detection. 

For simplicity, a small image of 5x8 grayscale pixels is assumed to be the input of 

the basic processor as shown in Fig. 3.3. To calculate the Sobel gradient for this image 

using the basic Sobel processor architecture, a row of 6 Sobel instances is required to 

calculate the gradient of a single image line in parallel. In Fig. 3.3, the Xnm values are 

the input image pixels in grayscale and the squares represent the input data of each 

Sobel instance in the processor row, where n and m represent the row and column order 

in the input image matrix, respectively.  Note that in reality the image is always padded 

with zero frames to enable performing window operations on the first and last columns 

and rows and so maintain the dimension of the input image [43]. Since Sobel gradients 

Gx and Gy (refer to section 2.6.1) are calculated in parallel by one Sobel instance, the 

number of squares in Fig. 3.3 is twice the number of window operations to be 

performed in one row. The calculations of the 6 output pixels from Row 1, Row 2, and 

Row 3 are performed as in Table 3.1. The output image is a 3x6 image of gradient 

pixels. 

 

 

 

 

 

  

Figure 3.3 The input image 
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Table 3.1 Window operations in Image line (Row) 1, 2 and 3 using the basic Sobel 

processor 

By reviewing the calculations above, the following conclusions can be obtained: 

For each row calculations: 

i. For any vertical gradient Gx: Two out of three subtraction operations are 

repeated in the Gx calculation of the next row.  

ii. For any horizontal gradient Gy: Each window operation performs two 

subtractions that were calculated in the previous window calculations or will be 

used in the next two window calculations. 

iii. For a bigger size image, repeating the calculation in the next image line (Row 2 

and Row 3) requires the data to be read again from the external RAM to the 

embedded RAM modules. This increases the memory read redundancy and 

hence memory latency. 

iv. Recalculation requires more subtractors to exist in the architecture unnecessarily 

which increases the logic utilization of the processor. 

In this thesis, the solution of all these design problems is accomplished by the use of 

known optimization techniques (refer to section 2.5) to design an architecture that is 

able to acquire real-time performance with a minimum amount of logic. 

Output Row 1 Row 2  Row 3 

G1 
Gx =(X13 –X11) +2(X23 –X21) +(X33 –X31) 

Gy =(X31 –X11) +2(X32 –X12) +(X33 –X13) 

Gx =(X23 –X21) +2(X33 –X31) +(X43 –X41) 

Gy =(X41 –X21) +2(X42 –X22) +(X43 –X23) 

Gx =(X33 –X31) +2(X43 –X41)+( X53 –X51) 

Gy =(X51 –X31) +2(X52 –X32) +(X53 –X33) 

G2 
Gx =(X14–X12) +2(X24 –X22) +(X34 –X32) 

Gy =(X32 –X12) +2(X33 –X13) +(X34 –X14) 

Gx =(X24–X22) +2(X34 –X32) +(X44 –X42) 

Gy =(X42 –X22) +2(X43 –X23) +(X44 –X24) 

Gx = (X34 –X32) +2(X44 –X42)+(X54 –X52) 

Gy =(X52 –X32) +2(X53 –X33) +(X54 –X34) 

G3 
Gx =(X15 –X13) +2(X25 –X23) +(X35 –X33) 

Gy =(X33 –X13) +2(X34 –X14) +(X35 –X13) 

Gx =(X25 –X23) +2(X35 –X33) +(X45 –X43) 

Gy =(X43 –X23) +2(X44 –X24) +(X45 –X25) 

Gx =(X35 –X33) +2(X45 –X43)+( X55 –X53) 

Gy =(X53 –X33) +2(X54 –X34) +(X55 –X35) 

G4 
Gx =(X16 –X14) +2(X26 –X24) +(X36 –X34) 

Gy =(X34 –X14) +2(X35 –X15) +(X36 –X16) 

Gx =(X26 –X24) +2(X36 –X34) +(X46 –X44) 

Gy =(X44 –X24) +2(X45 –X25) +(X46 –X26) 

Gx = (X36 –X34) +2(X46 –X44)+(X56 –X54) 

Gy =(X54 –X34) +2(X55 –X35) +(X56 –X36) 

G5 
Gx =(X17 –X15) +2(X27 –X25) +(X37 –X35) 

Gy =(X35 –X15) +2(X36 –X16) +(X37 –X17) 

Gx =(X27 –X25) +2(X37 –X35) +(X47 –X45) 

Gy =(X45 –X25) +2(X46 –X26) +(X47 –X27) 

Gx =(X37 –X35) +2(X47 –X45) +(X57 –X55) 

Gy =(X55 –X35) +2(X56 –X36) +(X57 –X37) 

G6 
Gx =(X18 –X16) +2(X28 –X26) +(X38 –X36) 

Gy =(X36 –X16) +2(X37 –X17) +(X38 –X18) 

Gx =(X28 –X26) +2(X38 –X36) +(X48 –X46) 

Gy =(X46 –X26) +2(X47 –X27) +(X48 –X28) 

Gx =(X38 –X36) +2(X48 –X46) +(X58 –X56) 

Gy =(X56 –X36) +2(X57 –X37) +(X58 –X38) 
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3.4 Optimizing Sobel Edge Detection Processor 

The architecture proposed in this thesis is an optimization of the basic Sobel 

architecture analyzed in the previous section. The optimization is a combination of the 

optimization techniques mentioned in the chapter 2. The optimization is meant to 

increase the processor throughput, reduce the logic utilization and enable the processor 

to attain real-time performance at the same time. The optimization can reduce the 

memory read redundancy of the input data to a minimum and avoid the recalculations 

of the same data by using a processor that calculates several window operations in 

parallel. This way, the data are calculated once and reused several times inside the the 

processor block.  

The Sobel processor is built out of several Sobel instances; each of them is able to 

produce one output pixel as shown in Fig. 3.4. The instance is built out of simple 

mathematical operators; subtractors (SUB), adders (ADD), shift operators (<<) and 

modulus operators (ABS). The difference between this Sobel instance and the basic 

Sobel instance is that the shift operator (<<) is separated from the subtractor (SUB). 

This enables reusing the subtractor result in future calculations.   

The Sobel instance utilizes the loop fusion optimization technique by calculating 

the vertical and the horizontal gradient in parallel in the same instance. The instance is 

optimized using arithmetic identities technique to avoid multiplication by 1 and the 

addition by 0 during the calculation of the gradient. Avoiding unnecessary calculations 

will reduce the number of calculations and hence reduce the processing time and the 

logic utilization. While calculating the gradient, instances substitute the multiplication 

by 2 in the Sobel masks with a shift operation, i.e., reduction of strength. The shift 

operation is faster in execution and can be implemented with fewer logic elements than 

a multiplier would require. That makes the proposed processor a multiplier free 

processor. The comparison of the Sobel gradients with the threshold value is processed 

outside the Sobel instance as a loop invariant operation. The thresholding will increase 

the logic utilization if kept as part of the Sobel instance calculations because it requires 

placing a comparator in each Sobel instance. 
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Figure 3.4 Basic Sobel Instance 

 

It has been mentioned in section 2.5.4.5 that a linear algorithm such as edge 

detection can be altered to support parallel architecture format by the use of partial loop 

unrolling. This means, duplicating the Sobel instance to form one combinational block 

that can calculate several outputs in parallel. Fig.3.5 illustrates how the optimized Sobel 

processor block is partially unrolled by a factor of 4 to form a 1x4 Sobel processor 

block. The four Sobel instances are connected in a way that exploits FPGA parallelism 

and data reuse within one line of the input image. The thick vertical lines indicate the 

data reuse within the same image line. Depending on the number of instances in the 

