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ABSTRACT

A study on the friction and wear properties of brake pad materials under

nominal contact pressure, sliding speed and relative humidity was carried out in order

to understand the phenomena related to friction and wear processes at the contact

surface of brake pad. Three LRT brake pads were employed and their compositions

were examined using three x-ray techniques; (i) energy dispersive x-ray (EDX), (iii)

x-ray fluorescence (XRF) and (iii) x-ray diffraction (XRD). The friction and wear

studies were carried out using a three pins-on-disc apparatus over wide ranges of

contact pressure, sliding speed and relative humidity. The worn surface morphology

was examined by electron scanning microscopy and x-ray analysis. The results of

friction curve analysis shows that friction took place by several stages and form six

friction curve shapes, where each curve was influenced by the test parameters. The

test parameters were also found influencing the duration of the friction stage. This

phenomenon is affected by composition and thermal degradation of the samples. The

appearance of friction curve shape also considered to be related to formation and

destruction of friction layer process on the contact surface. X-Ray analysis of the

friction layer at the mating surface indicated that the friction layer mostly consist of

iron oxides. Wear of the sample show increasing wear with contact pressure and

sliding speed. This factor is concluded due to increasing of plastic deformation,

frictional heating and fatigue effect. Only wear of Pad-3 was found increase with

relative humidity. This difference is considered affected by hardness, porosity and

thermal degradation of the sample. Friction curve analysis and micrograph of wear

debris indicated that wear process of the sample was taken place by three modes: (i)

surface fracture, (ii) abrasion by wear debris and hard particles, and (iii) material

transfer. The micrograph of the worn surface show that wear of the sample was taken

place by combination of four mechanisms: (i) adhesion, (ii) abrasion, (iii) fatigue, and

(iv) delamination

Key words: Brake Pad, coefficient of friction, wear, contact pressure, sliding speed,

humidity, pin-on disc.
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ABSTRAK

Satu kajian sifat geseran dan haus pada bahan pad brek di bawah tekanan

sentuh namaan, kelajuan gelangsar dan kelembapan nisbi telah dijalankan untuk

memahami fenomena berkaitan proses geseran dan haus pada permukaan sentuh pad

brek. Tiga pad brek untuk LRT telah digunakan dan komposisi mereka telah dikaji

menggunakan tiga teknik sinar-X; (i) sinar-X tenaga terserak (EDX), (ii) pendarfluor

sinar-X (XRF) dan (iii) pembelauan sinar-X (XRD). Kajian geseran dan haus telah

dijalankan menggunakan radas tiga pin-atas-cakera dalam pelbagai julat tekanan

sentuh, kelajuan gelangsar dan kelembapan nisbi. Morfologi permukaan terhakis telah

dikaji dengan menggunakan kemikroskopan elekron imbasan (KEI) dan analisis sinar-

X. Keputusan dari analisis garis lengkungan geseran menunjukkan geseran belaku

melalui beberapa tahap dan membentuk enam bentuk garis lengkungan, yang mana

setiap garis lengkungan dipengaruhi oleh parameter ujian. Parameter ujian juga

dijumpai mempengaruhi masa tiap tahapan geseran. Fenomena ini dijejaskan oleh

kandungan dan pudar haba dari sampel. Rupa bentuk garis lengkungan juga dianggap

berkait rapat dengan proses pembentukan dan pemusnahan lapisan geseran di

permukaan sentuh. Analisis sinar-X dari lapisan geseran pada kedua-dua pasangan

permukaan menunjukkan lapisan geseran kebanyakannya terdiri dari oksida besi.

Haus pada sampel menunjukkan peningkatan haus dengan tekanan sentuh dan

kelajuan gelangsar. Faktor ini disimpulkan kerana peningkatan ubahbentuk plastik,

pemanasan geseran, dan pengaruh lesu. Hanya haus Pad-3 bertambah dengan

kelembapan nisbi. Perbezaan ini dipertimbangkan terjejas oleh kerana kekerasan,

keporosan, dan pudar haba sampel. Analisis garis lengkungan geseran dan mikrograf

serpihan haus menunjukkan bahawa proses haus sampel berlaku atas tiga cara: (i)

retak permukaan, (ii) lelasan serpihan haus dan partikel haus, dan (iii) pemindahan

bahan. Mikrograf permukaan terhakis menunjukkan bahawa haus sampel terjadi

dengan penggabungan empat mekanisme: (i) rekatan, (ii) lelasan, (iii) lesu, dan (iv)

nyah lapisan.

Kata kunci: Pad brek, geseran, haus, tekanan sentuh, kelajuan gelongsor,

kelembapan, pin-atas cakera.
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CHAPTER ONE

INTRODUCTION

1.1 Background of Study

Brake friction materials have been widely used in vehicles as part of their

safety device. These materials have been used since the first vehicle was invented.

Together with the intensive research and development of vehicles today, the

requirement of suitable brake friction materials are increasing as well.

The development and improvement of a suitable brake pad material is still

being considered as an extensively difficult task to carry out. The difficulties are

generally due to many factors and parameters that influence brake pad performance.

In order to get optimized function of braking force, it is important to have a good

friction between brake friction material and the brake disc. This in turn means that the

material must have stable coefficient of friction (COF, denoted as ) in any working

condition. Another difficulty in the formulation of a commercial brake pad material is

manufacturer copyrights. To meet all of these demands, brake pad material is

formulated not only by a single material but rather by composing more than ten

constituents [1, 2]. Although the exact composition of commercial brake pad is still

being confidential, polymer matrix composite are widely known to be used in

automotive, air plane and railway transportation systems as brake pad material. They

represent a replaceable (sacrificial) element in the friction couple and are typically

rubbed against cast iron, steel, or aluminum matrix composite [3, 4].

Railway has been an important means of transportation since long time ago.

Its capability to transport a large number of passengers has significant advantages

compared to automobile or bus. In urban transportation system, train system has been

modified into light rail transit (LRT) system, which has less capacity but easier to

move around the city. Like any other vehicles, LRT cars is equipped with brakes in

the safety system which is required to decrease the speed of moving cars, stopping,

and holding the cars when parked.
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In LRT braking system, the friction brake system is used in addition to the

electrical braking system. The friction brake usually used when the speed reaches a

certain point after the electrical braking system worked. However, in the case of

emergency the friction brake system must able to stop moving cars at any speed

within a minimum stopping distance in a relatively short period of time. Generally,

this will cause very high energy levels to be dissipated in each brake disc in relatively

short time [5]. Although the importance of this material to railway has been

recognized, only few literatures on LRT brake pad material were found.

1.2 Problem Statement

Tribological studies of brake pad materials have been done extensively in the

past several decades in order to understand the unique characteristics due to their

operational function as a part of vehicle safety system. The role and mechanism of

this special material in stopping the vehicle is still not fully exposed. Moreover, since

the development of these materials is still relying on trial and error basis, the research

on brake pad materials is still an open opportunity.

The tribological knowledge is crucial for identification, development, and

improvement of brake pad materials. Improving the quality and performance of

friction materials will certainly increase their efficiency.

It is common knowledge that braking retards the moving vehicles by

transforming kinetic energy to heat. This job is performed by frictional action

between the brake pad material and brake disc. However, the basic knowledge of

gripping and contact mechanisms between the brake pad and brake disc is still

relatively limited [6].

The requirement for faster but safer vehicles nowadays has increased the

demands to improve brake pad performance as part of the vehicles’ safety system. It

has become a common knowledge that the operator/driver expects relatively constant

level of friction at various braking conditions by applying less pressure on the brake

pad. In addition, the brake pad material must be reliable, has a low wear rate, not

affected by environment, have less noise and vibration.
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In the development of a brake pad material, it is important to understand the

role of contact pressure, sliding speed and relative humidity on friction and wear

performance. Rhee [7], Pogosian et.al [8], and Castelli [9] stated that coefficient of

friction and wear has inverse relationship with normal load and sliding speed. Blau

et.al [10] found that moisture content also have significant effects to coefficient of

friction. However, data of friction coefficient and wear of brake pad material at

different range of load, sliding speed, and environment are seldom provided by

manufacturer [11]. Furthermore, the phenomena at contact surface in microscopic

level are also not fully understood.

When braking action is applied, friction will take place at the surface of the

pads and the discs. Theoretically, the pads will rub against the disc surface and cause

wearing, which will decrease the pad’s thickness. Although the brake pad material is a

sacrificial material in the braking system, it will incur high cost if several

replacements are required during short period of usage time. Brake pad

manufacturers would not be able to retain customer’s trust with their product if the

product worn easily even if it has good friction.

1.3 Objectives and Scope of Study

In the research and development of brake pad materials, laboratory scale test is

usually required in order to obtain tribological properties of brake pad material, which

will be used as a benchmark before a prototype of the brake pad formulation is tested

on full scale. This research covers the laboratory scale test that forms the preliminary

study in the development of brake pad material. The objectives of this project are:

i. To study the friction interaction on brake pad material of various formulation

under different contact pressures, sliding speed and relative humidity.

ii. To understand the phenomena related to friction and wear process on the

contact surface.

The scope of this study includes the examination of material composition in

brake pad materials, mechanisms of friction and wear, and their relationship to
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friction and wear, as well as surface morphology. The information obtained from this

study will provide some understanding of tribological behavior of dry friction

material in brake system, which in this case, light rail transit (LRT) brake material

was used. The friction and wear tests were performed under low temperature

condition. The experimental flow chart is attached in Appendix A.

1.4 Thesis Overview

This thesis is divided into five chapters. A brief introduction of friction and

wear of brake pad materials, problem statement and, the objectives and scope of study

are presented in chapter one.

Chapter two of this thesis presents the literature review on the concept and

development of brake pad materials, role of base material to friction and wear of

brake pad materials and, the mechanism of friction and wear of brake pad materials.

The experimental methods are discussed in chapter three. The methodology is divided

into assessment of the contents of the samples and, surface characterization and

tribological experiments on the samples.

Chapter four presents the experimental results and the detailed explanation of

those results, which are presented in the form of tables, graphs and figures. Finally,

chapter five gives the conclusions found from the experimental works and the

recommendations for future works. The important issues and results that arise from

this research are addressed in relevance to the original aim and objectives.



CHAPTER TWO

LITERATURE REVIEW

2.1. Introduction to Friction and Wear

Tribology is the science and technology of the interactions between surfaces in

relative motion and of related subjects and practices [12]. This subject covers the

study of friction, wear, and lubrication of mating material, which designate to

understand the interactions between surfaces and solving the technological problem

associated with the interfacial phenomena. Various incidents may come up in these

interactions: forces are transmitted, mechanical energy is converted, and physical and

chemical natures including surface topography of the interacting materials are

changed. Thus, it related to many disciplines, from physics and chemistry to

mechanical engineering and material science, and also the technological importance

[12].

The concept of friction was first introduced by Da Vinci in late 1400s,

Amonton in 1699, and Coulomb in 1975. Friction is the resistance to motion during

sliding or rolling that is experienced when one solid body moves tangentially over

another with which it is in contact. When two solid bodies tangentially slid or rolled

against each other, there will be a resistance force occur which oppositely to direction

of the motion. This tangential resistance force is known as friction force, where

friction force, F, usually defines as a non dimensional factor called coefficient of

friction, μ, times applied force, P. This relationship mathematically expressed as:

μP=F ……...……..…………………………..(1)

Figure 2.1 illustrates typical friction between two solid bodies. When two

solid bodies relatively moving each other are loaded with a vertical force, P, the value

of the tangential force that is required to initiate motion is acknowledged as the static

friction force, Fstatic or Fs and the tangential force required to maintain relative motion

is known as the kinetic (or dynamic) friction force, Fkinetic or Fk. From this type of

force, two types of friction coefficients can also be distinguished: static coefficient of

friction, μs, and kinetic coefficient of friction, μk.
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Figure 2.2 illustrates typical friction force curves. Figure 2.2.a and 2.2.b show

typical normal friction characteristics. Friction force a and c are used to determine the

static coefficient of friction, μs, whereas force b is used to determine the kinetic

friction of friction, μk. When the friction force curve shows trend as figure 2.2.c, this

means that the friction shows a stick and slip behavior. The stick slip behavior

commonly caused vibration at the sliding system. As consequence, the squeal and

chatter noises are occur where in most braking system, squeal noises are consider

undesired [13].

Figure 2.1 Illustration of friction; (a) two body slid against another, and (b) two

body rolled against another [12]

(a)
Figure 2.2 Typical friction force curve [14]
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(b)

(c)

Figure 2.2 Typical friction force curve (continued)

Generally, friction is not a material property but rather a system response

which depend on several parameters as shown in Figure 2.3. The parameters which

influence friction of material pair are [15, 16]:

i. Structural parameters, which characterize the components such as material,

lubricant, and environment including their physical, chemical, and

technological properties that involved in the friction and wear process.

ii. Operating parameters, such as loading, kinematics, temperature conditions,

and functional duration.

iii. Interaction parameters, which characterize particularly operating parameters

on the structural components of the tribological components of the system and

define its contact and lubrication modes.
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Figure 2.3 Parameters influence friction and wear process [15, 16]

There are two main types of friction that are commonly encountered: dry

friction and wet friction. Dry friction is describes the tangential component of the

contact force that are exists when two dry surface move or tend to move relative to

one another. Wet friction describes the tangential component of the contact force that

exist between adjacent layers in a fluid that are moving at different velocities relative

to each other as in liquid or gas between bearing surfaces.

These considerations lead us to taking care of any possible factors that

influencing frictional behavior of sliding materials. Several examples of the factors

influenced the frictional behavior are tabulated in Table 2.1.

Friction can not be avoided in normal life. It will always occur as long as

relative motion between two components are exists. It has productive and desired

outcome such as friction at brake systems, clutches, belts, wheels of cars and train,

bolts and nuts, etc. It also has non productive and undesired outcome like friction at

internal combustion engine, bearings, gears, seals, and cams.

Operational
Parameter:
Load
Kinematics
Temperature
Duration

Interaction
Parameter:
Contact mode
Lubrication
mode
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Table 2.1 Factors influencing friction behavior [16].

Category Factor

Contact geometry - Conformity of the components (macro-scale mating of
shapes)

- Surface roughness (micro-scale features-asperity shapes, size
distribution)

- Surface waviness
- Surface lay (directionality) with respect to relative motion

Fluid properties and flow - Lubrication regime (boundary, mixed, hydrodynamic,
elastohydrodynamic

- Viscosity and characteristics of the fluid as its affect
Newtonian or non-Newtonian flow

- Temperature and pressure effects on viscosity
- Shear thinning effects on viscosity in ultra thin films

Lubrication chemistry - Formation of friction-altering films
- Stability of friction-modifiers over time
- Oxidation and acidification of lubricants

Relative motion - Unidirectional or reciprocating motion
- Constancy of motion (acceleration, pauses, start-stop)
- Magnitude of relative surface velocity

Applied force - Magnitude of the normal force (contact pressure)
- Constancy of applied forces

Third bodies - Characteristics of particles entrained in the lubricant
- Characteristic of particle assemblages contained within

interface (e.g., wear particles, external contaminants,
lubricating powder layers)

Temperature - Thermal effects on material properties (thermoelastic
instabilities)

- Thermal effects on lubricant properties (viscosity, flow,
possibility for cavitation)

Stiffness and vibration - Contact compliance (stick slip)
- Damping of frictional or external vibrations
- Feedback between frictional stimulus and structural response

As the result of friction, wear also will be occurring on those two components

and affecting its useful life. According to ASTM G-40, wear is defined as damage to a

solid surface, generally involving progressive loss of material, due to relative motion

between the surface and a contacting substance or substances. Like friction, wear also

a system response which occurs not as a single process but rather in the several

mechanisms such as: adhesive, abrasive, fatigue, impact by erosion and percussion,

chemical or corrosive, and electrical-arc-enduced wear [12].
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2.2. Brake System

The brake is a mechanism which is used to absorb the kinetic energy of the

vehicle with the aim to stop or retard the motion [17]. Friction between the brake

friction material and the rotor will generate heat. This heat generated caused of the

brakes transform kinetic energy to heat while it working through the structure of the

brake system.

Brake system is one of main component in a vehicle. This component is

subjected to decelerate the vehicle by rubbing the brake friction material to the rotor

part i.e. brake pad to disc brake, brake shoe to drum brake. Not only to decelerate,

brake system also meant to hold the vehicle steadily when it parked. All of these

actions are maintained by friction between the brake lining and brake rotor. The

friction between brake lining materials and the rotor will convert kinetic energy to

heat and dissipate the heat through its system surrounding.

The brake system also required to provide sufficient friction level and

maintain stable in the changes of speed, applied load, and sliding temperature during

braking operation. This system also should be able to operate in good and safe in all

conditions such as wet and dry road. For example when applying brake on slippery or

coarse road, whether using old or new brake linings material, when vehicle was

driven by a new or experience driver, when brake on the straight or corner road [18,

19, 20, 21]. Generally, the brake system can be categorized into four major

components [18, 19]:

i. Power supply is component of the brake system which provides and control

the energy required during braking.

ii. Control device is component act on the operation and control the brake system

iii. Transmission device

iv. Brake pad/shoe

Figure 2.4 shows a typical brake system and its components commonly found

in automotive vehicles. When the driver apply braking force by pressing the brake

pedal, brake fluids inside the cylinder will push pistons at the caliper through the
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transmission device. This operation then will force brake pad or brake shoe against

the rotating brake disc or drum and generate friction.