Sobel processor block, the processor will gain performance by a factor equal to the 

number of instances used. Notice that the number of the Sobel instances in the 

optimized Sobel processor row can be increased as needed and is limited by the amount 

of logic available on the FPGA. As mentioned in the previous section, 2/3 of the 

subtractions performed while obtaining horizontal gradient Gy are repeated in the 

calculations of the next window operations within the same image line due to the high 

data dependency in the Sobel edge detection operator. Since the data of Gy in each 
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window calculations are reused in the next two window operations in the same line, the 

1x4 processor-row fully reuse the data of the first two instances and partially reuse the 

data of the third one. Therefore, the number of four Sobel instances is chosen as the 

default number of the Sobel instances in the processor row. Increasing the number of 

instances in the processor row allows more opportunities for data reuse and increases 

the processor throughput but increases the logic utilization consequently. Using a 

parallel architecture and partial loop unrolling, the previous calculations can be reused 

within one image line. The vertical black lines in Fig 3.5 show how the calculations of 

Gy are reused in the following window operations within the same row. This way, 1x4 

Sobel processor block eliminates recalculation within the same image line; i.e. 

implementing common subexpression elimination technique. The elimination of the 

common subexpressions reduces the number of subtractors in the design which reduces 

the total logical utilization. 
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Figure 3.5 1x4 Sobel processor or one Sobel row 
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The concept of loop blocking can also be applied on the proposed Sobel processor 

architecture if we consider the data reuse of Gx calculations since 2/3 of the subtractions 

within Gx calculations are repeated in the calculations of other Gx calculation in the next 

row due to the data dependencies within the calculations of Gx.  Combined with partial 

loop unrolling, loop blocking can be exploited to enable the data reuse within the 

calculations of multiple image lines at the same time. By exploiting the data reuse 

within two image lines, the processor instances are connected as shown in Fig. 3.6. 

Every four vertical consecutive instances are considered as a Sobel Processor row. The 

rows are connected to each other to form a Sobel processor block and exploit the data 

reuse. Fig. 3.6 details the connection of the first and second rows of the Sobel instances. 

The thick black vertical connection lines indicate data reuse within the same row (Gy 

calculation). The thicker black horizontal connection lines indicate computation data 

reuse from previous rows (Gx calculation). 

In a 2x4 optimized Sobel processor block shown in Fig. 3.6 it can be noticed that,  

the number of subtractors in the second processor row is less (10 subtractors) than that 

of the first row (18 subtractors) which reduces the logic resources used. The optimized 

Sobel processor block may contain more than two rows. The following rows of 

instances are all similar to the second row and all are connected in the same way. The 

number of Sobel rows can be increased as needed and is limited by the available FPGA 

resources.  Fig. 3.7 shows 4x4 optimized Sobel processor which is capable of producing 

sixteen 8-bit output pixels in one clock cycle. 

Optimizing the design with loop unrolling and loop blocking requires the input data 

to be available at the execution time on the FPGA board which is solved by the use of 

scalar replacement technique that stores the required image lines as sets of shift 

registers connected as tap-delay-lines, i.e. line buffers. Scalar replacement is 

implemented using the embedded M4K RAM blocks that are available on the FPGA 

core [44]. The line buffer contents can be accessed concurrently to feed the Sobel 

processor block with input pixels enabling the calculation of multiple outputs in parallel 

every clock cycle. It should be noted that, increasing the size of the line buffers enables 

the exploit of more data reuse but will increase the logic utilization significantly. 

Additionally, a large line buffer has the disadvantage of a long overhead of filling the 

tabs before execution. 
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Figure 3.6 Data reuse within two consecutive image lines (2 Sobel processor rows) 
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Figure 3.7 4x4 optimized Sobel processor 
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Unlike the basic Sobel architecture, the 4x4 Sobel block requires only 6x6 sub 

image to be available in the embedded FPGA memory to be fed to the Sobel block as 

inputs. Notice that, this is applicable only when the optimized Sobel processor is 

implemented with RAM modules like the ones mentioned in [36]. With the use of 

RAM modules, the architecture reduces the amount of on-chip input data that is 

needed to calculate the same number of output pixels by the basic architecture. For 

example, if two 4x4 Sobel blocks where used in parallel (32 outputs), only 6*10 

pixels have to be stored in the RAM modules, i.e. 6 RAM modules containing 10 

pixels (60 pixels) in each module. If the optimized processor uses the same number of 

pixels that the basic Sobel design uses (102 input pixels) in 6x17 RAM modules, the 

optimized processor will be able to produce 6x15 pixels in each line or 90 output 

pixels. Notice that, by the use of the partial loop unrolling and loop blocking only 2/6 

lines will be reloaded for the calculations of new input pixels. 

By using the same example of the 5x8 grayscale image used to analyze the basic 

Sobel architecture in section 3.3, an optimized Sobel processor can be built to match 

the size of the image. The processor should contain 3 rows of instances with 6 Sobel 

instances in each (3x6 block). This way, the processor can calculate the gradient of 

the image in one clock cycle. It can be shown how a 3x6 optimized Sobel processor 

block reuses the data in Table 3.2.  The table shows the gradients (G) calculations for 

the first, second, and third image lines (rows). The optimized Sobel processor instance 

separates the shifting (<<) operator from the subtractor (SUB) which enables the reuse 

of the result of the SUB operation in other window operations or other rows. Each 

basic Sobel instance has six subtractors; three for each of the gradients. 
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Table 3.2 Window operations in Image line 1, 2 and 3 using optimized Sobel 

processor 

Referring to the calculations in Table 3.1, the subtractors for calculating the 

vertical gradient Gx are named SUBnmA, SUBnmB, SUBnmC, where n and m represent 

the row and column in the input image matrix. The subtractors for the horizontal 

gradient Gy are named SUBnmD, SUBnmE, SUBnmF as shown in Table 3.2. Naming 

the subtractors enables the optimized Sobel processor to calculate every subtraction 

operation once and reuse the value in the other instances in the Sobel block. In this 

example, the output of the optimized processor is 3x6 gradient pixels calculated in 

one clock cycle.  

In case of an input image with larger frame size, the optimized Sobel processor 

will have a smaller size than the image line and it has to be slid over the image pixels. 

The size of the processor is only limited by the logic resources and it is possible to use 

a single row processor or  multiple processor rows as shown in Fig. 3.5 and Fig. 3.7, 

respectively. Implementing a single-row optimized Sobel processor with a certain size 

requires a special line buffer to be designed according to the number of Sobel 

instances inside the optimized Sobel block. The line buffer handles the data from an 

Out 

put 
Row 1 Row 2  Row3 

G1 
Gx =(SUB11A)+(SUB11B<<) +(SUB11C) 

Gy =(SUB11D)+(SUB11E<<) +(SUB11F) 

Gx =(SUB11B) +(SUB11C<<)+(SUB21C) 

Gy =(SUB21D)+(SUB21E<<) +(SUB21F) 

Gx =(SUB11C) +(SUB21C<<)+(SUB31C) 

Gy =(SUB31D)+(SUB31E<<) +(SUB31F) 

G2 
Gx =(SUB12A)+(SUB12B<<) +(SUB12C) 

Gy =(SUB11E) +(SUB11F<<) +(SUB12F) 

Gx =(SUB12B) +(SUB12C<<)+( SUB22C) 

Gy =(SUB21E) +(SUB21F<<)+( SUB22F) 

Gx =(SUB12C) +(SUB22C<<)+(SUB32C) 

Gy =(SUB31E) +(SUB31F<<)+( SUB32F) 

G3 
Gx =(SUB13A)+(SUB13B<<) +(SUB13C) 

Gy =(SUB11F)+ (SUB12F<<) +(SUB13F) 

Gx =(SUB13B) +(SUB13C<<)+( SUB23C) 

Gy =(SUB21F)+ (SUB22F<<) +(SUB23F)  

Gx =(SUB13C) +(SUB23C<<)+(SUB33C) 

Gy =(SUB31F)+ (SUB32F<<) +(SUB33F) 

G4 
Gx =(SUB14A)+(SUB14B<<) +(SUB14C) 

Gy =(SUB12F) +(SUB13F<<) +(SUB14F) 

Gx =(SUB14B) +(SUB14C<<)+( SUB24C) 

Gy =(SUB22F)+ (SUB23F<<) +(SUB24F) 

Gx =(SUB14C) +(SUB24C<<)+(SUB34C) 

Gy =(SUB32F)+ (SUB33F<<) +(SUB34F) 

G5 
Gx =(SUB15A)+(SUB15B<<) +(SUB15C) 

Gy =(SUB13F)+ (SUB14F<<) +(SUB15F) 

Gx =(SUB15B) +(SUB15C<<)+( SUB25C) 

Gy =(SUB23F)+ (SUB24F<<) +(SUB25F) 

Gx =(SUB15C) +(SUB25C<<)+(SUB35C) 

Gy =(SUB33F)+ (SUB34F<<) +(SUB35F) 

G6 
Gx =(SUB16A)+(SUB16B<<)+(SUB16C) 

Gy =(SUB14F)+(SUB15F<<) +(SUB16F) 

Gx =(SUB16B) +(SUB16C<<)+( SUB26C) 

Gy =(SUB24F)+ (SUB25F<<) +(SUB26F) 

Gx =(SUB16C) +(SUB26C<<)+(SUB36C) 

Gy =(SUB34F)+ (SUB35F<<) +(SUB36F) 
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external memory and feeds the required amount of pixels to the processor determined 

by the processor size. In case of using optimized Sobel processor that contains 

multiple rows of instances, another line buffer should be designed and integrated with 

the Sobel processor to feed the data back to the external memory in a raster order (row 

by row) [34]. Therefore, the multiple rows optimized Sobel processor will calculate 

the gradients for a certain number of pixels from several image lines depending on the 

number of rows in the processor block and the number of instances in each row.      

By reusing the calculation results of previous window operations, our proposed 

architecture reduces the number of subtraction operations of the basic architecture 

[36] by 50%. The data reuse method reduces the processing time because each pixel 

needs to be read from memory at most twice instead of up to six times.  

3.5 The Line Buffer Module 

In this thesis, the one-row 1x4 Sobel processor that exploits the data reuse within one 

image line is implemented on FPGA as a complete edge detection system. A line 

buffer was designed to feed the required number of input pixels to the processor in 

every clock cycle. This enables the process to achieve real-time performance.  

The line buffer module is utilized to feed the grayscale 8-bit pixels from the input 

image stored in the SRAM to the Sobel processor. As illustrated by Fig. 3.8, the line 

buffer has the capacity to hold 3 lines of pixels. Each line consists of 160 memory 

locations; each location is 32-bit in length; to store a total of 640 grayscale pixels (4 

pixels in each location). The three lines accommodate a total of 1920 pixels in 480 

locations. The line buffer is fed by a FIFO [45] that shifts a 32bit long word (4 pixels) 

from the SRAM to the line buffer in every clock cycle. The line buffer has one write 

pointer (wp) and three read pointers (rp0, rp1 and rp2) to read from each of the three 

image lines stored in the line buffer. All the pointers are set to point to the 0 location 

whenever the asynchronous clear (aclr) signal is asserted to reset the buffer. When the 

write pointer reaches the location number 479, it will point back to location 0 to fill 

up the first location again. The read pointers rp0, rp1, and rp2 will point to the start of 

each image line before the reading is started, i.e. rp0= 0, rp1= 160 and rp2= 320. The 
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read pointers are incremented to point to the next memory location in every clock 

cycle. To read the image pixels in the line buffer, the memory location which is 

pointed by the read pointer will be stored in a 32-bit register (pixout). Since six pixels 

are needed from each image line to calculate four output pixels, two (pixout) registers 

are needed for each image line. At every rising edge of the clock, the pixels in the first 

register, e.g. (pixout0) will be replaced by the previous values of the second register 

(pixout1). The registers are wired to the line buffer output taps (taps00 to taps25).The 

taps are wired to the Sobel processor to feed the pixels for calculating the edges. 

 

3.6 Implementing the Optimized Processor on FPGA 

In order to implement the single row optimized Sobel processor on FPGA to run in 

real-time, the processor has to be integrated with a digital camera, an external 

memory, and a PC monitor to work as a complete edge detection system on the FPGA 

board. As illustrated in Fig. 3.9, the digital camera captures a video stream which 

represents the system input. The input frames are stored in the FPGA board static 

random access memory SRAM memory. The line buffer of the optimized Sobel 

processor is connected to the SRAM in order to pass the input pixels to the optimized 

Sobel processor. The Sobel processor writes the output pixels back to the SRAM. The 

monitor reads the processor output pixels from the SRAM to be shown on the screen.  

Figure 3.8 Line buffer for a 1x4 optimized Sobel processor 
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The SRAM connects to the Sobel processor by the use of a multiport memory 

controller module. The multiport memory controller module connects the SRAM to 

the camera by a camera controller module. The camera controller will transform the 

raw image pixels into RGB and change the RGB to grayscale pixels and write them to 

the SRAM. This way, 2/3 of the SRAM space is saved.  

Four FIFO modules designed by [45] were used to synchronize the SRAM with 

the other devices. The FIFO1 is used to connect the camera controller module with 

the SRAM multiport memory controller. The FIFO2 synchronizes the SRAM 

controller with the line buffer of the Sobel processor. The FIFO3 enables the Sobel 

processor to write the output pixels back to the SRAM by passing them to the 

multiport memory controller module. The FIFO4 connects the multiport memory 

controller module to the video graphic adapter (VGA) controller module that connects 

the monitor to the multiport SRAM controller.  

All the system modules are designed using the Verilog hardware description 

language (HDL). The functionality of the system was tested using Modelsim-Altera 

6.1g software. Altera Quartus® II web edition version 9.1 software was utilized to run 

the timing simulation of the design and to download the system design files on Altera 

Cyclone® II DE2-70 EP2C70F896C6 FPGA. The Altera DE2-70 board has a 2MB 

SRAM [46] which is used as the external memory and a frame buffer of the edge 

detection system. The TRDB_D5M 5 Mega pixel digital camera from Terasic was 

used for video stream capture which can be simply installed on any Altera DE2-70 

board [47]. 
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Figure 3.9 Edge detection system 

In the next chapter, the system implementation on Cyclone II FPGA is discussed and 

the system specifications are listed. The evaluation of the processor logic utilization 

and performance is also included in the next chapter. The chapter also shows how the 

proposed processor can satisfy real-time performance constrains. 

3.7 Chapter Summary  

In this chapter the proposed Sobel edge detection processor is presented. It is 

discussed how the proposed architecture is optimized by the use of the proper 

optimization technique based on the basic Sobel processor analysis. The chapter also 

discussed how the optimized Sobel processor utilizes the data reuse in one image line 

and how it can be constructed to utilize the data reuse within multiple image lines. A 

line buffer designed specifically to work with a 1x4 Sobel processor row was 

proposed. Finally, the chapter summarized how the optimized Sobel processor along 

with its line buffer can be integrated on an FPGA board to work as a real-time edge 

detection system.  

 



 

 

 

CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Introduction 

In chapter 3, the optimized Sobel edge detection processor is discussed. The processor 

architecture enhances the reuse of data to reduce the logic utilization and satisfy real-

time systems constraints. It is also explained how the Sobel optimized processor is 

integrated with a line buffer and other controlling modules to be able to perform as a 

complete real-time edge detection system on an FPGA board.    

This chapter discusses the implementation of the proposed Sobel processor 

architecture on an FPGA. It starts with the evaluation of the logic utilization of the 

Sobel processor. The evaluation aims to show the effect of the optimization applied 

on the processor in comparison with the referenced Sobel architecture [36]. The 

performance of the optimized Sobel processor as part of a real-time edge detection 

system is discussed. Finally a comparative performance analysis is carried out 

between the optimized processor and other processors mentioned in section 2.. 