Figure 2.4 Brake system components.

2.2.1. Disc Brakes

Disc brakes use a rotor disc slid against a pair of friction pad (Figure 2.5). This

type of brake has advantages in offering faster cooling, with their larger exposed

surface areas and better cooling geometry, but are more vulnerable to either liquid or

solid particulate contamination [22].

2.2.2. Drum Brakes

Drum brakes system mainly using internal expanding shoes with brake linings

that load the majority of the drum rubbing surface (typically 50 – 70 % of the load)

[22]. This system has advantages in their high effectiveness because of the self

amplification. Contrary with disc brake system, this system not so capable to dissipate

the heat generated from friction. Thus it has disadvantages due to its sensitivity to

brake fade [17]. Generally drum brake system have 3 types in their application;

simplex drum brake, duplex drum brake, and duo servo drum brakes (Figure 2.6).
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(a)

(b)

Figure 2.5 Disc brakes (a) automotive disc brake [23], (b) PUTRA LRT disc brake

(a)

Figure 2.6 Drum brakes; (a) simplex drum brakes, (b) duplex drum brakes, and

(c) duo servo drum brakes [17]
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(b)

(c)

Figure 2.6 Drum brakes; (a) simplex drum brakes, (b) duplex drum brakes, and

(c) duo servo drum brakes (continued)

2.3. Brake Pad Materials

Historically, many kinds of materials had been used for brake since vehicle

was found. At the earlier time, wagon brakes used wood and leather as brake material.

Current brake materials are commonly contains organic-based materials, like

polymers and plant fibers.

The research activity in the developments and improvements of the brake pad

materials are open widely since the optimum formulation of brake pad materials are

not fully documented yet. In addition, the role of each element in the formulation to

friction and wear of the brake pad are still not clear yet too. Thus, it is still being a

difficult task to performed because different element will give different result.
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Moreover the formulation of industrially manufactured friction materials is still being

company proprietary information [24].

In general, components consisting in the formulation of brake pad materials

able to classify into five groups [6, 19, 25]:

i. Binder (matrix) materials; used to hold all components together and determine

the thermal stability, common binder materials used in the brake pad

formulation are: phenolic resin; rubber; metallic; and carbon.

ii. Reinforcing fibers; usually subjected to provide and improve the mechanical

strength. Some reinforcing fibers usually used are: asbestos; glass fiber,

ceramic fiber, metal fibers (steel, copper, brass, aluminium, etc.), para-aramid

(kevlar), wollastonite, potassium titanate.

iii. Fillers; used to maintain the overall composition, improve manufacturability

and reduce cost. Several materials typically used as fillers are: mineral fillers

(like mullite, kyanite, silliminate, alumina, and crystalline silica), barium

sulfate or barite, calcium carbonate, cashew nut shell oil, cotton, lime, sea

coal, zinc oxide, vermiculite, molybdenum trisoxide.

iv. Solid lubricants; these materials are functioned to lubricate, raise and stabilize

the friction, or react with oxygen to help control interfacial films. Several

material usually used are: carbon (graphite), brass powder (62% Cu-38% Zn);

copper powder, friction dust (commonly consist of processed cashew resin),

metal oxides such as ZnO, Fe3O4, Cr2O3, and metal sulfide such as Cu2S,

Sb2S3, PbS, and MoS2.

v. Abrasive materials, meant to help maintaining the cleanliness of mating

surfaces by removing the iron oxides and control the build up of friction films.

They also increase friction, particularly when initiating a stop (i.e. they

increase “bite”). Materials usually used as abrasive are: aluminum oxide

(Al2O3), Iron oxide, quartz or silica, and Zirconium silicate (ZrSiO4).

As the development of brake pad materials has become more intensively

conducted by researchers and manufacturer, Anderson [22] has classified three abroad
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classifications of the friction material: organics, metallic, and carbon. This

classification was made based on the binder bind all element and compound

composed in the brake pad material.

2.3.1. Organic Friction Material

This type of friction material is composites of one or more binder resins

blended together with reinforced fiber and some additives which is to modified

friction, improve wear, reduce cost, aided processing, changed color, and so on. There

are three subclasses of these resin-bonded friction materials:

i. Asbestos brake friction material

Asbestos brake friction materials are composed from chrysotile asbestos

material bind with phenolic resins and additives. The usage of asbestos widely

used as basic fiber material before the early 1980’s. It has advantages due to

its fibrous nature that combine strength, flexibility, heat and chemical

resistance [26, 27]. It thermally stable up to 500 ºC, able to regenerate the

friction surface during used, it wears well, and most important is available at

reasonable cost [26, 27]. However it was found that asbestos fiber is

dangerous to health if inhaled. It was prohibited to use asbestos fiber since

1985 in Europe, 1993 in US and Japan, and 2003 in Australia. The major

diseases resulting in the long term of asbestos exposure are asbestosis, lung

cancer, and mesothelioma [28].

ii. Non asbestos organic (NAO) brake friction material

Although the usage of asbestos fiber in the formulation of brake pad materials

has been prohibited in many countries due to health reason, it can generally

replaced by other fiber/fiber blends [27]. Generally non asbestos organic brake

friction material is composed of non asbestos organic material and some

additives. This brake lining has been rapidly evolved and continuously

developed. There over 1200 different fibers, acicular materials, and other

reinforcing agents have been tested to date [22]. This factor affected the

number of the potential combination in the formulation become stunning

because of most NAO materials use a blend of different fibers and other
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reinforcing agents. The most commonly used fibers are glass (including

chopped glass fibers, mineral wool, and many proprietary species), metal,

ceramic, para-amid (Kevlar), cellulosic, and other organics forms. Acicular

materials, such as wollastonite, and plate like-material, such as attapulgite, are

also used as reinforcing agents in NAO linings. Beside its potential to be

improved, this type of friction material shows better performance in terms of

friction stability and comfort [29,30]. However there are still many concern

about brake induced problem such as noise, judder, and excessive wear of the

rotor and friction materials regardless of the type of friction material [30].

iii. Semi metallic (semimet) brake friction material

Semimet linings are generally consist of about 65 wt% total irons content, 10 –

25 wt% steel wool, and bind with heat resistance phenolic resin about 10 %

wt., and the remainder is commonly a porous iron powder. Graphite, usually

synthetic, as addition, is about 15 wt%. The semimet brake pad material has

advantage due to its high temperature performance and wear resistance [31],

excellent disc compatibility, improved energy absorption, possibility of

smaller brake sizing, and premium price [32]. However it cannot be used

universally for various reasons for example corrosion [24].

2.3.2. Metallic Brake Friction Materials

Metallic brake linings can be based on either copper or iron. Most of are solid-

state sintered, often with inorganic additives to improve performance. These have

been developed for very high power input densities. For example, solid-state-sintered

bronze and mullite linings are used in the race car and high speed railroad brakes.

Sintered iron with graphite is used on some heavy duty brakes; both disk and drum, as

well as on a few production passenger cars drum brakes.

Another metallic friction material is cast iron. Although this venerable

material is used on some old railroad tread brakes, no new automotive applications are

known to use cast iron as brake lining. However it is the predominant counter-surface

material used for automotive drum and disk brakes. Therefore it remains a friction

element, although not a brake lining.
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2.3.3. Carbon-Based Brake Friction Materials

Carbon based brake lining such as carbon-carbon is commonly developed for

military and commercial aircraft disk brakes. Some are now used on racing cars where

weight is critical, performance is demanding and cost is secondary. Carbon-carbon

friction materials are made from carbon fiber (also called graphite fiber) that is

bonded with amorphous carbon. Organic resins are either baked at high temperatures

or a chemical vapor deposition process is applied to generate this amorphous carbon

binder. After further processing, the resultant friction material is essentially pure

carbon with a very low porosity. A 2000ºC operating temperature and a high specific

heat property permit carbon-carbon materials to provide weight savings of nearly 85%

when replacing cast iron in suitable applications.

2.4. Ingredient Functionality

Brake material ingredient serves a variety of functions. Each ingredient has its

own role in the friction material characteristics and changes in the type and weight

percentage of the ingredients may result in changes in physical, mechanical, thermal,

and chemical properties of the developed formulation. Table 2.2 shows several

material ingredients and its functions.

Table 2.2 Brake friction ingredient function

Material Nominal Function

Phenolic Resin
Most common binder used in friction materials and
control friction [22, 23, 24, 27,28, 33, 34]

Rubber
Additional binder; modify flexibility [24, 35, 36] and
improve thermal resistance [24]

Asbestos

Reinforcing fiber as well as filler; Common filler
before found as dangerous material to health; posses
good strength, flexibility, heat and chemical
resistance, as well as wear resistance [26, 27, 32, 37,
38]

Steel fiber/steel wool/ steel
chips

Reinforcing fiber; improve fade resistance at elevated
temperature [39,40]; reduce wear as well as control
formation of friction film [4], but in large amount
may cause high disc/drum wear [23]

Potassium titanate
(K2O.6(TiO2))

Reinforcing fiber; high thermal resistance and good
wear resistance [23], posses good fade resistance as
well as provide strength to maintain friction film [34,
41]



18

Table 2.2 Brake friction ingredient function (continue)

Material Nominal Function

Aramid Fiber

Reinforcing fiber; enhance mechanical strength
[34,36], has low fade resistance [34], reduce thermal
conductivity [36], improve wear resistance and
friction stability [41], used as asbestos replacement
[42]

Copper fiber Reinforcing fiber; improve high temperature fade
resistance [39], has capability to reduce friction [34]

Glass fiber Reinforcing fiber; a proper content of glass fiber
prevent swelling [4]

Copper sulfide (Cu2S) Solid Lubricant; causes gradual lost of friction [35]

Antimony trisulfide (Sb2S3)
Solid Lubricant; stabilize the friction [1, 2, 35], has
lower thermal conductivity [23]

Molybdenum disulfide
(Mo2S)

Solid lubricant; effective to build up friction film on
the disk surface [43].

Graphite Solid Lubricant; show unstable friction [1] but able to
form self sustaining lubricant layer [23, 43]

Zinc oxide (ZnO) Filler as well as lubricant; lubricates, improve wear
resistance but also can cause drum polishing [26, 27]

Vermicullite Fillers; improve low-frequency brake noise, but has
low high temperature resistance [23]

Barium sulphate (BaSO4)
Filler; inert material, improve heat stability [23], aid
friction characteristics [23], increase wear resistance
[26],

Calcium carbonate (CaCO3)
Filler; substitute to barium sulphate, improve fade
properties but not as stable as barium sulphate at high
temperature [23, 26]

Lime (Ca(OH)2)
Filler; used to avoid corrosion in Fe-additives, help
raise fade temperature [26, 27]

Wollastonite (CaSiO3)
Filler; offer similar performance characteristic like
asbestos [3, 26, 27]

Quartz (SiO2)
Abrasive; cleaning drum/disk surface and control
formation of friction film [27, 42, 44]

Iron Oxide (Fe2O3 or Fe3O4) Abrasive; improve cold friction [26, 27]

Zirconium Silicate (Zr2SiO4)

Abrasive; affect friction torque [2], proper
combination with antimony trisulfide has synergetic
effect to control the formation of friction film [2],
improve wear resistance but intensify friction-induced
noise [34]

Magnesium oxide (MgO) Abrasive; increase friction as well as intensify
friction-induced noise [34]

Alumina (Al2O3)
Abrasive; sufficient percentage of alumina able to
improve friction and wear [45, 46]
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2.5. Friction and Wear of Brake Pad Material

Braking is much depending on how friction between the friction material and

the rotor works which represented by the coefficient of friction, μ, to retard speed of

the vehicle. Generally brake pad material is required to fulfill several requirements

such as:

i. The mean coefficient of friction,μ, possess around 0.45 for passenger cars and

0.35 for trains [47].

ii. The coefficient of friction, μ, should be stable at any ranges of temperature,

vehicle speed, load or pedal pressure, relative humidity, and other parameters

as mentioned before.

iii. Wear rate of the friction pair should be low. Although the brake pad is a

sacrificial material in brake system it should have good resistance. This

consideration is necessary in order to replace them on a regular basis. In

addition, damage to rotor also must be as minimal as possible [42]. If the

attack of brake pad material to disc is high, it will increase surface roughness

of the disc, thus increase the wear rate of the brake pad too. Damage to the

brake disc also will causing disc thickness variation (DTV) and judder.

iv. Noise and judder must be avoided for comfortability.

v. Thermal conductivity shall be low.

vi. Strength and durability shall be high.

vii. The raw material used should be cheap and not hazardous to the environment.

Jang et.al has been conducting several researches to investigate the role of raw

materials to friction and wear of brake pad material [1, 2]. In the study of role several

solid lubricant such as graphite, Sb2S3, and MoS2, they concluded that anti-fading was

not dependent on the type of solid lubricant used in the friction material and addition

of Sb2S3 or MoS2 improve friction stability but on the other hand an addition of

graphite showed worse stability. However, they also suggested that addition of solid

lubricants such as Sb2S3 or MoS2 mixed with graphite might aggravate the rotor disc

thickness variation (DTV) during service. By comparing friction materials using two

different novolac resins, unmodified and modified resins in powder forms [33, 34],

Kim and Jang concluded that; (i) the wear rate of the friction materials was dependent
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on the friction level, porosity, heat resistance and mechanical strength of binder resin,

and temperature profile, (ii) friction materials containing modified resin showed a

good thermal stability and could be burnished (stabilized) in a shorter period of time.

Kim et.al [34] found that aramid pulp improved friction stability due to its capability

to improve heat resistance of the friction material. They also concluded that a stable

coefficient of friction is related to the formation of heat affected layers on sub-surface

of the friction material. This layer is produced incessantly by maintaining a certain

thickness while the material at the top surface is removed during sliding.

As aforementioned, the formulation of the brake pad material has important

influences to meet those brake material requirements. This factor is believed to affect

the formation of friction film, friction layer or third body which play important role to

friction and wear characteristics of brake pad material. Cho et.al concluded that the

thickness of the transfer layer was strongly affected by temperature and the relative

amount of ingredients, in particular, solid lubricants and iron powders were effective

for developing a thick transfer layer [43, 48]. They also concluded that coefficient of

friction and wear rate was independent of transfer layer thickness but intensity of

friction oscillation was reduced when the transfer layer was thick. This phenomenon

was also postulated by Jacko et.al that a stable friction level and low wear rates can be

maintained at various temperatures when stable friction films are readily formed for a

given friction couple as long as the friction film not destroyed [49, 50].

Godet suggested that wear particle compaction play important role for third

body formation [51]. This suggestion was also revealed by Filip et.al [3]. They

revealed that the friction process is typified by the development of friction debris

which adheres to the friction surface and forms a friction layer. The friction layers are

representing a newly formed matter, heterogeneous and consist of several different

phases. On the other hand, Oesterle et.al concluded that friction layers is comprises of

a nanocrystalline microstructure and the friction layer on the pads are not continuous,

but interrupted either by carbon constituent or by wear troughs [47, 50, 52, 53]. A

typical friction layer of brake pad is illustrated in Figure 2.7.
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Figure 2.7 Schematic illustration of friction layer of brake pad [50]

Jacobson et.al found that the friction layers are consisting of primary and

secondary plateaus [6, 54, 55, 56, 57]. There are only limited fraction of pad surface is

in contact with the disc. Thus, the real contact area is confined within a number of

contact plateaus and scattered over the pad surface. These plateaus often can observe

by naked eye as a shiny spot against a dark background as shown in Figure 2.8.

Figure 2.8 Formation of the contact plateau on the surface of an organic brake

pad [54]

The primary plateaus are formed due to lower removal rate of the

mechanically stable and wear resistant ingredient of the brake pad. The friction

increase during the run-in of a ground brake pad is primarily correlated to the

formation of primary plateaus. Between the contact spots, there are gaps that enough

for wear debris, in the form of small particle, from both disc and pad to fit in and

make way. These wear particles then occasionally hit a contact spot and trapped in its

way through the contact between the pad and the disc. There is only a small fraction
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of wear particle trapped at first, but because of the continuous flow of the particle,

more particle jammed together. The combination of normal pressure, shear forces and

frictional heat then compact this particles and further forms the secondary plateau.

The build up of compacted areas requires supply of wear debris, a limited space

between pad and disc, friction energy, and normal load. Thus, the formation of the

secondary plateaus is a gradual process.

Another study similar with this matters also conducted by Oestermeyer [43,

58, 59]. In order to explain dynamics wear in brake system, Oestermeyer suggests an

approach to a structure of brake pad shown in Figure 2.9. For simplicity, he splits the

functional structure of a brake pad by two components: a rather soft polymer matrix

and the hard particles; like SiO2 particles.

Figure 2.9 Brake pad structure [43]

Figure 2.10 shows the formation and destruction process of contact patches.