4.2 Logic Utilization of the Optimized Sobel Processor 

The proposed Sobel processor architecture was synthesized on Cyclone II DE2-70 

development kit EP2C70F896C9 FPGA to evaluate the logic utilization of different 

sizes of the proposed processor. The evaluation is meant to show the effect of the 

optimization carried out on the processor in terms of reduction in the logic utilization, 

memory usage, and the processor execution time. The logic utilization includes the 

number of logic elements occupied when implementing the processor 
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combinational block on the Cyclone DE2-70 board. In this step, the evaluation 

measures the number of the logic elements occupied by the processor combinational 

circuit and excludes registers and line buffers that are part of the Sobel processor.  

The logic utilization evaluation is carried out using several sizes of the Sobel 

processor combinational block with different number of Sobel instances in each 

block. It starts by estimating the effect of the data reuse within one line of the input 

image by evaluating the logic utilization of a single-row optimized Sobel processor. 

Different sizes of the single-row processor are examined for logic utilization. In the 

next stage, the data reuse within multiple image lines is estimated using an optimized 

Sobel processor block that consists of multiple rows of the Sobel instances. A total of 

four Sobel instance has been chosen as the default number of instances to build one 

row of the processor block as explained in section 3.4. Different sizes of the 

optimized Sobel processor block were also examined for logic utilization percentage 

to evaluate the effect of the optimization on each processor configuration. 

For a single row optimized Sobel processor, a processor row consists of four 

Sobel instances and requires 548 logic elements (LEs) or less than 1% out of the 

68,416 LEs available on the Cyclone II FPGA. A row of 16 Sobel instances occupies 

2,146 (3.1%) LEs. An optimized Sobel processor that consists of 32 instances requires 

4,275 (6.2%) LEs. Table 4.1 summarizes the logic utilization of a single row 

optimized Sobel processor. 

Table 4.1 The logic utilization of different sizes of a single row optimized Sobel 

processor  

Number of Sobel instances in one row Number of logic elements 

4 Optimized Sobel instances 548 (<1%) 

16 Optimized Sobel instances 2,146 (3.1%) 

32 Optimized Sobel instances 4,275 (6.2%) 

Table 4.2 shows the logic utilization for different configurations of an optimized 

Sobel processor block with multiple rows of Sobel instances. Two rows of Sobel 

instances (2x4 block) need 1,020 LEs (1.4%) to be implemented on DE2-70 board 

and process eight pixels in one clock cycle. An optimized Sobel processor block with 
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four rows (4x4 block) requires 1,992LEs (2.9%) to produce 16 output pixels. While a 

block of 32 instances enclosed in an 8x4 optimized Sobel processor block consumes 

5.3% (3,668 LEs) of the total logic elements. 

Table 4.2 The logic utilization of different sizes of optimized Sobel processor block 

which consist of multiple rows 

Number of rows in the optimized Sobel 

processor block 
Number of logic elements occupied 

2 rows (2x4 Sobel instances) 1,020 (1.4%) 

4 rows (4x4 Sobel instances) 1,992 (2.9%) 

8 rows (8x4 Sobel instances) 3,668 (5.3%) 

Using a single row processor allows the data to be reused only in the calculation 

of the horizontal gradient Gy. Therefore, the logic utilization of the optimized Sobel 

processors that use multiple rows of instances is less than that of the optimized Sobel 

processors that use a single row of Sobel instances. Multiple rows Sobel processor 

reuses not only the horizontal gradient Gy calculations but the vertical gradient Gx 

calculations as well. The data reuse will reduce the number of subtractors in the 

optimized Sobel block. The result of a certain subtraction operation is reused in up to 

two subsequent window operations within the same image line or in next two image 

lines. 

In a 4x4 optimized Sobel processor block, the processor exploits the data reuse in 

the vertical and the horizontal gradient calculations. As illustrated in Fig. 3.7, all the 

rows of the 4x4 optimized Sobel block have 10 subtractors except for the first row 

which has 18 subtractors since there are no vertical gradient data reuse in the 

calculation of the first image line. The data reuse reduces the number of subtractors in 

the processor significantly and hence reduce the size of the processor combinational 

block. Table 4.3 and Table 4.4 show the number of subtractors in the different sizes of 

the optimized Sobel processor in case of the data reuse within one image line (single-

row optimized Sobel processor) and within multiple image lines (optimized Sobel 

processor block with multiple rows), respectively.  
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Reviewing both tables we can conclude that,  the data reuse within multiple lines 

within the input image reduces the number of subtractors by ((66-48)/66*100% 

=27%)  using a 4x4 optimized Sobel processor block compared to that of a single row 

optimized Sobel processor which has the same number of instances. The reduction 

reaches 32% in the case of 8x4 block size (32 Sobel instances) compared to a single 

optimized Sobel processor with the same number of Sobel instances. Note that the 

percentages is calculated using the formula [(a-b)/b]*100%, where b > a.  

Number of instances in the optimized 

Sobel row Total number of subtractors 

4 (1x4) Sobel instances 18 

16 (1x16) Sobel instances 66 

32 (1x32) Sobel instances 130 

In this chapter, the optimized Sobel processor is evaluated by comparing with 

other Sobel processors mentioned in the literature. Initially, the logic utilization is 

evaluated by comparing with the referenced processor proposed by [36]. The 

processor is synthesized on the Altera DE2-70 board. Several sizes of the Sobel 

processor proposed by [36] were examined for logic utilization for comparison with 

the proposed architecture. The size of the processor is changed by changing the 

number of the Sobel instances contained in processor. The results in Table 4.5 show 

the resource utilization for different sizes of the referenced processor [36]. For a 

Table 4.3 The number of subtractors in different sizes of single row optimized Sobel 

processor (data reuse in one image line) 

Table 4.4 The number of subtractors in different sizes of multiple rows optimized 

Sobel processor block (data reuse in multiple image lines) 

Number of instances in 

the optimized Sobel 

processor block 

Total number of 

subtractors 
Reduction from table 4.3 

8 (2x4) Sobel instances  28 _ 

16 (4x4) Sobel instances 48 27% 

32 (8x4) Sobel instances 88 32% 
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processor with four Sobel instances, the number of logic elements required to 

implement the processor combinational block is 574 LEs, 2,242 LEs are occupied by 

a processor with Sixteen Sobel instances and 4,467 LEs are required for 32 Sobel 

instances processor. On the other hand, the proposed processor reduces the logic 

resources to 548 LEs (4.5%) for a processor with 4 Sobel instances, 1,992 LEs 

(11.2%) for a 16 Sobel instances processor, and 3,668 (17.88%) for 32 Sobel 

instances. 

Sobel processor size 
Number of logic elements 

occupied by [36] 

Number of logic 

elements occupied by 

the proposed processor 

4 Sobel instances 574 (<1%) 548 (<1%) 

16 Sobel instances 2,244 (3.2%) 1,992 (2.9%) 

32 Sobel instances 4,467 (6.5%) 3,668 (5.3%) 

The logic resources comparison between the optimized Sobel processor and the 

referenced Sobel processor [36] is illustrated by the bar chart in Fig. 4.1. The X axis 

represents the number of instances in the processor and the Y axis represents the 

number of LEs occupied by each processor with different configurations. The graph 

shows how the difference in logic elements between the two processors increases as 

the size of the processor is increased. The difference in the number of logic elements 

occupied by the processors increase from 26 LEs difference in the case of 4 Sobel 

instances, to 250 for 16 Sobel instances and reaches 799 LEs for 32 Sobel instances. 