As the normal load N applied to the brake pad, the contact between metallic disk and

soft polymer matrix will produce wear particles. These wear particles move rather

homogeneously through the contact zone and partially they adhere to disk surface,

and then show again coming into the contact zone some time later from the other side.

When the SiO2 particle reaches the surface by wear of the pad matrix, the wear

particle flow will be disturbed at this location because they are harder than the soft

polymer matrix (Figure 2.10 (c)).

The SiO2 particle will be more and more pressed down in the soft matrix

because the polymer matrix around this hard particle will be lowered by wear, but this

particle itself shows nearly no wear. The growing normal pressure will result in the

increasing of temperature. This will result in the growing effects of the SiO2 particle
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by the wear particles. Further the load on the SiO2 particle causes wear of the brake

disc, so now the wear debris from the pad matrix and disc is to be found in the wear

material flowing through the contact zone. There are formed hard thin patches by

mechanical alloy or even melting processes of the wear particles (Figure 2.10 (d)–(e)).

The thermal and mechanical load lead the destruction of the patches (Figure

2.10 (g)–(i)). After certain time, the patches will become unstable and cracks will

arise. Hard part of them flow out the contact zone together with other wear particles

and the other part will integrate directly with other patches or initiate the growth of

another patch at another place. This event can be concluded to a theory that friction

not only causes the wear, but wear rather also modulate the friction power and as the

result the coefficient of friction.

Figure 2.10 Formation and destruction process of contact patches; (a) – (f) Growth

process of contact patches, (g) – (i) Destruction process of contact patches [43]
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2.6. Wear Mechanism in the Brake Pad Material

Friction brakes are inherently energy dissipating devices, so wear is

unavoidable [22]. The friction materials are widely used simply because they are

smaller, lighter, simpler, and less expensive than the counterpart. Wear is one of the

main causes to the lifetime limitation of a brake pad material. Although brake pad is

the sacrificial material in the braking system, from economical point view, it will take

a lot of cost if the brake pad frequently replaced.

Friction and wear are complex phenomenon that depends on the material

composition, manufacturing process, microstructure, mechanical and physical

properties, environment, and temperature [19]. However, wear is more complicated

than friction because it involves plastic deformation as well as localized fracture [19,

60]. As the coefficient of friction increased at the onset of braking, then it will

decrease with braking time and thereafter reached a steady state. This was thought to

be due to the ploughing and shearing of the peak asperities, the formation of a transfer

layer, and the decomposition of organics materials, micro-structural and physical

changes and transition in wear mechanism.

Wear mechanism act not as a single process, it is combination of several other

wear mechanism. According to Rhee [61], when a polymer of polymer bonded

friction material slide against a metal surface, the friction material wears out by any

one or combination of the following wear mechanism:

i. Adhesion wear

ii. Abrasive wear

iii. Thermal wear

iv. Macroshear

v. Fatigue wear

He also stated that each of these mechanisms can reasonably be expected to be

dependent on the conditions of sliding, i.e. load, speed, and time. If the system does

not reach a steady state, but goes through a transient state such as rising temperature

due to friction, the relative contribution to the total wear of the individual wear
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mechanism may vary with temperature. The relationship between the parameters is

shown as:

cba tVkF=ΔW …………………………………………………………… (2)

Where: ΔW = weight loss of a friction material

K = wear factor (or wear coefficient)

F = Load

v = Sliding velocity

t = time

a, b, c = parameters

This equation can also be rewritten as:

log ΔW = log K + a lob F + b log v + c log t .................................................(3)

The parameters a, b and c can be determined experimentally by varying only one

variable at a time and keeping the other two variables constant. The value of a is the

slope of line log W vs. log P, value of b is the slope of line log W vs. log v and value of c

is the slope of line log W vs. log t.

From several studies conducted on the brake friction material wear

mechanism, it was found that wear mechanism is related to temperature. Rhee

concluded that at low temperature (less than 230 ºC), adhesion and shear mechanisms

were occurred [62]. He also concluded that three body abrasive wear mechanism

occurred which the wear caused by hard particle entrapped between the rotor and

friction material. At temperature more than 230 ºC, it was found that pyrolysis

mechanism dominantly caused the wear [35, 36, 62, 63]. Another conclusion by Jacko

et.al [32] stated that at temperature below 230 ºC shear mechanism was dominant and

thermal wear at temperature more than 230 ºC.

2.6.1. Adhesive Wear

Adhesive wear occurs if adhesion takes place at the asperity contact interface

when two nominally flat bodies contacted in sliding contact. Adhesion is generally

recognized as the principal mechanism by which matter may be transferred from one

tribosurface to another and vice-versa, although such transfer may result from
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mechanical interlocking adhesion as well as by adhesive bonding [64]. The sliding

shear the asperity contact and result in the detachment of a fragment from one surface

and attached to another surface.

There are several basic of adhesive wear mode [65]. The tangential shear

under compression at the contact interface of strong adhesive bonding generates slips

along slip planes in the contact region. As result, flake-like shear tongues are formed

and are followed by a crack initiation and propagation in the combined fracture mode

of tensile and shear in the leading region of contact. The large plastic deformation in

the contact region sometimes forms a wedge-shape which is followed by crack

initiation and propagation in the combine fracture mode of tensile and shear in the

trailing region of the contact. Both modes of wear that produce this flake-like and

wedge-like wear particle are consider as basic of adhesive wear (Figure 2.11).

In adhesive wear process transfer and retransfer of from one surface to another

take place in many cases resulting relatively large wear particles composed of two

surfaces are formed. This mode also considered as another basic of adhesive wear.

Figure 2.11 Schematic diagram of adhesive transfer process (a) flake-like wear

particle (b) wedge-like wear particle [56]
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Another aspect of basic mode is in the process of repeated sliding, the wear

particles leave the contact interface as free particles or stay on either surface and form

prows to scratch the counterface. Even if the contact is made between flat surfaces of

similar materials and the contact interface is at first parallel to the sliding direction,

the interface rotates and becomes inclined and wavy as a result of the combined effect

of normal and tangential forces in sliding.

In the case of friction material, it is difficult to predict the rate at which

friction material constituents probably stick on the cast iron counterface. Self-mating

metal contact, such as that which might be experienced between the rotor substrate

and steel wool protruding from the friction material provides an extremely strong

bond comparable to that of the bulk material and frequently leads to severe wear

regimes. Contact between dissimilar metals may also be significant because of

interatomic diffusion and depends upon the two metal’s alloying compatibility. Ionic

or covalently bonded materials, such as ceramics, are unlikely to form strongly

adhesive bonds with metals but may bond to each other if lattice parameters and

orientations coincide [64]. The micrograph of adhesive wear symptom is shown in

Figure 2.12.

Figure 2.12 Micrographs of adhesive wear [19]

2.6.2. Abrasive Wear

Abrasive wear occurs when asperities of a rough, hard surface or hard

particles slide on a softer surface and damage the interface by plastic deformation of

fracture. There are two general situations for abrasive wear: (1) the hard surface is the

harder of two rubbing surfaces (two body abrasion), (2) three body abrasion; the hard

surface is a third body generally a small particle of abrasive, caught between the two



28

other surfaces and sufficiently harder that it is able to abrade either one or both of the

mating surfaces.

There are three different modes of abrasive wear take place: microcutting,

wedge forming, and ploughing [65]. Figure 2.13 shows typical modes of abrasive

wear. In microcutting, a tip of abrasive material with large attack angle plough a

groove and removes the material in a form of discontinuous debris particle similar

like chips in the metal cutting process. In wedge forming mode, a tip of abrasive

material plough a groove and a wedge-like wear particle is formed at the tip of the

grooving asperity and stays there working as a kind of built-up wedge to continue

grooving. This wear mode appears as a combined effect of adhesion at an inclined or

curved contact interface and shear fracture at the bottom of the wedge. In ploughing

process, material is displaced from a groove to the sides without removal of the

material. In this mode, a wear particle is not generated by a single pass of sliding and

only shallow groove is formed. However, after the surface has been ploughed several

times, material removal can occur by a low-cycle fatigue mechanism. This resulted in

occurrence of series of grooves as a result of the plastic flow of the softer material.

Figure 2.13 SEM micrograph of the experimental investigation to (a) cutting mode,

(b) wedge-forming mode, and (c) ploughing mode during abrasive wear [65].

The types of abrasive contact that are encountered during friction braking are

described as closed two-body, i.e. two opposed surfaces in contact, and closed three-

body, i.e. the action of trapped interfacial debris between two opposed surfaces [64].

The abrasive wear component of the friction material acting at the rotor

countersurface is clearly of critical importance for numerous reasons. However, since

an oxidized ferrous surface exhibits a higher Mohs hardness than > 95 volume %



29

constitution of a typical NAO friction material, it is not difficult to see why it is the

pad that is considered the sacrificial triboelement.

2.6.3. Thermal Wear

Thermal wear is occur when material removal is governed by surface melting

caused by frictional heating or by surface cracking caused by thermal stress. In

friction material, thermal wear occurs upon thermal decomposition of the organic

material in the brake friction material (Figure 2.14). Unlike the other mechanisms

taking place at the friction interface, thermal wear takes place at a predictable rate,

increasing exponentially with interfacial temperature [64], as can be seen in Figure

2.15.

Figure 2.14 Thermogravimetric (TG)/Derivative thermogravimetric (DTG) curve

showing thermal decomposition of organic material/resin [66].

Figure 2.15 Brake pad material wear as function of temperature [67]
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2.6.4. Macroshear

The removal of relatively large quantities of matter from the friction material

surface is involved in this type of mechanism. Macroshear wear tends to be most

distinct at the interface periphery but may also occur due the high temperature

delineation of the pad surface such as that experienced during the final stages of

metallization when foliate ferrous accretions, which have transferred to the friction

material surface, become dislodged (Figure 2.16). Ultimately, macroshear wear is

simply a descriptive mechanism of large-scale delineative adhesive wear [64].

Figure 2.16 Micrograph of macroshear [19]

2.6.5. Fatigue Wear

Fatigue wear is the process by which material may become fractured and

detached from its original surface via a fatigue mechanism in response to cyclic stress

variations [64]. Such cyclic stress variations are manifold in the friction brake system

where thermo-mechanical cycling and thermal shock situations abound. The natural

upshot of such effects is the loss of material by the interconnection of surface fatigue

cracks. It is important to note that if similar fatigue effects were observed to affect the

rotor, this would not be considered the onset of a wear mechanism, rather as the onset

of potential catastrophic failure via thermal rupture necessitating immediate

replacement of the offending component.

When sliding surfaces make contact via asperities, wear can take place by

adhesion and abrasion. However, it is conceivable that asperities can make contact

without adhering or abrading and can pass each other, leaving one or both asperities



31

plastically deformed from contact stresses. As the surface and subsurface deformation

continues, cracks are nucleated at and below the surface. Once the cracks are present

(either by crack nucleation or from pre-existing voids or cracks), further loading and

deformation causes cracks to extend and propagated. After a critical number of

contacts, an asperity fails due to fatigue producing a wear fragment. In sliding contact,

maximum shear stress occurs at the surface due the high friction which leads to

surface fatigue [64]. Figure 2.17 shows SEM micrograph of fatigue wear.

Figure 2.17 Micrograph of fatigue wear [68]

2.7. Effect of Load and Speed to Friction and Wear of Brake Pad Material

According to Orthwein [11], curves of the coefficient of friction as a function

of load and speed between friction material and their mating surface are no longer

available from many manufacturers. However, it was considered in braking system

the coefficient of friction shows a decreasing behavior when the tangential velocity or

normal load on the brake pad is increased [7, 8, 9], as shown in Figure 2.18. Other

studies by Mahmoud [17] as well as Tanaka et.al [69] also found decreasing trend of

coefficient of friction with incremental of load.

In his study, Mahmoud [17] show effect of load and sliding speed effect to the

friction characteristic as shown in Figure 2.19. He was found that the increasing of

normal force accompanied with three zones: (i) the first zone is oxide influence the

coefficient of friction decreases to the minimum value and then increases, (ii) the

second zone is metal deformation and plowing are prominent that the coefficient of

friction still to increase to the maximum value and still at constant value, and (iii) the

third zone is hydrostatic stress-enhanced plasticity that the coefficient of friction

redues with the increase of normal load. He also concluded that friction variation

depends on the applied force. He stated that difference between the maximum and
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minimum values increases with the increases of applied force, result in the increasing

generated temperature which leads to reduce the coefficient of friction. Furthermore,

Mahmoud also stated that high normal force tends to reduce the coefficient of friction

to more than 20 %. However, there is no significant dependency of friction to speed

found from both of the studies.

Figure 2.18 Effects of load and speed to coefficient of friction of brake pad

material [7].
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Figure 2.19 Variation of coefficient of friction at different applied force and

sliding speed [17]

On another occasion, Kim and Jang [30] study of speed sensitivity to friction

characteristic of NAO and low-steel friction materials. They found that the low-steel

friction material was strongly affected with sliding speed and showing stick slip

behavior at low speed. On the other hand, NAO materials showing less sensitivity to

the sliding speed as shown in Figure 2.20. Blau et.al [70] recently reported that
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working environment also affect the dependency of sliding speed to friction. They

found that friction coefficient tends to decreased linearly with sliding speed at dry

condition but behaved as power law under wet condition.

(a)

(b)

Figure 2.20 Changes of coefficient of friction as function of speed; (a) NAO,

(b) Low-steel friction material [30]

Wear of brake pad material was found increase with incremental of load [8,

61, 63], but it shows little variation with braking speed [8, 22]. Figure 2.21 shows

effect of load and braking speed to wear rate of brake pad material. According to

Andersson [22], there typically a slight rise of wear below a rubbing speed of 2 m/s.
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Brake asperity “flash” temperature are known to vary with speed. It was presumed

that the variation of the lining wear rate and associated variation of friction level are

related to flash temperature transition. At very high rubbing speed, the linings wear

increase. This increase is greater when the initial brake drum or disk temperature is

high. It is presumed that this speed effect is simply result of higher interfacial

temperatures.

Figure 2.21 Effects of load and speed to wear of brake pad material [8]

Sataphathy and Bijwe [71] stated that wear performance of friction material

also depends on material properties such as chemical and physical nature of the

ingredients as well as operating parameter such as pressure, speed, temperature, etc.
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By varying amount and nature of four abrasives (SiC, SiO2, ZrO2, and Al2O3) in their

formulation, they confirmed that brake pressure is the most influencing operational

parameter to wear, but they also found that composition and concentration of abrasive

influencing dependency of wear to sliding speed. They reported that the braking

pressure affected the wear of their friction material in order of

SiC>>ZrO2>Al2O3>SiO2, whereas that of speed was in the order ZrO2>>

SiO2>Al2O3>SiC. They also concluded that contribution of the abrasive content

tended to abate the effects of operating variable such as pressure and speed.

2.8. Effect of Humidity to Friction of Brake Pad Material

A vehicle is designed not only to operate at a certain environment atmosphere

but also designed to able to operate at any different type of environment and climate.

Sometimes dry and sometimes wet, at some area has high humidity but another area

has low humidity. In order to assure the braking system work well, brake pad

materials demanded to maintain its stability at any environment.

According to Eriksson et.al [72], humidity has stabilizing effect on the

coefficient of friction as shown in Figure 2.22. They assumed it might be correlated to

the propensity to form tribofilms at different humidity. However, Blau et.al [10]

found that; (i) the average coefficient of friction of brake pad material deviate under

both dry and wet condition, (ii) high lubricant contents had high friction under dry

conditions, and (iii) hand high abrasive content had high friction under wet condition.

Kim et.al [73] study the effects of humidity on friction characteristics of

friction material related to solid lubricant contents (graphite, MoS2, and Sb2S3) and

friction materials without solid material but using barite and potassium titanate to

replace the solid lubricant. They found that friction material containing graphite was

strongly affected by the humidity and had lower friction at high humidity than the

other, whereas the fillers materials (barite and potassium titanate) were not affected

by humidity.
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Figure 2.22 Effect of humidity to friction of brake pad material [72]



CHAPTER THREE

EXPERIMENTAL DESIGN

3.1. Introduction

Three LRT brake pad materials were used in this research, named as Pad-1,

Pad-2, and Pad-3, respectively. According to its manufacturer, these brake friction

materials are categorized as semi-metallic brake pad material. Pad-1 was brake pad

material manufactured by foreign manufacturer; while Pad-2 and Pad-3 were locally

developed brake pad materials. These friction materials were tested on a pin-on-disk

apparatus complying with ASTM (American Society for Testing Material) G99-95a

entitled “Standard Test Method for Wear Testing with a Pin on Disc Apparatus” (see

Appendix B).

According to Czichos [74] the diagnosis of the friction and wear data

corresponding to the laboratory test configurations and the test specimens requires

special attention. This is due to the friction and wear are not materials properties, but

related to material pairs and interfacial lubricant. Thus, inasmuch as brake pad

material is commonly slid against gray cast iron disc, the counterpart of the brake pad

material used in this research work was manufactured from the actual car gray cast

iron brake disc. These material pair was experimentally tested under different contact

pressures, sliding speeds, and relative humidity as experimental parameters. The

results obtained from the tribological tests were mean coefficient of friction obtained

from WINDUCOM V3 software and average weight losses from three readings for

each set of tests condition. In addition, the microstructure of the surface of each

sample was examined to study the wear mechanism in operation on the sliding

surface.