 

Table 4.5 The logic utilization of different sizes of the parallel Sobel processor in [36] 
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Figure 4.1 The logic utilization (in LEs) comparison between the proposed optimized 

Sobel processor and the referenced Sobel processor in [36] 

The optimized Sobel processor has fewer subtractors in its architecture than the 

Sobel processor in [36] as summarized in Fig. 4.2. The X axis represents the number 

of subtractors in the processor block and the Y axis represents the processor 

configurations. It is mentioned in [36] that the basic Sobel instance has 6 subtractors 

which makes the total number of subtractors equals to 192 in a Sobel processor that 

consists of 32 instances. A processor with 16 instances contains 96 subtractors and 24 

subtractors are enclosed in a processor with 4 instances. In comparison, the optimized 

Sobel processor contains 54% less subtractors (88 subtractors) for a processor with 32 

instances, 50% less when a processor with 16 instances is utilized. An optimized 

processor with 4 instances acquires (18 subtractors) 25% reduction in the number of 

subtractors over a processor of the same configurations by [36]. The reduction in the 

number of subtractors in the processor reduces the processor size which allows adding 

more Sobel instances in the processor block. Adding more instances enables the 

processor to process more pixels in parallel and hence increases the processor 

throughput and the overall frame rate.  
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Figure 4.2 The comparison between the optimized Sobel processor and the referenced 

Sobel processor in [36] in terms of the number of subtractors 

The effect of the optimization on the memory usage is evaluated. The proposed 

Sobel processor is implemented using the RAM modules that were used by [36] as 

mentioned in section 2.6.1. The processor optimizes the use of the input data required 

to produce the out pixels by exploiting the loop unrolling and loop blocking. For a 32 

instances (4x8) optimized Sobel processor, the processor requires 60 input pixels (60 

Bytes) to calculate the 32 output pixels (6 RAM modules with only 10 pixels each). 

However, the Sobel processor in [36] requires 102 input pixels arranged in 3 RAM 

modules with 34 pixels each (102 Bytes) to calculate 32 output pixels. By calculating 

the reduction percentage, the optimized Sobel processor uses 41% less RAM modules 

registers compared with [36] to produce the same number of output pixels (32 pixels). 

The processor of 16 instances can reduce the memory utilization to 36 bytes instead of 

54 bytes in the case of [36]. The comparison result is shown in Table 4.6. 

It should be considered that the optimized Sobel processor does not use the RAM 

modules and it uses a line buffer specially designed to handle the data in a special way 

that matches the optimized Sobel processor and to assure a performance that satisfies 

the real-time constraints. The line buffer architecture is described in section 3.5. 
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Table 4.6 Memory utilization comparison between the proposed processor and the 

processor in [36] 

Sobel processor size 
Memory utilization for 

[36] (Bytes) 

Memory utilization 

for  the proposed 

processor (Bytes) 

4 Sobel instances 18 18 

16 Sobel instances 54 36 

32 Sobel instances 102 60 

4.3 The Optimized Sobel Processor Performance Evaluation 

In this section, an evaluation of the proposed Sobel processor is demonstrated. The 

following subsection (4.3.1) states the specifications of the edge detection system that 

the optimized Sobel processor is integrated in. This is followed by a comparative 

analysis between the optimized processor performance and the performance of Sobel 

processors from this research literature in subsection 4.3.2.  

4.3.1 The Edge Detection System Specifications 

In section 3.6, it is shown how the optimized Sobel processor is integrated in a 

complete edge detection system and implemented on a DE2-70 FPGA board. The 

implementation aims to test the ability of the proposed architecture to satisfy real-time 

image processing systems constraints. 

The D5M Terasic digital video-camera operates with a 25MHz frequency to 

provide the system with input frames of 640x480 pixels. A 640x480 frame contains 

307200 pixels represented by four colors (green1, green2, red, and blue) [36]. This 

provides a camera data rate (DRCCD) of 25 mega pixel per second (MP/s) and a 

camera frame rate of (25MP/307200/4=20) 20 frames per second (fps). The frames 

are stored in the 2MB SRAM on the DE2-70 board which operates with a frequency 

of 100MHz [46]. The SRAM reads 4 pixels (32bits) from the D5M camera every 

clock cycle which allows a maximum data rate (DRSRAM) of 400MP/s (4x100=400). 

The VGA controller runs at 28MHz frequency and has a 28MP/s data rate (DRVGA) 

[46]. The SRAM, VGA, and camera controller specifications are summarized in Table 

4.7. 
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Table 4.7 System Specifications summary 

Component Data rate (MP/s) Frequency (MHz) 

SRAM controller 400 100 

VGA controller 28 28 

CCD camera controller 25 25 

The optimized 1x4 Sobel processor row and its line buffer are running with a 

10MHz clock frequency. With this frequency, one Sobel instance processor can 

calculate 10MP/s. The processor row consists of 4 Sobel instances that enable the 

processor to produce 4 pixels in each clock cycle, which increases the processor 

throughput (the number of calculated pixels per second) to 40MP/s. Since the D5M 

camera provides a 640x480 frame size that contains a total of 307200 pixels, dividing 

40MP/s by 307,200 pixels per frame results in 130.2fps (40M/307200=130.2). The 

processor specifications are summarized in Table 4.8. It should be considered that this 

is not the maximum clock frequency of the optimized Sobel processor, neither its 

maximum throughput. This frequency is chosen to match the SRAM maximum data 

rate and frequency. Moreover, a frequency of 10MHz can produce a frame rate that 

satisfies the real-time constraints (minimum 30 fps).   

Table 4.8 Optimized Sobel processor specifications summary 

Processor size Frequency (MHz) 
Throughput 

(MP/s) 
Frame rate (fps) 

(1x4) instances 10 40 130.2 

The maximum frequency the optimized processor can achieve and its maximum 

throughput and frame rate are reported by the Quartus II Classic Time Analyzer and 

are summarized in Table 4.9. The processor has a maximum throughput of 367.77 

MP/s and a maximum frame rate of 1196.02fps. 
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Table 4.9 Optimized Sobel processor maximum performance specification 

Processor size 

Maximum 

Frequency 

 (MHz) 

Maximum 

Throughput 

(MP/s) 

Maximum 

Frame rate  

(fps) 

(1x4) instances 91.86 367.44 1196.02 

The FIFO modules designed by [45] are utilized in the system to synchronize each 

module with the others. Therefore, the FIFO read clock matches the read source clock 

and the write clock should match the write destination clock frequency. As illustrated 

in Fig. 3.9, FIFO1 connects the camera controller with the multiport SRAM 

controller. Therefore, it has a read clock similar to the camera controller frequency 

(25MHz) and writing frequency equals to the SRAM controller clock (100MHz). 

FIFO2 reads with a 100MHz clock frequency (SRAM) and writes to the line buffer 

with a 10MHz clock frequency. FIFO3 read clock follows the optimized Sobel 

processor clock (10MHz) and writes to the SRAM with a 100MHz clock frequency. 

FIFO4 follows the SRAM clock frequency (100 MHz) for reading and the VGA 

controller clock frequency (28MHz) for writing. The FIFOs specifications are 

summarized in Table 4.10. 

Table 4.10 System FIFOs specifications 

FIFO Read Clock (MHz) Write Clock (MHz) 

FIFO1 25 100 

FIFO2 100 10 

FIFO3 10 100 

FIFO4 100 28 

The complete edge detection system, when compiled with Altera Quartus II 

software for Cyclone II DE2-70, consumes 2,151 LEs (3%) out of 68,416 LEs 

available on the DE2-70 board. A total of 1,973 LEs were consumed by the total 

combinational functions and 962 LEs were implemented as dedicated logic registers. 

The design has a total number of 56,320 memory bits which is 5% out of the 

1,152,000 memory bits implemented using the M4K blocks on the DE2_70 board.  