3.2. Determination of Material Composition

Elements and compounds composed in the brake pad material used in this

research were examined by Scanning Electron Microscope – Energy Dispersive X-

Ray (SEM-EDX), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) before

going through the friction and wear assessment. The combination of XRF and XRD
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results not only improve the accuracy of the analysis result but also the range of

samples that can be measured, including the samples which little or nothing unknown

in advance [75].

3.2.1. Scanning Electron Microscope – Energy Dispersive X-Ray (SEM-EDX)

This technique is mostly used to study the morphology and composition of the

brake pad material. Usually a SEM machine is equipped with Energy Dispersive X-

ray (EDX), see Figure 3.1. The combination of SEM/EDX is known as a strong tool

to get an overview of both topography and main composition of the surface of large

number of the sample in relatively shorter time [76]. This feature has capability to do

simultaneous non-destructive elemental analysis of the sample as well as quantify the

detected elements. It also possible to map the elements found in SEM image by X-ray

analysis.

Figure 3.1 SEM-EDX Machine (with courtesy of Universiti Teknologi Petronas)

Both brake pad and gray cast iron samples were analyzed by this technique.

The sample for brake pad material was prepared by releasing the brake pad material

from its backing plate and then was cut to a size of 40 mm × 40 mm× 5 mm whereas

for gray cast iron material, the sample was prepared by machining the brake disc to
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form a pin with a dimension of 6 mm diameter and 12 mm length. The brake pad

sample was coated with gold or platinum by sputtering to avoid charging during

examination in the SEM. This procedure is necessary due to the non-conductive

behavior of the phenolic resin as matrix material. Sample was then mounted on the

sample holder in SEM-EDX chamber for examination of the microstructural changes

on the worn surface and EDX analysis

3.2.2. X-Ray Fluorescence

This technique is widely used for elemental analysis and chemical analysis of

a material. X-ray fluorescence (XRF) is works by comparing intensities of unknown

sample with the intensities of standard sample. XRF measurements on the samples

were performed with the Bruker-AXS S4 PIONEER and the SPECTRAplus software,

see Figure 3.2.

The composite brake pad and gray cast iron samples were cut to a dimension

of 5 cm diameter and 5 mm thickness. The surface of the sample was ground with 320

grit number of SiC paper in order to flatten the surface. It was then placed into the

oven and kept for 24 hours at temperature of 50 ºC to ensure removed moisture in the

sample. The samples were then put into the X-ray chamber for further analysis.

Figure 3.2 S4 Pioneer XRF Machine (with courtesy of Universiti Teknologi

Petronas)
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3.2.3. X-Ray Diffraction (XRD)

XRF provides highly accurate information about the elemental composition of

a sample, but it cannot deliver direct phase information [75]. To confirm the phase

identification results, and to obtain semi-quantitative phase amount estimates

consistent with the actual elemental composition of the sample, combination of XRD-

XRF analysis was performed. XRD analysis was performed using Bruker-AXS D8

Advance (Figure 3.3) where phase identification and quantification were analyzed

with DIFFRACplus software packaged with EVA. According to Berhan et.al [76],

combination of EDX and XRD analysis is required since the brake pad material

consisting of several materials with different phase, including crystalline (metals

graphite, silicates, oxides, and sulfide), and non-crystaline or semi-crystaline (plastics,

rubber, and resins).

Figure 3.3 XRD Machine (with courtesy of Universiti Teknologi Petronas)

The brake pad sample was cut into a sample with a dimension of 5 cm

diameter and 5 mm thickness. The surface of the sample was ground with 320 grit

number of SiC paper in order to flatten the surface. It was then placed into the oven

and kept for 24 hours at temperature of 50 ºC to remove moisture in the sample. In
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order to get a good peak of the phases present in the brake pad material formulation,

the scan was chosen from 20 degree to 70 degree in 2θof diffraction angle.

3.2.4. Thermogravimetric Analysis

Thermogravymetric analysis is a method of detecting changes in weight as

function of temperature under defined atmospheric condition [66]. Friction material

powders were taken from the each sample by drilling and then sample was placed in

the cup which is then heated by the heater coil at the rate of 10°C per minute. Samples

were measured in an open aluminum standard crucible of 70 l volume. The TGA

temperature program ran dynamically from 30 ºC to 600 ºC at a heating rate of 10

ºC/min. Nitrogen gas was employed as reactive gas with flow rate of 50 mL/min. The

samples were heated under a nitrogen controlled atmosphere. The operation of this

equipment will automatically stop when the temperature reaches 900 ºC. The equipment

used was a TG machine model METTLER TOLEDO TGA/SDTA851e. The results

were evaluated with the V8.10 STARe software package.

3.3. Tribological Test

3.3.1. Equipment

Ducom Multi Specimen Wear Tester MS- TR-706 was used to evaluate the

friction and wear characteristics of the sample materials. A photograph of this

equipment is shown in Figure 3.4. This equipment has a lot of capability to conduct

tribological test such as: pin on disk, four ball test, cylinder on disc, and thrust washer

on disc. Pin-on-disk apparatus was chosen to determine tribological characteristic of

brake pad material in this work for the following reasons;

i. Its capability as laboratory scale of testing materials under a wide range of

loads and sliding speeds [77].

ii. It is one of the most frequently used test systems for sliding friction and wear

studies in the literature [10, 78, 79]

iii. Flat-to-flat contact geometry provided by this apparatus similar to flat-on-flat

geometry of disc brake system [77].
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Three pins-on-disk configuration was used in this research. This configuration

is shown in Figure 3.5. According to Elliot et.al [80], tribological results from three-

pin-on-disk wear apparatus are often different from those of single pin types. A single

pin is more prone to stick slip phenomena and preferential wear of the leading edge of

the pin. Thus by using three pins-on-disc, it is expected the effect of stick slip

phenomena could be reduced.

Figure 3.4 Multi-specimen wear tester

Figure 3.5 Three pins-on-disc test configuration used in this research work
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In this apparatus, the pins are rotating against a stationary disc. The rotating

pin is attached to a spindle driven by a servo motor with speed range 0 – 7200

rev/min. The wear track diameter of this pin on disk configuration was set at 30 mm.

The normal load was applied by a loading lever, where a loading pan is hanging to

place dead weights at one end of the lever. The loading lever is freely supported on a

pivot and rests below the loading pin under the disc specimen holder. When the

weight was placed on the loading pan, the lever lifted the loading pin and pushed it

against load cell. The force exerted was measured by a load cell. When sliding occurs

between friction surfaces, the frictional torque was measured by a beam type load

cell. The frictional torque then divided by the radius of the contact point/circle to

calculate frictional force. Thus, the coefficient of frictions of the sample was

calculated from the ratio of frictional force and normal load. All of these actions were

monitored by WINDUCOM 2006-v3 software, the supplied Windows-based data

acquisition software program and data acquisition was acquired by National

Instrument PCI 6221.

To control the environmental effect, the test area surrounding the spindle was

enclosed on all sides in a chamber with a door in the front for placing and removing

the specimen. It provided with a humidity sensor and ports as inlet and exhaust of the

air from humidity chamber. The humidity was controlled by a humidity controller by

blowing pressurized air passed a jar contained of distilled water and a jar contained

Al2O3, as shown in Figure 3.6.

Figure 3.6 Humidity controller
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A PID senses the present of the humidity value and sends suitable solid state

relay’s (SSR) to control the required humidity. To increase the humidity, the solenoid

of jar contained distilled water is opened to increase its value. On the other hand, for

decreasing the humidity value, the solenoid of Al2O3 jar is opened. Thus by

continuous opening and closing operation automatically, the required humidity is

achieved.

3.3.2. Sample Materials

Three semi metallic LRT brake pad materials were used in this work. The

physical and mechanical properties are as per Appendix C. All of these materials were

arranged to be the disc or pad in the testing configuration. The brake pad materials

were released from backing plate by using a hacksaw, then cut to a size of 40 mm ×

40 mm × 5mm. Subsequently, the sample was ground using 320 grit number SiC

paper to ensure each sample is having similar a surface roughness. This sample

material was then weighted and mounted on the sample holder. Gray cast iron was

chosen to be a pin material which is commonly used as a brake disc in the brake

system. The pin was machined from the brake disc for passenger car to a diameter 6

mm and length 12 mm. The microstructure of the pin is shown in Appendix D. Figure

3.7 shows the sample materials.

(a) Brake pad (b) Pin
Figure 3.7 Sample materials

3.3.3. Experimental Procedure

The tests were consisted of three modes; the first mode was to determine the

effect of the contact pressure to friction and wear on sample at standard room
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temperature (23 – 25 °C) and humidity (60 – 65 %RH). The experiments were carried

out at five different contact pressures 1 MPa, 1.5 MPa, 2 MPa, 2.5 MPa and 3 MPa

whereas the sliding speed and duration was kept constant at 600 rpm and 12 minutes,

respectively.

The second mode was to determine the effect of the sliding speed to friction

and wear of the sample at standard room temperature (23 - 25 ºC) and humidity (60 –

65 %RH). However, the samples were slid at five different sliding speeds, 300 rpm,

600 rpm, 900 rpm, 1200 rpm, and 1500 rpm whereas, the contact pressure and

duration was kept constant at 1 MPa and 12 minutes, respectively.

The last mode was meant to determine the effect of relative humidity to

friction characteristics of the materials. The samples were tested under 3 types of

relative humidity, low humidity (10-15 %), medium humidity (55-65%), and high

humidity (85-90 %). The tests were carried out at constant contact pressure of 2 MPa

and sliding speed of 600 rpm as suggested by [10, 73]. At each humidity level test, the

samples were kept in the chamber for 1 hour to make sure that the required humidity

level had stable in the chamber. The entire tests were conducted within 12 minutes

with initial temperature of 25 - 30 ºC. The weight of the sample before and after test

was measured using an electronic balance model Metler Toledo AX 540.

The experimental procedures basically following ASTM G99 standard

procedure:

i. Prior to tribological test, the sample was cleaned, dried and weighted to

nearest 0.0001 g

ii. The sample was positioned into the holding device and then pin was securely

inserted into its holder. This procedure is to ensure that the disk is fixed

perpendicular to the axis of the rotation.

iii. The balancing mass was added to the lever system to develop the selected

force, so that the pin is pressed against sample.

iv. Close the experimental chamber.
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v. Pushes the power on multi specimen tester and set the speed to the desired

value while the pin in contact with the sample.

vi. Set the experimental time to the desired time.

vii. Begin the test with the specimens in contact under load. The test is stopped

when the desired experimental time is achieved. The test should not be

interrupted or restarted.

viii. The specimens were removed and cleaned off any loose wear debris. Note and

record the existence of feature on or near the wear scar such as: protrusions,

displace metal, discoloration, microcracking, or spotting.

ix. Finally, the specimens were reweight to the nearest 0.0001g accuracy.

The experiment was repeated three times for each experimental parameter and

the arithmetic mean of the three readings was taken as the average weight loss and

coefficient of friction.

3.3.4. Calibration

Load sensor was calibrated using calibration unit consist of a calibrated 5000

N load cell with indicator. Load calibration was done by applying the death weight to

the calibrated load cell. The percentage of error was calculated by comparing seven

applied load shown in Winducom software and load cell indicator. The percentage of

error was obtained was in the range of 0.09 – 0.2 %

Speed sensor was calibrated using an infrared calibrated tachometer. The

percentage of error was calculated by comparing eight different speeds indicated on

the Winducom software and calibrated tachometer. The percentage of error obtained

was in the range 0.1 – 0.45 %.

Frictional torque was calibrated by applying 1 mV input voltage to the card

from a calibrated voltage source, flat table with C clamp, loading pan, and dead

weight. The friction torque was calculated from applied load multiplied by distance of

frictional force sensor to spindle center (210 mm). The percentage of error was

calculated by comparing friction torques indicated in the Winducom software and
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calibrated card from five applied loads. The percentage of error obtained was in the

range 0.19 – 0.97 %.

3.4. Surface Characterization

3.4.1. Surface Profile

A surface roughness tester model Mahr Perthometer PGK-120 was employed

to measure surface profile (Figure 3.8). Surface profile was detected by tracing

randomly selected cross-sectional areas of wear track. The get conviction data, at least

three cross-sections in the wear track were measured. Ra (center line average) surface

roughness was determined from the profilemeter software directly. The mean average

of Ra was calculated from three measurements.

Figure 3.8 Surface Profilometer

3.4.2. Surface Morphology

The surface morphology of the sample material was analyzed by SEM-EDX

model LEO-1430VP OXFORD INCA instrument. The SEM technique has

advantages due to its high resolution and large depth of field, which produce apparent

three dimensional images, provide invaluable information about the surface over a

wide range of magnification [77]. Moreover, the interaction of the electron beam with
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the specimen surface provides different signal which can be monitored independently

[81].

Operation of SEM is basically based on scanning the surface using a finely

focused beam of electrons and detecting a signal associated with a point-by-point

interaction and using it to modulate the brightness of a cathode ray tube (CRT), which

is also scanned in synchronization with the beam. The changes in the brightness

represent changes in particular property within the scanned area [81].

There are two kind of SEM signal commonly used in study tribological studies

of brake pad material [82]: secondary electron (SE) and back scattered electron

(BSE). The SE signal is operated at low voltage [81] and very useful in obtain the

surface topography and morphology [3, 82, 83]. On the other hand, the back scattered

electron signal is used in detecting compositional variation [81].

To optimize the quality of the image, the operational parameter such as

accelerating voltage, beam diameter, beam current, angle of incidence, line and frame

speeds should be adjusted [81]. In this research, worn surface of the brake pad

material was observed by selecting the accelerating voltage in the range of 10–20 kV,

beam current 100mA with walking distance 120 mm to give better focus to

investigated area, and 500–1000× magnification scales. EDX analysis was performed

using 20 kV accelerating voltage and 100mA beam current.



CHAPTER FOUR

RESULTS AND DISCUSSION

The data obtained from experimental studies of this research work are

presented and discussed in this chapter. The results of material characterization in this

work was presented and discussed in section 4.1. The material characterization was

done by a combination of four methods that are commonly used; (i) energy dispersive

X-ray (EDX), (ii) X-ray fluorescence (XRF), (iii) X-ray diffraction (XRD), and

thermogravimetric analysis (TGA). The results from tribological test are presented

and discussed in section 4.2 to section 4.3. The micrograph of the worn surface and

wear mechanism are also presented and discussed in this chapter.

4.1. Material Characterization

4.1.1. EDX Analysis

The tribological properties of brake pad material are believed to be much

affected by its composition [1, 2, 33, 34, 41, 43, 48]. Therefore, prior to the

tribological studies, it is important to predict the elements and compound composed in

the brake pad material.

The typical output of EDX analysis is EDX spectrum. The spectrum shows the

peaks equivalent to the energy levels for which most X-rays are penetrable. The peaks

are typical for each atom that matches up to a single element. The higher a peak in the

spectrum indicates more concentration of the element in the specimen.

The elements and typical spectra of the EDX analysis of the samples (Pad-1,

Pad-2, and Pad-3) are presented in Table 4.1 to Table 4.3. It was found that all the

three samples were contained of same elements of carbon (C), oxygen (O), iron (Fe),

barium (Ba), aluminum (Al), silicon (Si), and sulfur (S).

High amount of Carbon (C) was found in all sample materials. High carbon

peaks in the EDX analysis is possibly due to the organic composition (resin, graphite,

friction dust, and rubber) in the brake friction material and absorbed carbon in the
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analysing chamber or the sample has been exposed to atmosphere during storage.

Therefore, another analytical method such as XRD and TGA are required to provide

more conclusive analysis for this element.

The SEM-EDX analysis result of Pad-1 is presented in Table 4.1. The content

of each element found in Pad-1 are reported in %-wt. Iron (Fe) was found to be

dominant in all samples, 20.77 %-wt, compared to other elements barium (Ba) 2.83

%-wt, magnesium (Mg) 1.23 %-wt, sulfur (S) 0.59 %-wt, aluminum (Al) 0.32 %-wt,

and silicon (Si) 0.16 %-wt).

Table 4.1 Pad-1 SEM-EDX Analysis Result
Pad-1

Element Weight
%

Atomic
%

C K 62.75 81.47
O K 11.34 11.05
Mg K 1.23 0.79
Al K 0.32 0.19
Si K 0.16 0.09
S K 0.59 0.29
Fe K 20.77 5.80
Ba L 2.83 0.32

Totals 100 100

Figure 4.1 shows the surface topography and elemental mapping of the Pad-1.

From the surface topography, the different constituents in the material can be

identified from its color contrast. For example; the lightest represents the metallic

constituents, whilst the darkest represents carbon.

Another advantage of SEM-EDX analysis is its capability to examine the

elemental mapping. However, only view element with significant appearance able to

be detected. The elemental mapping of Pad-1 is shown in Figure 4.1 as well. The

presence of carbon, steel fiber, iron oxide or iron powder and magnesium oxide can

be seen clearly in the elemental mapping. This elemental mapping suggests that short

iron/steel fiber is used in the formulation. It is also observed that the iron/steel fibers

as well as iron oxide are well distributed on the surface.
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Figure 4.1 Surface topography and elemental mapping of Pad-1

The SEM-EDX analysis result of Pad-2 is presented in Table 4-2. Similar to

Pad-1, iron is found to be dominant in Pad-2 as well. It is observed that Pad-2

contains the same element as in Pad-1 with the addition of calcium (Ca). The

percentages of Ba and Si in Pad-2 material are higher than Pad-1 while the percentage
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of Mg is lower. The content of other elements such as Al and S is about the same in

both Pad-1 and Pad-2.

Table 4.2 Pad-2 SEM-EDX Analysis Results

Pad-2
Element Weight

%
Atomic

%
C K 62.29 78.66
O K 16.08 15.24
Mg K 0.65 0.41
Al K 0.34 0.19
Si K 0.84 0.46
S K 0.60 0.29
Ca K 0.54 0.20
Fe K 15.50 4.21
Ba L 3.14 0.35

Totals 100 100

The surface topography and elemental mapping of Pad-2 are shown in Figure

4.2. The elemental mapping indicates clearly the presence of carbon, steel fiber, iron

oxide as well as barium oxide in Pad-2. However, the steel fibers are of different

shapes and sizes, which seem to indicate that a combination of long and short fibers as

well as granule type are used in the formulation of Pad-2. From the surface

topography, it is also observed that the particles of iron powder/iron oxide are quite

well distributed.

The SEM-EDX result of Pad-3 is presented in Table 4.3. Ten (10) elements

were detected in the Pad-3. The significant difference observed in Pad-3 sample is the

presence of copper (Cu). This indicates that copper-based material was used in this

formulation. The existence of copper in the material could be in the form of copper

sulfide, copper fiber, or copper oxides, which are commonly used as friction

modifiers in brake pad materials [27]. Iron is still the dominant element and its

content in Pad-3 is more or less equal to the content in Pad-2. It is also observed that

the percentages of Mg, S, and Ca are also more or less equal in both Pad-2 and Pad-3

but their peak height are different. The Ba content in Pad-3 is about the same as in

Pad-1 but less than Pad-2. However, Pad-3 shows higher peak than Pad-1 or Pad-2.

The percentages of Al and Si are higher than those in Pad-1 and Pad-2.
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Figure 4.2 Surface topography and elemental mapping of Pad-2
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Table 4.3 Pad-3 SEM-EDX Analysis Results.

Pad-3
Element Weight

%
Atomic

%
C K 59.35 75.94
O K 17.83 17.13
Mg K 0.58 0.37
Al K 0.96 0.55
Si K 1.41 0.77
S K 0.63 0.30
Ca K 0.42 0.16
Fe K 16.00 4.40
Cu L 0.43 0.10
Ba L 2.39 0.27

Totals 100 100

The surface topography and elemental mapping of Pad-3 is shown in Figure

4.3. Similar to Pad-2, the presence of steel fiber, iron oxides as well as barium oxide

in the material can be clearly seen from the elemental mapping. However, steel fibers

in fewer amounts compared to Pad-1 and Pad-2 were revealed. This indicates that

different types and shapes of steel fibers are used in this material. However, the

particle distribution of iron powder/iron oxide is less than previous samples.

Comparison of the elemental composition of the samples detected by EDX technique

are detailed in Appendix E.

Figure 4.3 Surface topography and elemental mapping of Pad-3
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Figure 4.3 Surface topography and elemental mapping of Pad-3 (Continue)

4.1.2. XRF Analysis

The SEM-EDX results provide information pertaining to single element and

elemental mapping but other information such as oxide could not be obtained.

Therefore, XRF method was used to determine other elements which could not be

found by SEM-EDX. Plenty of oxides were found by XRF, however only oxides

which has percentage more than 0.5 % was taken into consideration. The results of the

XRF characterization are presented in Table 4.4.

More than 60 %-wt. of iron oxide was found in all sample materials. However,

the iron oxide content in Pad-2 is the highest among all the samples. This result shows

that oxide element in the samples mainly consist of iron oxide. Iron oxide is usually

used as an abrasive material, which is used to increase friction gripping at initial stop,

maintains the cleanliness of mating surface and controls the build up of friction film

[26, 27, 83]. The presence of aluminum oxide and silicon oxide is also possibly
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related to the existence of abrasive material in the brake pad materials investigated in

this study [23, 27]. Significant amount of sulfur trioxide/sulfite (SO3) also detected.

Filler materials such as calcium oxide (quicklime), magnesium oxide (magnesia), zinc

oxide (ZnO) are also detected.

Table 4.4 Oxide elements in the sample formulation by XRF analysis

Elements
Pad-1

(%-wt.)
Pad-2

(%-wt.)
Pad-3

(%-wt.)
Fe2O3 65.8 68.3 61
SO3 10.8 6.3 4.24
Al2O3 5.18 2.09 6.58
SiO2 5.15 5.28 9.31
BaO 4.12 9.81 7.38
ZnO 3.76 0.0201 0.0275
CaO 1.64 1.95 3.49
Sb2O3 0.921
K2O 0.436 0.313 0.266
Na2O 0.431 0.381 0.352
MgO 0.423 4.07 4.07
CuO 0.376 0.0402 1.77
MnO 0.361 0.349 0.566

4.1.3. XRD Analysis

As mentioned earlier, XRD analysis was carried out in order to determine the

element and compound that are not detectable by SEM-EDX and XRF techniques.

The XRD analysis result is shown in the form of phase spectrum of a compound. Only

compounds with typical peaks that match the peak in the main spectrum will be

reported. The phase spectra of pad-1, pad-2, and Pad-3 are shown in Figure 4.4 to

Figure 4.6 and the compounds in the composition of samples is shown in Table 4.5.

Several similar compounds were found in all investigated materials. Graphite,

silicon oxide (quartz), vermiculite, and wollastonite were found in all samples. The

existence of graphite shows possibility used as a solid lubricant in this material.

Vermiculite is typically used as a friction modifier [23, 48, 84]. Wollastonite

(CaSiO3) is a type of silicate material commonly used in friction material formulation

(brake and clutches) as a replacement of asbestos fiber along with vermiculite [3, 26,

27].
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Table 4.5 Compounds in the samples detected by XRD technique

Pad - 1 Pad - 2 Pad - 3

Carbon Graphite Carbon

Barium sulphate, BaSO4 Barium sulphate -

Quartz, SiO2 Quartz Quartz

Vermiculite, MgSi4O10(OH)2 Vermiculite Vermiculite

Wollastonite, CaSiO3 Wollastonite Wollastonite

Gypsum, CaSO4 2H2O - -

Antimony sulphide, Sb2S3 - -

Hematite, Fe2O3 Hematite -

Copper zinc, Cu5Zn8 - -

Zinc sulphide, ZnS - -

- Magnesium phosphate,

MgP4O11

-

- Domolite, CaMg(CO3)2 -

Copper tin sulphide,

Cu4SnS4

It was also observed that gypsum is contained in Pad-1. Gypsum might be

used as a replacement for asbestos fiber too. Several other mineral such as dolomite,

and magnesium phosphate were also detected. These minerals are probably used as

fillers. Different types of copper alloys were found in Pad-1 (copper zinc) and Pad-3

(copper tin sulphide), which were probably used either as a solid lubricant or

reinforcing fibers.

4.1.4 Thermogravimetric/Derivative Thermogravimetric (TG/DTG) Analysis

The curves of TG/DTG analysis of the samples are shown in Appendix F –

Appendix H. TG curve of Pad-1 showed weight gained behaviour at early section before

degraded associated to reaction of the material with atmosphere in the testing

environment [85]. The initial weight lost of this sample was occurred around 80 ºC.

TG/DTG curve of Pad-2 shows its initial weight lost started at temperature around 60 ºC

and TG/DTG curve of Pad-3 show its initial weight lost started at around 60 ºC.

Generally all polymeric/organic materials will be evaporated at 600 ºC [86] and its mass
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decrease is due to production of gaseous products (carbon monoxide, water vapour and

carbon dioxide). Whereas, other ingredients such as; antimony trisulfide start to

decomposed at around 200 ºC, molybdenum disulfide at around 300 ºC [1], iron oxide

start to decompose at around 220 ºC [66], barium at 380 ºC [66], and graphite at 800 ºC

[87].

Organic and inorganic contents can be determined from the TG/DTG curve as

well. Table 4.6 shows organic and inorganic content in the samples. The percentage of

the organic materials is calculated by dividing the weight lost of the organic material at

600 ºC with the mass of the sample used.

Table 4.6 Organic and inorganic contents

Weight %
Elements

Pad - 1 Pad - 2 Pad - 3

Organic 2.11 8.10 5.48

Inorganic 97.89 91.90 94.52

Based on the results of SEM-EDX, XRF and XRD analyses, predictions on the

composition of the sample could be made. The results of brake pad elemental

composition detected by EDX/XRF/XRD technique are depicted in Appendix I. The

large amount of iron in the composition of all samples suggests that the brake pad

materials are a semi metallic type of friction material. It observed that Pad-1 and Pad-

3 are having the highest content of metallic material and organic material,

respectively (Table 4.6).

Pad-1 is considered to have a low organic component with high solid lubricant

in its formulation. This assumption is based on the result of thermo-gravimetric

analysis as well as XRF; which show a high percentage of sulfur trioxide/sulfite

(SO3), zinc oxide (ZnO), antimony oxide (Sb2O3) in this sample as compared with

other samples. Furthermore, XRD result shows the presence of graphite, brass,

antimony sulphide, and zinc sulphide (Figure 4.4) even these elements were not

detected by SEM-EDX and XRF technique. Iron oxide, silicon oxide, aluminum oxide

are used as abrasive material. The magnesium oxide, wollastonite, and vermiculite are

used as a filler material in this sample.
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Pad-2 is considered to use higher organic material and filler especially barium

sulphate in its formulation. This could be due to the highest percentage of barium

oxide in Pad-2 compared to other samples and the presence of some sulfur trioxide

too. In addition, calcium oxide and magnesium oxide are also used as fillers. The low

percentage of sulfur trioxide as shown on Table 4.4, indicates that this material

contain less solid lubricant than Pad-1. However, SEM-EDX and XRD results show

that graphite is contained in this material. This indicates that this material used

graphite as its lubricant.

Pad-3 is considered to contain quite high organic material, but less then Pad-2,

and abrasive material in its formulation. This can be seen from the highest

percentages of SiO2 and Al2O3 among all the samples (Table 4.4). It also has about

the same amount of calcium oxide and magnesium oxide as Pad-2. The elemental

mapping of this sample (Figure 4.3) also shows that this sample contains some barium

oxide. The presence of copper tin sulphide and graphite detected by XRD analysis

indicates that this material uses bronze sulphide and graphite as solid lubricant.

4. 2. Effect of Test Parameters to Coefficient of Friction

The results of tribological testing were mainly presented in terms of friction

characteristic by WINDUCOM 2006 software. This friction characteristic is shown as

friction variation with respect of time. There are three important aspects is used to

analyze these results; (a) the general curve shape, (b) duration of certain transitional

features of friction-time curve, and (c) level of variation of the friction force as

function of time [88]. This variation is mainly as the result of the local friction

coefficient, which is a function of the local shear strength at the local contact interface

and the local contact geometry [78]. It is also reflect the stability of the microscale

events which contribute to overall frictional behavior [89].

There are two kinds of variation level interpretation attributes to friction

variation in the friction-time curve; (i) tendencies for pull-out or sudden surface

fracture, and (ii) tendencies for transfer of seizure as shown in Figure 4.7.
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(a) (b)

Figure 4.7 Friction variation level interpretations; (a) tendencies for pull-out or

sudden surface fracture, and (b) tendencies for transfer or seizure [88]

4.2.1. Effect of Contact Pressure to Coefficient of Friction

The friction characteristics of all sample materials at different contact

pressures are shown in Figure 4.8 - Figure 4.13. It was observed that each sample has

different friction characteristic with respect to contact pressure. All samples show

gradual increasing of friction at the initial stage. This initial stages, also known as

running-in period, appear in a relatively short period of time; not more than 0.01

hours (36 seconds). After the initial stage, different trend were observed indicate that

different process possibly taken place.

The friction characteristics of Pad-1 are shown in Figure 4.8. This sample

shows a rapid increased of COF at the early stage of sliding and after reaching a

maximum value, the COF gradually decreased and thereafter reaching a steady state.

The friction curve of Pad-1 has two kind of general shape and can be divided

into five different stages; namely stage I, stage II, stage III, stage IV, and stage V

(Figure 4.9). Stage I or the initial stage is represented by gradually increasing of

coefficient of friction. Stage II is represented by a concave parabolic curve. The stage

III is represented by a decreasing coefficient of friction after the maximum value was

reached and stage IV is represent by a steady state condition of the friction variation

and stage V is represent by a raise of friction again [88, 89]. It was observed that the

increase contact pressure affected the changes of general curve shape of Pad-1, where

incremental of contact pressure tend to produce the stage V.
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Figure 4.8 Effect of contact pressure to friction characteristic of Pad-1

Figure 4.9 Friction curve of Pad-1; (a) contact pressure of 1 MPa, (b) contact

pressure of 1.5 MPa – 3 MPa

The increasing of contact pressure was seemed to influence duration of each

stage. At contact pressure of 1 MPa, the maximum value of COF was obtained around

36 sec. When the pressure was increased to 1.5 MPa, the maximum COF was

obtained around 28 sec, 18 sec at 2 MPa, and 10 sec at 2.5 and 3 MPa. The different

of duration was also observed at stage II, stage II, stage IV, and stage V at each

applied contact pressure.

(b)(a)
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The friction variations evidently show that tendencies of different process to

interchange happen during rubbing process (see Figure 4.7). In addition, such sudden

increasing peak of COF was observed during this process (e.g. 0.068 – 0.072 hours at

1 MPa in Figure 4.8). These sudden rises of friction representing the three body

abrasions during this stage [90]. It was also observed that the level of friction

variation tends to getting smoother with the increasing of contact pressure.

The effect of contact pressure to friction characteristics of Pad-2 is shown in

Figure 4.10. Different types of the general curve shape were observed (Figure 4.11).

Similar to Pad-1, rapid increased of COF at the early stage of sliding was observed,

however, the magnitude of stage II and III was not as clear as Pad-1. Similar curve

feature as shown in Figure 4.9(b) was also occurred in this sample; however the

maximum COF at stage V was higher than stage II. The duration and occurrence of

the stage were also much affected by applied contact pressure. The variation level was

observed to become smoother with the incremental of contact pressure.

Figure 4.10 Effect of contact pressure to friction characteristic of Pad-2
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(a) (b)

(c)

Figure 4.11 Friction curve of Pad-2; (a) contact pressure of 1 MPa, (b) contact

pressure of 1.5 MPa and 2.5 MPa, (c) contact pressure of, 2 MPa, and 3 MPa

The effect of contact pressure to friction characteristics of Pad-3 are shown in

Figure 4.12. Rapid increase of COF at initial sliding also observed, but time required

to reach the next stage was quite longer than the previous brake samples. This sample

has 3 general shapes (Figure 4.13). At contact pressure 2 and 2.5 MPa, stage II and III

was not clearly observed. The duration and occurrence of the stage is affected by

contact pressure and the variation of COF level become smoother with the

incremental of contact pressure.

Many events could be taking place when the mating samples in sliding

process. By using the friction curve, the friction and wear can be determined. Process

such as material transfer, fiber pull out, surface scratch etc. could be possibly happen

in rubbing process due to multifarious compound in brake pad material. Figure 4.8 –

Figure 4.13 suggest that the shape of friction characteristics affected not only by

materials involved, but also the applied contact pressure. These differences basically

caused by; (i) oxide growth or removal, (ii) surface composition alteration due to
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diffusional process, (iii) compositional temperature rise, (iv) mechanical disruption of

surface oxide films with increasing metallic contact (v) contact geometry changes

[90]

Figure 4.12 Effect of contact pressure to friction characteristic of Pad-3

Figure 4.13 Friction curve of Pad-3; (a) contact pressure of 1 MPa and 3 MPa, (b)

contact pressure of 1.5 MPa, (c) contact pressure of 2 MPa and 2.5 MPa

(a)

(c)

(b)
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The general curve shape as shown by 4.9(a) and 4.13(a) is recognized as one

of the most common curve in dry friction [89], however Blau also suggested other

curve shapes as detailed in [88, 90]. These curve shape features indicate different

process was taken place during the rubbing process.

When the rotating pin tangentially pressed against brake pad, resistance forces

will occur against the motion. Because of surface irregularities of both mating

surfaces (APPENDIX J – L), frictional shear will be generated at the contact

asperities. If the frictional shears exceed the asperities tip strength, the tip will be

plastically deformed and subsequently altered the surface profile (APPENDIX M).