The logic utilization of the system is detailed in Table 4.11. 
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Table 4.11 Logic utilization summary of the proposed edge detection system based on 

1x4 optimized Sobel processor 

Module Combinational 

logic (LEs) 

Registers 

(LEs) 

M4K Memory Bits 

(Bit) 

Camera controller  340 226 5120 

SRAM controller 456 137 0 

VGA controller 110 46 512 

Sobel processor  548 0 0 

Sobel line buffer 72 145 49152 

FIFO1 28 40 512 

FIFO2 64 73 512 

FIFO3 29 45 512 

FIFO4 29 73 512 

 The edge detection system timing analysis is performed using the Quartus II 

Classic Timing Analyzer tool. The worst-case clock setup time (tSU) which is the 

length of time for which data that feeds a register via its data or enable input(s) must 

be present at an input pin before the clock signal that clocks the register is asserted at 

the clock pin is reported by the timing analyzer. The worst-case clock to output delay 

(tCO) which is the maximum time required to obtain a valid output at an output pin 

after a clock transition at an input clock pin, directly or through a register is also 

calculated by the timing analyzer. The Timing Analyzer reports a tCO of 18.726ns and 

tSU of 11.051ns. The worst-case of the propagation delay (tPD) is estimated to be 

10.630ns which is the time required for a signal from an input pin to propagate 

through combinational logic and appear at an external output pin. 

 The Quartus II Classic Timing analyzer is used to analyze the performance of 

module that combines the Optimized Sobel processor with the line buffer. The timing 

analyzer report shows the best-case timing model for the processor. The report is 

summarized in Table 4.12. The timing model reports a worst-case tSU of 5.477ns. The 

worst-case tCO is 6.678ns. The fast timing model shows a maximum frequency of the 

line buffer clock of 91.86MHz with a 10.886ns clock period which is the maximum 

frequency of the processor.  
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Table 4.12 Timing analysis summary for the optimized Sobel processor 

Type Timing analysis 

worst-case tSU 5.477ns 

worst-case tCO 6.678ns 

Clock setup "line buffer Clock" 
91.86MHz 

(10.886ns CLK period) 

The system generates an edge-detected real-time video stream successfully. A 

snapshot of the output video stream on the VGA monitor is shown in Fig. 4.3 and Fig 

4.4. Fig. 4.3 shows a snapshot of Susan Lordi's sculpture with black background. The 

system does not contain any sort of noise reduction and therefore, the result snapshots 

are noisy. Therefore, the comparison between the gradient and the threshold image is 

inverted to produce 0 (black) when the gradient value is greater than the threshold 

value (an edge) and 1 (white) otherwise (not an edge). The inversion of the 

thresholding result enables easier observation of the black edges in a white 

background in the presence of noise. 

 

 

     Figure 4.3 Grayscale snapshot 
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        Figure 4.4 Sobel edge detection snapshot 

4.3.2 Comparative Analysis of Sobel Processors 

This section conducts a comparative analysis between the proposed image edge 

detection system based on the optimized Sobel edge detection processor and other 

Sobel edge detection systems performances.  

The comparison is performed between the 1x4 optimized Sobel processor and 

four Sobel processors proposed by [22, 37, 42]. The comparison is based on two 

characteristics: clock frequency and processor throughput. These two characteristics 

determine whether or not the system can satisfy real-time systems constraints. A 

system with a high clock frequency is desirable for its high processing speed which 

increases the system throughput accordingly. On the other hand, a high clock 

frequency increases the power consumption of the system which makes it less 

efficient for mobile application [29, 48-49]. The comparison shows that the optimized 

Sobel processor is able to achieve a significantly high throughput with a considerably 

low frequency.  

Since the optimized Sobel processor is implemented using the Altera Cyclone II 

DE2-70 [51], while the other processors were implemented on Xilinx FPGA (Spartan 

3 for [37], XC3042 for [42] and Virtex 4 for [22], the architecture differences between 

the two vendors must be considered before the evaluation. For instance, the Altera 

Cyclone II DE2-70 FPGA consists of logic array blocks (LABs) that contain 16 LEs 

in each. Each logic element contains a single 4 inputs type look up table (4-LUT) and 

other logic for multiplexing, addition and some registers [44, 50], While the Xilinx 

FPGAs from Virtex 4 family and earlier families (includes Spartan 3 family) consist 

of slices, each of which consists of two 4-LUTs and other logic for multiplexing, 
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adding and registers. The Xilinx XC3042 FPGA contains Configurable Logic Blocks 

CLBs. The CLB architecture is based on 32x1 LUT that can be separated into two 4-

LUTs to implement two logic functions with 4 inputs each [51]. Therefore, the 

comparison between the two vendors should be based on the number of LUTs 

occupied by the architectures in each FPGA platform because the architecture of the 

LUT is nearly the same.  

The comparison between the five architectures is shown by Table 4.13. It should 

be considered that the logic utilization comparison between the different platforms is 

a best estimate because the logic utilization does not take into account the number of 

flip flops, multiplexers, and routing logic which are essential parts of the LE, slice, 

and (CLBs). 

Table 4.13 Logic utilization comparison 

Sobel Processor FPGA type 
Architecture 

configurations  

Number of 4-LUTs 

(equivalent) 

The optimized Sobel 

processor 

Cyclone II DE2-

70 
1x4 548 

Processor proposed 

by [37] 
Xilinx Spartan 3 1x1 202 

Processor 1 

proposed by [22] 
Xilinx Virtex 4 1x1 570 

Processor 2 

proposed by [22] 
Xilinx Virtex 4 1x1 701 

Processor proposed 

by [42] 
Xilinx XC3042 1x1 140 

It is seen from Table 4.13 that the optimized Sobel processor requires 548 4-LUTs 

since the LE of DE2-70 board consists of one 4-LUT. The processor proposed by [37] 

occupies 202 4-LUTs of the Xilinx Spartan 3. The architecture has less LUTs than the 

optimized Sobel processor because it consists of a single Sobel module that calculates 

one output pixel in every clock cycle. Processor 1 proposed by [22] uses the data 

reuse by exploiting scalar replacement technique within the horizontal calculations by 

saving the reused data in dedicated logic registers to be used in the next clock cycle. 
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Therefore the logic utilization is close to that of the proposed architecture. Processor 2 

proposed by [22] utilizes the data reuse in the horizontal and vertical direction and 

saves the reused data in the block RAM of the Xilinx Virtex 4 FPGA. The processor 

occupies slightly more LUTs than the optimized Sobel processor. The Sobel processor 

presented by [42] is implemented on Xilinx XC3042 device with 70 CLBs which are 

equivalent to 140 LUTs. Considering the configurations of the processors in the table, 

the optimized Sobel processor contains 4 Sobel instances to calculate 4 output pixels 

at the same time while all the other processor contain only one Sobel instance. This 

makes the optimized processor the least logic utilization in comparison with the other 

processor in Table 4.13. 

 

Figure 4.5 The logic utilization comparison 

The comparison between the Sobel processors in terms of frequency and 

throughput is summarized in Table 4.14. The maximum performance of the optimized 

Sobel processor is compared with the other Sobel processor mentioned in the 

literature. The throughputs and frame rates of each processor are recalculated for a 

640x480 frame size to match the frame size of the optimized Sobel processor.  

For instance, the Sobel processor proposed by [37] operates in 134.756MHz and 
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is able to calculate the edges for an image size of 512x512 (262,144) pixels in 1.95ms. 

This results in a throughput of (262,144*1000/1.95=134.432x10
6
) 134.432MP/s. For a 

frame size of 640x480 (307200) pixels, the processor can achieve a frame rate up to 

(134.432x10
6
/307200=437.6) 437.6fps. Similarly, the Sobel processor 1 proposed by 

[22] is capable of processing 128x128 (16,384) pixels in 0.271ms with a frequency of 

253MHz which results in a throughput of (16,384*1000/0.271=60.4x10
6
) 60.4MP/s. 

The frame rate for a 640x480 frame size can be calculated as 60.4x10
6
 /307200= 

196.8fps. The same calculations are performed to calculate the frame rate for 

processor 2 proposed by [22] that can process 16,384 pixels in 0.226ms (72.5MP/s 

throughput) running with a 264MHz clock. Finally, the Sobel proposed by [42] 

reports a throughput of 4.4MP/s, which can produce (4.44x10
6 

/30720) 14.45fps for a 

640x480 frame size.  