Because of brake pad material is a phenolic resin based composites,

deformation may effects the friction due to its viscoelastic properties [69]. The

deformation results in produce loosen particles that could form metallic junction and

adhered to another surface [91] as well as agglomerate forming wear debris [44] to

form hard thin layer, namely friction layer, by mechanical alloy or even melting

processes of the wear particles. Figure 4.14 show typical friction layer formed on the

sample surface. Figure 4.15 and Table 4.7 shows the elemental composition of the

samples after rubbing process. These results suggest that the rubbing surface has

covered with thin iron oxide layer [92]. SEM-EDX analysis at a certain point on the

contact surface (point A) and compacted debris (point B) indicate that mechanical

alloy process has taken place during sliding process (Figure 4.16).

The rapid increase in coefficient of friction at the initial stage is believed due

to the increasing interaction of the encountered asperities, contact area and adhesion

[56, 89, 93]. Moreover, hard particles contained in the brake pads actively abrade the

soft part of the brake surface as well [19, 44, 89]. Smeared and plowed mark on the

sample surface in Figure 4.16 indicates both of these actions have taken place during

the rubbing process.
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Figure 4.14 SEM micrograph of friction layer form on the contact surface

a.

b.

c.

Figure 4.15 EDX analysis after test; (a) Pad-1, (b) Pad-2, (c) Pad-3
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Figure 4.16 SEM-EDX analyses of hard thin layer and compacted debris

A

B
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Table 4.7 Elemental composition after test

Pad-1 Pad-2 Pad-3
Element Weight Atomic Element Weight Atomic Element Weight Atomic

( %) ( %) ( %) ( %) ( %) ( %)
C K 12.49 26.98 C K 40.10 62.68 C K 13.32 27.97
O K 26.82 43.48 O K 19.62 23.02 O K 28.91 45.58
Al K 1.36 1.31 Mg K 1.09 0.84 Si K 2.89 2.59
Si K 4.04 3.73 Al K 0.76 0.53 S K 1.43 1.12
S K 0.87 0.70 Si K 1.47 0.98 Ca K 0.87 0.55
Ca K 0.65 0.42 Ca K 0.55 0.26 Fe K 46.73 21.11
Fe K 47.96 22.28 Fe K 33.67 11.32 Ba L 5.86 1.08
Ba L 5.81 1.10 Ba L 2.74 0.38

Totals 100.00 Totals 100.00 Totals 100.00

The process of deformation, adhesion, as well as abrasion continuously taken

place until the stage II. At the stage II, the maximum interfacial adhesion, plastic

deformation, and wear particles entrapment was reached [89]. These events possibly

caused by the continuous rubbing process that will actively shear and deform the

contact asperities. As consequence, wear particles may formed between the contacting

surfaces. At the beginning, small fraction of this wear particle may trap and attached

together and then dense and adhere to other area. In concurrence with this process, the

hard particles contained in brake pad will be pressed down in the soft matrix as well.

The growing of wear debris by the hard particles will occur in this process. The wear

debris from pad matrix and pin will be flowing through the contact zone and then

form hard thin layer due to combination of normal pressure, shear forces and

frictional heat.

Coefficient of friction was found to be decreased at stage III. There are three

possible reasons may cause this behavior: (i) degradation of organic content, (ii) fine

friction layer has been developed at the interfacial contact and (iii) a lot of tip of

asperities has been sheared.

As the brake system is meant to absorb the kinetic energy to heat, it is

generally understand that heat much affected brake pad performance. Since the

rubbing process related to time, surface temperature will increase with rubbing time

and result in degradation of organic content and furthermore produce liquid and

gaseous product [19]. Frictional heating during the braking process will easily raises
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the temperature at contact asperities beyond the glass transition temperature of the

resin and often rises above the decomposition temperature resulting in the abrupt

change of friction force during braking [33]. TGA results show onset thermal

degradation of the samples was started below 80 ºC (APPENDIX F – H). The

decreasing of friction coefficient is postulate related to softening of matrix resin and

degradation of other organic component [33, 94]. Furthermore, the degraded organic

content together with the wear debris form fine friction layer [19, 22, 95, 96]. Another

reason of the decreasing of friction if this stage is most of tip of the asperities contact

has been sheared and blunting the surface [97, 98]. Thus, interlocking between the

asperities tip will be reduced and then reduced the resistant to the motion [19].

In the case of Figure 4.11(a) and 4.11(c) in Pad-2 and Figure 4.13 (c) in Pad-3,

stage II and III was not clearly observed. This behavior is possibly due to the

formation of friction layer with fewer plastic deformations.

Because of the continuous process of rubbing, well developed and stable

friction layer would possibly form. This factor is considered resulting in the

occurrence of stage IV. At stage IV, steady state condition was reached and lower

coefficient of friction was observed. Figure 4.17 show typical well developed friction

layer which has covered most of the contact asperities.

Although the destruction of the friction layer has become more intensive due

to increased contact pressure [44], the capability of the wear particles to initiate

development of other friction layer has to be counted as well. The occurrence of stage

V is considered caused by more wear debris abraded friction layer, which was

previously formed at stage IV, and then initiates formation of another layer. Figure

4.17 evidently show several wear debris embedded on friction layer at stage IV.

Friction curve analysis was conduct to strengthen this assumption. Most of the

stage V occurrence was initiated from sudden increase of friction peak, which suggest

that three body abrasions was acted there. Thus, it validates Godet conclusion in [51],

Jacko et al. [99], and Oestermeyer in [44] that wear particle compaction has

significant influences the formation of friction layer. Figure 4.14 And Figure 4.18

reveal wear debris compacted and form layer on the contact surface. Another possible

reason is high contact pressure able to produce more plastic deformation and an
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excessive transfer material on the contact surface will happen and increase true

contact area [69, 88]. Figure 4.19 shows patch covered another patch which indicates

that intense adhesion mechanism has involved during the process.

Figure 4.17 SEM micrograph featuring

typical well developed friction layer

(Pad-3, 2 MPa, 600 rpm)

Figure 4.18 Debris layer feature on the

contact surface (Pad-2, 2.5 MPa, 600

rpm)

Figure 4.19 SEM micrograph shows

friction layer consist of patch covered by

another patch (Pad-1, 3 MPa, 600 rpm)

4.2.2. Effect of Sliding Speed to Coefficient of Friction

Another set of experiment was conducted in order to investigate the effect of

sliding speed to the frictional characteristic of the sample materials. The friction

characteristics of sample material under different sliding speeds and constant contact

pressure are shown in Figure 4.20 to Figure 4.22.
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Basically, similar friction behavior to the previous set of experiment was

shown by Pad-1 (Figure 4.20). Similar general curve shape as shown in Figure 4.9

was observed. However at slowest speed (300 rpm), duration of stage II and stage III

was found a bit longer then the other. Furthermore, sliding speed seemed to

accelerated the occurrence of stage I – stage III at faster speed. Thus, it is postulate

that sliding speed much affects to duration of each stage. Effect of sliding speed to

friction variation was found differ from contact pressure. The friction variation seems

to be rougher with the increasing of sliding speed. In addition, stick slip phenomena

revealed at the highest sliding speed.

Figure 4.20 Effect of sliding speed to friction characteristic of Pad-1

The friction characteristic of Pad-2 under different sliding speed is presented

in Figure 4.21. Duration and occurrence of each stage seem to be affected by sliding

speed. Sliding speed tends to accelerate the occurrence of stage II and III. At speed

300 rpm and 600 rpm, it show similar general curve as Figure 4.11(a). At speed 900

rpm, similar friction curve to Figure 4.11(c) was observed. Furthermore, at speed

1200 and 1500 rpm, stage II and stage III are clearly visible and friction curve has a

similar shape as shown in Figure 4.9(a). Unlike Pad-1, increasing of sliding speed

seems to smoothing the friction variation and in addition, stick-slip behavior occurred

at the lowest sliding speed (300 rpm).
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Figure 4.21 Effect of sliding speed to friction characteristic of Pad-2

The friction characteristic of Pad-3 under different sliding speed is presented

in Figure 4.22. There are three friction curve observed. At the lowest speed (300 rpm),

a similar friction curve to Figure 4.13(c) was observed. At speed 600 rpm and 1200

rpm, a similar friction curve in the Figure 4.9(a) was observed. Finally, a similar

friction curve in the Figure 4.11(a) was observed at speed 900 rpm and 1500 rpm and

a stick slip behavior occurred at sliding speed 1500 rpm. Friction variation seems to

be smoother with incremental of speed except at the highest speed.

Figure 4.22 Effect of sliding speed to friction characteristic of Pad-3
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As the sliding speed was increased, the frequency of the asperities brought to

contact increased as well. As a consequence, rapid plastic deformation will take place

as well as adhesion and the formation of wear debris will be accelerated. Fatigue

effect also more intense due to this frequent contact of the asperities. In addition,

frictional heating also increase due to more kinetic energy converted to be heat with

incremental of speed [1, 7, 65].

At the highest sliding speed (1500 rpm), Pad-1 and Pad-3 show stick slip

behavior. This phenomenon is possibly due to the increasing of periodic tearing of the

friction layer. SEM micrograph of Pad-1 and Pad-3 at sliding speed 1500 rpm shows

several patches cover on another patch after rubbing process (Figure 4.23). This

occurrence may be due to high flash temperature which accelerate the thermal

degradation of the resin and subsequently intensify adhesion and bond fracture on the

contact surface.

Figure 4.23 SEM micrograph of plateau on contact surface at high sliding speed

(1500 rpm, 1 MPa); (a) Pad-1, and (b) Pad-3

In contrary, stick slip occurred at the lowest speed of Pad-2 (300 rpm) was

possibly associated with lower frictional heating which result in less thermal

degradation of high organic content. At temperature lower than the chemical

decomposition temperature of the binding agent and its constituent materials,

intensive mechanical deformation of the superficial layers occur initially [100]. This

phenomenon can be explained by using schallamach waves theory as shown in Figure

4.24 [101, 102].

a b
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In the early stage of sliding with uniform contact applied pressure, shear

throughout the body of the soften binder. However, the contact pressure is reduced at

the rear of contact, which cause the binder to slip first at the rear. This slipping alters

the stress state in the binder. The contact pressure that is in front of the slipped region

is reduced until the rear of slipped region. Slip then occurs in this region, which then

alters the contact pressure further ahead. A wave of slip occurs and moves forward at

about 10 times the sliding speed. With continued sliding, standing waves are

established, which often have frequencies in the audible range. It also can produce

periodic sinking of fine particle into the rather soft layer followed by its climbing out

of the impression and settling into the subsequent one [88]

Figure 4.24 Skecth of schallamach waves during sliding [102]

4.2.3. Effect of Relative Humidity to Coefficient of Friction

Friction characteristics of Pad-1 at different relative humidity (RH) are shown

in Figure 4.25. It is observed that humidity has a stabilizing effect on Pad-1. At low

humidity, the friction curve has stage V before reaching the steady state condition
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again (similar shape to Figure 4.9(b)). When the relative humidity was increased, a

similar curve shapes as Figure 49(a) was observed.

Friction characteristic of Pad-2 at different relative humidity are shown in

Figure 4.26. Humidity seems to produce rougher friction variation and there were two

friction curve observed. At lower RH, the curve shape was found to be similar as

Figure 4.11(a) while at medium and high RH, the curve has similar shape as Figure

4.11(c).

Figure 4.25 Effect of relative humidity to COF of Pad-1

Figure 4.26 Effect of relative humidity to COF of Pad-2
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Friction characteristic of Pad-3 at different relative humidity are shown in

Figure 4.27. There two friction curve observed. At lower RH, the curve was found to

be similar as Figure 4.13(b) while at medium and high RH, the curve has similar

shape as Figure 4.13(c).

Figure 4.27 Effect of relative humidity to COF of Pad-3

Frictional behavior differences of the sample at different RH are considered

much related to the formation of friction layer, frictional heat and porosity. Porosity

of the samples is detailed in Appendix C. High porosity related to capability of

friction material to absorb moisture and moreover a lower porosity able to causes

increasing of heat accumulation [33].

The stabilization effect of friction in Pad-1 is thought much related to ability

of moisture to maintain the layer [103]. Figure 4.28 depict feature of Pad-1 surface at

different humidity. Smoother friction layer surface was observed at higher humidity

(Figure 4.28). EDX analysis of Pad-1 at different relative humidity is shown in Table

4.8. Significant increasing of O and S with humidity was found imply the possibility

of sulfur oxide influence the friction layer formation in Pad-1.

Contrary to Pad-1, friction variation of Pad-2 became rougher with relative

humidity. This behavior possibly due to low porosity which resulted in less moisture

absorbed and low friction layer stability. This factor also considered related to high
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content of fillers in this sample. Fillers in general are inert material, which is not

affected by various friction conditions [73], but it also could act as anti blocking

material that entraps air and voids to reduce adhesion/sticking of the friction layers,

thus lowering the interlayer blocking (adhesive) force [104]. This factor influenced to

tendency of stage V to occur due to intense destruction of the friction layer at high RH

environment while stable friction layer relatively easily formed at lower RH. SEM

micrograph of the Pad-2 show less friction layer formed at high RH (Figure 4.29).

At low humidity, Pad-3 shows high coefficient of friction. The coefficient of

friction decreased when the humidity was increased to medium level. When the

humidity was further increased to a higher level, similar coefficient of friction was

observed. In addition, the friction variation was observed quite stable at each relative

humidity as well (Figure 4.22). This behavior is probably due to abrasive material

contained in the Pad-3 material that has increased the generation of friction layers by

acting as powdered lubricant to reduce the friction [10]. At low humidity, several

ploughing mark was visually observed at the surface while at the higher humidity the

symptom visually reduced. Figure 4.30 show Pad-3 surface after sliding at different

relative humidity and Table 4.10 show EDX analysis on the elemental composition of

the layer.

Figure 4.28 SEM micrograph of Pad-1 surface rubbing at different RH; (a) low RH,

(b) medium RH, and (c) high RH

a b
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Figure 4.28 SEM micrograph of Pad-1
surface rubbing at different RH; (a) low
RH, (b) medium RH, and (c) high RH
(Continue)

Table 4.8 EDX analysis of Pad-1 at different experimental humidity

Low RH (10 -15 %) Medium RH (55 – 65 %) High RH (85 – 90%)

Element Weight
(%)

Atomic
(%)

Element Weight
(%)

Atomic
(%)

Element Weight
(%)

Atomic
(%)

C K 29.51 51.51 C K 12.49 26.98 C K 14.4 29.6
O K 23.02 30.16 O K 26.82 43.48 O K 29.05 44.83
Al K 1.03 0.80 Al K 1.36 1.31 Al K 1.31 1.2
Si K 0.88 0.66 Si K 4.04 3.73 Si K 1.54 1.36
S K 0.70 0.46 S K 0.87 0.70 S K 0.95 0.73
Fe K 42.04 15.78 Fe K 47.96 22.28 Fe K 46.91 20.74
Ba L 1.61 0.25 Ba L 5.81 1.10 Ba L 3.33 0.6
Zn K 1.20 0.39 Ca K 0.65 0.42 Zn K 2.22 0.84

Co K 0.27 0.11

Totals 100 Totals 100.00 Totals 100

c
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Figure 4.29 SEM micrograph of Pad-2 surface rubbing at different RH; (a) low RH,

(b) medium RH, and (c) high RH

Table 4.9 EDX analysis of Pad-2 at different experimental humidity
Low RH (10 -15 %) Medium RH (55 – 65 %) High RH (85 – 90%)

Weight
(%)

Atomic
(%) Element

Weight
(%)

Atomic
(%) Element

Weight
(%)

Atomic
(%) Element

C K 25.31 46.8 C K 23.11 43.91 C K 16.68 35.46
O K 23.76 32.98 O K 21.48 40.46 O K 26.93 40.48
Al K 0.79 0.65 Al K 0.76 0.53 Al K 1.08 0.97
Si K 1.55 1.23 Si K 1.47 0.98 Si K 2.61 2.24
S K 0.7 0.49 S K 1.07 1.2 S K 0.77 0.57

Ca K 0.67 0.37 Ca K 0.55 0.26 Ca K 0.59 0.35
Fe K 41.7 16.59 Fe K 46.47 11.32 Fe K 44.18 19.03
Ba L 5.51 0.89 Ba L 5.09 1.34 Ba L 5.16 0.9

Totals 100 Totals 100 Totals 100

a b

c
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Figure 4.30 SEM micrograph of Pad-3 surface rubbing at different RH; (a) low RH,

(b) medium RH, and (c) high RH

Table 4.10 EDX analysis of Pad-3 at different experimental humidity

Low RH (10 -15 %) Medium RH (55 – 65 %) High RH (85 – 90%)
Weight

(%)
Atomic

(%) Element
Weight

(%)
Atomic

(%) Element
Weight

(%)
Atomic

(%) Element

C K 8.33 16.13 C K 13.32 27.97 C K 35.54 55.77
O K 35.58 51.74 O K 28.91 45.58 O K 25.53 30.08
Al K 4.88 4.21 Si K 2.89 2.59 Al K 1.57 1.10
Ca K 6.19 3.59 Ca K 0.87 0.55 Ca K 0.92 0.43
Fe K 32.09 13.37 Fe K 46.73 21.11 Fe K 26.44 8.93
Si K 11.00 9.11 S K 1.43 1.12 S K 1.29 0.76
Mg K 1.94 1.86 Ba L 5.86 1.08 Ba L 5.44 0.75

Si K 3.26 2.19

Totals 100.00 Totals 100.00 Totals 100.00

a b

c
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4.3. Effect of Test Parameters to Wear

4.3.1. Effect of Contact Pressure to Wear

Figure 4.31 shows the effect of contact pressure to wear. Wear of the sample is

shown in term of average weight losses. Generally wear of the samples show increase

with incremental of contact pressure by two trends, linearly and exponentially.