Table 4.14 Processors performance comparison 

Processor 

Clock 

frequency 

(MHz) 

Throughput 

(MP/s) 

Frame rate 

 (fps) 

The optimized Sobel 

processor 
91.86 367.44 1196.02 

Processor proposed 

by [37] 
134.756 134.432 438.6 

Processor 1 proposed 

by [22] 
253 60.4 196.85 

Processor 2 proposed 

by [22] 
264 72.52 336.09 

Processor proposed 

by [42] 
40 4.44 14.45 

As reported in Table 4.14, the optimized Sobel processor has a maximum clock 

frequency of 91.86 MHz which is considerably low compared to the other Sobel 

processors in the table except for the processor in [42].The low frequency can help 

decrease the power consumption of the processor and enables the use of the processor 

in mobile and embedded systems [29, 48-49] The optimized Sobel processor has the 
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highest throughput and the highest frame rate with 367.44 MP/s and 1196.02 fps, 

respectively. The high throughput is caused by the partial loop unrolling of the design 

to produce 4 Sobel edge detection pixels in one clock cycle. This increases the frame 

rate concurrently to 1196.02 fps. The high frame rate and high throughput exceeds the 

real-time systems constrains and the low frequency makes the optimized Sobel 

processor a better choice for embedded systems. The comparison results are 

illustrated by the Fig. 4.6. 

 

Figure 4.6 Performance comparisons between the optimized Sobel processor and 

literature processors using normalized values with respect to the maximum value. 
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4.4 Chapter Summary 

This chapter presents an evaluation of the logic utilization of the optimized Sobel 

processor and its performance. A comparative analysis is carried out based on the 

processor performance versus four different Sobel processors in terms of throughput, 

frame rate, and frequency. The results show that the optimization performed on the 

proposed processor enables a massive increase in the processor throughput and hence 

frame rate even when the system operates with a relatively low clock frequency.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

This thesis proposes a dedicated Sobel processor architecture on FPGA. The 

processor is optimized by applying several optimization techniques to reduce the logic 

utilization and increase the throughput. The processor is integrated with other 

controlling modules in order to work as a complete edge detection system on Altera 

Cyclone II DE2-70 FPGA. The performance of the processor was compared to other 

Sobel edge detection processors.  

The proposed Sobel processor utilizes data reuse by taking advantage of the 

parallelism in the edge detection algorithm and the parallelism offered by the FPGA 

as the implementation platform. A single row of the Sobel processor utilizes the data 

reuse within one image line in the calculations of the horizontal gradients. The 

processor that consists of multiple rows utilizes the data reuse within the same image 

line and within multiple image lines to enable data reuse in both the calculations of 

the horizontal and the vertical gradients, respectively. The data reuse results in 54% in 

the number of subtractors in the processor block compared with other architecture. 

The effect of the optimization carried out on the processor is significant in terms 

of logic utilization and performance. In terms of logic utilization, the optimization 

reduces the processor size, allowing more instances to be placed inside the processor 

block. Consequently, the processor gains performance with a factor equals to the 

number of the Sobel instances contained in the processor block. The comparative 

analysis shows that the Sobel processor is able to achieve a very high throughput even 

when operating with a low clock frequency compared to other Sobel processors 

discussed in the literature. 
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With the help of the specially designed line buffer, the proposed processor is able 

to produce several output pixels every clock cycle and hence satisfy real-time systems 

constraints. The low logic utilization of the Sobel processor along with its 

significantly high throughput and low operating frequency make it a good choice for 

mobile and embedded systems. 

5.2 Future Work 

In this thesis, a single row optimized Sobel processor is integrated in a complete edge 

detection system and evaluated for logic utilization and real-time performance. The 

processor performance can be further improved by the integration of noise 

suppression system within the processor block to improve the quality of the processor 

output. Moreover, the optimized Sobel processor can be incorporated with other 

higher-level image processing operations in order to build an integrated image 

processing system for a specific application.    

 

 

 

 

 

 

 

 

 



   

  

85 

 

REFERENCES 

[1] B. A. Draper, et al., "Accelerated image processing on FPGAs," Image 

Processing, IEEE Transactions on, vol. 12, pp. 1543-1551, 2003. 

[2] N. Kehtarnavaz and M. Gamadia, Real-time image and video processing: from 

research to reality: Morgan & Claypool Publishers, 2006. 

[3] J. G. Ackenhusen, Real-time signal processing: design and implementation of 

signal processing systems: Prentice Hall PTR, 1999. 

[4] N. K. Guy, "Real-time image processing," in Dictionary of film and digital 

photography ed: PhotoNotes.org, 2002. 

[5] E. Dougherty and P. Laplante, Introduction to real-time imaging: SPIE Optical 

Engineering Press, 1995. 

[6] Altera. (March 2007). Video and Image Processing Design Using FPGAs, White 

paper. Available: http://www.altera.com/literature/wp/wp-video0306.pdf 

[7] R. González and R. Woods, Digital image processing: Pearson/Prentice Hall, 

2008. 

[8] S. Dikbas, et al., "Chrominance Edge Preserving Grayscale Transformation with 

Approximate First Principal Component for Color Edge Detection," in IEEE 

International Conference on Image Processing, ICIP  2007, pp. II - 261-II - 264. 

[9] A. S. P. Ram, "Design of a recognition system for special Malaysian car plates 

using stroke analysis," Master of Engineering Electrical engineering, Universiti 

Teknologi Malaysia 2005. 

[10] B. Chanda and D. Majumder, Digital image processing and analysis: Prentice-

Hall of India, 2004.                                                                                                      

http://www.altera.com/literature/wp/wp-video0306.pdf


   

  

86 

 

 [11] T.-H. H. Lee, "Edge Detection Analysis," Graduate Institute of 

Communication Engineering, National Taiwan University, Taipei, Taiwan, 

ROC2007. 

[12] C. Torres-Huitzil and M. Arias-Estrada, "FPGA-based configurable systolic 

architecture for window-based image processing," EURASIP J. Appl. Signal 

Process., vol. 2005, pp. 1024-1034, 2005. 

[13] L. G. Roberts, "Machine Perception Of Three-Dimensional Solids," PhD, 

Department of electrical engineering, Massachusetts Institute of Technology, 

Cambridge, MA, 1963. 

[14] S. C. Wu and J. M. S. Prewitt, "An Application of Pattern Recognition to 

Epithelial Tissues," in Proceedings of the Annual Symposium on Computer 

Application in Medical Care, 1978, pp. 15-25. 

[15] J. M. S. Prewitt, "Object enhancement and extraction," Picture Processing & 

Psychopictorics, Academic Press, New York, pp. 75-149, 1970. 

[16] I. Sobel and G. Feldman, "A 3x3 Isotropic Gradient Operator for Image 

Processing," presented at a talk at the Stanford Artificial Project, unpublished but 

often cited, orig. in Pattern Classification and Scene Analysis, Duda,R. and 

Hart,P., John Wiley and Sons,'73, pp271-2, 1968. 

[17] N. Kanopoulos, et al., "Design of an image edge detection filter using the Sobel 

operator," IEEE Journal of Solid-State Circuits vol. 23, pp. 358-367, 1988. 

[18] J. Canny, "A Computational Approach to Edge Detection," IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. PAMI-8, pp. 679-698, 1986. 

[19] H. S. Neoh and A. Hazanchuk, "Adaptive Edge Detection for Real-Time Video 

Processing using FPGAs," presented at the The International Conference for 

Embedded Signal Processing Applications, GSPx 05, Santa Clara, CA, 2005. 



   

  

87 

 

[20] B. So and M. Hall, "Increasing the Applicability of Scalar Replacement," in 

Compiler Construction. vol. 2985, E. Duesterwald, Ed., ed: Springer Berlin / 

Heidelberg, 2004, pp. 2732-2732. 

[21] J. M. P. Cardoso and P. C. Diniz, "Modeling Loop Unrolling: Approaches and 

Open Issues," in Computer Systems: Architectures, Modeling, and Simulation. 

vol. 3133, A. Pimentel and S. Vassiliadis, Eds., ed: Springer Berlin / Heidelberg, 

2004, pp. 224-233. 

[22] J. Park and P. C. Diniz, "Partial data reuse for windowing computations: 

performance modeling for FPGA implementations," presented at the Proceedings 

of the 3rd International Conference on Reconfigurable Computing: Architectures, 

Tols and Applications, Mangaratiba, Brazil, 2007. 

[23] N. Baradaran, et al., "Compiler reuse analysis for the mapping of data in FPGAs 

with RAM blocks," in Proceedings of IEEE International Conference on Field-

Programmable Technology, 2004, pp. 145-152. 

[24] Y. N. Srikant and P. Shankar, The Compiler Design Handbook: Optimization and 

Machine Code Generation: CRC PRESS, 2007. 

[25] B. Buyukkurt, et al., "Impact of Loop Unrolling on Area, Throughput and Clock 

Frequency in ROCCC: C to VHDL Compiler for FPGAs," in Reconfigurable 

Computing: Architectures and Applications. vol. 3985, K. Bertels, et al., Eds., ed: 

Springer Berlin / Heidelberg, 2006, pp. 401-412. 

[26] O. S. Dragomir, et al., "Loop unrolling and shifting for reconfigurable 

architectures," in International Conference on Field Programmable Logic and 

Applications, FPL, 2008, pp. 167-172. 

[27] O. S. Dragomir, et al., "Optimal Loop Unrolling and Shifting for Reconfigurable 

Architectures," ACM Trans. Reconfigurable Technol. Syst., vol. 2, pp. 1-24, 2009. 



   

  

88 

 

[28] J. Mellor-Crummey and J. Garvin, "Optimizing Sparse Matrix–Vector Product 

Computations Using Unroll and Jam," International Journal of High 

Performance Computing Applications, vol. 18, pp. 225-236, 2004. 

[29] S. Kilts, Advanced FPGA Design: Architecture, Implementation, and 

Optimization: John Wiley & Sons, 2007. 

[30] F. Hannig, et al., "Parallelization Approaches for Hardware Accelerators – Loop 

Unrolling Versus Loop Partitioning," in Architecture of Computing Systems – 

ARCS 2009. vol. 5455, M. Berekovic, et al., Eds., ed: Springer Berlin / 

Heidelberg, 2009, pp. 16-27. 

[31] K. Jung Sub, et al., "An Automated Framework for Accelerating Numerical 

Algorithms on Reconfigurable Platforms Using Algorithmic/Architectural 

Optimization," Computers, IEEE Transactions on, vol. 58, pp. 1654-1667, 2009. 

[32] U. Meyer, et al., Algorithms for memory hierarchies: advanced lectures: 

Springer, 2003. 

[33] N. Baradaran, et al., "Extending the Applicability of Scalar Replacement to 

Multiple Induction Variables," in Languages and Compilers for High 

Performance Computing. vol. 3602, R. Eigenmann, et al., Eds., ed: Springer 

Berlin / Heidelberg, 2005, pp. 455-469. 

[34] P. M. Athanas and A. L. Abbott, "Real-time image processing on a custom 

computing platform," Computer, vol. 28, pp. 16-25, 1995. 

[35] K. Benkrid, et al., "High level programming for real time FPGA based video 

processing," in Proceedings of IEEE International Conference on Acoustics, 

Speech, and Signal Processing. ICASSP '00, 2000, pp. 3227-3230. 

[36] A. Emmanuel, et al. (2009, the Sobel Edge detector using FPGA Project. 

Available: http://edge.kitiyo.com/ 

http://edge.kitiyo.com/


   

  

89 

 

[37] T. A. Abbasi and M. U. Abbasi, "A proposed FPGA based architecture for Sobel 

edge detection operator," Journal of active and passive electronic devices, vol. 2, 

pp. 271–277, 2007. 

[38] S. Hezel, et al., "FPGA-based template matching using distance transforms," in 

Proceedings of the10th Annual IEEE Symposium on Field-Programmable 

Custom Computing Machines, 2002, pp. 89-97. 

[39] S. Chivapreecha and K. Dejhan, "Hadware implementation of Sobel-Edge 

detection Distributed Arithmatic Digital Filter " presented at the 25th ACRS, 

Asian Conference on Remote Sensing, Chiang Mai, Thailand, 2004. 

[40] N. K. Ratha, et al., "Convolution on Splash 2," in Proceedings IEEE Symposium 

on FPGAs for Custom Computing Machines, 1995, pp. 204-213. 

[41] R. W. Means and H. J. Sklar, "Systolic array image processing system," United 

States Patent, 1989. 

[42] L. Xue, et al., "FPGA based Sobel algorithm as vehicle edge detector in VCAS," 

in Proceedings of the 2003 International Conference on Neural Networks and 

Signal Processing, 2003, pp. 1139-1142 Vol.2. 

[43] A. Y. Zomaya, et al., "Genetic scheduling for parallel processor systems: 

comparative studies and performance issues," IEEE Transactions on Parallel and 

Distributed Systems, vol. 10, pp. 795-812, 1999. 

[44] Altera, Cyclone II Device Handbook vol. 1. San Jose, CA: Altera Corporation, 

2008. 

[45] C. E. Cummings, "Simulation and Synthesis Techniques for Asynchronous FIFO 

Design," presented at the SNUG 2002, Synopsys Users Group Conference, San 

Jose, CA, 2002. 

[46] Terasic. (2009, Altera DE2-70 board user manual. Available: 

http://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&CategoryNo=53&No=226&PartNo=4 

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=53&No=226&PartNo=4
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=53&No=226&PartNo=4


   

  

90 

 

[47] Terasic. (2009, D5M 5 Mega Pixel Digital Camera Package. Available: 

http://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&CategoryNo=68&No=281&PartNo=3 

[48] R. Woods and J. McAllister, FPGA-based implementation of signal processing 

systems: John Wiley & Sons, 2008. 

[49] H. Saar. (2006, Minimizing FPGA power consumption. Available: 

http://www.eetimes.com/design/automotive-design/4004640/Minimizing-FPGA-

power-consumption 

[50] J. Voelmle, "Investigation of Altera DE2 Development and Education Board," 

Florida Gulf Coast University2009. 

[51] Xilinx. (1998, XC3000 Series Field Programmable Gate Arrays (XC3000A/L, 

XC3100A/L) Product discribtion. Available: 

http://www.xilinx.com/support/documentation/data_sheets/3000.pdf 

 

 

 

 

 

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=68&No=281&PartNo=3
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=68&No=281&PartNo=3
http://www.eetimes.com/design/automotive-design/4004640/Minimizing-FPGA-power-consumption
http://www.eetimes.com/design/automotive-design/4004640/Minimizing-FPGA-power-consumption
http://www.xilinx.com/support/documentation/data_sheets/3000.pdf


   

  

91 

 

APPENDIX 

Publications: 

 Zahraa Elhassan M. Osman, Fawnizu Azmadi Hussin, Noohul Basheer Zain 

Ali," Optimization of Processor Architecture for Image Edge Detection filter," 

UKSIM 12
th
 International Conference on Computer Modeling and Simulation, 

Cambridge, United Kingdom,  March 2010, pp. 648-652. 

 Zahraa Elhassan M. Osman, Fawnizu Azmadi Hussin, Noohul Basheer Zain 

Ali," Hardware Implementation of an Optimized Processor Architecture for 

SOBEL Image Edge Detection Operator,” 3
rd

 International Conference of 

Intelligent  and Advanced System, (ICIAS), Kuala Lumpur, Malaysia, June 

2010, in press. 

 