Pad-2 is found as the most wear resistant sample among the others and Pad-3

is the least resistant. Even thought several researchers still could not find significant

effect of porosity and hardness to wear for friction materials [105, 106, 107], it seems

that hardness and porosity may affect wear of these materials (see Appendix C).

Hardness is considered related to its resistance to plastic deformation, whilst porosity

is associated to heat accumulation [33].

Figure 4.31 Effects of contact pressure to wear

The increase applied contact pressure was found to increase wear as well. It is

hypothesized to be related with the increasing of plastic deformation of the contact

asperities. As the contact pressure increased, more asperities will be brought to real

contact situation. Since the rubbing process involving shear mechanism, if the friction

defined as force to shearing the real contact, thus a double contact pressure will have

an effect on doubling the real contact area as well as double friction force [56]. This

plastic deformation consequently sheared off the asperities and the more asperities

brought in real contact the more acceleration of plastic deformation will occur. This in
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turn will increase adhesion and generation of wear debris. Both of adhesion and

generation of wear debris is much affect on the formation of the third body layer.

The formation of wear debris is also attributed to the increasing of the

penetration of a rather hard material on the contact surface. The deeper penetration of

the harder material into the softer material will cause more cutting action and removal

of the softer material, and thus more wear debris is produced.

By analyzing friction variation from the friction curves above, the tendency of

wear mode can be postulated as well. At 1 MPa, the tendency of fiber pull out or

sudden surface fracture seems often to happen on Pad-1 and Pad-2, while tendencies

of transfer or seizure seemed dominantly happen. It also observed several sudden

increase of friction at Pad-1 and Pad-2. This sudden increase is mainly caused by

three body abrasions during this process [90].

Figure 4.32 show several type of the wear debris found after the rubbing

process. From this micrograph, it can be postulated that different wear process were

taken place during the rubbing process. Fiber pull-out, micro-cutting, transfer and

fracture are the dominant wear process found during the braking. Short fiber features

as shown in Figure 4.32 (a) suggested that the fiber has been pulled out from the bulk

material. Flake debris as shown in Figure 4.32 (b) and (c) was formed due to adhesion

and delaminating process which is mainly caused by subsurface cracks [108]. Spall

debris as shown in Figure 4.32(d) may come up from fracture. Plough mark and

embedded hard particles as shown in Figure 4.30 above suggest abrasion was taken

place.

4.3.2. Effect of Sliding Speed to Wear

Figure 4.33 shows the effect of sliding speed to wear. Similar to effect of

contact pressure, wear of the sample generally increasing with the incremental of

sliding speed by two trends, linearly and exponentially. Similar to previous finding,

Pad-2 is the most resistant with changing of sliding speed while Pad-1 shows the

lowest resistant at different sliding speed.
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Figure 4.32 SEM micrograph of several types of wear debris collected from

samples, (a) fiber pulled out type, (b) Flake debris type, (c) Flake debris type with

bigger size, (d) spall debris type

Figure 4.33 Effects of sliding speed to wear

As the sliding speed was increased, the frequency of the asperities brought to

contact increased as well. As a consequence, a rapid plastic deformation will take

place as well as adhesion and the formation of wear debris will be accelerated. The

a

c

b

d
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fatigue effects and frictional heating may intensify wear too. At higher speed, fatigue

effect and frictional heating are intensified causing strong surface damage in the form

of fiber pull-outs and extensive fiber and matrix fracture. High speeds also intensify

the debris removal by centrifugal force avoiding the formation of protective layer

[109].

Increasing velocity increases the wear rate, which in turn roughens the surface

and raises the plowing and cutting contribution to friction [88]. Surface profile of the

sample after sliding is shown in Appendix M. It was found the significant roughening

surface with increasing sliding speed only shown by Pad-3. This factor possibly

influenced by composition, hardness, and wear mechanism. Pad-3 is postulated to be

dominantly consisting of abrasive material, thus the possibility of plowing and cutting

action to relative soft surface become more intense.

4.3.3. Effect of Relative Humidity to Wear

The effect of relative humidity to wear is illustrated in Figure 4.34. It was

found that wear of Pad-1 and Pad-2 decreased with increasing relative humidity. The

decrease of wear of Pad-1 with decreasing RH is thought due the reaction between the

solid lubricants and air moisture, which accelerated the formation of friction layer.

When a stable friction film is formed at the surface, a stable coefficient of friction and

low wear rates can be maintained [51]. EDX analyses of Pad-1 at different RH

suggest possible influence of sulfur oxide in the formation of the friction layer (Table

4.8). Another possible reason to this behavior is possibly due to air moisture trapped

in the pores and penetrated deep enough to maintain the moister layer [103]. High

hardness and low porosity are possibly related to decreasing trend of wear for Pad-2.

At low RH, moisture trapped not sufficient enough to reduce heat accumulated. On

the other hand, higher RH is possible able to reduce heat accumulation which in turn

reduce wear.
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Figure 4.34 Effect of relative humidity to wear

Wear of Pad-3 increased with increasing relative humidity. The increase of

wear of Pad-3 with relative humidity is thought to be due to high abrasive content of

the material that actively abrade the softer part, which increased the generation of the

friction layer. Moreover, SEM micrographs of Pad-3 at different RH suggest

transition of abrasive to delamination mechanism was possibly take place which in

turn intensify wear (Figure 4.30).

4. 4. Morphology of Worn Surface

As the result of sliding friction, the changes on the surface morphology can be

observed and could be used to postulate the wear mechanism in the rubbing process.

The mechanisms of the wear on the samples were occurred not in a single mechanism

but rather combination of several wear mechanism. These wear mechanisms were

found to be exist concurrently during rubbing process.

Adhesive wear mechanism was seemed to be dominant mechanism to cause

wear on the samples. Adhesion mechanism can be noticed from the appearance of

micro plateaus or scuffed surface due to adhesion of the sheared contact asperities to

other location. It also can be noticed from newly developed layer at the countersurface

(see section 4.5). Figure 4.35 – Figure 4.40 show several symptom of adhesion

mechanism.

This adhesion form patch or else form wear particles that flow again along the

contact surface and initiate the formation of other patches at other location. When the
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contact pressure was increased, more friction layer was smeared at the surface and

severe adhesion was taken place. At the higher contact pressure, especially Pad-1,

delamination mechanism was found. Delamination wear is a wear mechanism where

flake like debris is removed from the surface parallel to the wear surface, mimicking

delamination as the sliding proceeds [68]. Figure 4.41 – Figure 4.43 show several

symptoms of delamination mechanism on the worn surface of the sample. Flake

debris as been shown in Figure 4.32(b) and (c) also imply the existence of adhesion

and delamination mechanism.

Figure 4.44 – Figure 4.49 show several abrasive mechanisms at different

contact pressure and speed. Abrasive wear symptom can be identified from surface

scratch or groovy cut indicating hard particles cut and or ploughed the contact surface.

This phenomenon imply that abrasive content as well as the wear debris were actively

abraded the surface during sliding, which in turn increased the gripping and

furthermore initiate formation of friction layer.

Figure 4.50 – Figure 4.54 show several fatigue mechanisms at different

sample, contact pressure and speed. This mechanism can be identified from surface or

subsurface crack, striation and spall on the surface.

Figure 4.35 Adhesive wear feature on Pad-1 at different contact pressure;

(a) 1 MPa, (b) 1.5 MPa, (c) 2 MPa, (d) 2.5 MPa, (e) 3 MPa

a b
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Figure 4.36 Adhesive wear feature on Pad-1 at different sliding speed;

(a) 300 rpm, (b) 600 rpm, (c) 900 rpm, (d) 1200 rpm, (e) 1500 rpm

Figure 4.35 Adhesive wear feature on Pad-1 at different contact pressure;

(a) 1 MPa, (b) 1.5 MPa, (c) 2 MPa, (d) 2.5 MPa, (e) 3 MPa (continued)

d

ba

c

e
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Figure 4.36 Adhesive wear feature on Pad-1 at different sliding speed;

(a) 300 rpm, (b) 600 rpm, (c) 900 rpm, (d) 1200 rpm, (e) 1500 rpm (continued)

Figure 4.37 Adhesive wear feature on Pad-2 at different contact pressure;

(a) 1 MPa, (b) 1.5 MPa, (c) 2 MPa, (d) 2.5 MPa, (e) 3 MPa

c d

a

e

b
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Figure 4.37 Adhesive wear feature on Pad-2 at different contact pressure;

(a) 1 MPa, (b) 1.5 MPa, (c) 2 MPa, (d) 2.5 MPa, (e) 3 MPa (continued)

Figure 4.38 Adhesive wear feature on Pad-2 at different sliding speed;

(a) 300 rpm, (b) 600 rpm, (c) 900 rpm, (d) 1200 rpm, (e) 1500 rpm

c d

ba

e
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Figure 4.38 Adhesive wear feature on Pad-2 at different sliding speed;

(a) 300 rpm, (b) 600 rpm, (c) 900 rpm, (d) 1200 rpm, (e) 1500 rpm (continued)

Figure 4.39 Adhesive wear feature on Pad-3 at different contact pressure;

(a) 1 MPa, (b) 1.5 MPa, (c) 2 MPa, (d) 2.5 MPa, (e) 3 MPa

c d

e

ba
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Figure 4.39 Adhesive wear feature on Pad-3 at different contact pressure;

(a) 1 MPa, (b) 1.5 MPa, (c) 2 MPa, (d) 2.5 MPa, (e) 3 MPa (continued)

Figure 4.40 Adhesive wear feature on Pad-3 at different sliding speed;

(a) 300 rpm, (b) 600 rpm, (c) 900 rpm, (d) 1200 rpm, (e) 1500 rpm

c d

e

ba
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Figure 4.40 Adhesive wear feature on Pad-3 at different sliding speed;

(a) 300 rpm, (b) 600 rpm, (c) 900 rpm, (d) 1200 rpm, (e) 1500 rpm (continued)

Figure 4.41 Delamination wear feature on Pad-1; (a) 2 MPa, (b) 2.5 MPa, and

(c) 3 MPa

c d

e

ba
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Figure 4.41 Delamination wear feature on

Pad-1; (a) 2 MPa, (b) 2.5 MPa, and

(c) 3 MPa (continued)

Figure 4.42 Delamination wear feature

on Pad-2 at 2 MPa

Figure 4.43 Delamination wear feature on Pad-3 at different contact pressure;

(a) 2.5 MPa, (b) 3 MPa

Figure 4.44 Abrasive wear feature on Pad-1 at different contact pressure;

(a) 1 MPa, (b) 3 MPa

c

ba

ba
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Figure 4.45 Abrasive wear feature on Pad-1 at 900 rpm

Figure 4.46 Abrasive wear feature on Pad-2 at different contact pressure; (a) 1 MPa,

(b) 2.5 MPa, (c) 3 MPa

b

c

a
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Figure 4.47 Abrasive wear feature on Pad-2 at different sliding speed;

(a) 300 rpm, (b) 600 rpm, (c) 900 rpm, (d) 1200 rpm, (e) 1500 rpm

b

c d

e

a
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Figure 4.48 Abrasive wear feature on Pad-3 at different contact pressure;

(a) 1 MPa, (b) 1.5 MPa, (c) 2 MPa, (d) 2.5 MPa, (e) 3 MPa

b

c d

e

a
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Figure 4.49 Abrasive wear feature on Pad-3 at different sliding speed; (a) 300 rpm,

(b) 600 rpm, (c) 1200 rpm, (d) 1500 rpm

Figure 4.50 Fatigue wear feature on Pad-1 at different contact pressure;

(a) 1 MPa, (b) 1.5 MPa, (c) 2 MPa, (d) 2.5 MPa

b

c d

a

ba
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Figure 4.50 Fatigue wear feature on Pad-1 at different contact pressure;

(a) 1 MPa, (b) 1.5 MPa, (c) 2 MPa, (d) 2.5 MPa (continued)

Figure 4.51 Fatigue wear feature on Pad-1 at different sliding speed; (a) 300 rpm,

(b) 600 rpm, (c) 900 rpm, (d) 1200 rpm, (e) 1500 rpm

c d

b

c d

a
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Figure 4.51 Fatigue wear feature on Pad-

1 at different sliding speed; (a) 300 rpm,

(b) 600 rpm, (c) 900 rpm, (d) 1200 rpm,

(e) 1500 rpm (continued)

Figure 4.52 Fatigue wear feature on Pad-2; (a) 300 rpm, (b) 900 rpm,
(c) 1200 rpm, (d) 1500 rpm

b

c d

a

e
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Figure 4.53 Fatigue wear feature on Pad-3 at different load; (a) 1.5 MPa,

(b) 2 MPa

Figure 4.54 Fatigue wear feature on Pad-3 at different sliding speed
(a) 300 rpm, (b) 900 rpm

The severe adhesion and delamination mechanism at the high contact pressure

could be the possible reason for the increasing of wear rate and decreasing of COF.

Similar finding by Talib and Azhari stated that delamination mechanism started

earlier when the applied contact pressure was increased [68]. Severe adhesion and

delamination mechanism phenomenon may be happened due to this process; at initial

stage, the contact area was small at any given moment. With the increasing frictional

heating, most organic constituents produced an oily degradation product which

condensed nearby as miniature droplets. When the rubbing contact zone included

these droplets, they smeared, along with fine particulate debris, transform into

platelets. The platelets were seen to flow through the shearing action at the interface

toward the trailing edge of the lining. Some of the platelets eventually adhered to the

b

a b

a
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countersurface and were swept away from the trailing edge of the lining. When the

sliding condition provide low lining wear rates, these platelets then reenter the contact

zone at the leading edge of the lining and again flowed toward the trailing edge.

Occasionally these platelets exited the side of the lining specimen. When the lining

wear rates were high the percentage of platelets which exited laterally, or did not

reenter the leading edge, increased [110]. This phenomenon is due to the tangential

force which may entrap and pressurized the gaseous decay product of the organic

component (pyrolysis product). The occurrences of several flat wear particles confirm

the formation of surface layers. During frictional contact, some fibers may be

detached from the surface and adhesion also may detach large chips of filler material

(Figure 4.32).

More hard particles and compacted debris spread over the surface may also

has to be considered for its role in increasing the friction and wear. Figure 4.44,

Figure 4.46, and Figure 4.48 indicates more cutting action happen due to increasing of

applied load which result in the increasing of wear. The ability of contact pressure to

penetrate the contact asperities is considered to affect wear. It is thought that

increasing contact pressure will cause deeper penetration of the harder material into

the softer material. As result, the more cutting action and removal of the softer

material will occur and more wear debris will be produced.

Fatigue wear also seemed to be often occurred with the increasing of sliding

speed for pad-1. This factor could be related to high organic content and frictional

heating effect. In other sample (Pad-2 and Pad-3), fatigue effect found on relative low

contact pressure and sliding speed. Similar finding by Talib dan Azhari stated that

fatigue wear usually will predominate and the adhesive wear will dominate as the load

increased [68].

4.5. Generation of Friction Layer

The sliding action between the brake pad sample and the gray cast iron pin

generates the development of friction layer on both mating surfaces. In this work, the

generation of the friction layer was investigated on the worn pin as well. After

rubbing and sliding action, a dark grey colored layer was observed covering the
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rubbing surfaces of both pin and pad material. The SEM micrograph shows that the

grounding grooves were no longer visible and the worn surface has been covered the

by friction layer as shown in Figure 4.55. The layer indicates that there was material

transferred from the pad to pin during the sliding process. In order to observe the

friction layer, a cross sectional image was captured by tilting the position of the

specimen to 40º from the normal position. Figure 4.56 shows that a rather thin layer

which has been transferred compacted and smeared on the pin surface can be

observed by this technique.

Figure 4.55 Micrograph of pin surface; (a) the rough groove on the surface before

tribological test, (b) formation of transfer layer after tribological test

Figure 4.56 Micrograph showing transfer layer has been generated on the pin

surface using; (a) secondary electron and (b) backscattered electron

(a) (b)

(a) (b)
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EDX analysis was conducted in order to investigate the elements that had

adhered on the pin by comparing the composition of the pin before and after the

tribological test. The initial composition of the gray cast iron pin investigated with

EDX analysis is shown in Table 4.11.

Table 4.11 Initial elements and EDX spectra of gray cast iron pin

gray cast iron
Element Weight

%
Atomic

%
C K 14.41 39.93
O K 5.14 10.69
Si K 2.48 2.93
Fe K 77.97 46.45

Totals 100 100

When the gray cast iron pin slid against Pad-1, several additional elements

were found on the surface. The result of SEM-EDX analysis of the gray cast iron pin

after slid against Pad-1 is presented in Table 4-12. Significant changes to peak height

of O, C and Fe were observed, in addition, elements such as Al, S, and Ba had been

observed as well. It was also observed that C has reduced by 9 %-wt and Fe has

reduced by 15 %-wt, while O had been added by 21 %-wt.

The result of SEM-EDX analysis of the gray cast iron pin after sliding against

the Pad-2 is presented in Table 4.13. Some additional elements such as Mg, Al, S, Ca,

and Ba were observed after the gray cast iron pin has been rubbed against the Pad-2.

The significant changes in the amount of C, O, and Fe are also observed. As can be

observed from Table 4.13, C has been reduced by 5.99 %-wt. and Fe by 17.84 %-wt.

from initial condition. On the other hand, O has been increased by 19.13 %-wt. to the

surface while no significant change in Si is observed.

Copper was the only additional element found when the pin was sliding

against Pad-3. The changes in the amount of C, O, and Fe are also observed. As can

be observed from Table 4.14, C has been reduced from 14.41 %-wt to 4.45 %-wt and
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Fe was reduced from 77.97 %-wt to 65.34 %-wt. On the other hand, 5.14 %-wt of O

at initial condition was increased to 26.99 %-wt after sliding against Pad-3

Table 4-12 Elements and EDX spectra of gray cast iron pin after sliding with Pad-1

gray cast iron
Element Weight

%
Atomic

%
C K 5.41 13.36
O K 26.35 48.90
Al K 0.92 1.01
Si K 2.07 2.19
S K 0.83 0.77
Fe K 62.88 33.43
Ba L 1.53 0.33

Totals 100 100

Table 4.13 Elements and EDX spectra of gray cast iron pin after sliding with Pad-2

gray cast iron
Element Weight

%
Atomic

%
C K 8.42 20.08
O K 24.27 43.45
Mg K 0.65 0.77
Al K 0.58 0.62
Si K 2.60 2.65
S K 1.03 0.92
Ca K 0.39 0.28
Fe K 60.13 30.83
Ba L 1.93 0.40

Totals 100 100
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Tabel 4.14 Elements and EDX spectra of gray cast iron pin after sliding with Pad-3

gray cast iron
Element Weight

%
Atomic

%
C K 4.45 11.16
O K 26.99 50.84
Si K 2.04 2.19
Fe K 65.34 35.25
Cu K 1.19 0.56

Totals 100 100

The additional new elements as shown by SEM-EDX analysis indicate that

material transfer from brake pad materials to cast iron pin surface took place during

sliding. This process generates the development of transfer layer at the pin surface.

The increasing amount of O and decreasing amount of Fe suggests that the transfer

layers mainly consist of iron oxides. The SEM-EDX results also suggest that the

composition of friction layer depends on the composition of brake pad materials.

Appendix N shows the elemental compositions of the gray cast iron pin before and

after test.

A similar observation was also recorded by Fillip et.al in [3] and Gudmand-

Høyer et.al in [35]. They found several compounds at the disc surface which

originally exist in the pad. In addition, Cho et.al [48] stated that at low temperature

the transfer layer is formed by mechanical attrition and simultaneous attachment of

wear debris from friction material onto the gray iron disc surface. Furthermore,

Oesterle et.al [38] concluded that the compact friction layer is comprised of

nanocrystalline microstructure and exist at the surface of both mating surfaces. They

also added in their conclusion that the mechanical mixing and oxidation plays a major

role during debris production and friction layer formation.
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CONCLUSIONS

Friction and wear testing has been conducted on three semi metallic brake pad

material for light rail transit application: Pad-1, Pad-2, and Pad-3. The results of the

test show that the friction characteristics of each sample are influenced by contact

pressure, sliding speed and relative humidity. The friction characteristic, however,

show six general shape which the changes from one shape to another was also

affected by test parameters. This factor is thought associated with composition and

mechanical properties of the sample.

The friction process between mating samples is concluded as follows: (i) rapid

increased at the initial stage was due to the increasing interaction of the encountered

asperities, contact area and adhesion as well as abrasion of hard particles to the softer

part of the sample surface, (ii) because of continuous process of deformation,

adhesion, and abrasion; the increasing of friction will continuously taken place until

reaching a maximum COF where the maximum interfacial adhesion, plastic

deformation, and wear particles entrapment is reached, (iii) coefficient of friction then

decreased due to degradation of organic content, formation of fine friction layer at the

interfacial contact and most asperities tip have been sheared, (iv) a steady state

friction was reached due to formation of well developed and stable friction layer, (v)

destruction of the previous well developed friction layer by wear particles which then

initiate the formation of other stable friction layer. The presence of the above process

is postulated due to the process of plastic deformation of friction layer and thermal

degradation of the sample.

Contact pressure and sliding speed were found influence the duration of the

friction processes. This occurrence is most possibly influence by composition and

thermal degradation of the organic component in the sample. In addition, relative

humidity was found to affect the friction fluctuation stability. This is related to

formation of the friction layer which affected by composition and porosity of the

sample.
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Wear of the samples were found increase with contact pressure and sliding

speed. The increase of wear with pressure is postulated due to the increasing of plastic

deformation on the contact asperities. This plastic deformation consequently sheared

off the asperities and the more asperities brought in real contact the more acceleration

of plastic deformation will occur. This in turn will increase adhesion and generation

of wear debris. More cutting action and removal of the softer material due to a deeper

penetration of harder material into the softer material with increasing contact pressure

could be another source of increasing of wear rate. The increasing wear to sliding

speed is postulate related to increasing shear frequency of the asperities. Rapid plastic

deformation will take place due to this action, which in turn could roughen the surface

and raises the plowing and cutting action. Moreover, adhesion and the formation of

wear debris will be accelerated. The other factor could be associated with increasing

of fatigue effects and frictional heating. At higher speed, fatigue effect and frictional

heating are intensified causing strong surface damage in the form of fiber pull-outs

and extensive fiber and matrix fracture. High speeds also intensify the debris removal

by centrifugal force avoiding the formation of protective layer

Wear of Pad-1 and Pad-2 were found decrease with relative humidity but wear

of Pad-3 increase with humidity. This behavior is possibly associated with ability of

sample to trap moisture and reduce frictional heating which affected by composition,

hardness and porosity of the sample.

Surface morphology had revealed combination of several wear mechanism; (i)

adhesive wear, (ii) abrasive wear, (iii) fatigue wear, and (iv) delamination wear.

However, adhesive and fatigue mechanism was found as the dominant wear

mechanism. These mechanisms were found in the sample under all contact pressures

and sliding speeds.

In the study on the worn surface morphology, SEM can be used to provide the

information on the microstructural changes (microcrack, wear mechanism,

topography) on the investigated surface. However this technique could not provide the

bulk microstructure such as strain, dislocation, nucleation and propagation of

microcrack, third body, and fatigue, wear morphology. Thus, a combination SEM,

transmission electron microscopy and focused ion beam (FIB) is recommended to be
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used in the study of; (i) friction layer composition, (ii) friction layer thickness, (iii)

dislocation and crack propagation. The knowledge on the bulk and subsurface could be

shed greater understanding on the microstructural changes of the sample worn surfaces.

In the present work, the study tribological tests were performed under different

contact pressures, sliding speed and relative humidity. It would be interesting to study

and gain more information on the tribological properties of friction materials by

varying the other testing parameters (sliding time, surface temperature) and test

conditions (wet, oily, surface roughness) in the future.
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APPENDIX A

EXPERIMENTAL FLOW CHART

START

SAMPLE PREPARATION
- Releasing the backing plat
- Cutting
- Shaping
- Grounding

MATERIAL CHARACTERIZATION
- SEM-EDX
- XRF
- XRD

TRIBOLOGICAL TEST
- Friction
- Wear

SURFACE CHARACTERIZATION
- SEM-EDX

STOP
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APPENDIX B

ASTM G-99
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APPENDIX B

ASTM G-99 (CONTINUE)
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APPENDIX B

ASTM G-99 (CONTINUE)
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APPENDIX B

ASTM G-99 (CONTINUE)
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APPENDIX C

PHYSICAL AND MECHANICAL PROPERTIES OF THE SAMPLES

Sample Hardness
(HRS)

Porosity (%) Specific gravity Surface
roughness (µm)

Pad-1 68.2 12.9 3.29 2.173
Pad-2 97.0 7.86 2.76 2.837
Pad-3 67.3 9.82 2.64 2.397
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APPENDIX D

MICROSTRUCTURE OF THE GRAY CAST IRON PIN

Microstructure of gray cast iron pin
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APPENDIX E

ELEMENTAL COMPOSITIONS OF THE SAMPLES DETERMINED BY

EDX TECHNIQUE

Weight % Atomic %Element
Pad - 1 Pad - 2 Pad - 3 Pad - 1 Pad - 2 Pad - 3

C K 62.75 62.29 59.35 81.47 78.66 75.94
O K 11.34 16.08 17.83 11.05 15.24 17.13
Mg K 1.23 0.65 0.58 0.79 0.41 0.37
Al K 0.32 0.34 0.96 0.19 0.19 0.55
Si K 0.16 0.84 1.41 0.09 0.46 0.77
S K 0.59 0.6 0.63 0.29 0.29 0.3
Fe K 20.77 15.5 16 5.8 4.21 4.4
Ba L 2.83 3.14 2.39 0.32 0.35 0.27
Ca K 0.54 0.42 0.2 0.16
Cu L 0.43 0.1

Totals 100 100 100 100 100 100
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APPENDIX F

TGA RESULT OF THE SAMPLES, CONTINUED TO APPENDIX G

Method: D+30-600/10/Alox std/N2=50
30.0-600.0°C 10.00°C/min N2 50.0 ml/m in

Step -2.1064 %
-0.3558 mg

Residue 97.9336 %
16.5410 m g

Step -366.2110e-06 %
-61.8530e-06 mg

=! c omm-B lank_30-600/10/N2=50ml
comm, 16.8900 mg

%

98.0

98.5

99.0

99.5

100.0

min

°C50 100 150 200 250 300 350 400 450 500 550

0 5 10 15 20 25 30 35 40 45 50 55

comm 27.06.2007 11:14:58

SW 8.10eRTASLab: METTLER

(a) TGA curve of Pad-1
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APPENDIX G

TGA RESULT OF THE SAMPLES, CONTINUED TO APPENDIX H

Step -8.1030 %
-1.3313 mg

Residue 91.6830 %
15.0635 m g

Step -0.2303 %
-37.8372e-03 mg Method: D+30-600/10/Alox std/N2=50

30.0-600.0°C 10.00°C/min N2 50.0 ml/m in

=! S2-Blank_30-600/10/N2=50m l
S2, 16.4300 mg

%

91

92

93

94

95

96

97

98

99

100

min

°C50 100 150 200 250 300 350 400 450 500 550

0 5 10 15 20 25 30 35 40 45 50 55

S2 26.06.2007 15:16:50

SW 8.10eRTASLab: METTLER

(b) TGA Curve of Pad-2
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APPENDIX H

TGA RESULT OF THE SAMPLES, CONTINUED FROM APPENDIX G

Method: D+30-600/10/Alox std/N2=50
30.0-600.0°C 10.00°C/min N2 50.0 ml /m in

Step -5.4842 %
-0.8895 mg

Residue 94.4848 %
15.3254 m g

Step -36.4609e-03 %
-5.9140e-03 mg

! S5-Blank_30-600/10/N2=50ml
S5, 16.2200 mg

%

94

95

96

97

98

99

100

min

°C50 100 150 200 250 300 350 400 450 500 550

0 5 10 15 20 25 30 35 40 45 50 55

S5 26.06.2007 15:26:46

SW 8.10eRTASLab: METTLER

(c) TGA Curve of Pad-3



APPENDIX I

SUMMARY OF SAMPLE ELEMENTAL COMPOSITIONS DETECTED BY EDX/XRF/XRD TECHNIQUE

Pad -1 Pad - 2 Pad - 3
EDX XRF EDX XRF EDX XRF

Element %
wt.

Compound %
wt.

XRD
Element %

wt.
Compound %

wt.

XRD
Element %

wt.
Compound % wt.

XRD

C K 62.75 - - carbon C K 62.29 - - graphite C K 59.35 - - carbon
O K 11.34 - - - O K 16.08 - - - O K 17.83 - - -

Mg K 1.23 MgO 0.423 - Mg K 0.65 MgO 4.07 - Mg K 0.58 MgO -
Al K 0.32 Al2O3 5.18 - Al K 0.34 Al2O3 2.09 - Al K 0.96 Al2O3 6.58 -
Si K 0.16 SiO2 5.15 quartz Si K 0.84 SiO2 5.28 quartz Si K 1.41 SiO2 9.31 quartz
S K 0.59 SO3 10.8 - S K 0.6 SO3 6.3 - S K 0.63 SO3 4.24 -
Fe K 20.77 Fe2O3 65.8 hematite Fe K 15.5 Fe2O3 68.3 Hematite Fe K 16 Fe2O3 61 -
Ba L 2.83 BaO 4.12 barium

sulphate
Ba L 3.14 BaO 9.81 barium

sulphate
Ba L 2.39 BaO 7.38 -

CuO 0.376 Brass CuO Cu L 0.43 CuO copper thin
sulphide

ZnO 3.76 zinc sulphide ZnO 3.76 - ZnO 0.0275 -
MnO 0.361 - MnO 0.349 - MnO 0.566 -
CaO 1.64 - Ca K 0.54 CaO 1.95 domolite,

CaMg(CO3)2

Ca K 0.42 CaO 3.49 -

Sb2O3 0.92 antimony
sulphide, Sb2S3

Sb2O3 - - Sb2O3 - -

K2O 0.436 K2O 0.313 K2O 0.266

Na2O 0.431 Na2O 0.381 Na2O 0.352
Vermiculite,

MgSi4O10(OH)2

vermiculite vermiculite

Wollastonite,
CaSiO3

wollastonite wollastonite
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APPENDIX J

INITIAL SURFACE PROFILES OF THE SAMPLES, CONTINUED TO

APPENDIX K

(a) Surface roughness of Pad-1
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APPENDIX K

INITIAL SURFACE PROFILES OF THE SAMPLES, CONTINUED TO

APPENDIX L

(b) Surface roughness of Pad-2
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APPENDIX L

INITIAL SURFACE PROFILES OF THE SAMPLES, CONTINUED FROM

APPENDIX K

(c) Surface roughness of Pad-3



APPENDIX M

SURFACE ROUGHNESS OF THE SAMPLES BEFORE AND AFTER TEST

Pad-1 Pad-2 Pad-3Load

1 2 3 average 1 2 3 average 1 2 3 average
Initial 2.65 2.04 1.83 2.173 2.88 3.31 2.32 2.837 2.6 2.36 2.23 2.397
1 MPa 0.99 1.54 1.15 1.227 1.85 0.89 1.6 1.447 1.73 0.43 1.41 1.19
1.5 MPa 1.25 1.67 0.95 1.29 1.84 1.67 0.62 1.377 2.27 2.14 1.04 1.817
2 MPa 1.58 1.56 1.64 1.593 1.27 0.93 1.11 1.103 1.53 1.93 1.91 1.79
2.5 MPa 0.93 0.81 1 0.913 1.52 0.97 1.69 1.393 0.65 0.41 0.48 0.513
3 MPa 0.4 0.63 0.92 0.65 2.14 1.18 3.38 2.233 0.74 0.53 0.93 0.733

Pad-1 Pad-2 Pad-3Sliding Speed
1 2 3 average 1 2 3 average 1 2 3 average

Initial 2.65 2.04 1.83 2.173 2.88 3.31 2.32 2.837 2.6 2.36 2.23 2.397
300 rpm 1.07 1.34 1.06 1.157 1.45 0.99 0.65 1.030 2.02 0.67 0.56 1.083
600 rpm 0.99 1.54 1.15 1.227 1.85 0.89 1.6 1.447 1.73 0.43 1.41 1.190
900 rpm 1.87 1.92 0.96 1.583 1.46 1.94 1.43 1.610 1.03 2.45 1.86 1.780
1200 rpm 1.27 1.26 1.2 1.243 1.33 2.07 0.95 1.450 2.06 2.27 1.14 1.823
1500 rpm 1.81 1.09 2.18 1.693 1.97 0.77 1.21 1.317 2.85 2.66 3.38 2.963
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APPENDIX N

ELEMENTAL COMPOSITIONS EDX ANALYSIS OF THE GRAY CAST

IRON PIN BEFORE AND AFTER TEST

Before ( % weight) After (% atomic)
Element

Pad - 1 Pad - 2 Pad - 3 Pad - 1 Pad - 2 Pad - 3
C K 5.41 8.42 4.45 13.36 20.08 11.16
O K 26.35 24.27 26.99 48.90 43.45 50.84
Al K 0.92 0.58 - 1.01 0.62 -
Si K 2.07 2.60 2.04 2.19 2.65 2.19
S K 0.83 1.03 - 0.77 0.92 -
Fe K 62.88 60.13 65.34 33.43 30.83 35.25
Ba L 1.53 1.93 - 0.33 0.40 -
Mg K - 0.65 - - 0.77 -
Ca K - 0.39 - - 0.28 -
Cu K - - 1.19 - - 0.56

Total 100.00 100.00 100.00 100.00 100.00 100.00


